2020年全国各地中考数学试题120套(中)打包下载云南玉溪
2020年云南省中考数学试卷(含详细解析)
22.如图,四边形 是菱形,点 为对角线 的中点,点 在 的延长线上, ,垂足为 ,点 在 的延长线上, ,垂足为 .
(1)若 ,求证:四边形 是菱形;
(2)若 , 的面积为16,求菱形 的面积.
23.抛物线 与 轴交于 、 两点,与 轴交于点 ,点 的坐标为 ,点 的坐标为 .点 为抛物线 上的一个动点.过点 作 轴于点 ,交直线 于点 .
A. B.1C. D.
8.若整数 使关于 的不等式组 ,有且只有45个整数解,且使关于 的方程 的解为非正数,则 的值为()
A. 或 B. 或 C. 或 D. 或 或
评卷人
得分
二、填空题
9.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为 吨,那么运出面粉8吨应记为___________吨.
18.某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?
19.甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为 .
(1)直接写出甲家庭选择到大理旅游的概率;
(1) ___________, _________, _________;
云南省2020年中考数学试题及详细解析
云南省2020年中考数学试题(答案及详细解析从第7页开始)一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为 吨.2.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2= 度.3.(3分)要使有意义,则x的取值范围是 .4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m= .5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为 .6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB =6,AC=2,则DE的长是 .二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为( )A.15×106 B.1.5×105 C.1.5×106 D.1.5×1078.(4分)下列几何体中,主视图是长方形的是( )A. B.C. D.9.(4分)下列运算正确的是( )A.=±2 B.()﹣1=﹣2C.(﹣3a)3=﹣9a3 D.a6÷a3=a3(a≠0)10.(4分)下列说法正确的是( )A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s 甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定 D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于( )A. B. C. D.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是( )A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a13.(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )A . B.1 C . D .14.(4分)若整数a使关于x 的不等式组,有且只有45个整数解,且使关于y 的方程+=1的解为非正数,则a的值为( )A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x =.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工 经理 副经理 职员A职员B职员C职员D职员E职员F 杂工G 月工资/元7000 4400 2400 2000 1900 1800 1800 1800 1200经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k= ,m= ,n= ;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是 . 18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB. (1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB =,求AB的长.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆) B地(元/辆)目的地车型大货车 900 1000小货车 500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.云南省2020年中考数学试题答案及详细解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为 ﹣8吨.【分析】根据正负数的意义,直接写出答案即可.【解答】解:因为题目运进记为正,那么运出记为负.所以运出面粉8吨应记为﹣8吨.故答案为:﹣8.【点评】本题考查了正数和负数.根据互为相反意义的量,确定运出的符号是解决本题的关键.2.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2= 54度.【分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【解答】解:∵a∥b,∠1=54°,∴∠2=∠1=54°.故答案为:54.【点评】此题主要考查了平行线的性质,正确掌握平行线的基本性质是解题关键.3.(3分)要使有意义,则x的取值范围是 x≥2.【分析】根据二次根式有意义的条件得到x﹣2≥0,然后解不等式即可.【解答】解:∵有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.【点评】本题考查了二次根式有意义的条件:二次根式有意义的条件为被开方数为非负数,即当a≥0时有意义;若含分母,则分母不能为0.4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m= ﹣3.【分析】设反比例函数的表达式为y=,依据反比例函数的图象经过点(3,1)和(﹣1,m),即可得到k=3×1=﹣m,进而得出m=﹣3.【解答】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点(3,1)和(﹣1,m),∴k=3×1=﹣m,解得m=﹣3,故答案为:﹣3.【点评】本题主要考查了反比例函数图象上点的坐标特征,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为 1. 【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,建立关于c的方程,求出c的值即可.【解答】解:∵关于x的一元二次方程x2+2x+c=0有两个相等的实数根,∴△=b2﹣4ac=22﹣4c=0,解得c=1.故答案为1.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB =6,AC=2,则DE的长是 或.【分析】由勾股定理可求BC=2,分点E在CD上或在AB上两种情况讨论,由勾股定理可求解.【解答】解:如图,∵四边形ABCD是矩形,∴CD=AB=6,AD=BC,∠ABC=∠ADC=90°,∴BC===2,∴AD=2,当点E在CD上时,∵AE2=DE2+AD2=EC2,∴(6﹣DE)2=DE2+4,∴DE=;当点E在AB上时,∵CE2=BE2+BC2=EA2,∴AE2=(6﹣AE)2+4,∴AE=,∴DE===,综上所述:DE=或,故答案为:或.【点评】本题考查了矩形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键. 二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为( )A.15×106 B.1.5×105 C.1.5×106 D.1.5×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1500000=1.5×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(4分)下列几何体中,主视图是长方形的是( )A. B.C. D.【分析】根据各个几何体的主视图的形状进行判断即可.【解答】解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四面体的主视图是三角形,故选:A.【点评】本题考查简单几何体的三视图,主视图就是从正面看该物体所得到的图形. 9.(4分)下列运算正确的是( )A.=±2 B.()﹣1=﹣2C.(﹣3a)3=﹣9a3 D.a6÷a3=a3(a≠0)【分析】根据二次根式的性质,负整数指数幂法则,幂的性质进行解答便可.【解答】解:A.,选项错误;B.原式=2,选项错误;C.原式=﹣27a3,选项错误;D.原式=a6﹣3=a3,选项正确.故选:D.【点评】本题主要考查了二次根式的性质,负整数指数幂的运算法则,幂的运算法则,关键是熟记性质和法则.10.(4分)下列说法正确的是( )A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s 甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定 D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖【分析】根据普查、抽查,三角形的内角和,方差和概率的意义逐项判断即可.【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.【点评】本题考查普查、抽查,三角形的内角和,方差和概率的意义,理解各个概念的内涵是正确判断的前提.11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于( )A. B. C. D.【分析】利用平行四边形的性质可得出点O为线段BD的中点,结合点E是CD的中点可得出线段OE为△DBC的中位线,利用三角形中位线定理可得出OE∥BC,OE=BC,进而可得出△DOE∽△DBC,再利用相似三角形的面积比等于相似比的平方,即可求出△DEO与△BCD的面积的比.【解答】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴点O为线段BD的中点.又∵点E是CD的中点,∴线段OE为△DBC的中位线,∴OE∥BC,OE=BC,∴△DOE∽△DBC,∴=()2=.故选:B.【点评】本题考查了平行四边形的性质、三角形中位线定理以及相似三角形的判定与性质,利用平行四边形的性质及三角形中位线定理,找出OE∥BC且OE=BC是解题的关键.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是( )A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a【分析】根据题意,找出规律:单项式的系数为(﹣2)的幂,其指数为比序号数少1,字母为a.【解答】解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选:A.【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.13.(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )A. B.1 C. D.【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【解答】解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.答:该圆锥的底面圆的半径是.故选:D.【点评】本题考查了圆锥的计算,解决本题的关键是掌握圆锥的底面周长与展开后所得扇形的弧长相等.14.(4分)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为( )A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59【分析】解不等式组,得<x≤25,根据不等式组有且只有45个整数解,可得﹣61≤a<﹣58,根据关于y的方程+=1的解为非正数:解得a≥﹣61,又y+1不等于0,进而可得a的值.【解答】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.【点评】本题考查了分式方程的解、解一元一次不等式组、一元一次不等式组的整数解,解决本题的关键是确定一元一次不等式组的整数解.三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.【分析】原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值. 【解答】解:原式=÷=•=,当x=时,原式=2.【点评】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.【分析】根据SSS推出△ADB和△BCA全等,再根据全等三角形的性质得出即可. 【解答】证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.【点评】本题考查了全等三角形的判定和性质.解题的关键是掌握全等三角形的性质和判定的运用,注意:全等三角形的对应边相等,对应角相等.17.(8分)某公司员工的月工资如下:员工 经理 副经理 职员A职员B职员C职员D职员E职员F 杂工G 7000 4400 2400 2000 1900 1800 1800 1800 1200 月工资/元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k= 2700,m= 1900,n= 1800;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是 经理或副经理 .【分析】(1)求出9个数据之和再除以总个数即可;对于中位数,按从大到小的顺序排列,找出最中间的那个数即可;出现频数最多的数据即为众数;(2)根据剩下的8名员工的月工资数据的平均数比原9名员工的月工资数据的平均数减小,得出辞职的那名员工工资高于2700元,从而得出辞职的那名员工可能是经理或副经理.【解答】解:(1)平均数k=(7000+4400+2400+2000+1900+1800×3+1200)÷9=2700, 9个数据从大到小排列后,第5个数据是1900,所以中位数m=1900,1800出现了三次,次数最多,所以众数n=1800.故答案为:2700,1900,1800;(2)由题意可知,辞职的那名员工工资高于2700元,所以辞职的那名员工可能是经理或副经理.故答案为:经理或副经理.【点评】本题考查了确定一组数据的平均数、中位数和众数的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两个数的平均数.一组数据中出现次数最多的数据叫做众数. 18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?【分析】设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据“实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务”列出方程即可求解.【解答】解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.【点评】此题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.【分析】(1)直接用概率公式求解可得;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得出所有等可能结果,从中找到甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的结果数,根据概率公式求解可得.【解答】解:(1)甲家庭选择到大理旅游的概率为;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得:A B CA (A,A) (A,B) (A,C)B (B,A) (B,B) (B,C)C (C,A) (C,B) (C,C)由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率. 20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB. (1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.【分析】(1)连接OC.只要证明OC⊥DE即可解决问题;(2)连接BC,根据圆周角定理得到∠ACB=90°,根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∵cos∠CAB==,∴设AC=4x,AB=5x,∴=,∴x =,∴AB =.【点评】本题考查切线的判定和性质,相似三角形的判定和性质,平行线的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆) B地(元/辆)目的地车型大货车 900 1000小货车 500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.【分析】(1)设大货车、小货车各有x与y辆,根据题意列出方程组即可求出答案. (2)根据题中给出的等量关系即可列出y与x的函数关系.(3)先求出x的范围,然后根据y与x的函数关系式即可求出y的最小值.【解答】解:(1)设大货车、小货车各有x与y辆,由题意可知:,解得:,答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2<x<10.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x<10,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.【点评】本题考查一次函数,解题的关键是正确求出大货车、小货车各有12与8辆,并正确列出y与x的函数关系式,本题属于中等题型.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.【分析】(1)根据菱形的性质得到∠ABC=∠ADC=120°,根据角平分线的性质得到CE=CF,根据直角三角形的性质得到EH=FH=AC,于是得到结论;(2)根据三角形的面积公式得到AE=8,根据勾股定理得到AC==4,连接BD,则BD⊥AC,AH=AC=2,根据相似三角形的性质得到BD=2BH=2,由菱形的面积公式即可得到结论.【解答】解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠EAC=∠F AC=30°,又∵CE⊥AB,CF⊥AD,∴CE=CF=1/2AC,∵点H为对角线AC的中点,∴EH=FH=AC,∴CE=CF=EH=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.【点评】本题考查了菱形的判定和性质,直角三角形的性质,角平分线的性质,勾股定理,相似三角形的判定和性质,正确的识别图形是解题的关键.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.【分析】(1)把A、C点的坐标代入抛物线的解析式列出b、c的方程组,解得b、c便可;(2)连接BC与对称轴交于点F,此时△ACF的周长最小,求得BC的解析式,再求得BC与对称轴的交点坐标便可;(3)设P(m,m2﹣2m﹣3)(m>3),根据相似三角形的比例式列出m的方程解答便可. 【解答】解:(1)把A、C点的坐标代入抛物线的解析式得,,解得,;(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,由(1)知,b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3,∴对称轴为x=1,令y=0,得y=x2﹣2x﹣3=0,解得,x=﹣1,或x=3,∴B(3,0),令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线BC的解析式为:y=kx+b(k≠0),得,解得,,∴直线BC的解析式为:y=x﹣3,当x=1时,y=x﹣3=﹣2,∴F(1,﹣2);(3)设P(m,m2﹣2m﹣3)(m>3),过P作PH⊥BC于H,过D作DG⊥BC于G,如图2,则PH=5DG,E(m,m﹣3),∴PE=m2﹣3m,DE=m﹣3,∵∠PHE=∠DGE=90°,∠PEH=∠DEG,∴△PEH∽△DEG,∴,∴,∵m=3(舍),或m=5,∴点P的坐标为P(5,12).故存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍,其P点坐标为(5,12).【点评】本题是二次函数的综合题,主要考查了待定系数法,二次函数的图象与性质,相似三角形的性质与判定,轴对称的性质应用求线段的最值,第(2)题关键是确定F点的位置,第(3)题关键在于构建相似三角形.。
云南玉溪2020年中考数学模拟试卷
云南玉溪2020年中考数学模拟试卷〔全卷三个大题,共26个小题,共5页;总分值120分,考试时刻120分钟〕一. 选择题 (本大题共9个小题,每题只有一个正确选项,每题3分,总分值27分)1.-3的相反数等于 ( ) A.3- B.3 C.13- D.132. 以下运算正确的选项是( )A. x 2·x 4=x 8B. x 6÷x 3=x 2C. 2a 2+3a 3=5a 5D. (2x 3)2=4x 63..抛物线2)8(2+--=a y 的顶点坐标是 〔 〕A 、〔2,8〕B 、〔8,2〕C 、〔—8,2〕D 、〔—8,—2〕4. 假设圆A 和圆B 相切, 它们的半径分不为cm 8和2 cm. 那么圆心距AB 为( )A. 10cmB. 6cmC. 10cm 或6cmD. 以上答案均不对5.如右图,在ABC ∆中,=60A ∠,按图中虚线将A ∠剪去后,12=∠+∠〔 〕A .120○B .240○C .300○D .360○6.使分式24xx -有意义的x 的取值范畴是 ( ) A. 2x = B.2x ≠ C.2x =- D.2x ≠-7.以下讲法正确的个数是①样本的方差越小,波动越小,讲明样本越稳固;②一组数据的方差一定是正数;③抽样调查时样本应具有代表性;④样本中各组数的频率之和一定等于1.A .1个B .2个C .3个D .4个8.如图4,王华晚上由路灯A 下的B 处走到C处时,测得 影子CD 的长为1米,连续往前走3米到达E处时,测 得影子EF 的长为2米,王华的身高是1.5米,那么路灯A 的高度AB 等于 〔 〕 A .4.5米 B .6米 C .7.2米 D .8米9.观看以下图形,并判定照此规律从左向右第2007个图形是〔 〕二.填空题 (本大题共8个小题,每题3分,总分值24分)10. 三峡电站的总装机量是一千八百二十万千瓦,用科学记数法把它表示为 千瓦;11.在一节综合实践课上,六名同学做手工的数量〔单位:件〕分不是:6,7,3,6,6,4;那么这组数据的中位数为 件;12.如图,直线MA ∥NB ,∠A=70°,∠B=40°.那么∠P=____________;A BC D E FNM BPA13. :圆锥的底面半径为9㎝,母线长为30㎝,那么圆锥的侧面积为 ;14.方程042=-x x 的解为 ;15.如图,这是小亮制作的风筝,为了平稳做成轴对称图形,. OC 是对称轴,∠A=35°,∠ACO=30°,那么∠BOC= ;三. 解答题 (本大题共9个小题,总分值69分)18. 〔此题6分〕先化简, 化简值:22)242(2222=---⋅+a a a a a a a ,其中19.〔此题6分〕二元一次方程:〔1〕4=+y x ;〔2〕22=-y x ;〔3〕12=-y x ;请从这三个方程中选择你喜爱的两个方程,组成一个方程组,并求出这方程组的解.20. 〔此题6分〕有一根竹竿, 不明白它有多长. 把竹竿横放在一扇门前, 竹竿长比门宽多4尺; 把竹竿竖放在这扇门前, 竹竿长比门的高度多2尺; 把竹竿斜放, 竹竿长正好和门的对角线等长. 咨询竹竿长几尺?16.如右图所示,l 1 是反比例函数xky =在第一象限内的图象,且通过点A 〔2,1〕,l 2 与l 1 关于x 轴对称,那么图象l 2 的函数解析式为 ;17.运算 tan452sin3020073102⋅--⎪⎭⎫⎝⎛--的值为 ;21.〔此题6分〕如图,在△ABC 中,BC =4,以点 A 为圆心、2 为半径的⊙A 与 BC 相切于点 D ,交AB 于E ,交 AC 于F ,点 P 是⊙A 上的一点,且∠EPF =40°,那么图中阴影部分的面积是多少?22.〔此题7分〕如图,点M 是平行四边形ABCD 的AB 边上的中点,请你添加一个条件,并在此条件下,证明: ∠DAN=∠BCM .23.〔此题7分〕如图,点A 是一个半径为300米的圆形森林公园的中心,在森林公园邻近有B 、C 两个村庄,现要在B 、C 两村庄之间修一条长为1000米的笔直公路将两村连通.经测得∠ABC =45°,∠ACB =30°,咨询此公路是否会穿过森林公园?请通过运算进行讲明.24.〔此题8分〕桌面上放有4张卡片,正面分不标有数字1,2,3,4,这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加;〔1〕请用列表或画树状图的方法求两数和为5的概率;〔2〕假设甲与乙按上述方式作游戏,当两数之和为5时,甲胜;反之那么乙胜;假设甲胜一次得12分,那么乙胜一次得多少分,那个游戏对双方公平吗?如何_ D_ N_ C _ M_ A_ BACDBP EF调整可使游戏公平?25.〔此题11分〕某服装销售商店到生产厂家选购A、B两种型号的服装,假设购进A种型号服装9件,B种型号服装10件,需要1810元;假设购进A种型号服装12件,B种型号服装8件,需要1880元.〔1〕求A、B两种型号的服装每件分不为多少元?〔2〕假设销售1件A型服装可获利18元,销售1件B型服装可获利30元,依照市场需求,该商店决定购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A型服装最多可购进28件,如此服装全部售出后,可使总的获利许多于699元.请咨询,有几种进货方案?如何进货?26.〔此题12分〕如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.〔1〕假设EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;〔2〕是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?假设存在,求出现在BE的长;假设不存在,请讲明理由;〔3〕是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?假设存在,求出现在BE的长;假设不存在,请讲明理由.78参考答案一. 选择题〔本大题共9小题,每题3分 总分值27分〕二. 填空题 (本大题共8小题,每题3分,总分值24分)10: 1.82×107 11: 6 12: 30度 13: 270∏ 14: 0,4 15: 115度 16: y=-2/x 17: 7三、解答题〔本大题有9题,其中:第18-21题各6分;第22,23题各7分;第24题8分;第25题11分;第26题12分;总分值6 9分〕18.解: 原式= 解:原式=2)2)(2()2(2--+⋅+a a a a a a -----------4分=a ------------------------------------------------------------5分 ∴原式的值为22---------------------------------------------------6分19.解:选择〔1〕和〔2〕组成方程组〔其它组合情形可参照本解法评分〕⎩⎨⎧-----=------=+)2(22)1(4y x y x -----------------------------------------〔2分〕 〔1〕+〔2〕得:63=x2=x ---------------------------------------------------〔3分〕把2=x 代入〔1〕得:2=y 〔4分〕∴原方程组的解是⎩⎨⎧==22y x -------------------------------------〔6分〕注:〔1〕和〔3〕组成的方程组的解是⎩⎨⎧==13y x ,〔2〕和〔3〕组成的方程组的解是⎩⎨⎧==01y x20. 解:设竹竿长为x 尺。
2020年云南省中考数学试卷(含答案解析)
2020年云南省中考数学试卷(含答案解析) 2020年云南省中考数学试卷一、选择题(本大题共8小题,共32.0分)1.根据题意可知,科学记数法表示为1.5×106,故选C。
2.根据主视图的定义可知,主视图是几何体在某一方向上的投影,投影是一个平面图形,故主视图是长方形的几何体只有长方体和正方体,故选A。
3.根据运算法则可知,√4=2,(−3a)3=−27a3,故选B。
4.根据指数的运算法则可知,(2)−1=1/2,a6÷a3=a3(a≠0),故选BD。
5.根据平行四边形对角线的性质可知,△aaa与△aaa的面积的比等于1:3,故选C。
6.根据题意可知,第n个单项式是(−2)a−1a,故选A。
7.根据扇形面积公式可知,扇形DAE的面积为4π/3,根据圆锥的侧面展开图可知,扇形DAE的弧长为底面圆的周长,即4√2,故底面圆的半径为2√2/π,故选D。
二、填空题(本大题共6小题,共18.0分)1.根据题意可知,采用抽样调查的目的是为了解三名学生的视力情况,故填“目的”。
2.根据三角形内角和定理可知,任意画一个三角形,其内角和是180°,不是必然事件,故填“不是”。
3.根据题意可知,甲的成绩比乙的稳定,即方差小,故填“甲的成绩比乙的稳定”。
4.根据中奖概率的定义可知,中奖概率为1/20,故填“1/20”。
5.根据题意可知,整数a使关于x的不等式组{2a−a>a+1,4a−a<a+1}有且只有45个整数解,且使关于y的方程2a+a+2/(a+1)+1/a=1的解为非正数,故填“45”。
6.根据题意可知,按一定规律排列的单项式为a,−2a,4a,−8a,16a,−32a,…,故填“-64a”。
了不同的旅游线路,甲家庭选择了A、B、C三个景点,乙家庭选择了B、C、D三个景点.已知甲家庭在A、B、C三个景点的花费分别为300元、400元、500元,乙家庭在B、C、D三个景点的花费分别为350元、450元、550元.1)甲、乙两个家庭在B、C两个景点的总花费相同,求B、C两个景点的平均花费;2)若甲、乙两个家庭的总花费相同,求甲家庭和乙家庭的平均花费;3)若甲家庭和乙家庭的总花费相差不超过200元,问哪个家庭的总花费更高?20.某校初三年级有600名学生,其中男生占总数的40%,女生占总数的60%.初三(1)班有40名学生,其中男生占总数的45%.1)初三年级男生人数是多少?2)初三(1)班女生人数是多少?3)初三年级女生人数是多少?4)初三年级女生人数比初三(1)班女生人数多多少?解析】根据题意可得:begin{aligned}P(\text{甲、乙两家选择同一城市}) &= P(\text{甲家选择城市}) \times P(\text{乙家选择城市}) \\frac{1}{3} \times \frac{1}{3} \\frac{1}{9}end{aligned}因此,甲家选择到大理旅游的概率为$\dfrac{1}{3}$。
2020年玉溪市中考数学试题附答案
2020年玉溪市中考数学试题附答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .72.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .3.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠4.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )A .19B .16C .13D .23 5.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+B .21x x -C .211x - D .x 2﹣16.不等式x+1≥2的解集在数轴上表示正确的是( ) A .B .C .D .7.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 8.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为( )A .61B .72C .73D .869.下面的几何体中,主视图为圆的是( )A .B .C .D .10.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1 B .0,1 C .1,2 D .1,2,311.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( )A .8%B .9%C .10%D .11%12.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55ab > D .-3a >-3b二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .15.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.16.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.18.正六边形的边长为8cm,则它的面积为____cm2.19.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.20.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=_____.三、解答题21.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:2+=(),善于思考的小明进行了以下探索:32212设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若()2433a m n +=+,且a b m n 、、、均为正整数,求a 的值. 25.如图1,已知二次函数y=ax 2+32x+c (a≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC . (1)请直接写出二次函数y=ax 2+32x+c 的表达式; (2)判断△ABC 的形状,并说明理由; (3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM∥AC,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.3.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.4.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键. 5.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.7.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.8.C解析:C【解析】【分析】设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.【详解】设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选C.【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.9.C解析:C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.10.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k 的非负整数值为1,故选A .11.C解析:C【解析】【分析】设月平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设该商店的每月盈利的平均增长率为x ,根据题意得:240000(1+x )2=290400,解得:x 1=0.1=10%,x 2=-0.21(舍去),故选C.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-.12.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 二、填空题13.36°或37°【解析】分析:先过E 作EG ∥AB 根据平行线的性质可得∠AEF=∠BA E+∠DFE 再设∠CEF=x 则∠AEC=2x 根据6°<∠BAE <15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E 作EG ∥AB ,根据平行线的性质可得∠AEF=∠BAE+∠DFE ,再设∠CEF=x ,则∠AEC=2x ,根据6°<∠BAE <15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C 的度数.详解:如图,过E 作EG ∥AB ,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°15.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线225r h+=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.16.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.17.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆19.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.(1)C;(2)①作图见解析;②35万户.【解析】【分析】(1)C项涉及的范围更广;(2)①求出B,D的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.20元/束.【解析】【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【详解】设第一批花每束的进价是x元/束,依题意得:4000x ×1.5=45005x -, 解得x =20. 经检验x =20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.24.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 25.(1)y=﹣14x 2+32x+4;(2)△ABC 是直角三角形.理由见解析;(3)点N 的坐标分别为(﹣8,0)、(8﹣0)、(3,0)、(0).(4)当△AMN 面积最大时,N 点坐标为(3,0).【解析】【分析】(1)由点A 、C 的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B 的坐标,再由两点间的距离公式求出线段AB 、AC 、BC 的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键.。
云南省玉溪市中考2020年数学试卷
云南省玉溪市中考2020年数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列运算中,正确的一个是()A . (-2)3=-6B . -(-3)2=-9C . 23×23=29D . 23÷(-2)=42. (2分)温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是()A . 3.6×107B . 3.6×106C . 36×106D . 0.36×1083. (2分) (2019八上·黄石港期中) 如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A . 25°B . 45°C . 30°D . 20°4. (2分) (2020七上·莲湖期末) 在下列几何体中,从正面看到的平面图形为三角形的是()A .B .C .D .5. (2分)如图已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A . 315°B . 270°C . 180°D . 135°6. (2分)今年,我国部分地区“登革热”流行,党和政府采取果断措施,防治结合,防止病情继续扩散.如图是某同学记载的9月1日至30日每天某地的“登革热”新增确诊病例数据日.将图中记载的数据每5天作为一组,从左至右分为第一组至第六组,下列说法:①第一组的平均数最大,第六组的平均数最小;②第二组的中位数为146;③第四组的众数为28.其中正确的有()A . 0个B . 1个C . 2个D . 3个7. (2分)当x=2时,代数式x2(2x)3-x(x+8x4)的值是()A . 4B . -4C . 0D . 18. (2分)(2018·吉林模拟) 如图,点的坐标为(,),点是轴正半轴上的一动点,以为边作等腰直角,使,设点的横坐标为,点的纵坐标为,能表示与的函数关系的图象大致是()A .B .C .D .9. (2分)下列说法正确的是()A . 圆的对称轴是圆的直径B . 相等的圆周角所对的弧相等C . 平分弦的直径垂直于弦,并且平分弦所对的两条弧D . 经过半径的外端并且垂直于这条半径的直线是圆的切线10. (2分) (2015九上·平邑期末) 如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A . ②④B . ①③C . ②③D . ①④二、填空题 (共6题;共6分)11. (1分) (2017七下·东营期末) 分解因式:a2b-b3=________.12. (1分) (2016七上·孝义期末) 已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC=________cm.13. (1分)(2019·襄州模拟) 某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36 34 53 38 4039 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45(1)补全频率分布表和频率分布直方图.分组频数频率4.5﹣22.520.05022.5﹣30.5330.5﹣38.5100.25038.5﹣46.51946.5﹣54.550.12554.5﹣62.510.025合计40 1.000(2)填空:在这个问题中,总体是________,样本是________.由统计结果分析的,这组数据的平均数是38.35(分),众数是________,中位数是________.(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?(4)估计这所学校有多少名学生,平均每天参加课外锻炼的时间多于30分?14. (1分)(2018·潘集模拟) 如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③图中共有四对全等三角形;④四边形ABCD是平行四边形;其中正确结论的是________.15. (1分)一个圆的周长是37.68dm,这个圆的半径是________dm,面积是________16. (1分)(2018·河南模拟) 如图所示,一次函数y=k1x+3(k1<0)的图象与反比例函数y= (k2>0)的图象交于M、N两点,过点M作MC⊥y轴于点C,已知CM=1,则k1﹣k2=________.三、解答题 (共9题;共75分)17. (5分)解下列方程组:(1);(2);(3);(4).18. (5分) (2017八下·汶上期末) 如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC 的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.19. (5分) (2019九上·尚志期末) 先化简,再求代数式()÷ 的值,其中a=2sin45°+tan45°.20. (10分) (2018九上·苏州月考) 如图,⊙ 是的外接圆,,,交的延长线于点,交于点 .(1)求证:是⊙ 的切线;(2)若, .求⊙ 的半径和线段的长.21. (10分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1 ,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.22. (10分) (2018八上·沈河期末) 我国边防局接到情报,近海处有一可疑船只正向公海方向航行,边防部迅速派出快艇追赶如图1,图2中分别表示两船相对海岸的距离 (海里)与追赶时间 (分)之间的关系.根据图象回答问题:(1)哪条线表示到海岸的距离与追赶时间之间的关系?(2)哪个速度快?(3) 15分钟内能否追上?为什么?(4)如果一直追下去,那么能否追上?(5)当逃离海岸12海里时,将无法对其进行检查,照此速度,能否在逃入公海前将其拦截?为什么?(6)与对应的两个一次函数与中,的实际意义各是什么?可疑船只与快艇的速度各是多少?23. (10分) (2018八上·焦作期末) 某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中,的值:组别平均分中位数方差合格率优秀率甲组6.8 3.7690%30%乙组7.5 1.9680%20%(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.24. (10分) (2019八下·芜湖期中) 如图,在边长为1的正方形ABCD中,动点E,F分别在边AB,CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,设BE=x.(1)当AM= 时,求x的值;(2)随着点M在边AD上位置的变化,ΔPDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)若AM=a,四边形BEFC的面积为S,求S与a之间的函数表达式.25. (10分) (2018九上·北京月考) 如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11、答案:略12-1、13-1、13-2、13-3、13-4、14-1、15-1、16-1、三、解答题 (共9题;共75分) 17-1、17-2、17-3、17-4、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、22-5、22-6、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。
云南省玉溪市2020版中考数学试卷(II)卷
云南省玉溪市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·市北区模拟) 相反数是5的数是()A . 5B . ﹣5C .D . ﹣2. (2分)(2019·越秀模拟) 函数中,自变量x的取值范围是()A .B .C .D .3. (2分)下列各式中,能用完全平方公式分解因式的是()A . 4x2-2x+1B . 4x2+4x-1C . x2-xy+y2D . x2-x+4. (2分)(2019·安徽) 在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A . 60B . 50C . 40D . 155. (2分)(2018·聊城) 如图所示的几何体,它的左视图是()A .B .C .D .6. (2分) (2019八下·渭滨月考) 下列图形既是中心对称又是轴对称图形的是()A .B .C .D .7. (2分)如图所示,在矩形ABCD中,∠DBC=29°,将矩形沿直线BD折叠,顶点C落在点E处,则∠ABE 的度数是()A . 29°B . 32°C . 22°D . 61°8. (2分)如果,过圆O外一点P引圆O的切线PA,PB,切点为A,B,C为圆上一点,若∠APB=50°,则∠ACB=()A . 50°B . 60°C . 65°D . 70°9. (2分) (2017八下·卢龙期末) 若反比例函数的图象经过第二、四象限,则m为()A . 1B . -1C .D .10. (2分)小颖准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买多少支笔()A . 1支B . 2支C . 3支D . 4支二、填空题 (共8题;共8分)11. (1分) (2018八上·武邑月考) 的平方根是________, =________.12. (1分) (2019七上·洮北月考) 用科学记数法表示-320000为________;0.003758× =________.13. (1分) (2017七下·洪泽期中) 小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是________.14. (1分) (2019九上·房山期中) 在平面直角坐标系xOy中,点A(m,n)在抛物线y=ax2 +2ax-3a上,点A关于此抛物线对称轴的对称点为B(p,q),则m+p的值是________.15. (1分)(2018·东营) 已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为________.16. (1分)(2018·新乡模拟) 一次函数y=(k−2)x+3−k的图象经过第一、二、三象限,则k的取值范围是________。
2020年云南省中考数学试卷(word版含答案)
2020年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.2.如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=度.3.要使有意义,则x的取值范围是.4.已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m=.5.若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为.6.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC=2,则DE 的长是.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×1078.下列几何体中,主视图是长方形的是()A.B.C.D.9.下列运算正确的是()A.=±2B.()﹣1=﹣2C.(﹣3a)3=﹣9a3D.a6÷a3=a3(a≠0)10.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖11.如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于()A.B.C.D.12.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a13.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1C.D.14.若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工经理副经理职员A职员B职员C职员D职员E职员F杂工G700044002400200019001800180018001200月工资/元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=,m=,n=;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB =,求AB的长.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A 地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地A地(元/辆)B地(元/辆)车型大货车9001000小货车500700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,重足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C 的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC 于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.参考答案一、1.﹣8.2.54.3.x≥2.4.﹣3.5.1.6.或.二、CADCB ADB三、15解:原式=÷=•=,当x=时,原式=2.16.证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.17.解:(1)平均数k=(7000+4400+2400+2000+1900+1800×3+1200)÷9=2700,9个数据从大到小排列后,第5个数据是1900,所以中位数m=1900,1800出现了三次,次数最多,所以众数n=1800.(2)由题意可知,辞职的那名员工工资高于2700元,所以辞职的那名员工可能是经理或副经理.18.解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.19.解:(1)甲家庭选择到大理旅游的概率为;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得:A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.20.(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∵cos∠CAB==,∴设AC=4x,AB=5x,∴=,∴x=,∴AB=.21.解:(1)设大货车、小货车各有x与y辆,由题意可知:,解得:,答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2<x<10.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x<10,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.22.解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠ABC=∠ADC=120°,∵CE⊥AB,CF⊥AD,∴CE=CF,∵H为对角线AC的中点,∴EH=FH=AC,∵∠CAE=30°,∵CE=AC,∴CE=EH=CF=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.23.解:(1)把A、C点的坐标代入抛物线的解析式得,,解得,;(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,由(1)知,b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3,∴对称轴为x=1,令y=0,得y=x2﹣2x﹣3=0,解得,x=﹣1,或x=3,∴B(3,0),令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线BC的解析式为:y=kx+b(k≠0),得,解得,,∴直线BC的解析式为:y=x﹣3,当x=1时,y=x﹣3=﹣2,∴F(1,﹣2);(3)设P(m,m2﹣2m﹣3)(m>3),过P作PH⊥BC于H,过D作DG⊥BC于G,如图2,则PH=5DG,E(m,m﹣3),∴PE=m2﹣3m,DE=m﹣3,∵∠PHE=∠DGE=90°,∠PEH=∠DEG,∴△PEH∽△DEG,∴,∴,∵m=3(舍),或m=5,∴点P的坐标为P(5,12).故存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍,其P点坐标为(5,12).。
玉溪市2020版中考数学试卷(II)卷
玉溪市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果a,b互为相反数,那么(6a2﹣12a)﹣6(a2+2b﹣5)的值为()A . ﹣18B . 18C . 30D . ﹣302. (2分)下列说法,你认为正确的是()A . 0的倒数是0B . 3-1=-3C . π是有理数D . 是有理数3. (2分)根据2010年第六次全国人口普查主要数据公报,广东省常住人口约为10430万人.这个数据可以用科学计数法表示为().A . 1.043×108人B . 1.043×107人C . 1.043×104人D . 1043×105人4. (2分)(2017·河北模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .5. (2分) (2017七下·宁城期末) 已知点p(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .6. (2分)(2020·呼和浩特模拟) 下列命题是真命题的是()A . 多边形的内角和为360°B . 若2a﹣b=1,则代数式6a﹣3b﹣3=0C . 二次函数y=(x﹣1)2+2的图象与y轴的交点的坐标为(0,2)D . 矩形的对角线互相垂直平分7. (2分)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A . 甲比乙的产量稳定B . 乙比甲的产量稳定C . 甲、乙的产量一样稳定D . 无法确定哪一品种的产量更稳定8. (2分)将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是()A . 矩形B . 三角形C . 平行四边形D . 菱形9. (2分)如图,AB和CD都是⊙O的直径,∠AOC=50°,则∠C的度数是()A . 50°B . 30°C . 25°D . 20°10. (2分)(2017·达州) 已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax﹣2b与反比例函数y= 在同一平面直角坐标系中的图象大致是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)将点(1,5)向下平移2个单位后,所得点的坐标为________12. (1分) (2017八下·扬州期中) 如图,在□ABCD中,BE、CF分别是∠ABC和∠BCD的平分线,BE、CF 分别与AD相交于点E、F,AB=6,BC=10,则EF=________.13. (1分) (2019九下·乐清月考) 直角坐标系中△OAB,△BCD均为等毅直角三角形,OA=AB,BD=CD,点A 在x轴的正半轴上。
云南省2020年中考数学试卷
2020年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.2.如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=度.3.要使有意义,则x的取值范围是.4.已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m=.5.若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为.6.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC =2,则DE的长是.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×1078.下列几何体中,主视图是长方形的是()A.B.C.D.9.下列运算正确的是()A.=±2 B.()﹣1=﹣2 C.(﹣3a)3=﹣9a3 D.a6÷a3=a3(a≠0)10.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖11.如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO 与△BCD的面积的比等于()A.B.C.D.12.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a13.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE (阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1C.D.14.若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA..(8分)某公司员工的月工资如下:员工经理副经理职员A职员B职员C职员D职员E职员F杂工G 700044002400200019001800180018001200月工资/元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=,m=,n=;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装A地(元/辆)B地(元/辆)目的地车型大货车9001000小货车50070010吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,重足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.2020年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为﹣8吨.【解答】解:因为题目运进记为正,那么运出记为负.所以运出面粉8吨应记为﹣8吨.故答案为:﹣8.2.如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=54度.【解答】解:∵a∥b,∠1=54°,∴∠2=∠1=54°.故答案为:54.3.要使有意义,则x的取值范围是x≥2.【解答】解:∵有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.4.已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m=﹣3.【解答】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点(3,1)和(﹣1,m),∴k=3×1=﹣m,解得m=﹣3,故答案为:﹣3.5.若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为1.【解答】解:∵关于x的一元二次方程x2+2x+c=0有两个相等的实数根,∴△=b2﹣4ac=22﹣4c=0,解得c=1.故答案为1.6.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC =2,则DE的长是或.【解答】解:如图,∵四边形ABCD是矩形,∴CD=AB=6,AD=BC,∠ABC=∠ADC=90°,∴BC===2,∴AD=2,当点E在CD上时,∵AE2=DE2+AD2=EC2,∴(6﹣DE)2=DE2+4,∴DE=;当点E在AB上时,∵CE2=BE2+BC2=EA2,∴AE2=(6﹣AE)2+4,∴AE=,∴DE===,综上所述:DE=或,故答案为:或.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×107【解答】解:1500000=1.5×106,故选:C.8.下列几何体中,主视图是长方形的是()A.B.C.D.【解答】解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四面体的主视图是三角形,故选:A.9.下列运算正确的是()A.=±2B.()﹣1=﹣2C.(﹣3a)3=﹣9a3D.a6÷a3=a3(a≠0)【解答】解:A.,选项错误;B.原式=2,选项错误;C.原式=﹣27a3,选项错误;D.原式=a6﹣3=a3,选项正确.故选:D.10.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是比可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.11.如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO 与△BCD的面积的比等于()A.B.C.D.【解答】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴点O为线段BD的中点.又∵点E是CD的中点,∴线段OE为△DBC的中位线,∴OE∥BC,OE=BC,∴△DOE∽△DBC,∴=()2=.故选:B.12.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a【解答】解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选:A.13.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE (阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1C.D.【解答】解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.答:该圆锥的底面圆的半径是.故选:D.14.若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59【解答】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.【解答】解:原式=÷=•=,当x=时,原式=2.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.【解答】证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工经理副经理职员A职员B职员C职员D职员E职员F杂工G 700044002400200019001800180018001200月工资/元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=2700,m=1900,n=1800;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是经理或副经理.【解答】解:(1)平均数k=(7000+4400+2400+2000+1900+1800×3+1200)÷9=2700,9个数据从大到小排列后,第5个数据是1900,所以中位数m=1900,1800出现了三次,次数最多,所以众数n=1800.故答案为:2700,1900,1800;(2)由题意可知,辞职的那名员工工资高于2700元,所以辞职的那名员工可能是经理或副经理.故答案为:经理或副经理.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?【解答】解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.【解答】解:(1)甲家庭选择到大理旅游的概率为;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.【解答】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∵cos∠CAB==,∴设AC=4x,AB=5x,∴=,∴x=,∴AB=.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地A地(元/辆)B地(元/辆)车型大货车9001000小货车50070010吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.【解答】解:(1)设大货车、小货车各有x与y辆,由题意可知:,解得:,答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2<x<10.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x<10,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,重足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.【解答】解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠ABC=∠ADC=120°,∵CE⊥AB,CF⊥AD,∴CE=CF,∵H为对角线AC的中点,∴EH=FH=AC,∵∠CAE=30°,∵CE=AC,∴CE=EH=CF=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.【解答】解:(1)把A、C点的坐标代入抛物线的解析式得,,解得,;(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,由(1)知,b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3,∴对称轴为x=1,令y=0,得y=x2﹣2x﹣3=0,解得,x=﹣1,或x=3,∴B(3,0),令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线BC的解析式为:y=kx+b(k≠0),得,解得,,∴直线BC的解析式为:y=x﹣3,当x=1时,y=x﹣3=﹣2,∴F(1,﹣2);(3)设P(m,m2﹣2m﹣3)(m>3),过P作PH⊥BC于H,过D作DG⊥BC于G,如图2,则PH=5DG,E(m,m﹣3),∴PE=m2﹣3m,DE=m﹣3,∵∠PHE=∠DGE=90°,∠PEH=∠DEG,∴△PEH∽△DEG,∴,∴,∵m=3(舍),或m=5,∴点P的坐标为P(5,12).故存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍,其P点坐标为(5,12).。
2020年全国各地中考数学试题120套(中)打包下载云南昆明
俯视图 主视图 左视图第2题图D ABC第6题图2020年全国各地中考数学试题120套(中)打包下载云南昆明数 学 试 卷〔本试卷共三大题25小题,共6页. 考试时刻120分钟,总分值120分〕本卷须知:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清晰,并认真核准条形码上的准考证号及姓名,在规定的位置贴好条形码。
2. 考生必须把所有的答案填写在答题卡上,答在试卷上的答案无效。
3. 选择题每题选出答案后,用2B 铅笔把答题卡上对应题目的答案选项框涂黑。
如需改动,用橡皮擦擦洁净后,再选涂其它答案选项框,不要填涂和勾划无关选项。
其他试题用黑色碳素笔作答,答案不要超出给定的答题框。
4. 考生必须按规定的方法和要求答题,不按要求答题所造成的后果由本人自负。
5. 考试终止后,将本试卷和答题卡一并交回。
参考公式:① 扇形面积公式 213602n R S Rl π==,其中,R 是半径,n 是圆心角的度数,l 是弧长 ② 二次函数)0(2≠++=a c bx ax y 图象的顶点坐标是)442(2ab ac a b --, 一、选择题〔每题3分,总分值27分.在每题给出的四个选项中,只有一项为哪一项正确的;每题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号的小框涂黑〕1.3的倒数是〔 〕 A .3B .3-C .13D .13-2.假设右图是某个几何体的三视图,那么该几何体是( ) A .长方体 B .三棱柱C .圆柱D .圆台 3.某班六名同学在一次知识抢答赛中,他们答对的题数分不是:7,5,6,8,7,9. 这组数据的平均数和众数分不是( ) A .7,7 B .6,8 C .6,7 D .7,24.据2018年5月11日云南省委、省政府召开的通报会通报,全省各级各部门已筹集抗旱救灾救济资金32亿元,32亿元用科学记数法表示为( )A .83.210⨯元B .100.3210⨯元C .93.210⨯元D .83210⨯元5.一元二次方程220x x +-=的两根之积是〔 〕 A .-1 B .-2 C .1 D .2 6.如图,在△ABC 中,CD 是∠ACB 的平分线,∠A = 80°,∠ACB=60°,那么∠BDC=〔 〕A .80°B .90°C .100°D .110°7.以下各式运算中,正确的选项是( ) A .222()a b a b +=+B 3=AB C D EF 第11题图第9题图A BCC .3412a a a ⋅=D .2236()(0)a aa=≠ 8.如图,圆锥侧面展开图的扇形面积为65πcm 2,扇形的弧长为10πcm ,那么圆锥母线长是( ) A .5cm B .10cmC .12cmD .13cm9.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12,分不以 AB 、AC 为直径作半圆,那么图中阴影部分的面积是〔 〕 A .64127π- B .1632π-C .16247π-D .16127π-二、填空题〔每题3分,总分值18分.请考生用黑色碳素笔将答案写在答题卡相应题号后 的横线上〕 10.-6的相反数是 .11.如图,在△ABC 中,点D 、E 、F 分不是AB 、BC 、CA 的中点,假设△ABC 的周长为10 cm ,那么△DEF 的周长是 cm .12.化简:1(1)1a a -÷=+ .13.运算:182- = .14.半径为r 的圆内接正三角形的边长为 .〔结果可保留根号〕 15. 如图,点A 〔x 1,y 1〕、B 〔x 2,y 2〕都在双曲线(0)ky x x=> 上,且214x x -=,122y y -=;分不过点A 、B 向x轴、y 轴作垂线段,垂足分不为C 、D 、E 、F ,AC 与BF 相交于G 点,四边形FOCG 的面积为2,五边形AEODB 的面积为14,那么双曲线的解析式为 .第8题图第15题图G三、解答题〔共10题,总分值75分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字讲明,超出答题区域的作答无效.专门注意:作图时,必须使用黑色碳素笔在答题卡上作图〕 16.(5分)运算:1021()320104-----+17.(6分)如图,点B 、D 、C 、F 在一条直线上,且BC = FD ,AB = EF.〔1〕请你只添加一个条件〔不再加辅助线〕,使△ABC ≌△EFD ,你添加的条件是 ; 〔2〕添加了条件后,证明△ABC ≌△EFD.18.(5分) 解不等式组: 19.〔7分〕某校对九年级学生进行了一次数学学业水平测试,成绩评定分为A 、B 、C 、D 四个等级〔注:等级A 、B 、C 、D 分不代表优秀、良好、合格、不合格〕,学校从九年级学生中随机抽取50名学生的数学成绩进行统计分析,并绘制成扇形统计图〔如下图〕. 依照图中所给的信息回答以下咨询题:〔1〕随机抽取的九年级学生数学学业水平测试中,D 等级人数的百分率和D 等级学生人数分不是多少? 〔2〕这次随机抽样中,学生数学学业水平测试成绩的中位数落在哪个等级?〔3〕假设该校九年级学生有800名,请你估量这次数学学业水平测试中,成绩达合格以上(含合格)的人数大约有多少人?DABC18%30%48%…………② …………①30121123-⎧⎪--⎨->⎪⎩x x x ≤ FAB C DE20.〔8分〕在如下图的直角坐标系中,解答以下咨询题:〔1〕分不写出A、B两点的坐标;〔2〕将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1;〔3〕求出线段B1A所在直线l 的函数解析式,并写出在直线l上从B1到A的自变量x的取值范畴.21.〔8分〕热气球的探测器显示,从热气球A处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,A处与高楼的水平距离为60m,这栋高楼有多高?〔结果精确到0.1m,参考数据:≈≈〕2 1.414,3 1.73222.〔8分〕如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分不标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置〔指针指向两个扇形的交线时,重新转动转盘〕.〔1〕请用画树形图或列表的方法(只选其中一种),表示出分不转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;〔2〕求分不转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.23.〔7分〕去年入秋以来,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队打算为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原打算工作效率的1.8倍,结果提早20天完成修水渠任务. 咨询原打算每天修水渠多少米? 24.〔9分〕:如图,在梯形ABCD 中,AD ∥BC ,∠DCB = 90°,E 是AD 的中点,点P 是BC 边上的动点〔不与点B 重合〕,EP 与BD 相交于点O.〔1〕当P 点在BC 边上运动时,求证:△BOP ∽△DOE ;〔2〕设〔1〕中的相似比为k ,假设AD ︰BC = 2︰3. 请探究:当k 为以下三种情形时,四边形ABPE是什么四边形?①当k = 1时,是 ;②当k = 2时,是 ;③当k = 3时,是 . 并证明...k = 2时的结论.ABC DE PO25.〔12分〕在平面直角坐标系中,抛物线通过O〔0,0〕、A〔4,0〕、B〔3,23 3-〕三点.〔1〕求此抛物线的解析式;〔2〕以OA的中点M为圆心,OM长为半径作⊙M,在〔1〕中的抛物线上是否存在如此的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,假设存在,要求出现在点P的坐标;假设不存在,请讲明理由.〔注意:此题中的结果可保留根号〕昆明市2018年高中〔中专〕招生统一考试数学试卷参考答案及评分标准一、选择题〔每题3分,总分值27分. 每题只有一个正确答案,错选、不选、多项选择均得零分〕题号 1 2 3 4 5 6 7 8 9答案 C A A C B D B D D二、填空题〔每题3分,总分值18分〕题号11112 13 14 15答案6 511a+3223r6yx=3.-7B 1C 1三、解答题〔总分值75分〕16. 〔5分〕 解:原式 = 4312---+………………4分= 6-………………5分(讲明:第一步运算每对一项得1分)17. 〔6分〕〔1〕∠B = ∠F 或 AB ∥EF 或 AC = ED .………………2分〔2〕证明:当∠B = ∠F 时 在△ABC 和△EFD 中AB EF B F BC FD =⎧⎪∠=∠⎨⎪=⎩………………5分∴△ABC ≌△EFD (SAS) …………………6分 〔此题其它证法参照此标准给分〕18. 〔5分〕解:解不等式①得:x ≤3 ………………1分由②得:3(1)2(21)6x x ---> ………………2分 化简得:7x ->………………3分 解得: 7x <-………………4分∴ 原不等式组的解集为: 7x <-………………5分19.〔7分〕解:〔1〕∵1-30%-48%-18% = 4%,∴D 等级人数的百分率为4%………1分∵4%×50 = 2,∴D 等级学生人数为2人………………2分(2) ∵A 等级学生人数30%×50 = 15人,B 等级学生人数48%×50 = 24人, C 等级学生人数18%×50 = 9人, D 等级学生人数4%×50 = 2人……………3分 ∴中位数落在B 等级. ………………4分 (3)合格以上人数 = 800×〔30%+48%+18%〕= 768 ………………6分 ∴ 成绩达合格以上的人数大约有768人. ………………7分20. 〔8分〕 解:〔1〕A(2,0),B(-1,-4)………………2分 〔2〕画图正确……………………4分FEDCBA开始〔6,6〕 1361 3 6 1 3 6 1 3 6 〔1,1〕 〔1,3〕 〔1,6〕 〔3,1〕 〔3,3〕 〔3,6〕 〔6,1〕〔6,3〕(3)设线段B 1A 所在直线 l 的解析式为:(0)y kx b k =+≠ ∵B 1(-2,3),A (2,0)∴2320k b k b -+=⎧⎨+=⎩………………5分33,42k b =-=………………6分∴线段B 1A 所在直线 l 的解析式为:3342y x =-+………………7分 线段B 1A 的自变量 x 的取值范畴是:-2 ≤ x ≤ 2 ……………8分21.〔8分〕 解:过点A 作BC 的垂线,垂足为D 点 ……………1分由题意知:∠CAD = 45°, ∠BAD = 60°, AD = 60m在Rt △ACD 中,∠CAD = 45°, AD ⊥BC∴ CD = AD = 60 ……………………3分 在Rt △ABD 中, ∵BDtan BAD AD∠=……………………4分 ∴ BD = AD·tan ∠BAD3 ……………………5分∴BC = CD+BD3 ……………………6分≈ 163.9 (m) …………………7分 答:这栋高楼约有163.9m . …………………8分 〔此题其它解法参照此标准给分〕22.〔8分〕 解:〔1〕列表如下: 树形图如下:备注:此小题4分,画对表1〔或图1〕得2分,结果写对得2分. 1 3 6 1 (1 ,1) (1 ,3) (1 ,6) 3 (3 ,1) (3 ,3) (3 ,6) 6 (6 ,1)(6 ,3)(6 ,6)表1: 图1:〔2〕数字之和分不为:2,4,7,4,6,9,7,9,12.算术平方根分不是:2,2,7,2,6,3,7,3,23 ………………5分 设两数字之和的算术平方根为无理数是事件A∴5()9P A =………………8分23.(7分)解:设原打算每天修水渠 x 米. ………………1分 依照题意得:36003600201.8x x-= ………………3分解得:x = 80 ………………5分经检验:x = 80是原分式方程的解 ………………6分答:原打算每天修水渠80米. ………………7分24.〔9分〕 〔1〕证明:∵AD ∥BC∴∠OBP = ∠ODE ……………1分 在△BOP 和△DOE 中 ∠OBP = ∠ODE∠BOP = ∠DOE …………………2分 ∴△BOP ∽△DOE (有两个角对应相等的两三角形相似) ……………3分〔2〕① 平行四边形 …………………4分② 直角梯形 …………………5分③ 等腰梯形 …………………6分证明:∵k = 2时,BP2DE= ∴ BP = 2DE = AD又∵AD ︰BC = 2︰3 BC = 32AD PC = BC - BP =32AD - AD =12AD = ED ED ∥PC , ∴四边形PCDE 是平行四边形 ∵∠DCB = 90°1 3 6 1 3 6开始13613 6 13 6 13 6∴四边形PCDE 是矩形 …………………7分 ∴ ∠EPB = 90° …………………8分 又∵ 在直角梯形ABCD 中 AD ∥BC, AB 与DC 不平行 ∴ AE ∥BP, AB 与EP 不平行四边形ABPE 是直角梯形 ………………………9分〔此题其它证法参照此标准给分〕25.(12分) 解:〔1〕设抛物线的解析式为:2(0)y ax bx c a =++≠由题意得:016402393⎧⎪=⎪⎪++=⎨⎪⎪++=-⎪⎩c a b c a b c……………1分解得:2383,,0a b c ==-= ………………2分 ∴抛物线的解析式为:22383y x x =- ………………3分〔2〕存在 ………………4分抛物线22383y x x =-的顶点坐标是83(2,)-,作抛物线和⊙M 〔如图〕, 设满足条件的切线 l 与 x 轴交于点B ,与⊙M 相切于点C 连接MC ,过C 作CD ⊥ x 轴于D∵ MC = OM = 2, ∠CBM = 30°, CM ⊥BCl ′∴∠BCM = 90° ,∠BMC = 60° ,BM = 2CM = 4 , ∴B (-2, 0) 在Rt △CDM 中,∠DCM = ∠CDM - ∠CMD = 30°∴DM = 1,CD =∴C (1, 设切线 l 的解析式为:(0)y kx b k ,点B 、C 在 l 上,可得:20k b k b ⎧+=⎪⎨-+=⎪⎩解得:k b ==∴切线BC的解析式为:y x =+ ∵点P 为抛物线与切线的交点由233y x x y x ⎧=⎪⎪⎨⎪=+⎪⎩解得:11122x y ⎧=-⎪⎪⎨⎪=⎪⎩226x y =⎧⎪⎨=⎪⎩∴点P的坐标为:11(2P -,2P ………………8分 ∵抛物线2y x x =-的对称轴是直线2=x 此抛物线、⊙M 都与直线2=x 成轴对称图形因此作切线 l 关于直线2=x 的对称直线 l ′(如图)得到B 、C 关于直线2=x 的对称点B 1、C 1l ′满足题中要求,由对称性,得到P 1、P 2关于直线2=x 的对称点:39(2P,4(P -即为所求的点. ∴如此的点P 共有4个:11(2P -,2P,39(2P,4(2,3P - ………12分 〔此题其它解法参照此标准给分〕。
2020年云南省中考数学试卷
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
列表法三树状图州
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
切线的明定养性质
圆明角研理
解直于三角姆
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
二元一水使程组种应用—鉴其他问题
二元一因方程似应用
2020年云南省中考数学试卷
一、填空题(本大题共6小题,每小题3分,共18分)
1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉 吨,记为 吨,那么运出面粉 吨应记为________吨.
2.如图,直线 与直线 、 都相交.若 , = ,则 =________度.
3.要使 有意义,则 的取值范围是________.
【解答】
此题暂无解答
职员
职员
职员
职员
职员
职员
杂工
月工资/元
经理、职员 、职员 从不同的角度描述了该公司员工的收入情况.
设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为 、 、 ,请根据上述信息完成下列问题:
(1) =________, =________, =________;
(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的 名员工的月工资不变,但这 名员工的月工资数据(单位:元)的平均数比原 名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是________.
【考点】
算三平最数
全面调表与弹样调查
云南省玉溪市2020届数学中招模拟试卷
云南省玉溪市2020届数学中招模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在1,0,-2,- 四个数中,最小的数是()A . 1B . 0C . -2D . -2. (2分)(2018·淅川模拟) 据新华社北京2017年1月20日电国家统计局20日发布数据,初步核算,2016年我国国内生产总值约74万亿元,若将74万亿用科学记数法表示为A .B .C .D .3. (2分) (2018七上·崆峒期末) 在中,负数的个数是()A . 1个B . 2个C . 3个D . 4个4. (2分) (2017九上·长春月考) 下图中几何体的正视图是()A .B .C .D .5. (2分)如图,数轴上表示的关于x的一元一次不等式的解集为()A . x≤1B . x≥1C . x<1D . x>16. (2分)在计算四个数的加权平均数时,下列各组数可以作为权数的是()A . -0.2,0.1,0.4,0.7B . ,0,,C . ,,,D . 0.2,0.7,0,0.27. (2分)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF .若AB=3,则BC的长为()A . 1B . 2C .D .8. (2分)下列说法不正确的是()A . 方程x2=x有一根为0B . 方程x2-1=0的两根互为相反数C . 方程(x-1)2-1=0的两根互为相反数D . 方程x2-x+2=0无实数根9. (2分)(2017·雁江模拟) 如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y= (k≠0)中k的值的变化情况是()A . 一直增大B . 一直减小C . 先增大后减小D . 先减小后增大10. (2分)(2018·鄂尔多斯模拟) 如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)已知a+b=5,ab=3,则+=________ .12. (1分)(2017·天津模拟) 如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=________.13. (1分)(2019·张掖模拟) 从满足不等式﹣3<x<3的所有整数中任意取一个数记作a,则关于x的一元二次方程x2﹣(a﹣1)x+ 有两个不相等的实数根的概率是________.14. (1分) (2019八下·哈尔滨期中) 如图矩形ABCD中,AB=8㎝,CB=4㎝,E是DC的中点,BF= BC,则四边形DBFE的面积为________。15. (1分)(2017·沭阳模拟) 如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα= .下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8;④0<CE≤6.4.其中正确的结论是________.(把你认为正确结论的序号都填上)三、解答题 (共8题;共89分)16. (10分) (2019八上·海口期中)(1)先化简,再求值:(x-2y)2-x(x+3y)-4y2,其中x=-4,y= .(2)已知:x+y=6,xy=4,求下列各式的值x2+y217. (11分)(2019·朝阳模拟) 中华文化历史悠久,包罗万象.某校为了加强学生对中华传统文化的认识和理解,营造校园文化氛围,举办了“弘扬中华传统文化,做新时代的中学生”的知识竞赛.以下是从七年、八年两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:(1)根据上面的数据,将下列表格补充完整,整理、描述数据:50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年126八年011018(说明:成绩90分及以上为优秀,60分以下为不合格)分析数据:年级平均数中位数众数七年8488.5八年84.274(2)为调动学生学习传统文化的积极性,七年级根据学生的成绩制定了奖励标准,凡达到或超过这个标准的学生将获得奖励.如果想让一半左右的学生能获奖,应根据________来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”);(3)若八年级有800名学生,试估计八年级学生成绩优秀的人数;18. (13分)(2019·衡水模拟) 如图,形如量角器的半圆O的直径DE-12cm,形如三角板的△ABC中,∠ACB=90°,tan∠ABC= ,BC=12cm半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年全国各地中考数学试题120套(中)打包下载云南玉溪玉溪市2018年初中毕业生升学统一考试数学试题卷〔全卷总分值120分,考试时刻120分钟〕一、选择题(每题3分,总分值24分)A. 1B. -1C.0D. 22. 假设分式22123b b b ---的值为0,那么b 的值是A. 1B. -1C.±1D. 2 3. 一元二次方程x 2-5x+6=0 的两根分不是x 1,x 2, 那么x 1+x 2等于A. 5B. 6C. -5D. -64. 如图1,是由假设干个同样大小的立方体搭成的几何体的俯视图,小正方 形中的数字表示该位置立方体的个数,那么那个几何体的主视图是5. 如图2所示的运算程序中,y 与x 之间的函数关系对应的图象所在的象限是A. 第一象限B. 第一、三象限C. 第二、四象限D. 第一、四象限的结果是)(计算12010)21(1:.1---图2D俯视图 图16. 如图3是把一张长方形的纸沿长边中点的连线对折两次后得到的图形.再沿虚线 裁剪,不处部分展开后的图形是7 .王芳同学为参加学校组织的科技知识竞赛,她周末到新华 书店购买资料.如图4,是王芳离家的距离与时刻的函数图象.假设黑点表示王芳家的位置,那么王芳走的路线可能是二、填空题 (每题3分,总分值21分)的算术平方根是 .9. 到2010年3月21日止,广西及西南地区遭受百年不遇的 旱灾致使农作物受灾面积约4348千公顷,该数用科学记数法表示为 千公顷.10. 如图5是汽车牌照在水中的倒影,那么该车牌照上的数字是 .11. 如图6,在半径为10的⊙O 中,OC 垂直弦AB 于点D , AB =16,那么CD 的长是 . 12. 不等式组{223≤-≥+x xx 的解集是 .13. 函数1+=x x y 中自变量x 的取值范是 . 14. 田大伯为与客户签订销售合同,需了解自己鱼塘里鱼的数量,为此,他从鱼塘先捞出200条鱼做上标记再放入鱼塘,通过一段时刻后又捞出300条,发觉有标记的鱼有20条,那么田大伯的鱼塘里鱼的条数是 . 15. 如图7是二次函数)0(2≠++=a c bx ax y 在平面直 角坐标系中的图象,依照图形判定 ① c >0;ABCDO时刻距离图4B A CD图3xyO图7图5 ABCOD 图6得 分 评卷人② a +b +c <0; ③ 2a -b <0;④ b 2+8a >4a c 中正确的选项是〔填写序号〕 .三、解答题 (本大题共8个小题,第16 、17题每题各7分,第18、19题各题9 分,第20、21题各10分,第22题各11分,第23题各12分,共75分)17.在玉溪州大河旁边的路灯杆顶上有一个物体,它的抽象几何图形如图8,假设 60ABC 10,AC 4,AB =∠==, 求B 、C 两点间的距离.得 分 评卷人.211,111.1622值代入求值的作为数中选一个你认为合适的和,再从)先化简(a a aa a a --÷+-+ CBA图818. 某种铂金饰品在甲、乙两个商店销售.甲店标价477元/克,按标价出售,不优待.乙店标价530元/克,但假设买的铂金饰品重量超过3克,那么超出部分可打八折出售.⑴分不写出到甲、乙商店购买该种铂金饰品所需费用y〔元〕和重量x〔克〕之间的函数关系式;⑵李阿姨要买一条重量许多于4克且不超过10克的此种铂金饰品,到哪个商店购买最合算?19.如图9,在ABCD中,E是AD的中点,请添加适当条件后,构造出一对全等的三角形,并讲明理由.图920. 以下图表是某校今年参加中考体育的男生1000米跑、女生800米跑的成绩中分不抽取的10个数据.考生编号1 2 3 4 5 6 7 8 9 10男生成绩3′05〞3′11〞3′53〞3′10〞3′55〞3′30〞3′25〞3′19〞3′27〞3′55〞〔1〕求出这10名女生成绩的中位数、众数和极差;〔2〕按«云南省中考体育»规定,女生800米跑成绩不超过3′38 〞就能够得总分值.该校学生有490人,男生比女生少70人.请你依照上面抽样的结果,估算该校考生中有多少名女生该项考试得总分值?〔3〕假设男考生1号和10号同时同地同向围着400米跑道起跑,在1000米的跑步中,他们能否首次相遇?假如能相遇,求出所需时刻;假如不能相遇,讲明理由.21. 阅读对话,解答咨询题.(1) 分不用a 、b 表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出〔a ,b ) 的所有取值;(2) 求在〔a ,b )中使关于x 的一元二次方程022=+-b ax x 有实数根的概率.我先从小丽的袋子中抽出—张卡片,再从小兵的袋子中抽出—张卡片.小冬我的袋子中有 四张除数字外完全相同的卡片:小丽我的袋子中也有 三张除数字外完 全相同的卡片:小兵22. 平面内的两条直线有相交和平行两种位置关系.〔1〕如图a ,假设AB∥CD,点P 在AB 、CD 外部,那么有∠B=∠BOD,又因∠BOD 是△POD 的外角,故∠BOD=∠BPD +∠D,得∠BPD =∠B-∠D .将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?假设成立,讲明理由;假设不成立,那么∠BPD、∠B、∠D 之间有何数量关系?请证明你的结论;〔2〕在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,那么∠BPD﹑∠B﹑∠D﹑∠BQD 之间有何数量关系?〔不需证明〕; 〔3〕依照〔2〕的结论求图d 中∠A+∠B+∠C+∠D+∠E+∠F 的度数.图c图d图aO图b23.如图10,在平面直角坐标系中,点A的坐标为〔1,△AOB〔1〕求点B的坐标;〔2〕求过点A、O、B的抛物线的解析式;〔3〕在〔2〕中抛物线的对称轴上是否存在点C,使△AOC的周长最小?假设存在,求出点C的坐标;假设不存在,请讲明理由;〔4〕在〔2〕中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3 ?假设存在,求出点P的坐标;假设不存在,请讲明理由.图2数 学 答 案一、选择题 (每题3分,总分值24分)〔B 〕A. 1B. -1C.0D. 22. 假设分式221-2b-3b b -的值为0,那么b 的值为〔A 〕A. 1B. -1C.±1D. 2 3.一元二次方程x 2-5x+6=0 的两根分不是x 1,x 2,那么x 1+x 2等于 〔A 〕 A. 5B. 6C. -5D. -64. 如图1,是由假设干个同样大小的立方体搭成的几何体的俯视图,小正方 形中的数字表示该位置立方体的个数,那么那个几何体的主视图是〔D 〕5.如图2,所示的运算程序中,y 与x 之间的函数关系对应的图象所在的象限是 〔C 〕A. 第一象限B. 第一、三象限C. 第二、四象限D. 第一、四象限 6. 如图3是把一张长方形的纸沿长边中点的连线对折两次后得到的图形.再沿虚线裁剪,不处部分展开后的图形是 〔D 〕7 .王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料.如图4,是王芳离家的距离与时刻的函数图输入x取倒数×〔-5〕输出y的结果是)计算:(12010)21(1.1---O时刻距离图4B AC D图3D俯视图 图11 32象.假设黑点表示王芳家的位置,那么王芳走的路线可能是〔B 〕二、填空题 (每题3分,总分值21分) 8. 16的算术平方根是 4 .9. 到2010年3月21日止,广西及西南地区遭受百年不遇的旱灾致使农作物受灾面积约4348千公顷,该数用科学记数法表示为 4.348×103千公顷.10. 如图5是汽车牌照在水中的倒影,那么该车牌照上的数字是 21678 . 11. 如图6,在半径为10的⊙O 中,OC 垂直弦AB 于点D ,AB =16,那么CD 的长是 4 . 12. 不等式组{223≤-≥+x xx 的解集是 221≤≤-x .13. 函数1+=x x y 中自变量x 的取值范是 x >-1 .14. 田大伯为与客户签订销售合同,需了解自己鱼塘里鱼的数量,为此,他从鱼塘先捞出200条鱼做上标记再放入鱼塘,通过一段时刻后又捞出300条,发觉有标记的鱼有20条,那么田大伯的鱼塘里鱼的条数是 3000 .15. 如图7是二次函数)0(2≠++=a c bx ax y 在平面直角坐标 系中的图象,依照图形判定 ① c >0;② a +b +c <0;③ 2a -b <0; b 2+8a >4a c 中正确的选项是〔填写序号〕② 、④ .三、解答题 (本大题共8个小题,第16 、17题每题各7分,第18、19题各题9 分,第20、21题各10分,第22题各11分,第23题各12分,共75分)…………3分…………4分a )1)(1(1)1)(1(12-+⋅⎥⎦⎤⎢⎣⎡++--+=a a a a a a a 解:原式xyO图7.211,111.1622代入求值的值作为数中选一个你认为合适的和,再从)先化简(a a aa a a --÷+-+a )1)(1(1122-+⋅++-=a a a a a .a1-=a 图5 ABC OD 图6…………5分…………7分 17.在玉溪州大河旁边的路灯杆顶上有一个物体,它的抽象几何图形如图8, 假设 60ABC 10,AC 4,AB =∠==, 求B 、C 两点间的距离.解:过A 点作AD ⊥BC 于点D , …………1分在Rt △ABD 中,∵∠ABC=60°,∴∠BAD=30°. …………2分 ∵AB=4,∴BD=2, ∴AD=23. …………4分 在Rt △ADC 中,AC=10,∴CD=22AD AC -=12100-=222 . …………5分 ∴BC=2+222 . …………6分 答:B 、C 两点间的距离为2+222. …………7分 18. 某种铂金饰品在甲、乙两个商店销售.甲店标价477元/克,按标价出售,不优待.乙店标价530元/克,但假设买的铂金饰品重量超过3克,那么超出部分可打八折出售. ⑴ 分不写出到甲、乙商店购买该种铂金饰品所需费用y 〔元〕和重量x 〔克〕之间的函数关系式;⑵ 李阿姨要买一条重量许多于4克且不超过10克的此种铂金饰品,到哪个商店购买最合算?解:〔1〕y 甲=477x. …………1分 y 乙=530×3+530〔x-3〕·80%=424x+318. …………3分 〔2〕由y 甲= y 乙 得 477x=424x+318,∴ x=6 . …………4分由y 甲﹥y 乙 得 477x ﹥424x+318 ,那么 x ﹥6. …………5分由y 甲﹤y 乙 得 477x ﹤424x+318, 那么 x ﹤6. …………6分.2212-==时,原式当a CBA图8因此当x=6时,到甲、乙两个商店购买费用相同.当4≤x﹤6时,到甲商店购买合算.当6﹤x≤10时,到乙商店购买合算. …………9分19.如图9,在ABCD中,E是AD的中点,请添加适当条件后,构造出一对全等的三角形,并讲明理由.解:添加的条件是连结B、E,过D作DF∥BE交BC于点F,构造的全等三角形是△ABE与△CDF. …………4分理由:∵平行四边形ABCD,AE=ED, …………5分∴在△ABE与△CDF中,AB=CD, …………6分∠EAB=∠FCD, …………7分AE=CF ,…………8分∴△ABE≌△CDF. …………9分20. 以下图表是某校今年参加中考体育的男生1000米跑、女生800米跑的成绩中分不抽取的10个数据.考生编号1 2 3 4 5 6 7 8 9 10 男生成绩3′05〞3′11〞3′53〞3′10〞3′55〞3′30〞3′25〞3′19〞3′27〞3′55〞〔1〕求出这10名女生成绩的中位数、众数和极差;〔2〕按«云南省中考体育»规定,女生800米跑成绩不超过3′38 〞就能够得总分值.图9该校学生有490人,男生比女生少70人. 请你依照上面抽样的结果,估算该校考生中有多少名女生该项考试得总分值?〔3〕假设男考生1号和10号同时同地同向围着400米跑道起跑,在1000米的跑步中,他们能否首次相遇?假如能相遇,求出所需时刻;假如不能相遇,讲明理由.解:〔1〕女生的中位数、众数及极差分不是3′21 〞、3′10 〞、39 〞.………3分 〔2〕设男生有x 人,女生有x+70人,由题意得:x+x+70=490,x=210.女生 x+70=210+70=280〔人〕.女生得总分值人数:280×80%=224〔人〕. ………7分〔3〕假设通过x 分钟后,1号与10号在1000米跑中能首次相遇,依照题意得:60531000x - 605531000x = 400, ∴ 300x =1739.∴ x ≈5.8.又5 ′48〞>3′05〞,故考生1号与10号在1000米跑中不能首次相遇. ……10分21. 阅读对话,解答咨询题.(1) 分不用a 、b 表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出〔a ,b ) 的所有取值;(2) 求在〔a ,b )中使关于x 的一元二次方程022=+-b ax x 有实数根的概率.我先从小丽的袋子中抽出—张卡片,再从小兵的袋子中抽出—张卡片.小冬我的袋子中有 四张除数字外完全相同的卡片:小丽我的袋子中也有 三张除数字外完 全相同的卡片:小兵解:〔1〕〔a,b 〕对应的表格为:…………5分〔2〕∵方程X 2- ax+2b=0有实数根,∴△=a 2-8b ≥0. …………6分 ∴使a 2-8b ≥0的〔a,b 〕有(3,1),(4,1),(4,2). …………9分 ∴.41123)0(==≥∆p …………10分22. 平面内的两条直线有相交和平行两种位置关系.〔1〕AB 平行于CD .如图a ,点P 在AB 、CD 外部时,由AB ∥CD ,有∠B=∠BOD ,又因∠BOD 是△POD 的外角,故∠BOD=∠BPD +∠D ,得∠BPD=∠B-∠D .如图b ,将点P 移到AB 、CD 内部,以上结论是否成立?,假设不成立,那么∠BPD 、∠B 、∠D 之间有何数量关系?请证明你的结论;〔2〕在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q , 如图c ,那么∠BPD ﹑∠B ﹑∠D ﹑∠BQD 之间有何数量关系?〔不需证明〕; 〔3〕依照〔2〕的结论求图d 中∠A+∠B+∠C+∠D+∠E+∠F 的度数.解:〔1〕不成立,结论是∠BPD=∠B+∠D.a b1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3 (3,1) (3,2) (3,3) 4(4,1)(4,2)(4,3)图aO图bO图c图dG延长BP 交CD 于点E,∵AB ∥CD. ∴∠B=∠BED.又∠BPD=∠BED+∠D ,∴∠BPD=∠B+∠D. …………4分 〔2〕结论: ∠BPD=∠BQD+∠B+∠D. …………7分〔3〕由〔2〕的结论得:∠AGB=∠A+∠B+∠E. 又∵∠AGB=∠CGF.∠CGF+∠C+∠D+∠F=360°∴∠A+∠B+∠C+∠D ∠E+∠F=360°. …………11分23.如图10,在平面直角坐标系中,点A 的坐标为〔1,△AOB〔1〕求点B 的坐标;〔2〕求过点A 、O 、B 的抛物线的解析式;〔3〕在〔2〕中抛物线的对称轴上是否存在点C ,使△AOC 的周长最小?假设存在,求出点C 的 坐标;假设不存在,请讲明理由;〔4〕在〔2〕中,x 过点P 作x 轴的垂线,交直线AB 于点D 把△AOB 分成两个三角形.与四边形BPOD 面积比为2:3 点P 的坐标;假设不存在,请讲明理由.解:〔1〕由题意得: 2.OB 33OB 21=∴=⋅,∴B 〔-2,0〕 …………3分〔2〕设抛物线的解析式为y=ax(x+2),代入点A 〔,得a =, ∴2y + …………6分〔3〕存在点C.过点A 作AF 垂直于x 轴于点F ,抛物线的对称轴x= - 1交x 轴于点E.当点C 位于对称轴 与线段AB 的交点时,△AOC 的周长最小.∵ △BCE ∽△BAF,).33C(-1,.33BFAFBE CE .AFCEBF BE ∴=⋅=∴= …………9分〔4〕存在. 如图,设p(x,y),直线AB 为y=kx+b,那么20.k k b k b b ⎧=⎪⎧+=⎪⎪⎨⎨-+=⎪⎩⎪=⎪⎩解得, ∴直线AB为y =, BOD BPO BPOD S S S ∆∆+=四 =12|OB||Y P |+12|OB||Y D |=|Y P |+|Y D |=2333x x --+. ∵S △AOD = S △AOB -S △BOD =3-21×2×∣33x+332∣=-33x+33.∴ODB OD S SP A 四∆=33233-33-33332++-x x x =32. ∴x 1=-21, x 2=1(舍去). ∴p(-21,-43) . 又∵S △BOD =33x+332,∴ODB BOD S SP 四∆ =3323333332332+--+x x x = 32. ∴x 1=-21, x 2=-2. P(-2,0),不符合题意. ∴ 存在,点P 坐标是〔-21,-43〕. …………12分。