连续系统的零极点分析

合集下载

实验 (三) 项目名称:利用MATLAB分析连续系统及离散系统的复频域特性

实验 (三) 项目名称:利用MATLAB分析连续系统及离散系统的复频域特性

广东技术师范学院实验报告实验 (三) 项目名称:利用MATLAB 分析连续系统及离散系统的复频域特性一.实验目的1.掌握 Laplace 变换的意义、基本性质及应用。

2.掌握拉普拉斯变换的三维可视化表示。

3.理解系统函数的零、极点分布(极、零图)决定系统时间原函数的特性。

4.掌握系统冲激响应。

5. H (z )部分分式展开的MA TLAB 实现6. H (z )的零极点与系统特性的MATLAB 计算二.实验原理1.Laplace 变换和逆变换定义为⎰⎰∞+∞-∞-==j j stst ds e s F jt f dte tf s F σσπ)(21)()()(0( 4 – 1 )在 Matlab 中实现 Laplace 变换有两个途径:直接调用指令 laplace 和ilaplace 进行;根据定义式 ( 4 – 1 ),利用积分指令 int 实现。

相较而言,直接利用 laplace 和 ilaplace 指令实现机器变换要简洁一些。

调用格式:L=laplace(F) F=ilaplace(L)2.实现拉普拉斯曲面图及其可视化的步骤如下:a .定义两个向量x 和y 来确定绘制曲面图的复平面横座标和纵座标的范围。

b .调用meshgrid 函数产生包含绘制曲面图的s 平面区域所有等间隔取样点的复矩阵。

c .计算复矩阵s 定义的各样点处信号拉氏变换F(s)的函数值,并调用abs 函数求其模。

d .调用mesh 函数绘出其幅度曲面图。

3.在连续系统的复频域分析中,系统函数起着十分重要的作用,它包含了连续系统的固有特性。

通过系统函数可以对系统的稳定性、时域特性、系统频率响应等系统特性进行分析。

若连续系统的系统函数的零极点已知,系统函数便可确定下来,即系统函数H (s )的零极点分布完全决定了系统的特性。

系统函数的零点和极点位置可以用matlab 的多项式求根函数roots()来求得。

用roots()函数求得系统函数H(s)的零极点后,就可以用plot 命令在复平面上绘制出系统函数的零极点图。

极点及系统稳定性

极点及系统稳定性

极点对系统性能影响一.控制系统与极点自动控制系统根据控制作用可分为:连续控制系统和采样控制系统,采样系统又叫离散控制系统。

通常把系统中的离散信号是脉冲序列形成的离散系统,称为采样控制系统。

连续控制系统即指控制量为连续的模拟量如时变系统。

系统的数学模型一般由系统传递函数表达。

传递函数为零初始条件下线性系统响应(即输出)量的拉普拉斯变换(或z 变换)与激励(即输入)量的拉普拉斯变换之比。

记作Φ(s )=Xo (s )/Xi (s ),其中Xo (s )、Xi (s )分别为输出量和输入量的拉普拉斯变换。

特征方程的根称为极点。

如试Φ﹙S ﹚= C [∏(S-Pi )/∏(S-Qi) ]中Q1 Q2 Q3 …… Qi ……即为系统的极点。

二.极点对系统的影响极点--确定了系统的运动模态;决定了系统的稳定性。

下面对连续系统与离散系统分别进行分析:⑴连续系统理论分析:连续系统的零极点分布有如下几种形式设系统函数为:将H(S)进行部分分式展开:1n a s -+++系统冲激响应H(S)的时域特性h(t)随时间衰减的信号分量完全由系统函数H(S)的极点位置决定。

每一个极点将决定h(t)的一项时间函数。

稳定性:由上述得知Y(S)= C [∏(S-Pi )/(S-Qi) ]可分解为Y(S)=C1/(S-τ1)+ C2/(S-τ2)+ C3/(S-τ3)+……+ Ci/(S-τi)+…… 则时间响应为……由于特征方程的根不止一个,这时,应把系统的运动看成是多个运动分量的合成。

只要有一个运动分量是发散的,则系统是不稳定的。

因此,特征方程所有根的实部都必须是负数,亦即所有的根都在复平面的左半平面。

通过复变函数幅角定理将S 由G 平面映射到GH 平面。

如果封闭曲线 F 内有Z 个F(s)的零点,有P 个F(s)的极点,则s 沿 F 顺时针转一圈时,在F(s)平面上,F(s)曲线绕原点顺时针转的圈数R 为z 和p 之差,即R =z -p 。

信号、系统分析与控制 第9章 系统函数的零极点

信号、系统分析与控制 第9章 系统函数的零极点

2. 离散系统函数的零极点
M
离散系统函数的多项式形式为:
H (z)
B(z) A(z)
bj z j
j0
N
ai z i
b0 a0
b1z 1 ... bm z m a1z 1 ... an z n
(9.1.2)
将系统函数进行因式分解,可采用根的形式表示多项式,即 i0
M
H (z)
Y (z)
➢ 说明系统正弦稳态特性。
➢ 研究系统的稳定性。从系统函数的极点分布可以了解系统的固有频率,进而了解系统冲激响应的模式,也就 是说可以知道系统的冲激响应是指数型、衰减振荡型、等幅振荡型、还是几者的组合,从而可以了解系统的
响应特性及系统是否稳定。
1. 连续系统的零极点
系统函数一般以多项式形式出现,分子多项式和分母多项式都可以分解成线性因子的乘积,即连续系统函数:
➢ 可预测系统的时域特性。确定系统函数H(s)、H(z)。 ➢ 可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算系统函数的留数、极点和增益; ➢ 可以用函数sos=zp2sos(z,p,k)完成将高阶系统分解为2阶系统的串联。
➢ 描述系统的频响特性。从系统的零、极点分布可以求得系统的频率响应特性,从而可以分析系统的正弦稳态 响应特性。 使用h=freqz(num,den,w)函数可求系统的频率响应。
2. 使用多项式的roots()函数分别求出多项式和的根,获得系统函数的极点、零点。
3. 用用zero(sys)和pole(sys)函数直接计算零极点,sys表示系统传递函数。用法如下:
z = zero(sys):返回 LTI模型 sys的零点z 的列向量。
[z,gain] = zero(sys):同时返回增益gain。

极点及系统稳定性

极点及系统稳定性

极点对系统性能影响一.控制系统与极点自动控制系统根据控制作用可分为:连续控制系统和采样控制系统,采样系统又叫离散控制系统。

通常把系统中的离散信号是脉冲序列形成的离散系统,称为采样控制系统。

连续控制系统即指控制量为连续的模拟量如时变系统。

系统的数学模型一般由系统传递函数表达。

传递函数为零初始条件下线性系统响应(即输出)量的拉普拉斯变换(或z 变换)与激励(即输入)量的拉普拉斯变换之比。

记作Φ(s )=Xo (s )/Xi (s ),其中Xo (s )、Xi (s )分别为输出量和输入量的拉普拉斯变换。

特征方程的根称为极点。

如试Φ﹙S ﹚= C [∏(S-Pi )/∏(S-Qi) ]中Q1 Q2 Q3 …… Qi ……即为系统的极点。

二.极点对系统的影响极点--确定了系统的运动模态;决定了系统的稳定性。

下面对连续系统与离散系统分别进行分析:⑴连续系统理论分析:连续系统的零极点分布有如下几种形式设系统函数为:将H(S)进行部分分式展开:1n a s -+++系统冲激响应H(S)的时域特性h(t)随时间衰减的信号分量完全由系统函数H(S)的极点位置决定。

每一个极点将决定h(t)的一项时间函数。

稳定性:由上述得知Y(S)= C [∏(S-Pi )/(S-Qi) ]可分解为Y(S)=C1/(S-τ1)+ C2/(S-τ2)+ C3/(S-τ3)+……+ Ci/(S-τi)+…… 则时间响应为……由于特征方程的根不止一个,这时,应把系统的运动看成是多个运动分量的合成。

只要有一个运动分量是发散的,则系统是不稳定的。

因此,特征方程所有根的实部都必须是负数,亦即所有的根都在复平面的左半平面。

通过复变函数幅角定理将S 由G 平面映射到GH 平面。

如果封闭曲线 F 内有Z 个F(s)的零点,有P 个F(s)的极点,则s 沿 F 顺时针转一圈时,在F(s)平面上,F(s)曲线绕原点顺时针转的圈数R 为z 和p 之差,即R =z -p 。

第七章 系统函数

第七章 系统函数
输出对输入序列的相移
• H ejω 即h(n)的DTFT • ejω 为周期函数,所以 H ejω 为周期函数,其周期为 2π 。
通过本征函数透视系统的频响特性
设输入xn ejn
为本征函数
xn hn yn
hn为稳定的因果系统
yn hn xn
h m ejωnm e j n h m ejω m
1 M1 ejθ1
V2 ej ω V1
ω
O
1
ω
式中:V2= 1 V1 RC
1 M
, = -θ 1
45
RC
90
低通网络,截止频率位于ω 1 处 RC
例研究右图所示二阶RC系统
的频响特性H

V2 jω V1 jω
,
注意,图中kv3是受控电压 v1t
R1 C1
v3t
C2 kv3 R2
v2 t nO Nhomakorabean
θ2
ω
ω
系统对不同频率的输入,产生不同的加权,这就是系 统的频率响应特性。
由系统函数得到频响特性
离散时间系统在单位圆上的z变换即为傅氏变换,即系 统的频率响应特性:
H ej H z z ejω H ejω ejω H ejω ~ ω :幅频特性
输出与输入序列的幅度之比
ω ~ ω :相频特性
limh(t) →∞
t→∞
2.离散系统:
Z平面: 单位圆内:p=-1/3,h(k)=
1 3
k
(k)
→0
单位圆上:p=1,h(k)=1k (k),有限值.
单位圆外:p=2,h(k)= 2 k (k) →∞
z平面
-1/3 0 1 2
极点位置与h(n)形状的关系

matlab表示

matlab表示

信号与系统分析一、典型信号的matlab 表示表示连续信号,需定义自变量的范围和取样间隔,如t=0:0.01:3 1. 实指数信号 y=k*exp(a*t)2. 正弦信号 k*sin(w*t+phi) k*cos(w*t+phi)3. 复指数信号 y=k*exp((a+i*b)*t)实部real(y) 虚部imag(y) 模abs(y) 相角angle(y) 共轭conj(y) 4. 抽样信号 Sat=sinc(t/pi)5. 矩形脉冲信号 y=rectpuls(t,width)周期方波信号 y=square(2*pi*f*t,duty) %产生频率为fHZ ,占空比为duty%的方波 6. 三角脉冲信号非周期三角波y=tripuls(t,width,skew) %斜度 skew ,最大幅度出现在t=(width/2)*skew 周期三角波 y=sawtooth(t,width)7. 单位阶跃信号 function y=uCT(t) y=(t>=0)阶跃信号符号函数 Heaviside() y=sym(‘Heaviside(t)’) %调用时必须用sym 定义 冲激信号符号函数 Dirac()二、Matlab 的符号运算 1. 定义符号变量syms 变量名 syms xsym(‘变量名’) x=sym(‘x ’) sym(‘表达式’) sym(‘x+1’)2. 化简符号运算结果 simple 或simplify3. 绘制符号表达式图形 ezplot(y,[a,b])三、连续信号的运算微分和积分运算(用符号表达式来表示) 1. 微分运算Diff(function,’variable ’,n) % variable 为求导变量,n 为求导阶数 例:syms a x y y=sin(a*x^2); dy=diff(y ,’x ’) 2. 积分运算int(function, ’variable ’,a,b) %a 为积分下限,b 为积分上限 3. 信号的反折 fliplr(x) 4. 卷积计算1) 符号运算计算卷积(求解积分的方法) 例:)(*)()(t u e t u et y tTt --=syms T t taoxt1=exp(-t); xt2=exp(-t/T);xt_tao=subs(xt1,t,tao)*subs(xt2,t,t-tao);yt=int(xt_tao,tao,0,t); yt=simplify(yt);2) 数值计算法求卷积 conv( )y = dt*conv(e,h)例:求e(t) = u(t)-u(t-1)和h(t) = u(t)-u(t-1)的卷积 t0 = -2; t1 = 4; dt = 0.01; t = t0:dt:t1; e = u(t)-u(t-1); h = u(t)-u(t-1);y = dt*conv(e,h); % Compute the convolution of x(t) and h(t) subplot(221)plot(t,e), grid on, title('Signal e(t)'), axis([t0,t1,-0.2,1.2]) subplot(222)plot(t,h), grid on, title('Signal h(t)'), axis([t0,t1,-0.2,1.2]) subplot(212)t = 2*t0:dt:2*t1; % the time range to the convolution of e and h.plot(t,y), grid on, title('The convolution of x(t) and h(t)'), axis([2*t0,2*t1,-0.1,1.2]), xlabel('Time t sec')四、连续LTI 系统的时域分析1. 系统响应的符号求解 dsolve(‘eq1,eq2,…’,’cond1,cond2,…’); %eqi 表示微分方程,condi 表示初始条件 例:eq=’D3y+2*D2y+Dy=0’;cond=’y(0)=1,Dy(0)=1,D2y(0)=2’; yzi=dsolve(eq,cond); %零输入响应 simplify(yzi);eq1=’D3y+4*D2y+8*Dy=3*Dx+8*x ’; eq2=’x=Heaviside(t)’;cond=’y(-0.01)=0,Dy(-0.01)= 0,D2y(-0.01)=0’; yzs=dsolve(eq1,eq2,cond);simplify(yzs.y); %零状态响应2. 零状态响应的数值求解1)y=lsim(sys,f,t)%sys 表示系统模型,由sys=tf(b,a)生成的系统函数对象 %f 输入信号向量,t 时间抽样点向量例:)()sin()(),()()()('''t u t t f t f t y t y t y π210665==++ ts=0;te=5;dt=0.01; sys=tf([6],[1,5,6]); t=ts:dt:te;f=10*sin(2*pi*t).*UT(t);y=lsim(sys,f,t);plot(t,y),grid on;xlabel(‘time ’),ylabel(‘y(t)’); title(‘零状态响应’); 2)y=conv(f,impul)3. 连续系统冲激响应 y=impulse(sys,t) %sys 表示系统模型4. 连续系统阶跃响应 y=step(sys,t)五、信号的频域分析 1.傅立叶变换 1)符号运算求法 fourier( )和ifourier( )例:)()(t u e t f t 2-=的傅立叶变换ft=sym(‘exp(-2*t)*Heaviside(t)’); fw=fourier(ft)ezplot(abs(fw)); %或者fw_conj=conj(fw);Gw=sqrt(fw*fw_conj); phase=atan(image(fw)/real(fw));%或者angle(fw) ezplot(phase)211Ω+=Ω)(j F 的傅立叶反变换syms tfw=sym(‘1/(1+w^2’); ft=ifourier(fw,t) 2)数值计算求法[][][]Nk k N en f k F k TN M n j TM TN k ≤≤∆=∆∆=-⨯-∆--⨯-⨯02111111,)()()()()()(πωω例:求)(t G 82的傅立叶变换 1)数值计算dt=0.01; t=-4:dt:4;ft=(t+4)/2.*uCT(t+4)-t.*uCT(t)+(t-4)/2.*uCT(t-4); N=2000; k=-N:N;W=pi*k/(N*dt);F=dt*ft*exp(-j*t'*W); F=abs(F); plot(W,F),grid on; axis([-pi pi -1 9]);title('amplitude spectrum'); 2)符号计算ft=sym('(t+4)/2*Heaviside(t+4)-t*Heaviside(t)+(t-4)/2*Heaviside(t-4)'); Fw=simplify(fourier(ft));ezplot(abs(Fw),[-pi pi]);grid on;2. 系统的频率特性1) [H,w] = freqs(b,a):连续系统频率响应的函数2) 波特图:采用对数坐标的幅频特性和相频特性曲线,可显示频响间的微小差异 bode(sys)例:求11+=s s H )(的频率特性w=0:0.01:8*pi; b=[1]; a=[1 1]; H=freqs(b,a,w); subplot(211); plot(w,abs(H)); subplot(212); plot(w,angle(H)); figure(2); sys=tf(b,a); bode(sys);3. 连续时间LTI 系统的频域分析 例:551+Ω=Ω--=j j H t u t u t x )(),()()(,求系统的响应。

哈工大威海信系统实验报告

哈工大威海信系统实验报告

《信号与系统》实验报告姓名:学号:同组人:无指导教师:成绩:实验一典型连续时间信号描述及运算实验报告要求:(1)仿照单边指数信号的示例程序,按要求完成三种典型连续信号,即:正弦信号、衰减正弦信号、钟型信号的波形绘制。

(要求:要附上程序代码,以下均如此,不再说明)(2)根据《信号与系统》教材第一章的习题1.1(1,3,5,8)函数形式绘制波形。

(3)完成三种奇异信号,即:符号函数、阶跃信号、单位冲激信号的波形绘制。

(4)完成实验一中信号的运算:三、6 实验内容中的(1)(2)(3)(4)。

(5)求解信号的直流/交流分量,按第四部分的要求完成。

正文:(1)<1>正弦信号:代码:>> t=-250:1:250;>> f1=150*sin(2*pi*t/100);>> f2=150*sin(2*pi*t/200);>> f3=150*sin(2*pi*t/200+pi/5);>> plot(t,f1,'-',t,f2,'--',t,f3,'-.')<2>衰减正弦信号<3>代码:>> t=-250:1:250;>> f1=400*exp(-1.*t.*t./10000);>> f1=400*exp(-1.*t.*t./22500);>> f1=400*exp(-1.*t.*t./62500);>> plot(t,f1,'-',t,f2,'--',t,f3,'-.') (2)习题1,3,5,8<1>代码:t=0:1:10;f=t;plot(t,f)<3>代码:t=1:1:10;f=t;plot(t,f)<5>代码:t=0:1:10;f=2-exp(-1.*t.);plot(t,f)<8>代码:t=1:0.1:2;f=exp(-1.*t.)*cos(10*pi*t);plot(t,f)(3)三种奇异函数<1>符号函数代码: t=-5:0.05:5;f=sign(t);plot(t,f)<2>阶跃信号代码:>> t=-5:0.1:5;>> f=u(t);>> plot(t,f)<3>单位冲激信号代码:function chongji(t1,t2,t0)dt=0.01;t=t1:dt:t2;n=length(t);x=zeros(1,n);x(1,(-t0-t1)/dt+1)=1/dt;stairs(t,x);axis([t1,t2,0,1.2/dt]) title('单位冲激信号δ(t) ')(4)实验三1234<1>syms tf1=sym('(-t+4)*(u(t)-u(t-4))'); subplot(1,2,1);ezplot(f1);y1=subs(f1,t,-t);f3=f1+y1;subplot(1,2,2);ezplot(f3);function f=u(t) f=(t>0);<2>4、function f=u(t)f=(t>0)syms tf1=sym('(-t+4)*(u(t)-u(t-4))'); subplot(1,3,1);ezplot(f1);f2=sym('sin(2*pi*t)');subplot(1,3,2);ezplot(f2);f6=f1.*f2;subplot(1,3,3);ezplot(f6);5、function f=u(t)f=(t>0)syms tf1=sym('(-t+4)*(u(t)-u(t-4))'); f2=sym('sin(2*pi*t)');subplot(1,3,1);ezplot(f2);f6=f1.*f2;y6=subs(f6,t,t-2);subplot(1,3,2);ezplot(y6);f7=y6+f2;subplot(1,3,3);ezplot(f7);四、t=0:0.1:500;f=100.*abs(sin(2.*pi.*t./50)); plot(t,f,t,fD,t,fA)调用子程序:function fD=fDC(f)fD=mean(f);function fA=fAC(f,fD)fA=f-fD;(5)求解信号的交直流分量代码:function fD=fDC(f)fD=mean(f);function fA=fAC(f,fD)fA=f-fD;t=0:0.1:500;f(t)=100|sin(2*PI*t/50)|;plot(t,fD,t,fA)实验二线性系统时域分析实验报告要求:(1)求解下面两个信号的卷积积分。

实验Z变换、零极点分析

实验Z变换、零极点分析

实验Z变换、零极点分析1. 学会运⽤MATLAB 求离散时间信号的z 变换和z 反变换;⼀、实验原理及实例分析(⼀)离散时间信号的Z 变换1.利⽤MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理⼯具箱提供了⼀个对F(Z)进⾏部分分式展开的函数residuez(),其调⽤形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分⼦多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】利⽤MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。

解:利⽤MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学⼯具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调⽤形式为)()(F iztrans f f ztrans F ==上⾯两式中,右端的f 和F 分别为时域表⽰式和z 域表⽰式的符号表⽰,可应⽤函数sym 来实现,其调⽤格式为()A sym S =的Z 反变换。

解(1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运⾏结果为:z/a/(z/a-1)可以⽤simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运⾏结果为f =a^n*n(⼆)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之⽐,即)()()(z X z Y z H = (3-1)如果系统函数)(z H 的有理函数表⽰式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2)那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表⽰)(z H 的分⼦与分母多项式的系数向量。

信号与系统实验之连续线性时不变系统的分析

信号与系统实验之连续线性时不变系统的分析

信号与系统实验报告连续线性时不变系统的分析专业:电子信息工程(实验班)姓名:曾雄学号:14122222203班级:电实12-1BF目录一、实验原理与目的 (3)二、实验过程及结果测试 (3)三、思考题 (10)四、实验总结 (10)五、参考文献 (11)一、实验原理与目的深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中的重要作用及意义。

掌握利用MATLAB 分析连续系统的时域响应、频响特性和零极点的基本方法。

二、实验过程及结果测试1.描述某线性时不变系统的微分方程为: ''()3'()2()'()y t y t y t f t f t++=+ 且f(t)=t 2,y(0-)=1,y ’(0-)=1;试求系统的单位冲激响应、单位阶跃响应、全响应、零状态响应、零输入响应、自由响应和强迫响应。

编写相应MATLAB 程序,画出各波形图。

(1)单位冲激响应: 程序如下:%求单位冲激响应a=[1,3,2]; b=[1,2]; sys=tf(b,a); t=0:0.01:10; h=impulse(sys,t);%用画图函数plot( )画单位冲激响应的波形plot(h); %单位冲激响应曲线 xlabel('t'); ylabel('h');title('单位冲激响应h(t)') 程序运行所得波形如图一:200400600800100012000.10.20.30.40.50.60.70.80.91th单位冲激响应h(t )图一 单位冲激响应的波形(2)单位阶跃响应: 程序如下:%求单位阶跃响应a=[1,3,2]; b=[1,2]; sys=tf(b,a); t=0:0.01:10; G=step(sys,t);%用画图函数plot( )画单位阶跃响应的波形plot(G); %单位阶跃响应曲线 xlabel('t'); ylabel('g');title('单位阶跃响应g(t)') 程序运行所得波形如图二:2004006008001000120000.10.20.30.40.50.60.70.80.91tg单位阶跃响应g(t )图二 单位阶跃响应的波形 (3)零状态响应: 程序如下:%求零状态响应yzs=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0') %用符号画图函数ezplot( )画各种响应的波形 t=0:0.01:3;ezplot(yzs,t); %零状态响应曲线 axis([0,3,-1 5]);title('零状态响应曲线yzs'); ylabel('yzs');程序运行所得波形如图三:00.511.522.53-112345t零状态响应曲线yzsy z s图三 零状态响应的波形(4)零输入响应: 程序如下:%求零输入响应yzi=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1') %用符号画图函数ezplot( )画零输入响应的波形 t=0:0.01:3;ezplot(yzi,t);%零输入响应曲线 axis([0,3,-1,2]); title('零输入响应yzi'); ylabel('yzi');程序运行所得波形如图四:图四 零输入响应的波形(5)全响应:程序如下:%求全响应y=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=1,Dy(0)=1') %用符号画图函数ezplot( )画全响应响应的波形00.511.522.53-1-0.50.511.52t零输入响应yziy z it=0:0.01:3;ezplot(y,t); %全响应曲线 axis([0,3,-1,5]); title('全响应y'); ylabel('y');程序运行所得波形如图五:00.511.522.53-112345t全响应yy图五 全响应的波形(6)自由响应:程序如下:%自由响应y=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=1,Dy(0)=1'); %全响应 yht=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1'); % 求齐次通解yt=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0'); % 求非齐次通解 yp=yt-yht;yh=y-yp; % 求齐次解,即自由响应 t=0:0.01:3; ezplot(yh,t); title('自由响应yh'); ylabel('yh');程序运行所得波形如图六:0.511.522.530.511.52t自由响应yhy h图六 自由响应的波形(7)强迫响应: 程序如下:%强迫响应yht=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1'); % 求齐次通解yt=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0'); % 求非齐次通解 yp=yt-yht; % 求特解,即强迫响应 t=0:0.01:3; ezplot(yp,t); title('强迫响应yp'); ylabel('yp');程序运行所得波形如图七:0.511.522.53-112345t强迫响应ypy p图七 强迫响应的波形2.给定一个连续线性时不变系统,描述其输入输出之间关系的微分方程为:编写MATLAB 程序,绘制系统的幅频响应、相频响应、频率响应的实部和频率响应的虚部的波形,确定滤波器的类型。

连续系统零极点分析

连续系统零极点分析

∞连续系统零极点分析理论基础根据系统函数 H (s ) 的零极点分布来分析连续系统的稳定性是零极点分析的重要应用之一。

稳定性是系统固有的性质,与激励信号无关,由于系统函数 H (s ) 包含了系统的所有固有特性,显然它也能反映出系统是否稳定。

对任意有界信号 f (t ),若系统产生的零状态响应 y (t ) 也是有界的,则称该系统为稳定系统,否则,则称为不稳定系统。

上述稳定性的定义可以等效为下列条件:● 时域条件:连续系统稳定充要条件为⎰-∞ h (t ) dt < ∞ ,即冲激响应绝对可积;● 复频域条件:连续系统稳定的充要条件为系统函数 H (s ) 的所有极点位于S 平面的左半平面。

系统稳定的时域条件和频域条件是等价的。

因此,只要考察系统函数 H (s ) 的极点分布,就可判断系统的稳定性。

对于三阶以下的低阶系统,可以利用求根公式方便地求出极点位置,从而判断系统稳定性。

第一小题 A=[3 5 4 6];B=[1 1 2];p=roots(A);q=roots(B);p=p';q=q';x=max(abs([p q 1]));x=x+0.1;y=x;clf;hold on ;axis([-x x -y y]) ;axis('square');figure(1);plot([-x x],[0 0]) ;title("零极点分布图");plot([0 0],[-y y]) ;plot(real(p),imag(p),'x') ;plot(real(q),imag(q),'o') ;hold off ;f1=0;f2=2;k=0.01;p=p';q=q';f=f1:k:f2; %定义绘制系统频率响应曲线的频率范围w=f*(2*pi);y=1i*w;n=length(p);m=length(q);if n==0 %如果系统无极点yq=ones(m,1)*y;vq=yq-q*ones(1,length(w));bj=abs(vq);cosaij=angle(vq)./pi.*180;61;ai=1;thetai=0;elseif m==0 %如果系统无零点yp=ones(n,1)*y;vp=yp-p*ones(1,length(w));ai=abs(vp);thetai=angle(vp)./pi.*180;bj=1;cosaij=0;elseyp=ones(n,1)*y;yq=ones(m,1)*y;vp=yp-p*ones(1,length(w));vq=yq-q*ones(1,length(w));ai=abs(vp);thetai=angle(vp)./pi.*180;bj=abs(vq);cosaij=angle(vq)./pi.*180;endfigure(2);Hw=prod(bj,1)./prod(ai,1);plot(f,Hw);title('连续系统幅频响应曲线')xlabel('频率 w(单位:赫兹) ')ylabel('F(jw)')figure(3);Angw=sum(cosaij,1)-sum(thetai,1);plot(f,Angw);title('连续系统相频响应曲线')xlabel('频率 w(单位:赫兹) ')ylabel('Angle(jw)')第四小题A=[1 2 2 1];B=[1];p=roots(A);q=roots(B);p=p';q=q';x=max(abs([p q 1])); x=x+0.1;y=x;clf;hold on;axis([-x x -y y]) ; axis('square');figure(1);plot([-x x],[0 0]) ;title("零极点分布图"); plot([0 0],[-y y]) ;plot(real(p),imag(p),'x') ;plot(real(q),imag(q),'o') ;hold off;f1=0;f2=2;k=0.01;p=p';q=q';f=f1:k:f2; %定义绘制系统频率响应曲线的频率范围w=f*(2*pi);y=1i*w;n=length(p);m=length(q);if n==0 %如果系统无极点yq=ones(m,1)*y;vq=yq-q*ones(1,length(w));bj=abs(vq);cosaij=angle(vq)./pi.*180;61;ai=1;thetai=0;elseif m==0 %如果系统无零点yp=ones(n,1)*y;vp=yp-p*ones(1,length(w));ai=abs(vp);thetai=angle(vp)./pi.*180;bj=1;cosaij=0;elseyp=ones(n,1)*y;yq=ones(m,1)*y;vp=yp-p*ones(1,length(w));vq=yq-q*ones(1,length(w));ai=abs(vp);thetai=angle(vp)./pi.*180;bj=abs(vq);cosaij=angle(vq)./pi.*180;endfigure(2);Hw=prod(bj,1)./prod(ai,1);plot(f,Hw);title('连续系统幅频响应曲线')xlabel('频率 w(单位:赫兹) ') ylabel('F(jw)')figure(3);Angw=sum(cosaij,1)-sum(thetai,1); plot(f,Angw);title('连续系统相频响应曲线') xlabel('频率 w(单位:赫兹) ') ylabel('Angle(jw)')。

信号与系统的实验报告(2)

信号与系统的实验报告(2)

信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。

L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。

L=laplace(F,t)用t 替换结果中的变量s 。

F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。

F=ilaplace(L,x)用x 替换结果中的变量t 。

2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。

对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。

47系统函数零、极点分布决定时域特性

47系统函数零、极点分布决定时域特性

1.可以预言系统的时域特性; 2.便于划分系统的各个分量 (自由/强迫,瞬态/稳态); 3.可以用来说明系统的正弦稳态特性。
X

二. H(s)零、极点与h(t)波形特征的对应
1. 系统零极点的概念
对系统函数分子分母多项式进行因式分解得
3 页
K ( s z1 )( s z2 ) ( s zm ) H ( s) ( s p1 )( s p2 ) ( s pn ) K
1 H ( s) , s
H (s)
单 极 点
4 页
p1 0 在原点
h(t ) L1[ H (s)] u(t )
a0 a0
在左实轴上, h(t ) e 在右实轴上,h(t ) e
1 , sa
p1 a
at at
u (t ) ,指数衰减 u (t ), a 0
•自由响应的极点只由系统本身的特性所决定,与激励 函数的形式无关,然而系数 Ai , Ak与H s , E s 都有关。
X
暂态响应和稳态响应
第 12 页
瞬态响应是指激励信号接入以后,完全响应中瞬时出现 的有关成分,随着t增大,将消失。 稳态响应=完全响应-瞬态响应 左半平面的极点产生的函数项和瞬态响应对应。
X

3.系统函数的极点分布与冲激响应
8 页
有实际物理意义的物理系统都是因果系统,即随 t , ht 0 这表明H (s )的极点位于左半平面,由此可知,收 敛域包括虚轴, F s 和F (j )均存在,两者可通用,只需 将 s j 即可。 极点pi决定系统自由响应(固有响应)的变化的规律。 取决于系统的结构与元件的参数,且量纲为1/s,故pi称 为系统的自然频率或固有频率。

信号与系统实验五 连续线性时不变系统分析

信号与系统实验五 连续线性时不变系统分析

信号与系统实验陈述课程名称:信号与系统实验实验项目名称:连续线性时不变系统分析专业班级:姓名:学号:完成时间:年月日一、实验目的1.掌握连续LTI系统的单位冲激响应、单位阶跃响应和任意激励对应响应的求解方法。

2.掌握连续LTI系统的频域分析方法。

3.掌握连续LTI系统的复频域分析方法。

4.掌握连续LTI系统的时域、频域和复频域分析方法的相互转换。

二、实验原理1.连续LTI系统的时域分析(1)连续线性时不变系统的描述设连续线性时不变系统的激励为,响应为,则描述系统的微分方程可暗示为为了在Matlab编程中调用有关函数,我们可以用向量和来暗示该系统,即这里要注意,向量和的元素排列是按微分方程的微分阶次降幂排列,缺项要用0补齐。

(2) 单位冲激响应单位冲激响应是指连续LTI系统在单位冲激信号激励下的零状态响应,因此满足线性常系数微分方程(5.1)及零初始状态,即,依照定义,它也可暗示为对于连续LTI系统,若其输入信号为,冲激响应为,则其零状态响应为可见,能够刻画和表征系统的固有特性,与何种激励无关。

一旦知道了系统的冲激响应,就可求得系统对任何输入信号所发生的零状态响应。

Matlab提供了专门用于求连续系统冲激响应的函数impulse(),该函数还能绘制其时域波形。

(3)单位阶跃响应单位阶跃响应是指连续LTI系统在单位阶跃信号激励下的零状态响应,它可以暗示为Matlab提供了专门用于求连续系统单位阶跃响应的函数step( ),该函数还能绘制其时域波形。

(4)任意激励下的零状态响应已经知道,连续LTI系统可用常系数线性微分方程(5.1)式来描述,Matlab提供的函数lsim( )能对上述微分方程描述的连续LTI系统的响应进行仿真,该函数不但能绘制指定时间范围内的系统响应波形图,而且还能求出系统响应的数值解。

其调用格式有lsim(b,a,x,t)y=lsim(b,a,x,t) :只求出系统的零状态响应的数值解,而不绘制响应曲线需要特别强调的是,Matlab总是把由分子和分母多项式暗示任何系统都当作是因果系统。

系统函数的零极点分布决定时域特性

系统函数的零极点分布决定时域特性

目录1.引言 (2)2.虚拟仪器开发软件Labview入门 (3)2.1 Labview简介 (3)2.2 利用Labview编程完成习题设计 (3)3.利用LabVIEW实现系统函数的零极点分布决定时域特性的设计 (20)3.1系统函数的零极点分布决定时域特性的基本原理 (20)3.2系统函数的零极点分布决定时域特性的编程设计及实现 (22)3.3运行结果及分析 (23)4. 总结 (25)5.参考文献 (25)1.引言冲激响应h(t)与系统函数H(s) 从时域和变换域两方面表征了同一系统的本性。

在s 域分析中,借助系统函数在s平面零点与极点分布的研究,可以简明、直观地给出系统响应的许多规律。

系统的时域、频域特性集中地以其系统函数的零、极点分布表现出来。

主要优点:可以预言系统的时域特性;便于划分系统的各个分量(自由/强迫,瞬态/稳态);可以用来说明系统的正弦稳态特性。

2.虚拟仪器开发软件Labview入门2.1 Labview简介LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C 和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。

LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本行创建应用程序的图形化编程语言。

传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,LabVIEW 则采用数据流编程方式,程序框图中节点之间的数据流向决定VI及函数的执行顺序。

VI指虚拟仪器,是LabVIEW]的程序模块。

LabVIEW 提供很多外观与传统仪器(如示波器、万用表)类似的控件,可用来方便地创建用户界面。

用户界面在LabVIEW中被称为前面板。

使用图标和连线,可以通过编程对前面板上的对象进行控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(b)
(c)
9
计算示例 2
的零极点分布图、 图21-3 例2(a)的零极点分布图、幅频特性和相频特性 的零极点分布图
10
计算示例 2
的零极点分布图、 图21-4 例2(b)的零极点分布图、幅频特性和相频特性 的零极点分布图
11
计算示例 2
图21-5 例2(c)的零极点分布图、幅频特性和相频特性 的零极点分布图、 的零极点分布图
20
2
实验原理与说明
1、系统函数及其曲面图
3
实验原理与说明
4
实验原理与说明
2、系统零极点分布与冲激响应的关系 极点决定了冲激响应的形式,而各系数则由零、 极点决定了冲激响应的形式,而各系数则由零、 极点共同决定。 极点共同决定。 系统的稳定性由极点在s平面上的分布决定, 系统的稳定性由极点在s平面上的分布决定, 而零点不影响稳定性。 而零点不影响稳定性。 极点分布在s左半平面,系统是稳定的。 极点分布在s左半平面,系统是稳定的。极点 在虚轴上有单极点,系统是临界稳定。 在虚轴上有单极点,系统是临界稳定。极点在 s右半平面或在虚轴上有重极点,系统不稳定。 右半平面或在虚轴上有重极点,系统不稳定。
18
实验步骤与方法
3、仿照例2的方法,完成实验内容3的编程。上 仿照例2的方法,完成实验内容3的编程。 机调试程序, 机调试程序,画出零极点图的幅频和相频特性 根据题目要求说明滤波器的类型。 图,根据题目要求说明滤波器的类型。 4、对实验内容4,要求将三个系统的幅频特性 对实验内容4 画在同一幅图中, 画在同一幅图中,三个相频特性画在同一幅图 以便进行比较, 中,以便进行比较,进一步理解最小相位系统 的含义。 的含义。
6
计算示例 1
已知系统函数为
试用Matlab画出系统的零极点分布图、 试用Matlab画出系统的零极点分布图、冲激响应 画出系统的零极点分布图 波形、阶跃响应波形。 波形、阶跃响应波形。
7
计算示例 1
图21-2 零极点分布图、冲激响应和阶跃响应 21- 零极点分布图、
8
Байду номын сангаас算示例 2
已知下列系统函数,画出它们的零极点分布图、幅频 已知下列系统函数,画出它们的零极点分布图、 和相频特性。并说明滤波器的类型。 和相频特性。并说明滤波器的类型。 (a)
16
实验步骤与方法
1、在MATLAB的命令窗口输入: MATLAB的命令窗口输入 的命令窗口输入: >>ZPQMT 屏幕显示“ 屏幕显示“拉普拉斯变换和系统函数的曲面图 演示”图形用户界面。 演示”图形用户界面。 (1) 观察基本信号的曲面图,以及曲面图的剖 观察基本信号的曲面图, 面图。理解拉普拉斯变换与傅里叶变换的关系。 面图。理解拉普拉斯变换与傅里叶变换的关系。 (2) 在“零极点与曲面图的关系”中,可以输 零极点与曲面图的关系” 入任意系统函数的零点和极点, 入任意系统函数的零点和极点,适当调整三个 坐标值,就可显示出它的曲面图。 坐标值,就可显示出它的曲面图。
12
实验内容 1
用“拉普拉斯变换和系统函数的曲面图演示” 拉普拉斯变换和系统函数的曲面图演示” 程序,观察零极点三维图, 程序,观察零极点三维图,加深对系统零极点 的理解。 的理解。
(a)
(b)
(c)
13
实验内容 2
用“连续系统零极点和冲激响应的关系”程序, 连续系统零极点和冲激响应的关系”程序, 观察零极点对冲激响应的影响, 观察零极点对冲激响应的影响,加深对系统稳 定性的理解。 定性的理解。 画出下列系统的零极点分布图和冲激响应, 画出下列系统的零极点分布图和冲激响应,确 定系统的稳定性。 定系统的稳定性。 a、b、c、d、e、f 任选3题 任选3
14
实验内容 3
图21-6所示为的零极点分布图,试判别它们是 21- 所示为的零极点分布图, 低通、高通、带通、带阻中哪一种网络? 低通、高通、带通、带阻中哪一种网络?
15
实验内容 4
考虑如下所示的稳定系统的系统函数 ,试判断 它们是否是最小相位系统。 它们是否是最小相位系统。
(a)
(b)
(c)
5
实验原理与说明
3、系统零极点分布与频率响应的关系
几何矢量法是通过系统零极点分布来分析连续系统频 率响应的一种直观的方法。 率响应的一种直观的方法。但是对于零极点较多的系 用这种方法就比较麻烦。 统,用这种方法就比较麻烦。 Matlab提供了专用绘制频率响应的函数 Matlab提供了专用绘制频率响应的函数。 提供了专用绘制频率响应的函数。 H=freqs(b,a,w) b为系统函数的有理多项式中分子多项式的系数向量, 为系统函数的有理多项式中分子多项式的系数向量, a为分母多项式的系数向量, 为分母多项式的系数向量, w为需计算的频率抽样点向量,单位为rad/s。 为需计算的频率抽样点向量,单位为rad/s。
19
实验报告要求
实验内容1 实验内容1、2只要求观察图形,图形不写在 只要求观察图形, 实验报告内。 实验报告内。 根据实验内容3 编写出的程序。 根据实验内容3、4编写出的程序。以及绘出 的各种波形图。 的各种波形图。根据题目要求对各种频率响 应图加以比较说明 上机调试程序的方法。 上机调试程序的方法。 心得体会及其他。 心得体会及其他。
17
实验步骤与方法
2、在MATLAB的命令窗口输入: MATLAB的命令窗口输入: 的命令窗口输入 >>CSZPH 屏幕显示“连续系统零极点与冲激响应的关系” 屏幕显示“连续系统零极点与冲激响应的关系”图形 用户界面。 用户界面。 (1) 观察极点分布的三种情况:左半平面、虚轴、右半 观察极点分布的三种情况:左半平面、虚轴、 平面,以及四种极点的组合:单极点、重极点、实极 平面,以及四种极点的组合:单极点、重极点、 复极点。理解零极点分布与冲激响应的关系。 点、复极点。理解零极点分布与冲激响应的关系。加 深系统稳定性的认识。 深系统稳定性的认识。 (2) 在“零极点与冲激响应的关系”中,可以输入任意 零极点与冲激响应的关系” 系统函数的零点和极点或分子、分母, 系统函数的零点和极点或分子、分母,适当调整时间 坐标值,就可显示出它的零极点图和相应的冲激响应。 坐标值,就可显示出它的零极点图和相应的冲激响应。
实验21 连续系统的零极点分析
1
实验目的
学习用Matlab绘制连续系统零极点分布图、 学习用Matlab绘制连续系统零极点分布图、 绘制连续系统零极点分布图 冲激响应波形、频率响应曲线图。 冲激响应波形、频率响应曲线图。 通过运行系统零极点曲面图的演示程序,加 通过运行系统零极点曲面图的演示程序, 深对连续系统零极点的认识。 深对连续系统零极点的认识。进一步理解拉 普拉斯变换与傅里叶变换的关系。 普拉斯变换与傅里叶变换的关系。 通过运行系统零极点分布与冲激响应的关系 的演示程序, 的演示程序,加深系统零极点分布对时域响 应的影响。 应的影响。从而建立系统稳定性的概念 研究系统零极点分布与频率响应的关系, 研究系统零极点分布与频率响应的关系,学 习用Matlab研究频率响应的方法 研究频率响应的方法。 习用Matlab研究频率响应的方法。
相关文档
最新文档