最新人教版六年级下册数学圆柱的体积ppt
合集下载
数学人教版六年级下册《圆柱的认识》课件
因此,圆柱侧面积的 计算公式为:侧面积 = 底面周长 × 高。
将底面周长代入侧面 积公式,得到:侧面 积 = 2 × π × 半径 × 高。
底面周长可以通过圆 的周长公式计算:底 面周长 = 2 × π × 半径。
底面积计算公式推导
01
圆柱的底面积是指圆柱底面的面 积,即一个圆的面积。
02
圆的面积计算公式为:底面积 = π × 半径²。
机械领域
在机械制造中,圆柱形的零件非 常常见,如轴承、齿轮等。这些 零件的形状和尺寸精度对机器的
性能和使用寿命有很大影响。
日常生活
在日常生活中,我们也经常接触 到圆柱形的物体,如罐头、水杯 、笔筒等。了解圆柱的性质和特 点有助于我们更好地理解和使用
这些物品。
02
圆柱表面积计算方法
侧面积计算公式推导
典型例题解析
例题1
一个圆柱的底面半径是3厘米,高 是5厘米,求它的体积。
解析
根据圆柱体积计算公式V = πr²h, 将已知条件代入公式进行计算即可 。
例题2
一个圆柱的侧面积是100平方厘米, 底面半径是5厘米,求它的体积。
解析
首先根据侧面积和底面半径求出圆柱 的高,然后再利用体积公式进行计算 。
例题3
面积公式,总表面积 = 2 × π × 3² + 94.2 = 150.72平方厘米。
03
例题2
一个圆柱的侧面积是150.72平方厘米,高是4厘米,求它的底面半径。
03
圆柱体积计算方法
体积计算公式推导过程
圆柱体积计算公式的推导基于长方体 体积的计算方法。
当切割的小长方体的数量足够多时, 可以准确地得到圆柱的体积计算公式 :V = πr²h。
将底面周长代入侧面 积公式,得到:侧面 积 = 2 × π × 半径 × 高。
底面周长可以通过圆 的周长公式计算:底 面周长 = 2 × π × 半径。
底面积计算公式推导
01
圆柱的底面积是指圆柱底面的面 积,即一个圆的面积。
02
圆的面积计算公式为:底面积 = π × 半径²。
机械领域
在机械制造中,圆柱形的零件非 常常见,如轴承、齿轮等。这些 零件的形状和尺寸精度对机器的
性能和使用寿命有很大影响。
日常生活
在日常生活中,我们也经常接触 到圆柱形的物体,如罐头、水杯 、笔筒等。了解圆柱的性质和特 点有助于我们更好地理解和使用
这些物品。
02
圆柱表面积计算方法
侧面积计算公式推导
典型例题解析
例题1
一个圆柱的底面半径是3厘米,高 是5厘米,求它的体积。
解析
根据圆柱体积计算公式V = πr²h, 将已知条件代入公式进行计算即可 。
例题2
一个圆柱的侧面积是100平方厘米, 底面半径是5厘米,求它的体积。
解析
首先根据侧面积和底面半径求出圆柱 的高,然后再利用体积公式进行计算 。
例题3
面积公式,总表面积 = 2 × π × 3² + 94.2 = 150.72平方厘米。
03
例题2
一个圆柱的侧面积是150.72平方厘米,高是4厘米,求它的底面半径。
03
圆柱体积计算方法
体积计算公式推导过程
圆柱体积计算公式的推导基于长方体 体积的计算方法。
当切割的小长方体的数量足够多时, 可以准确地得到圆柱的体积计算公式 :V = πr²h。
最新人教版六年级数学下册圆柱的体积精品课件5
…
r - =π 2 r
长等于圆周长的一半 宽等于圆的半径
C
-=π r
r
长方形的面积 = 长 × 宽 长等于圆周长的一半 圆的面积
C 2
= πr × r 宽等于圆的半径 =πr2
S
=πr2
能不能把圆柱转化成我们学过 的立体图形,来计算它的体积?
分的份数越多,拼成 拼成的长方体是标准 的图形越接近长方体。 的长方体吗? 1、圆柱拼成近似的长方体后,体积发生变化了吗? 2、圆柱拼成近似的长方体后,底面积与高发生变化了吗?
达标测评
三、计算下图圆柱体的体积。 12 (图中单位:cm)
V
=
π r² h
=3.14× (12÷ 2)² × 18
=3.14× 36× 18
18
=2034.72(cm³ )
圆柱的体积公式是如何推导出来的?
圆柱体积
长方体体积
圆柱体积
底面积
长方体体积
底面积
圆柱体积
底面积
高
长方体体积
底面积
圆柱体积
长方体体积
圆柱体积
底面积
长方体体积
底面积
圆柱体积
底面积
高
长方体体积
底面积
高
圆柱体积 = 底面积 × 高
长方体体积 = 底面积 × 高
圆柱体积 =底面积 × 高
V=Sh
猜一猜:
你猜对了圆柱的体 积公式吗?
圆柱的体积=底面积×高 V=Sh
√ ?
学以致用:
有一根圆柱形木料,底面积为75cm² , 长90㎝。它的体积是多少? V=sh =75×90 =6750(cm³ )
高
圆柱体积 = 底面积 × 高
人教版数学六年级下册教学课件《利用圆柱的体积求不规则物体的体积》
一个底面内直径是8cm的瓶子里,水的高度是7cm,把瓶盖 拧紧,把瓶子倒置、放平,无水部分是圆柱形,高度是18cm。 这个瓶子的容积是多少?
这个瓶子是圆柱吗? 怎样求它的容积?
分成两个圆柱 可行吗?说出 你的想法。
探究新知
一个底面内直径是8cm的瓶子里,水的高度是7cm,把瓶盖 拧紧,把瓶子倒置、放平,无水部分是圆柱形,高度是18cm。 这个瓶子的容积是多少?
说一说:你还发现 了什么?
7cm 18cm
探究新知
一个底面内直径是8cm的瓶子里,水的高度是7cm,把瓶盖
拧紧,把瓶子倒置、放平,无水部分是圆柱形,高度是18cm。
这个瓶子的容积是多少? 正放
倒置
7cm 18cm
倒置前后水的形状变
了,体积没有变。
前
后
瓶子容积=水的体积+空瓶子体积
探究新知
一个底面内直径是8cm的瓶子里,水的高度是7cm,把瓶盖 拧紧,把瓶子倒置、放平,无水部分是圆柱形,高度是18cm。 这个瓶子的容积是多少?
人教版 数学 六年级 下册
3 圆柱与圆锥
利用圆柱的体积求 不规则物体的体积
复习导入
还记得五年级想要计算不规则物体的体积用的什么
方法吗?
“排水法”
看量杯的刻度变化。
复习导入 想一想:如果量杯的刻度被磨掉了,你还会计算梨 的体积吗?
将梨的体积转化成 上升水的体积。
“转化法”
7cm 18cm
探究新知
答:这个瓶子的容积是1256mL。
课堂练习
某公园要修一道围墙,原计划用土石35m³。后来多开了一 个厚度为25cm的月亮门(见右图),减少了土石的用量。 现在用了多少立方米的土石? 先求一个底面直径为2m2÷2)2×0.25 =35-3.14×1×0.25 =35-0.785 =34.215(m³) 答:现在用了34.215立方米的土石。
这个瓶子是圆柱吗? 怎样求它的容积?
分成两个圆柱 可行吗?说出 你的想法。
探究新知
一个底面内直径是8cm的瓶子里,水的高度是7cm,把瓶盖 拧紧,把瓶子倒置、放平,无水部分是圆柱形,高度是18cm。 这个瓶子的容积是多少?
说一说:你还发现 了什么?
7cm 18cm
探究新知
一个底面内直径是8cm的瓶子里,水的高度是7cm,把瓶盖
拧紧,把瓶子倒置、放平,无水部分是圆柱形,高度是18cm。
这个瓶子的容积是多少? 正放
倒置
7cm 18cm
倒置前后水的形状变
了,体积没有变。
前
后
瓶子容积=水的体积+空瓶子体积
探究新知
一个底面内直径是8cm的瓶子里,水的高度是7cm,把瓶盖 拧紧,把瓶子倒置、放平,无水部分是圆柱形,高度是18cm。 这个瓶子的容积是多少?
人教版 数学 六年级 下册
3 圆柱与圆锥
利用圆柱的体积求 不规则物体的体积
复习导入
还记得五年级想要计算不规则物体的体积用的什么
方法吗?
“排水法”
看量杯的刻度变化。
复习导入 想一想:如果量杯的刻度被磨掉了,你还会计算梨 的体积吗?
将梨的体积转化成 上升水的体积。
“转化法”
7cm 18cm
探究新知
答:这个瓶子的容积是1256mL。
课堂练习
某公园要修一道围墙,原计划用土石35m³。后来多开了一 个厚度为25cm的月亮门(见右图),减少了土石的用量。 现在用了多少立方米的土石? 先求一个底面直径为2m2÷2)2×0.25 =35-3.14×1×0.25 =35-0.785 =34.215(m³) 答:现在用了34.215立方米的土石。
六年级数学下册课件- 3.1.3 圆柱的体积 人教版(共37张PPT)
人教教版六年级数学下册第二单元
体积:物体所占空间的大小
高
宽 长
长方体的体积=长×宽×高
ቤተ መጻሕፍቲ ባይዱ棱长
V=abh
正方体的体积=棱长×棱长×棱长
V=a³
底面积×高
圆柱体积的大小与哪些条件有关?
图1:
S甲>S乙
h甲 = h乙
v甲 > v 乙
圆柱体积的大小与圆柱的底面积有关
图2
将一个圆柱截成不相等的两段,哪个圆柱体积大?
V=sh
V=兀r 2h
1.
V=兀(d÷2) 2 h
V=兀(c÷2兀) 2 h
2.要区分清圆柱的体积计算公式和侧面积计算公式。
1、了解青蛙生长过程中几个不同阶段 的形体 变化, 知道它 是捉虫 能手, 懂得
2、能按问题的提示扩写句子,把句子 写具体 ,通过 选词填 空、连 句,了 解小蝌 蚪是怎 样变成 青蛙的 。 3、会分角色朗读课文,能背诵课文最 后两个 自然段 。应该 保护青 蛙
4、教学重点:学习生字新词,能分角 色有感 情地朗 读课文 ,懂得 青蛙是 捉害虫 的能手 ,懂得 保护青 蛙人人 有责。 5、教学难点:认识蝌蚪和青蛙,了解 青蛙生 长过程 以及在 不同阶 段的形 态变化 。
6、理解重点词句,了解作者从哪些方 面介绍 黄山奇 石,并 用自己 的话复 述。
S上=S下上 h上< h下
下
V上<V下
圆柱体积的大小与圆柱的高有关
圆柱体积的大小与 圆柱的底面积和高有关
圆面积公式的推导过程
圆面积公式的推导过程
r 圆的面积 S = 2
长方体的体积=底面积×高 圆柱体的体积 底面积
长方体的体积=底面积×高 圆柱体的体积 底面积
体积:物体所占空间的大小
高
宽 长
长方体的体积=长×宽×高
ቤተ መጻሕፍቲ ባይዱ棱长
V=abh
正方体的体积=棱长×棱长×棱长
V=a³
底面积×高
圆柱体积的大小与哪些条件有关?
图1:
S甲>S乙
h甲 = h乙
v甲 > v 乙
圆柱体积的大小与圆柱的底面积有关
图2
将一个圆柱截成不相等的两段,哪个圆柱体积大?
V=sh
V=兀r 2h
1.
V=兀(d÷2) 2 h
V=兀(c÷2兀) 2 h
2.要区分清圆柱的体积计算公式和侧面积计算公式。
1、了解青蛙生长过程中几个不同阶段 的形体 变化, 知道它 是捉虫 能手, 懂得
2、能按问题的提示扩写句子,把句子 写具体 ,通过 选词填 空、连 句,了 解小蝌 蚪是怎 样变成 青蛙的 。 3、会分角色朗读课文,能背诵课文最 后两个 自然段 。应该 保护青 蛙
4、教学重点:学习生字新词,能分角 色有感 情地朗 读课文 ,懂得 青蛙是 捉害虫 的能手 ,懂得 保护青 蛙人人 有责。 5、教学难点:认识蝌蚪和青蛙,了解 青蛙生 长过程 以及在 不同阶 段的形 态变化 。
6、理解重点词句,了解作者从哪些方 面介绍 黄山奇 石,并 用自己 的话复 述。
S上=S下上 h上< h下
下
V上<V下
圆柱体积的大小与圆柱的高有关
圆柱体积的大小与 圆柱的底面积和高有关
圆面积公式的推导过程
圆面积公式的推导过程
r 圆的面积 S = 2
长方体的体积=底面积×高 圆柱体的体积 底面积
长方体的体积=底面积×高 圆柱体的体积 底面积
人教版数学六年级下册 圆柱的体积课件(44张PPT)
=3.14×16×25
=1256(cm^3)
=1256(ml)
答:瓶子的容积是1256ml。
解:减少的表面积是两个底面面积 底面面积:25.12÷2=12.56(cm3)
底面半径为:
12.56÷3.14÷2=2(cm)
原圆柱的体积:
3.14×22×(20÷2)=125.6(cm3)
答:原来每个圆柱的体积为125.6cm3 。
答:这个圆柱的表面积是301.44cm2;体积是401.92cm3.
例7. 一个圆柱体底面周长和高相等。如果高缩短 2厘米,表面积就减少6.28平方厘米, 这个圆柱 体的体积是多少?
减少的6.28平方厘米 表面积是哪一块呢?
24cm
6.28平方厘米
C=6.28÷ 2=3.14(厘米) r=3.14÷ 3.14÷ 2=0.5(厘米) V=0.52× 3.14× 3.14=2.4649(立方厘米) 答:这个圆柱体的体积是2.4649立方厘米。
502.4 ml>498ml
答:能装下这袋奶。
例2. 若圆柱体的侧面展开后是一个边长为12.56分米正方形,求
这个圆柱的体积。
边长
r=12.56÷ 3.14÷ 2=2(分米12.)56厘米 S底=22× 3.14=12.56(平方分米) V=12.56× 12.56=157.7536(立方分米)
12.56分米
12.56 分米
答:这个圆柱的体积是157.7536立方分米。 “侧面展开 图是正方形”说明 什么呢?
例3.一个圆柱形粮囤,从里面量底面半径是2.5米,高是2米。如 果每立方米稻谷约重545千克,这个粮囤装的稻谷大约有多少千 克?
粮屯体积: 3.14×2.52×2 =3.14×6.25×2 =39.25(m2)
六年级下册数学课件-第3单元 圆柱与圆锥 丨人教新课标 (共88张PPT)
5. 时代广场有一个圆柱形喷水池,底面直径是4 m, 深0.8 m。如果要在喷水池的底面和内壁贴上瓷砖,那 么贴瓷砖的面积是多少平方米?
3.14×(4÷2)2+3.14×4×0.8 =22.608 (m2) 答:贴瓷砖的面积是22.608 m2。
能力提升扩展 6. 如图,一张正方形纸卷成一个圆柱,求这个圆柱的 高与底面直径的比。
2. 选一选。(把正确答案的字母代号填在括号里)
(1)圆柱的底面半径是2.5 cm,高是3 cm,沿高展开
得到的长方形的长是( A )cm,宽是( D )cm。
A. 15.7
B. 5
C.18.84
D. 3
(2)下图以直线(虚线)为轴快速旋转一周,能形成
圆柱的是
( A )。
3. 辨一辨。(对的在后面的括号里画“√”,错的画
6 dm=0.6 m 3.14×(0.6÷2)2×2+3.14×0.6×1.2≈3 (m2) 答:做这个油桶至少需要3 m2的铁皮。
能力提升扩展
6. 把一个实心大圆柱切成3个同样大小的小圆柱,3个 小圆柱的表面积之和比大圆柱的表面积多了3.6 dm2。 大圆柱的底面积是多少?
3.6÷[(3-1)×2]=0.9 (dm2) 答:大圆柱的底面积是0.9 dm2。
它们的体积也相等。
(√)
4. 一根圆柱形塑料棒,底面积为75 cm2,长110 cm。 它的体积是多少?
75×110=8250 (cm3) 答:它的体积是8250 cm3。 5. 一个圆柱的体积是120 m3,底面积是12 m2。它的高 是多少? 120÷12=10 (m)
答:它的高是10 m。
能力提升扩展
7 圆柱的体积(2)
基础巩固
部编人教版六年级数学下册第三单元课件ppt第6课时 圆柱的体积
状元成才路
状元成才路
状元成才路
2.计算下面各圆状元柱成才路 的体积。(单位:c状m元成才路 )
状元成才路
状元成才路 状元成才路
状元成才路
状元成才路 状元成才路
状元成才路
状元成才路 状元成才路
状元成才路
状元成才路
3.14×状元成才5路 2×2=157(cm状3元成)才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路 状元成才路
状元成才路
3.14×(4÷2) ×12 状元成才路
状元成才路
2状元成才路
状元成才路
=150.72(cm3) 状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路 状元成才路
状元成才路 状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
18.84÷状元成才路3.14÷2=3(dm) 状元成才路
3.状1元成才4路 ×32×4=113.0状4元成才(路 dm3)
答:这个圆柱的体积是113.04dm 。 状元成才路
状元成才路
状元成才路
3
状元成才路
随堂演练
状元成才路
1.判断。
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
3.14×(1÷2)2×1状元成0才路 =7.85(立方米) 状元成才路 状元成才路
【新】人教版六年级数学下册《圆柱体积》优质课课件.ppt
结论
1、拼成的长方体的体积与原来的圆柱体体积相等。 2、它的底面积没有发生变化。 3、它的高也没有发生变化。
圆柱体积的大小与哪些条件有关?
底面积
高
例4 (1)一根圆柱形木料,底面 积为75平方厘米,长90厘米, 它的体积是多厘米。
判断并说明理由.
圆柱体的体积
—— (人教版)六年制小学数学第十二册
数学课件
考一考
你会计算下面哪些图形的体积呢?
真 棒!
高 宽
长
棱长
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
v长=a b h
v正 =a 3
V=s底 h
这是什么图形? 怎样求它的体积?
??
圆柱体的体积
数学课件
讨论题
1、拼成的长方体的体积与原来的圆柱体体积是否相等? 2、它的底面积变了吗? 3、它的高变了吗?
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
1、用绳子量出饮料罐底面的周长,然后通过周长求半径。
2、用直尺量出直径(最长一条为直径),再通过直径求出半 径。
再见
▪ 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/152020/12/15Tuesday, December 15, 2020
人教版六年级数学下册《圆柱的体积》课件ppt
个花坛一共需要填土多少立方米?
高为0.8m是多余信息, 花坛里所填土的体积只
花坛的底面积 3.14×(4÷2)=2 3.14×2 2=12.56
(m2
)
于土的高度有关。
两个花坛的体积
12.56×0.5×2=6.28×2=12.56(m³)
答:两个花坛一共需要填土12.56立方米。
课堂小结
这节课你们都学会了哪些知识?
人教版 数学 六年级 下册
3 圆柱与圆锥
圆柱与圆锥
圆柱的体积
复习导入
什么是体积?
圆柱与圆锥
怎样求长方体和 正方体的体积?
物体所占空间的大小是物体的体积。 高 宽 长方体的体积=长×宽×高
长
正方体的体积=棱长×棱长×棱长
棱长
复习导入
圆柱与圆锥
回想:圆的面积计算公式是怎样推导出来的?
r πr
S=πr2
杯子的底面积: 3.14 ×(8÷2)2
=3.14 ×16 =50.24(cm2)
=502.4(mL) 牛奶的体积: 240×2=480(mL) 502.4 >480 答:杯子能装下2袋这样的牛奶。
课堂练习
圆柱与圆锥
小明和妈妈出去游玩,带了一个圆柱形保温壶,从里 面量底面直径是8cm,高是15cm。如果两人游玩期间 要喝1L水,带这壶水够喝吗?
保温壶的底面积:
3.14×(8÷2)2 =3.14×16 =50.24(cm2)
保温壶的容积:
50.24×15=753.6( cm3 ) =0.7536(L)
1L>0.7536 L
答:带这壶水不够喝。
课堂练习
圆柱与圆锥
一根圆柱形木料底面直径是0.4m,长5m。如果做一张 课桌用去木料0.02m3,这根木料最多能做多少张课桌?
人教版六年级数学下册《圆柱的体积》课件
的值。 3. 求方程的解的过程叫解方程。
(三)列方程解决问题 1、审题,弄清题意; 2、找出等量关系; 3、设出未知数,根据等量关系列出方程; 4、解方程,写出答句; 5、检验。
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
努 力 吧 !
判断正误,对的画“√”,错误的画“×”。
1. 圆柱体的底面积越大,它的体积越大。(×) 2. 圆柱体的高越长,它的体积越大。(×) 3.圆柱体的体积与长方体的体积相等。(×) 4.圆柱体的底面直径和高可以相等。(√ )
列方程解决下面的问题。
(1)果品商店购进20箱苹果。购进苹果的箱数
是橘子箱数的 4 。商店购进了多少箱橘子?
5
解:设商店购进了x箱橘子。
橘子箱数× 4 =苹果箱数
45x=20 5 x=20÷
x=25
4 5
答:商店购进了25箱橘子。
(2)妙想和乐乐一共收集了128枚邮票,妙
想收集的邮票数是乐乐的3倍。妙想、乐乐各
注意:
①在含有字母的式子里,数和字母中间的乘 号可以写作“•”,也可以省略不写。
②省略乘号时,应当把数写在字母的前面。 ③数与数之间的乘号不能省略。加号、减号、 除号都不能省略。
解下面的方程,并说一说你是怎么解的。
9x-1.8=5.4 解:
9x-1.8+1.8=5.4+1.8 9x=7.2
9x÷9=7.2÷9 x=0.8
a乘以4.5可以怎样写?s乘以h可以怎样写?
a 4.5或4.5a
s h或sh
用含有字母的式子表示下面的数量 1、一只青蛙每天吃a只害虫,100天吃掉(100a) 只害虫。
(三)列方程解决问题 1、审题,弄清题意; 2、找出等量关系; 3、设出未知数,根据等量关系列出方程; 4、解方程,写出答句; 5、检验。
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
努 力 吧 !
判断正误,对的画“√”,错误的画“×”。
1. 圆柱体的底面积越大,它的体积越大。(×) 2. 圆柱体的高越长,它的体积越大。(×) 3.圆柱体的体积与长方体的体积相等。(×) 4.圆柱体的底面直径和高可以相等。(√ )
列方程解决下面的问题。
(1)果品商店购进20箱苹果。购进苹果的箱数
是橘子箱数的 4 。商店购进了多少箱橘子?
5
解:设商店购进了x箱橘子。
橘子箱数× 4 =苹果箱数
45x=20 5 x=20÷
x=25
4 5
答:商店购进了25箱橘子。
(2)妙想和乐乐一共收集了128枚邮票,妙
想收集的邮票数是乐乐的3倍。妙想、乐乐各
注意:
①在含有字母的式子里,数和字母中间的乘 号可以写作“•”,也可以省略不写。
②省略乘号时,应当把数写在字母的前面。 ③数与数之间的乘号不能省略。加号、减号、 除号都不能省略。
解下面的方程,并说一说你是怎么解的。
9x-1.8=5.4 解:
9x-1.8+1.8=5.4+1.8 9x=7.2
9x÷9=7.2÷9 x=0.8
a乘以4.5可以怎样写?s乘以h可以怎样写?
a 4.5或4.5a
s h或sh
用含有字母的式子表示下面的数量 1、一只青蛙每天吃a只害虫,100天吃掉(100a) 只害虫。
六年级下册数学课件-圆柱的体积 人教版(共44张PPT).pptx
=3.14×4² =3.14×16 =50.24(cm²)
杯子的容积: 50.24×10
=502.4(cm³) =502.4(mL) 答:因为502.4大于498,所以杯子能装下这袋牛奶。
做一做
1.小明和妈妈出去游玩,带了一个圆柱形保温杯,从里面量 底面直径是8cm,高是15cm。如果两人游玩期间要喝1L水, 带这杯水够喝吗?
V= πr²h
,
做一做
1.一根圆柱形木料,底面积为75cm²,长90cm。它的体积是 多少? 75×90=6750(cm³) 答:它的体积是6750cm³。
2.李家庄挖了一口圆柱形水井,地面以下的井深10m,底面直 径为1m。挖出的土有多少立方米? 3.14×(1÷2)²×10=7.85(m³) 答:挖出的土有7.85立方米。
第3单元 圆柱与圆锥
课题3 圆柱的体积
一、情境导入
放入石头后发生了什么?
水位变高了
你能用一句话说说什 么是圆柱的体积吗?
圆柱所占空间的大小就是圆柱的体积
二、探索新知
哪个圆柱的体积大?
我的体积大。
要比较两个圆柱的体 积,你有什么好办法?
可以将圆柱放进水中,比较哪个水面升得高。
把大小圆柱分别放入下面2个完全一样的水池中:
圆柱的底面分成的扇形越多,拼成的立体图形就越接近 于长方体。
把拼成的长方体与原来的圆柱比较, 你能发现什么?
长方体的底面积等于圆柱的 底面积 ห้องสมุดไป่ตู้ 高等于圆柱的 高 。 长方体的体积=底面积×高 圆柱的体积=底面积×高 V=Sh
=
如果知道圆柱的底面半径r和高h, 你能写出圆柱的体积公式吗?
圆柱的体积计算公式是:
3.14×(8÷2)²×15=753.6(cm³)=0.7536(L) 0.7536L<1L 答:带这杯水不够喝。
杯子的容积: 50.24×10
=502.4(cm³) =502.4(mL) 答:因为502.4大于498,所以杯子能装下这袋牛奶。
做一做
1.小明和妈妈出去游玩,带了一个圆柱形保温杯,从里面量 底面直径是8cm,高是15cm。如果两人游玩期间要喝1L水, 带这杯水够喝吗?
V= πr²h
,
做一做
1.一根圆柱形木料,底面积为75cm²,长90cm。它的体积是 多少? 75×90=6750(cm³) 答:它的体积是6750cm³。
2.李家庄挖了一口圆柱形水井,地面以下的井深10m,底面直 径为1m。挖出的土有多少立方米? 3.14×(1÷2)²×10=7.85(m³) 答:挖出的土有7.85立方米。
第3单元 圆柱与圆锥
课题3 圆柱的体积
一、情境导入
放入石头后发生了什么?
水位变高了
你能用一句话说说什 么是圆柱的体积吗?
圆柱所占空间的大小就是圆柱的体积
二、探索新知
哪个圆柱的体积大?
我的体积大。
要比较两个圆柱的体 积,你有什么好办法?
可以将圆柱放进水中,比较哪个水面升得高。
把大小圆柱分别放入下面2个完全一样的水池中:
圆柱的底面分成的扇形越多,拼成的立体图形就越接近 于长方体。
把拼成的长方体与原来的圆柱比较, 你能发现什么?
长方体的底面积等于圆柱的 底面积 ห้องสมุดไป่ตู้ 高等于圆柱的 高 。 长方体的体积=底面积×高 圆柱的体积=底面积×高 V=Sh
=
如果知道圆柱的底面半径r和高h, 你能写出圆柱的体积公式吗?
圆柱的体积计算公式是:
3.14×(8÷2)²×15=753.6(cm³)=0.7536(L) 0.7536L<1L 答:带这杯水不够喝。
六年级下册数学课件圆柱的体积人教版 (12)PPT(共12页)PPT
这节课我们学习了什么? 你有哪些收获?
•
1.通过画上学路线图和玩交通安全棋 ,培养 学生的 自我保 护意识 和珍爱 生命的 情感。
•
2.在上学路上要遵守交通规则,不要 在路上 玩耍, 不要吃 地摊上 不洁的 食物, 养成良 好的饮 食习惯 和上学 不迟到 的好习 惯。
•
3.学会识记常见的交通和安全标志, 掌握一 些基本 的交通 规则。
练一练
2.一个圆柱的体积是 80 立方厘米, 底面积是 16 平方厘米,它的高是多 少厘米? (只列式,不计算)
80÷16
练一练
3、判断正误,对的画“√”,错误的画“×”。
(1)等底等高的圆柱和长方体体积相等。(√ )
(2)圆柱体的高越长,它的体积越大。 (×)
(3)圆柱体、长方体、正方体的体积都能 用底
•
4.通过学生自己的观察、实验、研讨 ,发现 当月球 运行到 太阳和 地球中 间,并 且三者 成或接 近一条 直线时 ,地球 上的人 会看见 太阳被 遮住一 部分或 全部遮 住,就 是发生 了日食 。
•
5.通过观察整理、分析推理、模拟实 验等方 法研究 日食的 成因和 变化过 程,以 及研究 、发现 日食过 程中的 更多信 息。并 能根据 实验发 现,用 模型或 图示解 释各类 日食的 成因和 更多的 现象。
面积乘高来计算。
(√ )
(4)圆柱体的底面半径扩大2倍,高不变,圆柱
的体积也扩大2倍。
(×)
练一练
4.学校建了两个同样大小的圆柱形花坛。 花坛的底面内直径为3米,高为0.8米。 如果里面填土的高度是0.5米,两个花坛 中共需要填土多少立方米?
3÷2﹦1.5(米) 3.14×1.5²×0.5×2
人教版小学数学六年级下册《第三单元圆柱与圆锥:3.圆柱的体积》PPT1
169.56立方分米。
判断:
1、圆柱的体积比表面积大。( ) ×
2、等底等高的正方体、长方体和圆柱,它们的体积
都相等。( √ )
3、一个圆柱的底面半径扩大到原来的3倍,体积也
4、体积相等的两个圆柱不一定是等底等高。(√ )
扩到原来的3倍。( × )
判断:
5、高不变,圆柱体的底面积越大,它的体积就
人教版六年级数学下册第三单元
圆柱的体积练习课
知识回顾:
圆柱的体积公式是怎样推导出来的?
转化
长方体的体积= 底面积 × 高 圆柱的体积= V
底面积 S
圆柱体积计算公式是:
V
×
高 h
已知圆柱的底面积和高,怎样求圆柱的体积?
V=s×h
已知圆柱的体积和高,怎样求圆柱的底面积?
s=V÷h
已知圆柱的体积和底面积,怎样求圆柱的高?
越大。( √ )
6、圆柱体的高越长,它的体积越大。( × ) 7、圆柱体的底面直径和高可以相等。(√ )
巩固练习:
将一个棱长为6分米的正方 体钢材熔铸成底面半径为1 分米的圆柱体,这个圆柱有 多长?(得数保留整数)
思考:正方体与熔铸成的圆柱体体积有什么关系? 正方体的体积:6×6×6=216(dm3) 圆柱的长:216÷(3.14×1×1) =216÷3.14 ≈69(分米)
=18×3 =54(dm3)
答:它的体积是54dm3。
练一练:
把一个棱长6分米的正方体木块切削成一个体积最 大的圆柱体,这个圆柱的体积是多少立方分米?
d 2 思考:圆柱的直径和高 V ( ) h 2 是正方体的什么? =3.14×(6÷2)2×6 =3.14×32×6 3) =169.56 ( dm 答:这个圆柱的体积是
判断:
1、圆柱的体积比表面积大。( ) ×
2、等底等高的正方体、长方体和圆柱,它们的体积
都相等。( √ )
3、一个圆柱的底面半径扩大到原来的3倍,体积也
4、体积相等的两个圆柱不一定是等底等高。(√ )
扩到原来的3倍。( × )
判断:
5、高不变,圆柱体的底面积越大,它的体积就
人教版六年级数学下册第三单元
圆柱的体积练习课
知识回顾:
圆柱的体积公式是怎样推导出来的?
转化
长方体的体积= 底面积 × 高 圆柱的体积= V
底面积 S
圆柱体积计算公式是:
V
×
高 h
已知圆柱的底面积和高,怎样求圆柱的体积?
V=s×h
已知圆柱的体积和高,怎样求圆柱的底面积?
s=V÷h
已知圆柱的体积和底面积,怎样求圆柱的高?
越大。( √ )
6、圆柱体的高越长,它的体积越大。( × ) 7、圆柱体的底面直径和高可以相等。(√ )
巩固练习:
将一个棱长为6分米的正方 体钢材熔铸成底面半径为1 分米的圆柱体,这个圆柱有 多长?(得数保留整数)
思考:正方体与熔铸成的圆柱体体积有什么关系? 正方体的体积:6×6×6=216(dm3) 圆柱的长:216÷(3.14×1×1) =216÷3.14 ≈69(分米)
=18×3 =54(dm3)
答:它的体积是54dm3。
练一练:
把一个棱长6分米的正方体木块切削成一个体积最 大的圆柱体,这个圆柱的体积是多少立方分米?
d 2 思考:圆柱的直径和高 V ( ) h 2 是正方体的什么? =3.14×(6÷2)2×6 =3.14×32×6 3) =169.56 ( dm 答:这个圆柱的体积是
六年级数学下册《圆柱和圆锥的认识》课件
定积分法
使用定积分求出圆锥的体积公式,再代入底面半径和高度即可求得圆锥的体积。
圆台的定义和特征
定义
圆台是由一个上底面半径、下底面半径、高和侧面 组成的几何图形。
特征
圆台的侧面是一个梯形,底面圆的半径和高度可确 定圆台的大小。
实际应用
圆台广泛应用于生活中的各种容器和建筑结构中, 比如灯罩和教堂尖顶。
圆锥广泛应用于生活中的各种容器和建筑结构中,比如冰淇淋蛋筒和火车车头。
圆锥的表面积求解方法
公式法
使用圆锥的侧面积公式和底面积公式相加即可求得 圆锥的表面积。
展开图法
将圆锥展开成一个弓形,在弓形的开端加上一个扇 形即可得到圆锥的展开图,再利用展开图计算圆锥 的表面积。
圆锥的体积求解方法
底面积法
使用底面积公式和三角形面积公式计算圆锥的体积。
公式法
使用圆台的体积公式即可求得圆台的体积。
几何体分解法
可以将圆台分解为一个圆锥和一个圆柱,分别计算 它们的体积后相加即可得到圆台的体积。
圆柱与圆锥的差异和联系
相同点
• 都有底面和侧面 • 表面积和体积的计算方法类似 • 都广泛应用于实际生活和工程中
不同点
• 底面形状不同:圆柱底面为圆形,圆锥底面 为圆形或椭圆形
交通锥标志
交通锥一般用于道路施工和事故现场,图标通常设 计成圆锥形,用以提醒司机注意交通安全。
数学思维拓展:解决圆柱和圆锥问题的 策略
1
抽象转化法
将题目抽象成一些基本的几何图形,然后利用几何图形的相似、等量关系等解题。
2
代数运算法
当几何图形较为复杂时,可以将某些参 一个圆锥的底面半径为5cm,高为12cm,它 的表面积是多少?
圆柱和圆锥的学习方法和技巧
使用定积分求出圆锥的体积公式,再代入底面半径和高度即可求得圆锥的体积。
圆台的定义和特征
定义
圆台是由一个上底面半径、下底面半径、高和侧面 组成的几何图形。
特征
圆台的侧面是一个梯形,底面圆的半径和高度可确 定圆台的大小。
实际应用
圆台广泛应用于生活中的各种容器和建筑结构中, 比如灯罩和教堂尖顶。
圆锥广泛应用于生活中的各种容器和建筑结构中,比如冰淇淋蛋筒和火车车头。
圆锥的表面积求解方法
公式法
使用圆锥的侧面积公式和底面积公式相加即可求得 圆锥的表面积。
展开图法
将圆锥展开成一个弓形,在弓形的开端加上一个扇 形即可得到圆锥的展开图,再利用展开图计算圆锥 的表面积。
圆锥的体积求解方法
底面积法
使用底面积公式和三角形面积公式计算圆锥的体积。
公式法
使用圆台的体积公式即可求得圆台的体积。
几何体分解法
可以将圆台分解为一个圆锥和一个圆柱,分别计算 它们的体积后相加即可得到圆台的体积。
圆柱与圆锥的差异和联系
相同点
• 都有底面和侧面 • 表面积和体积的计算方法类似 • 都广泛应用于实际生活和工程中
不同点
• 底面形状不同:圆柱底面为圆形,圆锥底面 为圆形或椭圆形
交通锥标志
交通锥一般用于道路施工和事故现场,图标通常设 计成圆锥形,用以提醒司机注意交通安全。
数学思维拓展:解决圆柱和圆锥问题的 策略
1
抽象转化法
将题目抽象成一些基本的几何图形,然后利用几何图形的相似、等量关系等解题。
2
代数运算法
当几何图形较为复杂时,可以将某些参 一个圆锥的底面半径为5cm,高为12cm,它 的表面积是多少?
圆柱和圆锥的学习方法和技巧