移相全桥电路
移相全桥ic内部电路
移相全桥ic内部电路
移相全桥IC(Integrated Circuit)内部电路通常由四个功率MOSFET(金属-氧化物半导体场效应晶体管)、一个移相控制电路以及一些辅助电路组成。
功率MOSFET是IC的核心元件,它们用于控制并驱动负载电流。
这些MOSFET 通常由N型和P型MOSFET组成,可以通过控制其开关状态来产生正、负半个周期的输出电流。
移相控制电路负责生成精确的相位控制信号,该信号确定了MOSFET开关的时序和工作状态。
移相控制电路通常由一个比较器、一个时钟产生器和一个错误校正电路组成。
辅助电路主要包括过流保护电路、过温保护电路和电源管理电路等。
这些电路用于保护IC免受过电流、过温和电源波动等可能的损害。
总之,移相全桥IC内部电路是一个复杂的集成电路系统,通过控制和驱动功率MOSFET来产生精确的移相输出电流,达到移相全桥的功能。
两种新型移相全桥ZVS-PWM变换器拓扑的比较
两种新型移相全桥ZVS-PWM变换器拓扑的比较移相全桥ZVS-PWM变换器是一种高效率、高可靠性的DC-DC变换器,其拓扑结构复杂,但是具有很好的电路性能和电气参数。
在实际应用中,有多种不同的移相全桥ZVS-PWM变换器拓扑可供选择。
本篇文章将比较两种新型移相全桥ZVS-PWM变换器拓扑,分别是基于全桥拓扑的变换器和基于三电平全桥拓扑的变换器。
1. 基于全桥拓扑的变换器基于全桥拓扑的移相全桥ZVS-PWM变换器是最常用的拓扑结构。
该拓扑结构具有轻松实现基本ZVS动作的优点,无需使用任何复杂的电路,而且具有较好的成本和设计灵活性。
在实际应用中,基于全桥拓扑的变换器通常需要使用一些辅助电路,以解决谐振现象。
优点:①电路操作简单,易于实现。
②交流侧的损耗较小。
③实现高功率密度。
缺点:①输出电压受交流电源电压的波动影响较大。
②峰值应力程度较高。
2. 基于三电平全桥拓扑的变换器基于三电平全桥拓扑的移相全桥ZVS-PWM变换器是近年来发展较快的一种拓扑结构。
该拓扑结构下,采用更多的功率器件以及更加复杂的电路拓扑,在谐振问题的处理方面具有重要的优势。
目前该拓扑结构在风能、太阳能等领域得到了广泛应用。
优点:①基本消耗无谐振的电路,减小了电路的开关损耗。
②输出电压呈三级结构,可轻松实现多种电压调节方式。
缺点:①开关器件数目增加,造成电路设计和控制难度大。
②在高频控制时可能造成比较强的谐振噪声。
综上所述,两种新型移相全桥ZVS-PWM变换器拓扑各有优缺点,在选择时应根据实际应用需求进行评估。
虽然基于三电平全桥拓扑的移相全桥ZVS-PWM变换器在谐振问题上更加优越,但其电路复杂度和控制难度也更大,适用于高要求的应用场景。
而基于全桥拓扑的移相全桥ZVS-PWM变换器则相对简单易用,更适用于低功率应用。
数据分析是一种通过数学和统计学方法对数据进行分析和解释,以准确判断数据的意义和价值的方法。
在实际工作中,数据分析在市场调研、销售预测、风险管理、财务报表分析等领域都发挥着重要作用。
第六章 软开关技术(移相全桥ZVS软开关电路分析)
td (lead ) 2CleadVin / I1
在这段时间里,原边电流等于折算到 原边的滤波电 ) / K
4.开关模态3 在 t2 时刻,关断 Q4,原边电流 i p 转 移到 C2和 C4中,一方面抽走 C2上的 电荷,另一方面又给 C4充电。 由于C2 和C4 的存在,Q4的电压是从零 慢慢上升的,因此 Q4是零电压关 断。这段时间里谐振电感 Lr 和C2 及 C4在谐振工作。原边电流 i p 和 C4 的电压分别为: 电容C2 ,
2.开关模态1 在 t 0 时刻关断Q 1,原边电流 i p 从 Q 1中转移到到 C3和 C1 支路中,给
C1充电,同时 C3被放电。 电容 C1 的电压从零开始线性上升
电容 C3 的电压从 Vin开始线性下降 Q 1是零电压关断。
i p (t ) I p (t0 ) I1
vC1 (t )
到 t4 时刻,原边电流从 I p (t3 )下降到 零,二极管 D2和 D3自然关断。 持续时间为: t L I (t ) / V
34 r P 3
Vin i p (t ) I p (t3 ) (t t3 ) Lr
in
6. 开关模态5 在 t 4 时刻,原边电流流经 Q2和 Q3。 由于原边电流仍不足以提供负载 电流,负载电流仍由两个整流管 提供回路,因此原边绕组电压仍 然为零,加在谐振电感两端电压 是电源电压Vin ,原边电流反向线 性增加。
到 t5 时刻,原边电流达到折算到原 I Lf (t5 ) / K 值,该开 边的负载电流 关模态结束。 持续时间为: L I (t ) / K
Vin i p (t ) (t t4 ) Lr
t45
移相全桥电路工作原理
移相全桥电路工作原理是电容一通电,电路就给电容充电,一开始瞬间充电的电流为最大值,电压趋于0,随着电容充电量增加,电流渐而变小,电压渐而增加,至电容充电结束时,电容充电电流趋于0,电容端电压为电路的最大值,这样就完成了一个充电周期,如果取电容的端电压作为输出,即可得到一个滞后于电流90度的称移相电压。
移相电路就是驱动波形的相位向前或向后移动它的角度,利用相位的漂移来进行你的设备,达到你的目的。
比如全桥移相电源控制技术,就是利用移相来控制输出电压的高低,利用相位的相角来调节变压的磁通密度。
改变输出电压的高低。
移相全桥的原理与设计简介
• 测试PFC 二极管的电压应力时,地线需接 阴极,否则甚至会引起PFC工作不稳定的 现象(叫机)。如下图所示:
四、磁性器件设计
• 简要计算: • 1.主变压器:双EE4242B,f=100KHZ,Ae=
178mm^2,D=0.90,Ton=4. 5us,VIN=380V, 工作于第一、三象限。 N1=,提前关断; • Q40比Q37提前导通,提前关断。
• 当对角管Q39和Q38,或Q40和Q37同时导 通时,初级才存在正向(或负向)的方波 电压。由电感公式U=L*dI/dt可知,初级电 流线性变化。
• Q39提前关断,Q40的DS电压会下降,初 级电流需抽走Q40的DS结电容的电荷,同 时给Q39的结电容充电。
• 当Q40的DS电压下降为负压时,Q40的体 二极管导通,DS电压被箝位,近似为零。 如果此时给出Q40驱动,就能实现ZVS。
根据上述分析, 有3个方法,有利于实现ZVS: 1.增加励磁电流 2.加大谐振电感 3.增加死区时间
ZVS示意波形可参考如下:
• Q40和Q38同时导通时,初级变压器绕组上的 电压为零,不传送能量。要保持电感电流不变, 初级电流处于环流状态,存在较大的导通损耗, 电流再次下降。
• Pin11 ADS 可变死区设置
• 较大的死区时间会减小占空比的利用率,降低变换器的 效率。UCC3895集成了死区调节功能,即在负载增大时, 减小死区时间,提高重载时的占空比利用率。通过合理 设置PIN12、PIN11之间的电阻比值,可以提供可变的死 区时间,如下图所示:
• PIN7、PIN8:用于设置开关频率。 • PIN4:VREF
• 当Q37、Q40同时导通时,由于初级电流减小, 次级绕组无法完全提供负载电流,次级的两个整 流二极管同时处于导通、续流状态,次级绕组短 路。因此,初级的方波电压完全施加与谐振电感 上,此时副边存在占空比丢失现象。
移相全桥隔直电容的计算公式
移相全桥隔直电容的计算公式移相全桥隔直电容在电力电子领域中可是个相当重要的角色,它的计算公式对于工程师和相关专业的学生来说,是必须要掌握的知识点。
咱们先来说说移相全桥电路,这玩意儿在电源转换领域那可是应用广泛。
比如说,电脑电源、通信电源,都能看到它的身影。
那为啥要用到隔直电容呢?这就好比在一条路上设置个关卡,防止一些不该过去的东西跑过去,保证电路的稳定和安全运行。
移相全桥隔直电容的计算公式,涉及到很多电路参数,像开关频率、变压器的漏感、最大占空比等等。
具体的公式是:C = (1 - D_max) ×(T_s / 2L_leak) 。
这里面,C 就是隔直电容的容值,D_max 是最大占空比,T_s 是开关周期,L_leak 是变压器的漏感。
我记得有一次,我在实验室里和几个学生一起做一个电源转换的项目。
当时我们就遇到了隔直电容取值的问题。
按照理论计算,我们选了一个电容值,结果电路运行起来不太稳定。
那可把我们急坏了,大家都抓耳挠腮的。
后来,我们一点点排查,发现是我们在计算变压器漏感的时候出现了误差。
经过重新测量和计算,调整了隔直电容的容值,电路终于正常工作了。
那一瞬间,大家都欢呼起来,那种成就感真是没得说。
通过这个小经历,我想跟大家说,公式虽然重要,但实际应用中的各种细节也不能忽略。
比如说,元件的实际参数可能和标称值有偏差,电路中的寄生参数也会影响结果。
所以,在使用移相全桥隔直电容的计算公式时,一定要结合实际情况,多做实验,多调试,才能得到理想的结果。
总之,掌握移相全桥隔直电容的计算公式是基础,但更关键的是要把理论和实践结合起来,这样才能在电力电子的世界里游刃有余。
希望大家在学习和工作中,都能顺利搞定这个小小的电容,让电路乖乖听话,为我们的生活带来更多的便利和惊喜!。
移相全桥为主电路的软开关电源设计详解
移相全桥为主电路的软开关电源设计详解2014-09-11 11:10 来源:电源网作者:铃铛移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。
如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。
主电路分析这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。
采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。
电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。
图1 1.2kw软开关直流电源电路结构简图其基本工作原理如下:当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。
通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。
由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。
当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。
UCC28950移相全桥设计的指南
UCC2895移相全桥设计指南一,拓扑结构及工作原理(i)主电路拓扑本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路的方法复位变压器原边电流,实现了超前桥臂的零电压开关电流开关(ZCS)。
电路拓扑如图3.6所示图1模式1主电路简化图及等效电路图②模式2当S|、S4导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容Cc充电。
当关断S时,电源对C i 充电,C2通过变压器初级绕组放电。
由于C1的存在,S|为零电压关断,此时变压器漏感L k和输出滤波电感L o串联,共同提供能量,由于Cc的存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于L k,加速了C2的放电,为S2的零电压开通提供条件。
当Cc放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段S4,开通S3,由于漏感L k两边电流不能突变,所以S4为零电流关断,S3为零电流开通。
(2)主电路工作过程分析[7]半个周期内将全桥变换器的工作状态分为①模式18种模式。
(ZVS)和滞后桥臂的零5图4模式4主电路简化图及等效电路图图5模式5主电路简化图及等效电路图③模式3 ④模式4 14DD图2模式2简化电路图 (1)U 图3模式3简化电路图u⑤模式5Jilin⑥模式6图6模式6主电路简化图及等效电路图⑧模式8图8模式8主电路简化电路图二,关键冋题1:滞后臂较难实现 ZVS原因:滞后臂谐振的时候,次级绕组短路被钳位,所以副边电感无法反射到原边参加谐振,导致谐振的能量只能由谐振电感提供,如果能量不够, 就会出现无法将滞后臂管子并联的谐振电容电压谐振到0V.解决方法:① 、增大励磁电流。
但会增大器件与变压器损耗。
② 、增大谐振电感。
但会造成副边占空比丢失更严重。
③ 、增加辅助谐振网络。
但会增加成本与体积。
⑦模式7 图7模式7主电路简化电路图2,畐V边占空比的丢失原因:移相全桥的原边电流存在着一个剧烈的换流过程,此时原边电流不足以提供副边的负载电流,因此副边电感就会导通另一个二极管续流,即副边处于近似短路状态;Dloss与谐振电感量大小以及负载RL大小成正比,与输入电压大小成反比。
1kW大功率ZVS移相全桥开关电源设计电路图
1kW大功率ZVS移相全桥开关电源设计+电路图摘要结合目前开关电源的发展现状,本文设计了一种1kW,50V/20A的ZVS移相全桥开关电源。
论文首先介绍了开关电源的几种主要拓扑结构,并在半个周期内对移相全桥ZVS拓扑的工作状况进行了详细分析。
论文其次对开关电源的主电路、控制电路和驱动电路进行了设计。
主要工作包括主电路磁性元件的计算与选择;以UC3875为核心、双环控制模式下控制电路的设计;以及利用芯片IR2110驱动MOSFET 的驱动电路设计。
30292论文最后通过仿真对相关波形进行了采集。
采集的电流波形包括:给定范围内,不同直流输入下,四个MOSFET驱动信号波形、两桥臂中点间电压和原边电流波形;不同负载下开关管上电压电流波形;还有输出电压波形。
验证了本电源满足移相PWM以及ZVS条件,且各部分性能满足预期设计要求。
关键词大功率开关电源 ZVS移相全桥双环控制毕业论文设计说明书外文摘要Title The Research of High-Power Switching Power SupplyAbstractAccording to the current development condition of switching power supply, a 1kW, 50V/20A ZVS phase-shifted full-bridge switching power supply is proposed in this paper. It employs the research methods that combines theoretical analysis with simulation design. Several major topological structures of DC/DC converter are firstly introduced in this paper, and the working principle of ZVS PS-FB DC/DC converter in a half period is analyzed in details. Then the design process of its main circuit, control circuit and driving circuit is put forward, including the calculation and selection of the magnetic elements in the main circuit, and the design of peripheral circuit of chip UC3875 as the core part of control circuit, where a dual-loop control mode is used. On the basis of Saber software, relevant waveform is acquired, verifying the fact that this power supply is zero-voltage turn-on and zero-current turn-off. It has satisfied the design requirements of both its functions and performance. 源自Keywords high-power switching power supply ZVS PS-FB dual-loop control目次1 引言 11.1 开关电源的发展状况 11.2 开关电源DC/DC变换器常见拓扑结构 1 1.3 软开关技术 31.4 本课题主要工作 52 移相全桥ZVS PWM变换器 62.1 基本工作原理 62.2 工作过程分析 93 1kW开关电源的设计 173.1 主电路设计 173.1.1 主电路电路设计 173.1.2 高频变压器 183.1.3 输入滤波电容 203.1.4 主功率开关管 203.1.5 谐振电感 213.1.6 输出滤波电感 233.1.7 输出滤波电容 243.2 控制部分设计 243.2.1 控制保护电路设计 243.2.2 驱动电路设计 284 仿真结果及分析 30结论 37致谢 38参考文献 391 引言1.1 开关电源的发展状况开关电源目前在现代电力、电子、交通、通信系统、国防等相关方面取得了极为深远的影响[1,2]。
移相全桥的12种模式!
移相全桥的12种模式!1.单相半波模式:在这种模式下,只有一个开关管工作,其余的开关管都关闭。
这种模式可以实现基本的相位移动。
2.单相全波模式:这种模式下,两个对角线上的开关管工作,其余的开关管都关闭。
相对于半波模式,全波模式能够提供更大的相位变化范围。
3.串联模式:在此模式下,两对对角线上的开关管都工作,所以电压是串联的。
这种模式可以实现频率的倍增。
4.并联模式:在这种模式下,两对对角线上的开关管都工作,所以电压是并联的。
这种模式可以实现频率的降低。
5.三相半波模式:这种模式下,只有一个相位移动,因此只有一个开关管工作,其余的开关管都关闭。
这种模式常用于三相电路的控制。
6.三相全波模式:在这种模式下,两个对角线上的开关管工作,其余的开关管都关闭。
相对于半波模式,全波模式能够提供更大的相位变化范围,并且能够实现三相电路的控制。
7.三相并联模式:这种模式下,六个开关管都工作,相对于并联模式,可以提供更大的功率。
8.三相串联模式:这种模式下,六个开关管都工作,相对于串联模式,可以提供更大的功率。
9.长周期模式:这种模式下,开关频率较低,可实现较长周期的频率和相位变化。
10.短周期模式:这种模式下,开关频率较高,可实现较短周期的频率和相位变化。
11.反向移位模式:在这种模式下,相位的变化是相反的。
12.多级变频模式:在这种模式下,可以通过串联多个移相全桥电路来实现更大范围的频率变换。
以上是移相全桥的12种模式。
不同的模式可以实现不同的功能,例如相位移动、频率变换、三相电路控制等。
在实际应用中,可以根据需要选择合适的模式来满足系统的需求。
移相全桥参数计算
移相全桥参数计算概述:移相全桥是一种常见的电路,可用于测量电容、电感、电阻等电路元件的参数,以及用于产生可调节的相位差。
本文将介绍移相全桥的原理、参数计算方法,并通过一个示例进行详细说明。
移相全桥的原理:```R1R2┌───┐┌───┐││││────┘└────┘└───C1C2────┐┌────┐┌───││││└───┘└───┘R3R4```其中,R1和R2是两个相等的电阻,C1和C2是两个相等的电容。
移相全桥的输入电压为V1,输出电压为Vout,频率为f。
我们假设在进行参数计算时,电压V1和频率f已知。
参数计算方法:1. 计算电流Iin:移相全桥的输入电流为Iin,根据欧姆定律可以计算出:Iin = V1 / R12.计算电容C3:移相全桥的输出电压Vout与输入电压V1之间的关系为:Vout = -V1 * (C1 / C2)由此,我们可以解出电容C3的值:C3 = C2 * (Vout / V1)3.计算电阻R3和R4:电阻R3和R4的分布可以根据如下公式计算:R3 = R1 * (Vout / V1)R4 = R2 * (Vout / V1)至此,我们已经计算出了移相全桥的所有参数。
示例:假设移相全桥的输入电压V1为10V,频率f为1kHz,R1和R2的阻值均为1kΩ,C1和C2的电容均为1μF,已知输出电压Vout为1V。
根据参数计算方法,我们可以计算出:1. 输入电流Iin:Iin = V1 / R1 = 10V / 1kΩ = 10mA2.电容C3:C3 = C2 * (Vout / V1) = 1μF * (1V / 10V) = 0.1μF3.电阻R3和R4:R3 = R1 * (Vout / V1) = 1kΩ * (1V / 10V) = 100ΩR4 = R2 * (Vout / V1) = 1kΩ * (1V / 10V) = 100Ω因此,在给定参数的条件下,移相全桥的输入电流为10mA,电容C3的值为0.1μF,电阻R3和R4的阻值均为100Ω。
移相全桥软开关工作原理解析
ZVZCS移相全桥软开关工作原理(1) 主电路拓扑本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路的方法复位变压器原边电流,实现了超前桥臂的零电压开关(ZVS)和滞后桥臂的零电流开关(ZCS)。
电路拓扑如图3.6所示。
图3.6 全桥ZVZCS电路拓扑当1S、4S导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容Cc充电。
当关断1S时,电源对1C充电,2C通过变压器初级绕组放电。
由于1C的存在,1S为零电压关断,此时变压器漏感k L和输出滤波电感o L串联,共同提供能量,由于Cc的存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于k L,加速了2C的放电,为2S的零电压开通提供条件。
当Cc放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段4S,开通3S,由于漏感k L两边电流不能突变,所以4S为零电流关断,3S为零电流开通。
(2) 主电路工作过程分析[7]半个周期内将全桥变换器的工作状态分为8种模式。
①模式1S、4S导通,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端箝1位电容Cc充电。
输出滤波电感o L与漏感k L相比较大,视为恒流源,主电路简化图及等效电路图如图3.7所示。
图3.7 模式1主电路简化图及等效电路图由上图可以得到如下方程:p Cc os kdI V V V L n n dt=++ (3-3) p c o I nI nI += (3-4)Ccc cdV I C dt=- (3-5) 由(3-3)式得:2p Cckd I dV nL dt dt=- (3-6) 将(3-6)式代入(3-5)式得:22p c c kd I I nC L dt = (3-7)将(3-7)式代入(3-4)式得:222p p c ko d I I n C L nI dt+= (3-8)解微分方程:222p p oc kc kd I I I nC L dt n C L +=(3-9) 其初始条件为:(0)0Cc t V ==;(0)0c t I == (3-10)代入方程解得:()sin s o p o k V V nI t t nI L ωω-=+ (3-11) ()sin p s o c o k I V V nI t I t n nL ωω-=-=-(3-12)()()(1cos )Cc s o V t nV V t ω=-- (3-13)(其中ω=)② 模式2当cos 1t ω=-时,()Cc V t 达到最大值,此时sin 0t ω=,()0c I t =,()p o I t nI =;二极管c D 关断,输出侧电流流经1D 、o L 、o C 、L R 、4D 和次级绕组,简化电路如图3.8所示。
移相全桥软开关工作原理解析
ZVZCS移相全桥软开关工作原理(1) 主电路拓扑本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路得方法复位变压器原边电流,实现了超前桥臂得零电压开关(ZVS)与滞后桥臂得零电流开关(ZCS)。
电路拓扑如图3、6所示。
图3、6 全桥ZVZCS电路拓扑当、导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容充电。
当关断时,电源对充电,通过变压器初级绕组放电。
由于得存在,为零电压关断,此时变压器漏感与输出滤波电感串联,共同提供能量,由于得存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于,加速了得放电,为得零电压开通提供条件。
当放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段,开通,由于漏感两边电流不能突变,所以为零电流关断,为零电流开通。
(2)主电路工作过程分析[7]半个周期内将全桥变换器得工作状态分为8种模式。
①模式1、导通,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端箝位电容充电。
输出滤波电感与漏感相比较大,视为恒流源,主电路简化图及等效电路图如图3、7所示。
图3、7模式1主电路简化图及等效电路图由上图可以得到如下方程:(3-3)(3-4)(3-5)由(3-3)式得:(3-6)将(3-6)式代入(3-5)式得:(3-7)将(3-7)式代入(3-4)式得:(3-8)解微分方程:(3-9)其初始条件为:; (3-10)代入方程解得:(3-11)(3-12)(3-13)(其中)②模式2当时,达到最大值,此时,,;二极管关断,输出侧电流流经、、、、与次级绕组,简化电路如图3、8所示。
此时满足:,,。
图3、8模式2简化电路图③模式3S1关断,原边电流从S1转移至C1与C2,C1充电,C2放电,简化电路如图3、9所示。
由于C1得存在,S1就是零电压关断。
变压器原边漏感与输出滤波电感串联,共同提供能量,变压器原边电压与整流桥输出电压以相同得斜率线性下降,满足:。
移相全桥电路原理
移相全桥电路原理移相全桥电路是一种常用的电子电路,它可以实现信号的移相和放大,广泛应用于电子设备和通信系统中。
在本文中,我们将介绍移相全桥电路的原理和工作原理,以及它的应用和特点。
移相全桥电路由四个二极管和四个电容器组成,它可以将输入信号进行移相处理,并且可以实现信号的放大。
移相全桥电路的原理是利用二极管的导通特性和电容器的充放电特性来实现信号的移相和放大。
当输入信号经过移相全桥电路时,首先经过一个二极管,然后经过一个电容器,再经过另一个二极管,最后经过另一个电容器。
在这个过程中,二极管和电容器会对信号进行移相处理和放大,最终输出移相和放大后的信号。
移相全桥电路的工作原理是利用二极管的导通特性和电容器的充放电特性来实现信号的移相和放大。
当输入信号经过二极管时,二极管会将正半周波的信号导通,而将负半周波的信号截止。
当信号经过电容器时,电容器会对信号进行充放电,从而实现信号的移相和放大。
通过这样的过程,移相全桥电路可以实现对输入信号的移相和放大处理。
移相全桥电路具有许多优点,首先,它可以实现对输入信号的移相和放大处理,从而可以满足不同应用场合的需求。
其次,移相全桥电路的结构简单,成本低廉,易于制造和维护。
再次,移相全桥电路的性能稳定,工作可靠,适用于长时间稳定工作的场合。
在实际应用中,移相全桥电路被广泛应用于各种电子设备和通信系统中。
例如,在无线通信系统中,移相全桥电路可以用于信号的移相和放大处理,从而可以提高信号的质量和稳定性。
在音频设备中,移相全桥电路可以用于音频信号的处理和放大,从而可以提高音频设备的性能和音质。
总之,移相全桥电路是一种常用的电子电路,它可以实现信号的移相和放大,广泛应用于各种电子设备和通信系统中。
通过对移相全桥电路的原理和工作原理的了解,我们可以更好地理解它的应用和特点,从而更好地应用它来满足不同应用场合的需求。
移相全桥
iit0t1 t2t3 t4t5t6 t7t8 t9t8 t9t0(1) t0时刻在此时刻,开关T1与T4已经导通,电源E经开关T1、谐振电感L、负载变压器T和开关T4回地,向负载输出电流i1。
其中谐振电感L为外加电感与变压器漏感之和,电感T为从副边等效过来的电感,其数值要远大于谐振电感L。
从t0直到t1,电流i1缓升。
电路等效为:(2) t1时刻在t1时刻,开关T1断开,电流i1上升到最高点。
由于电感电流不能突变,电流i1仍然从左到右流动,幅值缓降。
由于开关T1断开,此电流向C1充电,同时从C3抽取电流,使A点电位下降,电路等效为:(3) t 11时刻在t 11时刻, A 点电位下降到0电位之下,二极管D 3导通嵌位,电流i 1进一步缓降,电路等效为:(4) t 2时刻在t 2时刻,开关T 3栅控信号开启,T 3被0电压导通。
t 1到t 2为超前臂死区时间。
如果死区时间比较短,t 2可能发生在t 11之前;反之如果死区时间比较长,也可能发生在t 11之后。
无论那种情况,只要此时开关两端电压足够低,都可以认为达到0电压开启的目标。
一般情况下,超前臂实现0电压开启相对比较容易。
当开关T 3栅控信号开启时,只要电流方向为向上,开关T 3被反偏,开关并没有真正导通,直到反偏过程结束。
t 2时刻之后,A 与B 两点电位均为0,A(5) t 3时刻t 3时刻,开关T 4栅控信号消除,T 4被关断。
由于左右两臂均失去主要通道,续流电流i 1将急速下降,这将导致变压器副边两个整流二极管同时导通(图中未表达),等效于变压器T 短路。
因此续流回路只剩下谐振电感L 与C 2和C 4。
此时续流电流i 1也会向C 4充电,同时从C 2抽取电流,使B 点电位上升。
电路等效为:(6) t 31时刻如果前一阶段续流电流i 1仍然足够强,可使B 点电位上升到超过电源电压E ,这时二极管D 2导通嵌位,电流i 1会进一步急降,电路等效为:BB(7) t 32时刻t 31时刻之后,续流电流i 1会急剧下降到0,使B 点电位保持在电源电压E 。
移相全桥电路
主题: 移相全桥滞后臂驱动波形疑问:移相全桥软开关,2000w电源,驱动波形不正常。
大家帮忙分析一下,黄色为ds波形。
蓝色为驱动波形疑问:1.为什么ds有震荡?2.这是滞后臂下管驱动波形。
为什么关段时死区时间没有了。
滞后臂上管的驱动波形正好和下管相反,开通时死区时间没有了?3、谐振电容和电感应该选择多大的?Answer:1、驱动凹下去的那块是米勒效应区,这个可以加大驱动能力减弱。
2、关断时死区没有了,在驱动变压器副边加快速关断电路试试,或者就是在驱动电阻上反并联一个二极管。
3、谐振参数计算是比较的复杂的,一般2KW电压,取15UH就可以了,当然得看看您的变压器变比,输出电流折算到原边的大小,来确定。
I为原边电流,CMOS为MOS并联电容大小,您可以自己算算了,您这样的一个参数15UH 偏小了,我看您的波形您已经软开关了啊。
4、是实现软开关了但是滞后臂的驱动波形在关断是死区时间还不是很好所以经常炸管。
这是原边电流波形变压器原边电压波形变压器副边电压波形输出整流二极管电压波形Answer:滞后臂炸管:第一个排除:过温问题,看看您的MOS管的稳定是否超过降额。
第二个排除:死区时间问题,您的滞后臂死区时间是否大于您的体二极管的反向恢复时间呢?这个一定要大于,必须的大于。
第三个:您的驱动是否收到干扰呢,波形是否很干净。
您发的波形基本没发现什么问题,您为什么不加个原边牵位二极管呢,把输出震荡搞定呢?1、对于死区时间你要实测你管子哪里的驱动,用示波器读出来,因为很多的时候设置变压器驱动死区会和你设置的不一致的。
2.、IGBT比较适合做零电流,因为他的拖尾电流严重,做零电压没意义的,MOS适合零电压的。
3、IGBT必须加负压关断才比较的可靠。
移相全桥工作过程
移相全桥工作过程
移相全桥是一种电子电路,由四个开关管和一个变压器构成,用于产生正弦波信号。
它的工作过程如下:
1. 开关管S1和S2同时导通,电源正极接通变压器的中心点,并在电源负极处接地。
2. 由于S1和S2导通,电源正极会通过变压器的中心点分别流向两个端点,使得变压器的一侧产生正半周的电压。
3. 在此时,开关管S3和S4均截止,没有电流流过它们。
4. 当正半周结束后,S1和S2同时截止,S3和S4同时导通,电源负极接通变压器的中心点,并在电源正极处接地。
5. 由于S3和S4导通,电源负极会通过变压器的中心点分别流向两个端点,使得变压器的一侧产生负半周的电压。
6. 在此时,开关管S1和S2均截止,没有电流流过它们。
7. 重复以上过程,不断交替切换开关管的导通状态,就能在变压器的输出端产
生正弦波信号。
移相全桥的优点是可以通过控制开关管的导通状态来调节输出信号的频率和幅值,同时由于使用变压器产生信号而不需要使用电容,因此具有更好的稳定性和抗干扰性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主题: 移相全桥滞后臂驱动波形疑问:
移相全桥软开关,2000w电源,驱动波形不正常。
大家帮忙分析一下,黄色为ds波形。
蓝色为驱动波形
疑问:
1.为什么ds有震荡?
2.这是滞后臂下管驱动波形。
为什么关段时死区时间没有了。
滞后臂上管的驱动波形正好和下管相反,开通时死区时间没有了?
3、谐振电容和电感应该选择多大的?
Answer:
1、驱动凹下去的那块是米勒效应区,这个可以加大驱动能力减弱。
2、关断时死区没有了,在驱动变压器副边加快速关断电路试试,或者就是在驱动电阻上反并联一个二极管。
3、谐振参数计算是比较的复杂的,一般2KW电压,取15UH就可以了,当然得看看您的变压器变比,输出电流折算到原边的大小,来确定。
I为原边电流,CMOS为MOS并联电容大小,您可以自己算算了,您这样的一个参数15UH 偏小了,我看您的波形您已经软开关了啊。
4、是实现软开关了但是滞后臂的驱动波形在关断是死区时间还不是很好所以经常炸管。
这是原边电流波形
变压器原边电压波形
变压器副边电压波形
输出整流二极管电压波形
Answer:
滞后臂炸管:
第一个排除:过温问题,看看您的MOS管的稳定是否超过降额。
第二个排除:死区时间问题,您的滞后臂死区时间是否大于您的体二极管的反向恢复时间呢?这个一定要大于,必须的大于。
第三个:您的驱动是否收到干扰呢,波形是否很干净。
您发的波形基本没发现什么问题,您为什么不加个原边牵位二极管呢,把输出震荡搞定呢?
1、对于死区时间你要实测你管子哪里的驱动,用示波器读出来,因为很多的时候设置变压器驱动死区会和你设置的不一致的。
2.、IGBT比较适合做零电流,因为他的拖尾电流严重,做零电压没意义的,MOS适合零电压的。
3、IGBT必须加负压关断才比较的可靠。