操作系统原理 进程通信共享内存

合集下载

进程通信的几种方法

进程通信的几种方法

进程通信的几种方法进程通信是指在操作系统中,不同的进程之间进行数据交换和信息传递的过程。

在现代操作系统中,进程通信是非常重要的,因为多个进程之间的协作可以提高系统的性能和效率。

本文将介绍几种常见的进程通信方法。

1.管道通信管道通信是一种单向、半双工的通信方式,通过创建一个管道,将一个进程的输出连接到另一个进程的输入,从而实现数据的传输。

管道通信一般用于具有父子关系的进程之间或者具有共同祖先的进程之间。

2.消息队列通信消息队列通信是一种通过操作系统内核来传递消息的机制。

进程可以将消息发送到消息队列,其他进程则可以从消息队列中接收消息。

消息队列通信具有高效、可靠、灵活等特点,常用于进程之间传递数据量较大的情况。

3.共享内存通信共享内存通信是一种进程间共享内存区域的方式。

多个进程可以访问同一块内存区域,从而实现数据的共享。

共享内存通信的优点是速度快,因为进程之间不需要进行数据的复制,但是需要进程之间进行同步和互斥操作,以避免数据的冲突。

4.信号量通信信号量通信是一种通过操作系统提供的信号量机制来实现进程间同步和互斥的方式。

进程可以通过信号量来进行互斥操作,以确保共享资源的安全访问。

信号量通信常用于进程之间共享资源的管理和同步。

5.套接字通信套接字通信是一种通过网络进行进程通信的方式,常用于不同主机之间的进程通信。

套接字通信可以通过TCP或UDP协议来实现,具有跨平台、可靠性高等特点。

总结起来,进程通信是操作系统中非常重要的一部分,不同的进程之间可以通过各种方式进行数据的交换和信息的传递。

管道通信、消息队列通信、共享内存通信、信号量通信和套接字通信是常见的几种进程通信方法。

不同的通信方法适用于不同的场景,开发人员需要根据具体需求选择合适的通信方式。

进程通信的正确使用可以提高系统的性能和效率,确保系统的稳定运行。

操作系统原理总结

操作系统原理总结

操作系统原理总结操作系统是管理计算机硬件与软件资源的程序,是计算机系统的内核与基石。

它负责控制和协调计算机的各种活动,使得计算机能够高效、稳定地运行。

下面就让我们来深入了解一下操作系统的原理。

操作系统的主要功能包括处理机管理、存储器管理、设备管理、文件管理和用户接口。

处理机管理的任务是合理地分配和调度处理机资源,以提高处理机的利用率和系统的性能。

进程是处理机管理中的一个重要概念,它是程序的一次执行过程。

操作系统通过进程控制、进程同步、进程通信和进程调度等手段来管理进程。

进程调度算法决定了哪个进程将获得处理机资源,常见的调度算法有先来先服务、短作业优先、时间片轮转等。

存储器管理的目标是为程序的运行提供良好的内存环境,提高内存的利用率。

内存分配方式有连续分配和离散分配两种。

连续分配包括单一连续分配和分区分配,离散分配则包括分页存储管理、分段存储管理和段页式存储管理。

虚拟存储器技术通过将部分程序和数据暂时存放在外存上,使得计算机能够运行比实际内存更大的程序。

设备管理的主要任务是管理和控制各类 I/O 设备,方便用户使用设备,并提高设备的利用率。

设备管理包括设备分配、设备驱动、设备缓冲和设备独立性等方面。

设备分配算法要考虑设备的使用情况和请求的优先级。

设备驱动程序是操作系统与设备硬件之间的接口,负责控制设备的操作。

设备缓冲可以减少 I/O 操作的次数,提高系统的性能。

文件管理负责对文件进行组织、存储、检索和保护。

文件系统为用户提供了一种按名存取的方式,方便用户对文件进行操作。

文件的逻辑结构有流式文件和记录式文件,物理结构有连续文件、链接文件和索引文件。

文件存储空间的管理方法有空闲表法、空闲链表法和位示图法等。

文件的保护机制可以防止文件被非法访问和修改。

用户接口是操作系统与用户之间的交互界面,分为命令接口和程序接口。

命令接口包括联机命令接口和脱机命令接口,程序接口则通过系统调用为用户程序提供服务。

操作系统的体系结构主要有单体结构、层次结构、微内核结构和客户/服务器结构等。

进程间通信的几种方法

进程间通信的几种方法

进程间通信的几种方法进程间通信是计算机系统中一种非常常见的需求,它允许多个进程在不同的地址空间中共享资源,实现信息的共享以及通信。

在计算机系统中,进程间通信的方法会根据使用的网络类型以及网络的连接有所不同。

对于进程间通信的方法,一般可以分为以下几种:(一)共享内存共享内存是一种最简单的进程间通信的方式,也是当今使用最为普遍的进程间通信方法。

在此方法中,多个进程可以访问共享内存区域,这样它们就可以直接在内存中进行通信,而且支持多个进程同时读取和写入内存中的数据,能满足多样化的通信需求,从而提高了系统的效率。

但是,由于这种方法不能实现两个进程之间的“双向”通信,因此它只能适用于一些特定的应用场景,而不能满足一般的进程间通信需求。

(二)消息传递消息传递是进程之间通信的常见方法,它允许两个进程之间进行双向通信,同时还能可靠地传输数据。

在消息传递中,多个进程可以通过将自己的传输内容发送到指定的消息服务器来实现进程间通信。

消息服务器会将这些内容发送到另一个进程,以便双方进行通信。

简单的消息传递本质上是一种客户端/服务器架构,而处理多个进程之间的通信时,可以使用一种名为“发布/订阅”的模型。

在这种模型中,发送者会将消息(即发布)发布到消息服务器上,而接收者(即订阅)可以订阅消息服务器上的那些发布消息。

(三)管道(PIPES)管道是另一种常用的进程间通信模式,它可以实现进程间的双向通信。

在管道模式中,多个进程共享一个双向管道,它们可以在这个双向管道上进行双向通信,也就是说,管道的一端可以用来发送数据,另一端可以用来接收数据。

与消息传递不同,管道不需要使用额外的服务器,因此它可以更快地传输数据,但是它也有很大的局限性,无法跨越网络,仅限于同一台机器上的多个进程之间的通信。

(四)信号量信号量是一种重要的进程间通信机制,它可以用来实现同步和互斥操作,使多个进程都能够按照规定的方式来完成工作,从而实现协作和通信。

信号量原理是通过一个数值来控制多个进程对共享资源的访问,当这个数值为正时,它允许多个进程访问共享资源,当这个数值为0时,它就不允许多个进程访问共享资源。

进程间的八种通信方式----共享内存是最快的IPC方式

进程间的八种通信方式----共享内存是最快的IPC方式

进程间的⼋种通信⽅式----共享内存是最快的IPC⽅式
1.⽆名管道( pipe ):管道是⼀种半双⼯的通信⽅式,数据只能单向流动,⽽且只能在具有亲缘关系的进程间使⽤。

进程的亲缘关系通常是指⽗⼦进程关系。

2.⾼级管道(popen):将另⼀个程序当做⼀个新的进程在当前程序进程中启动,则它算是当前程序的⼦进程,这种⽅式我们成为⾼级管道⽅式。

3.有名管道 (named pipe) :有名管道也是半双⼯的通信⽅式,但是它允许⽆亲缘关系进程间的通信。

4.消息队列( message queue ) :消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。

消息队列克服了信号传递信息少、管道只能承载⽆格式字节流以及缓冲区⼤⼩受限等缺点。

5.信号量( semophore ) :信号量是⼀个计数器,可以⽤来控制多个进程对共享资源的访问。

它常作为⼀种锁机制,防⽌某进程正在访问共享资源时,其他进程也访问该资源。

因此,主要作为进程间以及同⼀进程内不同线程之间的同步⼿段。

6.信号 ( sinal ) :信号是⼀种⽐较复杂的通信⽅式,⽤于通知接收进程某个事件已经发⽣。

7.共享内存( shared memory ) :共享内存就是映射⼀段能被其他进程所访问的内存,这段共享内存由⼀个进程创建,但多个进程都可以访问。

共享内存是最快的 IPC ⽅式,它是针对其他进程间通信⽅式运⾏效率低⽽专门设计的。

它往往与其他通信机制,如信号两,配合使⽤,来实现进程间的同步和通信。

8.套接字( socket ) :套解字也是⼀种进程间通信机制,与其他通信机制不同的是,它可⽤于不同机器间的进程通信。

消息队列和共享内存的进程通信机制

消息队列和共享内存的进程通信机制

消息队列和共享内存的进程通信机制
进程间通信是操作系统中非常重要的一部分,因为不同的进程可能需要相互交流信息,共同完成某项任务。

在进程间通信的机制中,消息队列和共享内存是两种常见的方式。

消息队列是一种进程间通信的方式,它是一种先进先出的数据结构,可以用来存储不同进程之间传递的消息。

消息队列有一个消息缓冲区,不同的进程可以向缓冲区中发送消息,并从中接收消息。

发送消息时需要指定消息类型,接收消息时可以选择接收指定类型的消息或者接收所有类型的消息。

共享内存是另一种进程间通信的方式,它是一种可以被多个进程访问的内存区域。

多个进程可以在共享内存中读取和写入数据,这样就可以实现进程间的数据共享和交流。

共享内存的使用需要注意进程同步和互斥的问题,否则可能会导致数据不一致或者错误。

消息队列和共享内存都是进程间通信的有效方式,但是它们各自有自己的优点和缺点。

消息队列适用于进程之间需要传递一些简单的消息,而共享内存适用于需要共享一些复杂的数据结构和大量数据的情况。

选择合适的通信机制可以提高程序的效率和可靠性。

- 1 -。

共享内存在Java中的实现和应用

共享内存在Java中的实现和应用

共享内存在Java中的实现和应用共享内存是一种用于进程间通信的机制,它允许多个进程共享同一块内存区域。

在Java中,共享内存主要通过以下几种方式实现和应用:Java内存映射、并发集合类、Java共享数据模型和进程间通信。

首先,Java内存映射是Java提供的一种共享内存的机制。

通过Java 的NIO(New Input/Output)库中的MappedByteBuffer类,我们可以将文件或内存映射到内存中,并通过同一个文件或内存来实现进程之间的通信。

这种方式可以提高进程间通信的效率,并且方便地处理大量数据。

例如,一些进程可以将数据写入共享内存,而其他进程可以直接从共享内存中读取数据,避免了不必要的数据拷贝和通信开销。

其次,Java提供了一系列的并发集合类,如ConcurrentHashMap、ConcurrentLinkedQueue等,它们内部使用了共享内存实现多线程之间的安全访问。

这些集合类通过使用非阻塞算法和锁分离等技术,实现了高效地共享内存访问。

这样,多个线程可以同时读写共享内存,而无需显式地进行同步操作。

这种方式在并发编程中得到广泛应用,例如多线程的生产者-消费者模型、线程池等场景。

此外,Java还提供了一种共享数据模型,即Java内存模型(Java Memory Model,JMM)。

JMM定义了多线程之间如何共享数据的规范,通过使用volatile、synchronized等关键字来保证共享内存的可见性和一致性。

JMM提供了一种方便的方式来实现多线程之间的共享数据访问,使得开发者可以更容易地编写并发程序。

例如,多个线程可以通过共享变量来进行状态同步、线程间的通信等操作。

最后,Java中的进程间通信也可以使用共享内存来实现。

通过操作系统的底层API,Java可以创建共享内存区域,并在不同的进程之间共享该内存区域。

例如,Java提供了一种称为JNI(Java Native Interface)的机制,允许Java程序通过调用本地代码来访问操作系统的底层功能。

CC++进程间通信内存共享

CC++进程间通信内存共享

CC++进程间通信内存共享介绍内存共享前,说下之前的误区,觉得,可以⽤指针来在⽗⼦进程中传递数据,其实,在fork()后,⽗⼦进程的地址空间是相互独⽴的!所以在⽗⼦进程间传递指针是没有意义的。

这⾥就涉及到物理地址和逻辑地址(或称虚拟地址)的概念。

从逻辑地址到物理地址的映射称为地址重定向。

分为:静态重定向--在程序装⼊主存时已经完成了逻辑地址到物理地址和变换,在程序执⾏期间不会再发⽣改变。

动态重定向--程序执⾏期间完成,其实现依赖于硬件地址变换机构,如基址寄存器。

逻辑地址:CPU所⽣成的地址。

CPU产⽣的逻辑地址被分为 :p (页号)它包含每个页在物理内存中的基址,⽤来作为页表的索引;d (页偏移),同基址相结合,⽤来确定送⼊内存设备的物理内存地址。

物理地址:内存单元所看到的地址。

⽤户程序看不见真正的物理地址。

⽤户只⽣成逻辑地址,且认为进程的地址空间为0到max。

物理地址范围从R+0到R+max,R为基地址,地址映射-将程序地址空间中使⽤的逻辑地址变换成内存中的物理地址的过程。

由内存管理单元(MMU)来完成。

fork()会产⽣⼀个和⽗进程完全相同的⼦进程,但⼦进程在此后多会exec系统调⽤,出于效率考虑,linux中引⼊了“写时复制“技术,也就是只有进程空间的各段的内容要发⽣变化时,才会将⽗进程的内容复制⼀份给⼦进程。

在fork之后exec之前两个进程⽤的是相同的物理空间(内存区),⼦进程的代码段、数据段、堆栈都是指向⽗进程的物理空间,也就是说,两者的虚拟空间不同,但其对应的物理空间是同⼀个。

当⽗⼦进程中有更改相应段的⾏为发⽣时,再为⼦进程相应的段分配物理空间,如果不是因为exec,内核会给⼦进程的数据段、堆栈段分配相应的物理空间(⾄此两者有各⾃的进程空间,互不影响),⽽代码段继续共享⽗进程的物理空间(两者的代码完全相同)。

⽽如果是因为exec,由于两者执⾏的代码不同,⼦进程的代码段也会分配单独的物理空间。

操作系统的消息传递和进程间通信实现进程间的信息传递和通信

操作系统的消息传递和进程间通信实现进程间的信息传递和通信

操作系统的消息传递和进程间通信实现进程间的信息传递和通信操作系统是计算机中非常重要的一个组成部分,它负责管理和控制计算机的硬件和软件资源。

在多道程序设计环境下,操作系统需要负责调度和管理多个进程的执行。

而进程间的信息传递和通信是操作系统中一个关键的功能,它使得不同进程之间能够相互交互、传递数据,从而实现协同工作和资源共享。

本文将探讨操作系统中的消息传递和进程间通信,以及它们的实现方法和技术。

一、消息传递在操作系统中,进程间的信息传递可以通过消息传递的方式来实现。

消息传递是指一个进程向另一个进程发送消息,并由接收进程接收和处理该消息。

消息传递可以用于进程间的同步和通信,从而实现进程之间的交互。

消息传递一般包括以下几个步骤:1. 消息的创建:发送进程首先需要创建一条消息,并在消息中填写相应的内容。

消息可以包含数据、指令等信息,以满足不同的需求。

2. 消息的发送:发送进程将创建好的消息发送给接收进程。

发送进程需要指定接收进程的标识符,以确保消息能够被正确地发送到目标进程。

3. 消息的接收:接收进程通过等待操作等待消息的到达。

当消息到达时,接收进程将检查消息的标识符,以确定该消息是否是自己所期望接收的。

4. 消息的处理:接收进程接收到消息后,会对消息进行处理。

处理的方式取决于消息的内容和接收进程的需求。

消息传递可以有两种方式:直接消息传递和间接消息传递。

直接消息传递是指发送进程直接发送消息给接收进程。

间接消息传递是指通过操作系统的消息队列来传递消息。

不同的方式适用于不同的场景和需求。

二、进程间通信的实现为了实现进程间的信息传递和通信,操作系统提供了多种机制和技术。

以下是几种常见的进程间通信的实现方式:1. 共享内存共享内存是一种在多个进程之间共享同一块物理内存的方式。

通过将一块内存区域映射到多个进程的地址空间中,进程可以通过读写共享内存的方式来进行通信。

共享内存的优点是速度快,但需要进程之间进行同步和互斥操作,以避免数据的冲突和错误。

操作系统实验---进程通信——共享存储区和信号量

操作系统实验---进程通信——共享存储区和信号量

实验报告实验题目姓名:学号:课程名称:操作系统实验所在学院:信息科学与工程学院专业班级:计算机任课教师:实验项目名称进程通信——共享存储区和信号量一、实验目的与要求:1、了解和熟悉共享存储机制2、了解和熟悉信号量机制3、熟悉信号量机制中使用的数据结构和信号量机制的操作以及控制。

4、了解共享主存段机制,学会对共享主存段的系统调用。

二、实验设备及软件:1、PC机一台2、Linux操作系统三、实验方法(原理、流程图)一、共享存储区1、共享存储区机制的概念共享存储区(Share Memory)是 UNIX 系统中通信速度最高的一种通信机制。

该机制可使若干进程共享主存中的某一个区域,且使该区域出现(映射)在多个进程的虚地址空间中。

另一方面,一个进程的虚地址空间中又可连接多个共享存储区,每个共享存储区都有自己的名字。

当进程间欲利用共享存储区进行通信时,必须先在主存中建立一共享存储区,然后将它附接到自己的虚地址空间上。

此后,进程对该区的访问操作,与对其虚地址空间的其它部分的操作完全相同。

进程之间便可通过对共享存储区中数据的读、写来进行直接通信。

图示列出二个进程通过共享一个共享存储区来进行通信的例子。

其中,进程 A 将建立的共享存储区附接到自己的 AA’区域,进程 B 将它附接到自己的 BB’区域。

应当指出,共享存储区机制只为进程提供了用于实现通信的共享存储区和对共享存储区进行操作的手段,然而并未提供对该区进行互斥访问及进程同步的措施。

因而当用户需要使用该机制时,必须自己设置同步和互斥措施才能保证实现正确的通信。

二、涉及的系统调用1、shmget( )创建、获得一个共享存储区。

系统调用格式: shmid=shmget(key,size,flag)参数定义: int shmget(key,size,flag);key_t key;int size,flag;其中,key是共享存储区的名字;size是其大小(以字节计);flag是用户设置的标志,如IPC_CREAT。

操作系统中进程管理的原理

操作系统中进程管理的原理

操作系统中进程管理的原理操作系统是计算机系统中最为重要的软件之一,其作用是管理计算机的硬件和软件资源,为用户提供一个良好的使用环境。

进程管理是操作系统中的一个重要功能,其原理涉及到多个方面,包括进程的创建、退出、调度、通信等,具有重要的学习价值和实际应用价值。

本文将从进程的定义、特征和组成等方面入手,介绍操作系统中进程管理的原理。

一、进程的定义、特征和组成进程是指正在运行中的程序的一个实例,它是计算机系统中最基本的执行单元。

进程具有以下几个特征:1. 动态性:进程是动态的实体,可以被创建、终止或挂起。

2. 独立性:每个进程都有自己的虚拟地址空间和资源管理机制,能够独立地执行各自的任务。

3. 并发性:多个进程可以在同一时间内执行,实现系统的并发处理。

4. 同步性:进程之间可以通过共享内存、消息传递等方式进行通信和协作,实现数据的交换和同步。

进程由程序代码、数据、堆栈和系统资源等组成。

程序代码是进程的核心,它被存放在内存中,由CPU执行。

数据是进程运行时使用的变量、数组和结构等,它们保存在进程的堆和栈中。

堆是指程序运行时使用的动态分配内存,栈是指程序调用函数时使用的内存空间。

系统资源包括CPU、内存、输入输出设备等。

二、进程的创建和退出进程的创建包括进程控制块(PCB)的分配和初始化、地址空间的分配和初始化、程序代码的装入、系统资源的分配等步骤。

进程的退出则是相反的过程,包括系统资源的回收、地址空间的释放、PCB的回收等。

操作系统中进程的创建和退出通常通过系统调用实现。

在Linux中,创建进程的系统调用是fork(),退出进程的系统调用是exit()。

在Windows中,创建进程的系统调用是CreateProcess(),退出进程的系统调用是ExitProcess()。

三、进程的调度进程的调度是指进程在CPU上的分配和切换。

操作系统中使用多种调度算法对进程进行调度,如先来先服务(FCFS)、短作业优先(SJF)、时间片轮转等。

qnx进程间通讯机制

qnx进程间通讯机制

qnx进程间通讯机制QNX是一种实时操作系统,广泛应用于嵌入式系统和工业控制领域。

在QNX操作系统中,进程间通讯(Inter-Process Communication,IPC)起着至关重要的作用。

进程间通讯机制允许不同的进程在同一系统中相互交换数据和信息,以实现协作和共享资源。

QNX提供了多种进程间通讯机制,包括共享内存、消息传递和管道等。

每种机制都有其特点和适用场景,下面将逐一介绍。

1. 共享内存共享内存是一种高效的进程间通讯方式,它允许多个进程访问同一块内存区域。

QNX通过使用内存映射文件(Memory-Mapped Files)来实现共享内存。

进程可以通过映射文件将共享内存映射到自己的地址空间中,从而实现对该内存区域的读写操作。

共享内存适用于需要频繁交换大量数据的场景,但需要进程之间进行同步和互斥操作,以避免数据竞争问题。

2. 消息传递消息传递是一种可靠的进程间通讯方式,QNX通过消息队列(Message Queues)实现消息传递。

进程可以通过向消息队列发送消息或从消息队列接收消息来实现进程间的通讯。

消息队列提供了先进先出的消息传递机制,确保消息的有序传递。

消息传递适用于需要按照顺序传递消息的场景,但由于消息传递是通过内核进行的,因此相对于共享内存而言,效率较低。

3. 管道管道是一种常见的进程间通讯方式,QNX通过管道(Pipes)实现进程间的通讯。

管道可以分为命名管道和匿名管道两种。

命名管道可以在不同的进程之间进行通讯,而匿名管道只能在具有父子关系的进程之间进行通讯。

管道提供了一种简单的单向通讯机制,适用于需要在两个进程之间传递数据的场景。

除了以上三种主要的进程间通讯机制,QNX还提供了其他一些辅助机制,如信号量、互斥锁和条件变量等,用于进程之间的同步和互斥操作。

这些机制可以保证多个进程之间的数据一致性和正确性。

在使用QNX的进程间通讯机制时,需要注意以下几点:1. 进程标识每个QNX进程都有一个唯一的进程标识符(Process Identifier,PID),可以通过PID来标识不同的进程。

操作系统原理

操作系统原理

操作系统原理操作系统是计算机系统中的核心软件,它负责管理计算机硬件资源和提供用户与计算机之间的接口。

操作系统原理是指操作系统设计与实现的基本原理和机制,包括进程管理、内存管理、文件系统、设备管理等方面。

一、进程管理进程是计算机中正在运行的程序的实例,是操作系统中最核心的概念之一。

进程管理的主要任务包括进程的创建、调度、同步与通信等。

进程的创建是指操作系统根据用户的请求或系统的需要,创建新的进程。

进程的调度是指操作系统根据调度算法,按照一定的优先级将CPU时间分配给不同的进程。

进程的同步与通信是指多个进程之间的数据共享和互斥操作,确保进程之间能够有效地进行合作和协调。

二、内存管理内存管理是指操作系统对计算机内存资源的分配与管理。

在多道程序环境下,操作系统需要合理地管理内存空间,提供给正在运行的进程使用。

内存管理的主要任务包括地址映射、地址转换、内存分配与回收等。

地址映射是指将逻辑地址转换为物理地址,以实现程序对实际内存的访问。

地址转换是指操作系统通过分页或分段机制,将逻辑地址转换为物理地址的过程。

内存分配与回收是指操作系统根据进程的需要,动态地分配和回收内存空间,以满足不同进程的需求。

三、文件系统文件系统是指操作系统对存储设备中数据进行组织和管理的机制。

操作系统使用文件系统来管理硬盘、磁盘和其他存储设备上的文件。

文件系统将文件组织成目录结构,并提供对文件的读取、写入、删除等操作。

文件系统的设计要考虑文件的命名、存储、保护等方面,以提高文件的访问效率和数据的安全性。

四、设备管理设备管理是指操作系统对计算机硬件设备进行管理和控制。

在多道程序环境下,计算机系统中会有多个设备与操作系统交互,如磁盘、打印机、键盘等。

设备管理的主要任务包括设备的分配与释放、设备的请求与响应、设备的故障处理等。

设备的分配与释放是指操作系统根据进程的需求,动态地分配和释放设备资源。

设备的请求与响应是指操作系统接收到设备请求后,将请求分配给相应的设备,并在设备完成操作后将结果返回给进程。

C#进程间通信(共享内存)

C#进程间通信(共享内存)

C#进程间通信(共享内存)进程间通信的⽅式有很多,常⽤的⽅式有:1.共享内存(内存映射⽂件,共享内存DLL)。

2.命名管道和匿名管道。

3.发送消息本⽂是记录共享内存的⽅式进⾏进程间通信,⾸先要建⽴⼀个进程间共享的内存地址,创建好共享内存地址后,⼀个进程向地址中写⼊数据,另外的进程从地址中读取数据。

在数据的读写的过程中要进⾏进程间的同步。

进程间数据同步可以有以下的⽅式1. 互斥量Mutex2. 信号量Semaphore3. 事件Event本⽂中进程间的同步采⽤信号量Semaphore的⽅式同步思想类似于操作系统中⽣产者和消费者问题的处理⽅式。

在A进程中创建共享内存,并开启⼀个线程⽤来读取B进程向共享内存中写⼊的数据,定义两个信号量进⾏读写互斥同步A进程中的程序代码using System;using System.Collections.Generic;using ponentModel;using System.Data;using System.Drawing;using System.Linq;using System.Text;using System.Windows.Forms;using System.Runtime.InteropServices;using System.Threading;using System.Diagnostics;namespace AppOne{public partial class AppOneMain : Form{const int INVALID_HANDLE_VALUE = -1;const int PAGE_READWRITE = 0x04;[DllImport("User32.dll")]private static extern bool ShowWindowAsync(IntPtr hWnd, int cmdShow);[DllImport("User32.dll")]private static extern bool SetForegroundWindow(IntPtr hWnd);//共享内存[DllImport("Kernel32.dll", EntryPoint = "CreateFileMapping")]private static extern IntPtr CreateFileMapping(IntPtr hFile, //HANDLE hFile,UInt32 lpAttributes,//LPSECURITY_ATTRIBUTES lpAttributes, //0UInt32 flProtect,//DWORD flProtectUInt32 dwMaximumSizeHigh,//DWORD dwMaximumSizeHigh,UInt32 dwMaximumSizeLow,//DWORD dwMaximumSizeLow,string lpName//LPCTSTR lpName);[DllImport("Kernel32.dll", EntryPoint = "OpenFileMapping")]private static extern IntPtr OpenFileMapping(UInt32 dwDesiredAccess,//DWORD dwDesiredAccess,int bInheritHandle,//BOOL bInheritHandle,string lpName//LPCTSTR lpName);const int FILE_MAP_ALL_ACCESS = 0x0002;const int FILE_MAP_WRITE = 0x0002;[DllImport("Kernel32.dll", EntryPoint = "MapViewOfFile")]private static extern IntPtr MapViewOfFile(IntPtr hFileMappingObject,//HANDLE hFileMappingObject,UInt32 dwDesiredAccess,//DWORD dwDesiredAccessUInt32 dwFileOffsetHight,//DWORD dwFileOffsetHigh,UInt32 dwFileOffsetLow,//DWORD dwFileOffsetLow,UInt32 dwNumberOfBytesToMap//SIZE_T dwNumberOfBytesToMap);[DllImport("Kernel32.dll", EntryPoint = "UnmapViewOfFile")]private static extern int UnmapViewOfFile(IntPtr lpBaseAddress);[DllImport("Kernel32.dll", EntryPoint = "CloseHandle")]private static extern int CloseHandle(IntPtr hObject);private Semaphore m_Write; //可写的信号private Semaphore m_Read; //可读的信号private IntPtr handle; //⽂件句柄private IntPtr addr; //共享内存地址uint mapLength; //共享内存长//线程⽤来读取数据Thread threadRed;public AppOneMain(){InitializeComponent();init();}///<summary>///初始化共享内存数据创建⼀个共享内存///</summary>privatevoid init(){m_Write = new Semaphore(1, 1, "WriteMap");//开始的时候有⼀个可以写m_Read = new Semaphore(0, 1, "ReadMap");//没有数据可读mapLength = 1024;IntPtr hFile = new IntPtr(INVALID_HANDLE_VALUE);handle = CreateFileMapping(hFile, 0, PAGE_READWRITE, 0, mapLength, "shareMemory"); addr = MapViewOfFile(handle, FILE_MAP_ALL_ACCESS, 0, 0, 0);//handle = OpenFileMapping(0x0002, 0, "shareMemory");//addr = MapViewOfFile(handle, FILE_MAP_ALL_ACCESS, 0, 0, 0);threadRed = new Thread(new ThreadStart(ThreadReceive));threadRed.Start();}///<summary>///线程启动从共享内存中获取数据信息///</summary>private void ThreadReceive(){myDelegate myI = new myDelegate(changeTxt);while (true){try{//m_Write = Semaphore.OpenExisting("WriteMap");//m_Read = Semaphore.OpenExisting("ReadMap");//handle = OpenFileMapping(FILE_MAP_WRITE, 0, "shareMemory");//读取共享内存中的数据://是否有数据写过来m_Read.WaitOne();//IntPtr m_Sender = MapViewOfFile(handle, FILE_MAP_ALL_ACCESS, 0, 0, 0);byte[] byteStr = new byte[100];byteCopy(byteStr, addr);string str = Encoding.Default.GetString(byteStr, 0, byteStr.Length);/////调⽤数据处理⽅法处理读取到的数据m_Write.Release();}catch (WaitHandleCannotBeOpenedException){continue;//Thread.Sleep(0);}}}//不安全的代码在项⽬⽣成的选项中选中允许不安全代码static unsafe void byteCopy(byte[] dst, IntPtr src){fixed (byte* pDst = dst){byte* pdst = pDst;byte* psrc = (byte*)src;while ((*pdst++ = *psrc++) != '\0');}}}}B进程向共享内存中写⼊的数据using System;using System.Collections.Generic;using ponentModel;using System.Data;using System.Drawing;using System.Linq;using System.Text;using System.Windows.Forms;using System.Runtime.InteropServices;using System.Threading;namespace AppTwo{public partial class AppTwoMain : Form{const int INVALID_HANDLE_VALUE = -1;const int PAGE_READWRITE = 0x04;//共享内存[DllImport("Kernel32.dll", EntryPoint = "CreateFileMapping")]private static extern IntPtr CreateFileMapping(IntPtr hFile, //HANDLE hFile,UInt32 lpAttributes,//LPSECURITY_ATTRIBUTES lpAttributes, //0UInt32 flProtect,//DWORD flProtectUInt32 dwMaximumSizeHigh,//DWORD dwMaximumSizeHigh,UInt32 dwMaximumSizeLow,//DWORD dwMaximumSizeLow,string lpName//LPCTSTR lpName);[DllImport("Kernel32.dll", EntryPoint = "OpenFileMapping")]private static extern IntPtr OpenFileMapping(UInt32 dwDesiredAccess,//DWORD dwDesiredAccess,int bInheritHandle,//BOOL bInheritHandle,string lpName//LPCTSTR lpName);const int FILE_MAP_ALL_ACCESS = 0x0002;const int FILE_MAP_WRITE = 0x0002;[DllImport("Kernel32.dll", EntryPoint = "MapViewOfFile")]private static extern IntPtr MapViewOfFile(IntPtr hFileMappingObject,//HANDLE hFileMappingObject,UInt32 dwDesiredAccess,//DWORD dwDesiredAccessUInt32 dwFileOffsetHight,//DWORD dwFileOffsetHigh,UInt32 dwFileOffsetLow,//DWORD dwFileOffsetLow,UInt32 dwNumberOfBytesToMap//SIZE_T dwNumberOfBytesToMap);[DllImport("Kernel32.dll", EntryPoint = "UnmapViewOfFile")]private static extern int UnmapViewOfFile(IntPtr lpBaseAddress);[DllImport("Kernel32.dll", EntryPoint = "CloseHandle")]private static extern int CloseHandle(IntPtr hObject);private Semaphore m_Write; //可写的信号private Semaphore m_Read; //可读的信号private IntPtr handle; //⽂件句柄private IntPtr addr; //共享内存地址uint mapLength; //共享内存长Thread threadRed;public AppTwoMain(){InitializeComponent();//threadRed = new Thread(new ThreadStart(init));//threadRed.Start();mapLength = 1024;}private void button1_Click(object sender, EventArgs e){try{m_Write = Semaphore.OpenExisting("WriteMap");m_Read = Semaphore.OpenExisting("ReadMap");handle = OpenFileMapping(FILE_MAP_WRITE, 0, "shareMemory");addr = MapViewOfFile(handle, FILE_MAP_ALL_ACCESS, 0, 0, 0);m_Write.WaitOne();byte[] sendStr = Encoding.Default.GetBytes(textBox1.Text.ToString() + '\0');//如果要是超长的话,应另外处理,最好是分配⾜够的内存if (sendStr.Length < mapLength)Copy(sendStr, addr);m_Read.Release();}catch (WaitHandleCannotBeOpenedException){MessageBox.Show("不存在系统信号量!");return;}}static unsafe void Copy(byte[] byteSrc, IntPtr dst) {fixed (byte* pSrc = byteSrc){byte* pDst = (byte*)dst;byte* psrc = pSrc;for (int i = 0; i < byteSrc.Length; i++){*pDst = *psrc;pDst++;psrc++;}}}}}。

c 进程间通信的7种方式,总结出他们的优点

c 进程间通信的7种方式,总结出他们的优点

c 进程间通信的7种方式,总结出他们的优点进程间通信(Inter-process Communication,IPC)是指不同进程之间互相传递数据或者进行通信的一种机制。

在操作系统中,进程是独立运行的程序,拥有自己的内存空间和执行上下文。

为了实现进程之间的协作和数据交换,进程间通信就显得至关重要。

C语言是一种广泛应用于系统开发的编程语言,提供了多种方式进行进程间通信。

下面将介绍C语言中的7种进程间通信方式,并分析它们的优点。

1.管道(Pipe):管道是Unix系统中最早的进程间通信方式之一。

它是一个单向的通道,使用一个文件描述符来表示。

管道需要在进程间建立父子关系,即由一个进程创建出另一个进程,父进程和子进程之间可以通过管道进行通信。

优点:管道简单易用,只需使用read和write等系统调用来实现进程间数据交换。

这种方式适用于有亲缘关系的进程间通信,如父子进程。

2.命名管道(Named Pipe):命名管道是一种特殊的文件,其可以通过文件系统中的路径名来访问。

在进程间通信时,进程可以将数据写入命名管道并从中读取数据。

优点:命名管道可以用于非亲缘关系的进程间通信,进程间不需要有父子关系。

它可以通过文件路径名来访问,更灵活方便。

3.信号量(Semaphore):信号量是一种用于进程同步和互斥的机制,用于解决进程竞争资源的问题。

信号量可以是二进制的(只有0和1),也可以是计数的(可以大于1)。

进程根据信号量的值来决定是否可以继续执行或者访问某个共享资源。

优点:信号量实现了进程之间的互斥和同步,可以防止多个进程同时访问共享资源,从而保证了程序的正确性和数据的一致性。

4.信号(Signal):信号是一种用于进程间通知和中断的机制。

进程可以向另一个进程发送信号,接收到信号的进程可以根据信号的类型来采取相应的行动。

优点:信号可以实现进程间的异步通信,进程可以在任何时候发送信号给其他进程,通过信号处理函数来进行响应。

操作系统:进程线程同步的方式和机制,进程间通信

操作系统:进程线程同步的方式和机制,进程间通信

操作系统:进程/线程同步的方式和机制,进程间通信一、进程/线程间同步机制。

临界区、互斥区、事件、信号量四种方式临界区(Critical Section)、互斥量(Mutex)、信号量(Semaphore)、事件(Eve nt)的区别1、临界区:通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。

在任意时刻只允许一个线程对共享资源进行访问,如果有多个线程试图访问公共资源,那么在有一个线程进入后,其他试图访问公共资源的线程将被挂起,并一直等到进入临界区的线程离开,临界区在被释放后,其他线程才可以抢占。

2、互斥量:采用互斥对象机制。

只有拥有互斥对象的线程才有访问公共资源的权限,因为互斥对象只有一个,所以能保证公共资源不会同时被多个线程访问。

互斥不仅能实现同一应用程序的公共资源安全共享,还能实现不同应用程序的公共资源安全共享 .互斥量比临界区复杂。

因为使用互斥不仅仅能够在同一应用程序不同线程中实现资源的安全共享,而且可以在不同应用程序的线程之间实现对资源的安全共享。

3、信号量:它允许多个线程在同一时刻访问同一资源,但是需要限制在同一时刻访问此资源的最大线程数目 .信号量对象对线程的同步方式与前面几种方法不同,信号允许多个线程同时使用共享资源,这与操作系统中的PV操作相同。

它指出了同时访问共享资源的线程最大数目。

它允许多个线程在同一时刻访问同一资源,但是需要限制在同一时刻访问此资源的最大线程数目。

PV操作及信号量的概念都是由荷兰科学家E.W.Dijkstra提出的。

信号量S是一个整数,S大于等于零时代表可供并发进程使用的资源实体数,但S小于零时则表示正在等待使用共享资源的进程数。

P操作申请资源:(1)S减1;(2)若S减1后仍大于等于零,则进程继续执行;(3)若S减1后小于零,则该进程被阻塞后进入与该信号相对应的队列中,然后转入进程调度。

V操作释放资源:(1)S加1;(2)若相加结果大于零,则进程继续执行;(3)若相加结果小于等于零,则从该信号的等待队列中唤醒一个等待进程,然后再返回原进程继续执行或转入进程调度。

ipc 原理

ipc 原理

ipc 原理IPC(Inter-Process Communication,进程间通信)是计算机科学中的一个概念,用于描述不同进程之间进行数据交换和通信的机制。

IPC的原理是通过共享内存、消息传递、管道、套接字等方式,使不同进程之间能够相互传递信息、协作完成任务。

其中,共享内存是一种进程间通信的方式,它通过将某一块内存区域映射到多个进程的地址空间中,实现不同进程之间的数据共享。

这种方式可以高效地传递大量数据,但需要解决进程间的同步和互斥问题,以保证数据的正确性。

消息传递是另一种常见的IPC方式,它通过发送和接收消息的方式进行进程间通信。

发送方将消息发送到一个消息队列或者直接发送给特定的进程,接收方则从消息队列中读取消息或者通过特定的接收机制接收消息。

这种方式可以实现异步通信和进程间的解耦,但需要解决消息的传递顺序和消息的可靠性问题。

管道是一种半双工的通信方式,用于连接一个读进程和一个写进程。

管道可以使得两个进程能够单向地传递数据,其中一个进程充当写端,将数据写入管道,另一个进程充当读端,从管道中读取数据。

这种方式适用于父子进程或者具有亲缘关系的进程之间的通信,但不适用于无关进程间的通信。

套接字是一种在不同主机间进行网络通信的机制,它可以在应用层与传输层之间建立连接,并通过网络传输数据。

套接字可以通过TCP或UDP协议进行通信,可以在同一台主机上的不同进程间或者不同主机间进行通信。

套接字通信具有灵活性和可扩展性,但需要注意网络传输的可靠性和安全性。

综上所述,IPC是一种用于不同进程间进行数据交换和通信的机制,通过共享内存、消息传递、管道、套接字等方式实现。

不同的IPC方式具有各自的优劣,可以根据需求选择适合的方式进行进程间通信。

操作系统中的进程间通信与同步机制

操作系统中的进程间通信与同步机制

操作系统中的进程间通信与同步机制在计算机领域中,操作系统是一个必不可少的软件,它管理着计算机硬件和软件资源,并且为用户和应用程序提供了一个运行环境。

而进程是操作系统中执行中的程序实例,它是计算机资源分配、调度和执行的基本单位。

在一个操作系统中,多个进程常常需要进行通信和同步,以便进行数据传递和协调工作。

本文将讨论操作系统中的进程间通信与同步机制。

一、进程间通信(IPC)进程间通信,简称IPC(Inter-Process Communication),是指不同进程之间相互交换数据和信息的一种机制。

它允许进程之间共享资源、传递消息和协调活动。

在操作系统中,有几种常见的IPC机制,包括管道、共享内存、消息队列和套接字等。

1. 管道(Pipe)管道是一种最简单的进程间通信机制,它创建了一个字节流管道,一个进程的输出可以直接作为另一个进程的输入。

在Unix/Linux系统中,使用pipe()系统调用创建一个管道,典型的管道用法是通过fork()系统调用创建一个子进程,其中一个进程通过管道向另一个进程传递数据。

2. 共享内存(Shared Memory)共享内存是一种进程间通信的高效机制,它允许多个进程访问同一个内存区域,从而实现数据的共享。

在操作系统中,使用共享内存可以显著提高进程间通信的速度。

常见的共享内存接口包括shmget、shmat和shmdt等。

3. 消息队列(Message Queue)消息队列是一种进程间通信的方式,它通过在消息队列中传递和接收消息来实现进程间的数据交换。

在操作系统中,消息队列常用于解决生产者-消费者问题,其中一个进程将数据发送到消息队列,另一个进程从消息队列中接收数据。

4. 套接字(Socket)套接字是一种进程间通信的通用机制,它允许不同计算机上的进程通过网络进行通信。

套接字可以进行不同类型的通信,包括面向连接的socket和面向无连接的socket。

在操作系统中,套接字常用于实现分布式系统和网络应用程序。

Shell脚本编写的高级技巧使用共享内存和进程间通信

Shell脚本编写的高级技巧使用共享内存和进程间通信

Shell脚本编写的高级技巧使用共享内存和进程间通信共享内存和进程间通信是Shell脚本编写中非常重要的技巧和概念。

它们可以帮助我们实现进程之间的数据传递和通信。

本文将介绍使用共享内存和进程间通信的高级技巧,以及如何在Shell脚本中应用这些技巧。

一、共享内存1.1 什么是共享内存共享内存是一种用于进程间通信的机制,它允许不同的进程访问同一块内存区域。

通过共享内存,多个进程可以实现数据共享,从而提高程序的效率。

1.2 在Shell脚本中使用共享内存在Shell脚本中使用共享内存需要借助一些系统命令和工具,比如ipcs、ipcrm等。

下面是一个使用共享内存实现数据传递的例子:```shell#!/bin/bash# 创建共享内存shm_id=$(ipcs -m | grep "0x" | awk '{ print $2 }')if [ -z "$shm_id" ]; thenshm_id=$(ipcmk -M | awk '{ print $NF }')fi# 写入数据data="Hello, shared memory!"echo -n "$data" > /dev/shm/$shm_id# 读取数据data=$(cat /dev/shm/$shm_id)echo "Shared memory data: $data"# 删除共享内存ipcrm -M $shm_id```这个脚本首先用ipcs命令检查是否已存在共享内存,如果不存在则用ipcmk命令创建一块共享内存。

然后,它通过echo命令将数据写入共享内存,再通过cat命令读取共享内存中的数据。

最后,使用ipcrm 命令删除共享内存。

二、进程间通信2.1 什么是进程间通信进程间通信(Inter-Process Communication,简称IPC)是指不同进程之间进行数据交换和通信的机制。

进程间通信的方式

进程间通信的方式

进程间通信的方式
进程间通信是指不同进程之间通过特定的方法进行数据传输和交流的过程。

常见的进程间通信方式有以下几种:
1. 管道:管道是一种单向的、按顺序存取的通信方式。

使用管道时,必须有一个进程向管道内写数据,另一个进程从管道中读取数据。

2. 共享内存:共享内存是指多个进程可以访问同一块内存空间,可以方便地共享数据。

但是需要注意对共享内存的操作必须同步,否则会出现数据冲突问题。

3. 消息队列:消息队列是指可以按照一定的规则,将一堆消息存储在一个队列中,进程可以从该队列中读取消息。

消息队列常常用来进行一些异步操作。

4. 套接字:套接字是一种通信机制,常用于建立客户端和服务器之间的网络连接。

套接字可以通过本地网络或者互联网进行通信。

5. 信号量:信号量是一种用于多进程同步的机制,通常用于控制多个进程对共享资源的访问。

当多个进程访问同一资源时,可以利用信号量避免出现竞争条件。

综上所述,不同的进程间通信方式适用于不同的场景和需求。

在实际开发中,需要结合具体的应用场景和技术选型进行选择和使用。

(完整word版)操作系统实验进程的通信

(完整word版)操作系统实验进程的通信

(操作系统原理和linux操作系统相结合的实验)实验二进程的通信一实验目的1 学会使用vi编辑器编辑C语言程序2 学会Linux环境下gcc的使用3 学会调试工具GDB的使用二实验原理1 利用linux提供的进程通信的系统调用设计进程通信程序,加深对进程通信概念的理解。

2 体会进程通信的方法和效果。

三实验环境PC机1台,Windows操作系统和其上的虚拟Linux操作系统。

四实验步骤1.管道通信(1)编写一个程序。

父进程创建一个子进程和一个无名管道fd,由子进程向管道写入信息“This is a message”,然后终止执行;父进程接收到子进程终止信号后从管道中读出并显示信息后结束。

#include<stdio.h>#include<unistd.h>main(){int p1,fd[2];char outpipe[50]; //定义读缓冲区char inpipe[50]="This is a message!"; //定义写缓冲区pipe(fd); //创建无名管道fdwhile((p1=fork())==-1);if (p1==0) //子进程返回{write(fd[1],inpipe,50); //写信息到管道exit(0);}else //父进程返回{wait(0); //等待子进程终止read(fd[0],outpipe,50); //从管道读信息到读缓冲区printf("%s\n",outpipe); //显示读到的信息exit(0);}}(2)父进程创建两个子进程,父子进程之间利用管道进行通信。

要求能显示父进程、子进程各自的信息,体现通信效果。

(源程序pipe_1.c)#include<stdio.h>main(){int I,r,j,k,l,p1,p2,fd[2];char buf[50],s[50];pipe(fd);while((p1=fork())==-1);if(p1==0){lockf(fd[1],1,0);sprintf(buf,"Child process p1 is sending message!\n");printf("Child process p1!\n");write(fd[1],buf,50);lockf(fd[1],0,0);sleep(5);j=getpid();k=getppid();printf("p1 %d is weakup.My parent process id is %d.\n",j,k);exit(0);}else{while((p2=fork())==-1);if(p2==0){lockf(fd[1],1,0);sprintf(buf,"Child process p2 is sending message!\n");printf("Child process p2!\n");write(fd[1],buf,50);lockf(fd[1],0,0);sleep(5);j=getpid();k=getppid();printf("p2 %d is weakup.My parent process id is %d.\n",j,k);exit(0);}else{I=getpid();wait(0);if(r=read(fd[0],s,50)==-1)printf("can’t read pip e.");elseprintf("Parent %d:%s\n",l,s);wait(0);if(r=read(fd[0],s,50)==-1)pr intf("can’t read pipe");elseprintf ( "Parent %d:%s\n",l,s);exit(0);}}}结果:2.共享内存通信。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程实践报告书课程名称:操作系统原理题目:进程通信-共享内存学生姓名:专业:计算机科学与技术(网络方向)班别:计科本113班学号:1104402308指导老师:日期:2013 年06 月25 日目录一、基本要求 (2)二、流程图分析 (3)三、共享内存描述和使用 (10)3.1共享内存的概述 (10)3.2共享内存的原理 (11)3.3共享内存的分配 (12)3.4 共享内存的访问 (13)3.5共享内存的应用 (13)3.6共享内存的意义 (14)四、实验构思 (14)4.1 main()的使用 (14)4.2 shmget()调用 (16)4.3 fork()的调用 (16)4.4 子进程调用shmat() (17)4.5子进程调用shmdt() (17)4.6 父进程调用 shmctl() (17)4.7父进程调用shmat(),shmdt(),shmctl() (18)五、实验的调试与测试 (18)六、实验结果 (20)七、源程序 (21)八、实验感受 (23)九、参考文献 (24)一、基本要求1.1实验题目:进程通信共享内存1.2实践目的:用代码实现进程通信共享内存1.3实践内容:用C语言代码创建进程,实现进程通信共享内存(父进程和子进程通过共享内存实现信息的交流)1.4实验环境:linux操作系统及gcc工具二、流程图分析图1-1如图1-1首先父进程调用shmget()函数建立一个共享内存,该函数返回一内存的标识符。

图1-2如图1-2父进程调用fork()产生一个子进程图1-3如图1-3子进程调用shmat()函数将该共享内存连接到自己的虚存空间中图1-4如图1-4写完数据后,子进程调用shmdt()函数断开与该进程的连接如图1-5如图1-5父进程调用shmctl()函数得到关于这块共享内存的相关信息,并打印出来图1-6如图1-6父进程调用shmat()函数将这块共享内存连接到自己的虚存空间图1-7如图1-8父进程调用shmdt()函数断开与该共享内存的连接图1-8如图1-8父进程调用shmctl()函数,销毁该共享进程。

三、共享内存描述和使用3.1共享内存的概述针对消息缓冲需要占用CPU进行消息复制的缺点,操作系统提供了一种进程间直接进行数据交换的通信方式——共享内存。

顾名思义,这种通信方式允许多个进程共享同一块物理内存空间来实现进程之间的信息交换,其特点是没有中间环节,直接将共享的内存页面通过附接,映射到相互通信的进程各自的虚拟地址空间中,从而使多个进程可以直接访问同一个物理内存页面,如同访问自己的私有空间一样(但实质上不是私有的而是共享的)。

因此这种进程间通信方式是在同一个计算机系统中的诸进程间实现通信的最快捷的方法,而它的局限性也在于此,即共享内存的诸进程必须共处同一个计算机系统,有物理内存可以共享才行。

3.2共享内存的原理共享内存是由IPC为一个进程所创建并且出现在这个进程的地址空间中的一段特殊的地址序列。

其他的进程可以将同样的共享内存段关联到他们自己的地址空间中。

所有的进程都可以访问这段内存地址,就如同这段内存是由malloc所分配的。

如果一个进程写入共享内存,这些改变立即就可以为访问相同共享内存的其他进程所见。

就其自身而言,共享内存并没有提供任何共享方法。

并没有自动的方法来阻止在第一个进程完成写入共享内存之前第二个进程开始读取共享内存。

3.3共享内存的分配要使用一块共享内存,进程必须首先分配它。

随后需要访问这个进程释放该共享内存块。

尽管每个进程都有自己的内存地址,不同的进程可以同时将同一个内存页面映射到自己的地址空间中,从而达到共享内存的目的。

分配一个新的共享内存块会创建新的内存页面。

因为所有进程都希望共享对同一块内存的访问,只应由一个进程创建一块新的共享内存。

再次分配一块已经存在的内存块不会创建新的页面,而只是会返回一个标识该内存块的标识符。

一个进程如需使用这个共享内存块,则首先需要将它绑定到自己的地址空间中。

这样会创建一个从进程本身虚拟地址到共享页面的映射关系。

当对共享内存的使用结束之后,这个映射关系将被删除。

当再也没有进程需要使用这个共享内存块的时候,必须有一个(且只能是一个)进程负责释放这个被共享的内存页面。

所有共享内存块的大小都必须是系统页面大小的整数倍。

系统页面大小指的是系统中单个内存页面包含的字节数。

进程通过调用shmget来分配一个共享内存块。

该函数的第二个参数指定了所申请的内存块的大小。

因为这些内存块是以页面为单位进行分配的,实际分配的内存块大小将被扩大到页面大小的整数倍。

3.4 共享内存的访问要让一个进程获取对一块共享内存的访问,这个进程必须先调用shmat(SHared Memory Attach,绑定到共享内存)。

将 shmget 返用于映射。

3.5共享内存的应用共享内存的通信方式是通过将可以共享的内存缓冲区直接附加到进程的虚拟地址空间中来实现的,因此,这些进程之间的读写操作的同步问题操作系统无法实现,必须由诸共享该内存的进程去控制。

另外,由于内存实体存在于计算机系统中,所以只能由处于同一个计算机系统中的诸进程共享。

以上两点是共享内存通信的缺点,但是它提供了诸进程直接读写信息,无须复制,因而方便快捷的进程间通信方式,适用于信息量大且操作频繁的场合。

3.6共享内存的意义或更多进程访问同一块内存,就如同 malloc() 函数向不同进程返回内容的时候,其它进程都会察觉到这个更改。

所有进程共享同一块内存,共享内存在各种进程间通信方式中具有最高的效率。

访问共享内存区域和访问进程独有的内存区域一样快,并不需要通过系统调用或者其它需要切入内核的过程来完成。

同时它也避免了对数据的各种不必要的复制。

四、实验构思4.1 main()的使用int main(){int shmid;char *shmaddr;strut shmid_ds buf;shmid=shmget(KEY,SIZE,IPC_CREAT | 0600);if(shmid==-1){printf("create share memory failed:%s",strerror(errno));return 0;}if(fork()==0){sleep(2);shmaddr=(char *)shmat(shmid,NULL,0);if(shmaddr==(void*)-1){printf("connect to the share memory failed:%s",strerror(errno));return 0;}strcpy(shmaddr,"hello,this is shared data.\n");shmdt(shmaddr);exit(0);}else{wait(0);shmctl(shmid,IPC_STAT,&buf);printf("size of the share memory:shm_segsz=%dbytes\n",buf.shm_segsz);printf("process id of the last operator:shm_lpid=%d\n",buf.shm_cpid);printf("process id of the last operator:shm_lpid+%d\n",buf.shm_lpid);shmaddr=(char *)shmat(shmid,NULL,0);if(shmaddr==(void *)-1){printf("connectthe share memoryfailed:%s",strerror(errno));return 0;}printf("print the content of the share memory:");printf("%s\n",shmaddr);shmdt(shmaddr);shmctl(shmid,IPC_RMID,NULL);}}4.2 shmget()调用首先调用shmget()函数建立一块共享内存,大小为1024个字节,shmid=shmget(KEY,SIZE,IPC_CREAT | 0600)建立共享内存,此函数调用用于创建一个新的共享内存段或存取一个已存在的共享内存段。

函数调用成功返回共享内存段的标识符,否则返回一1值。

s h mg e t的内部实现包含了许多重要的S y s t e m V共享内存机制;s h ma t 在把共享内存区域映射到进程空间时,并不真正改变进程的页表。

当进程第一次访问内存映射区域访问时,会因为没有物理页表的分配而导致一个缺页异常,然后内核再根据相应的存储管理机制为共享内存映射区域分配相应的页表。

4.3 fork()的调用调用fork()产生一个子进程(生产者进程)。

子进程调用shmat()函数将该共享内存连接(attach)到自己的虚存空间,即可通过普通的内存写操作(例如strcpy等),在该共享内存写入数据。

4.4 子进程调用shmat()shmaddr=(char *)shmat(shmid,NULL,0) 系统自动选择一个地址连接,s h ma t ( ) 可以创建一个共享内存区,或者获得已创建的共享内存区的标识符后,将共享内存段映射到进程的内存空间。

返回共享内存段的地址,否则返回一1值。

4.5子进程调用shmdt()写完数据生,子进程调用shmdt(shmaddr)断开共享,此函数调用可以将映射到进程的共享内存段撤消。

函数调用成功返回0值,否则返回一1 。

一个共享内存与一个进程分离时.共享内存段的s h m a r r a y结构中的共享计数减1 ,直至计数为0 ,系统才真正删除这个共亨内存页面。

4.6 父进程调用 shmctl()父进程sleep,直到子进程完成上述操作。

shmctl(shmid,IPC_RMID,NULL)取得共享内存的相关信息,并打印出来s h mct l 可以用来查询一些共享内存的使用情况和进行一些控制操作。

函数调用成功后返回0值,否则返回一1 值。

比如:s h mc t l ( s h m i d ,I P C RMI D,0 ) 将删除s h m i d指示的共享内存。

4.7父进程调用shmat(),shmdt(),shmctl()父进程调用shmat()函数将这块共享内存连接到自己的虚存空间,即可通过普通的内存读操作(例如printft等),将该共享内存中的字符串读出来。

读完数据后,父进程调用shmctl()函数,销毁断开与该共享内存的连接。

相关文档
最新文档