光伏逆变器的原理和例子

合集下载

光伏逆变器工作原理

光伏逆变器工作原理

光伏逆变器工作原理
光伏逆变器是一种将太阳能板输出的直流电(DC)转换为交流电(AC)的设备。

其内部的工作原理一般分为以下几个步骤:
首先,光伏逆变器通过接收来自太阳能板的电能,将其转换为一个稳定的直流电源。

这个直流电源的输出电压一般会相应地随着光照强度的变化而发生变化,并经过一个电源逆变的处理,确保输出的直流电源精准而稳定。

其次,再将这个直流电源的电能通过交直流转换器实现转换成为变化频率的交流电能。

这个频率的原则是根据电网的标准的电压和频率来确定的。

然后,之后通过内部的控制器,对这个频率进行进一步的调整,以实现对设备的精确控制。

其中,这个控制器可以根据需要调整不同的参数,以确保逆变器的运行更加稳定,并且将能够实现精细的保护功能。

最后,通过输出交流电源,将这个电能输出到家庭,商业和工业设备中去。

这个过程一般包含两个阶段:首先是将电能输出到电网上;其次是进行一些必要的调整,以确保电网中的其他电器设备更加稳定和安全。

总之,光伏逆变器的工作原理就在于将太阳能板输出的直流电转换为交流电,以实现通过输出这种交流电,来推动家庭,商业和工业设备的正常工作。

而其内部
的工作原理又主要是根据电子元件的运作所设计的,其具有优良的稳定性,能够有效地实现对电网的稳定和保护。

光伏逆变器功率调节原理

光伏逆变器功率调节原理

光伏逆变器功率调节原理
光伏逆变器功率调节是为了保证光伏发电系统的输出功率始终与负载需求匹配。

光伏逆变器的功率调节原理一般有以下几种:
1. MPPT原理(最大功率点跟踪):光伏电池阵列的输出功率
与太阳辐照度和温度有关,而光伏逆变器的任务是实时追踪当前的最大功率点,使得光伏电池阵列能够以最佳工作状态输出功率。

光伏逆变器通过不断调整电压或电流的输出来实现最大功率点的追踪。

2. 电压控制:光伏逆变器中一般会设置一定的输出电压范围,当负载需要不同功率时,逆变器会根据负载要求调整输出电压来实现功率调节。

3. 频率控制:有些光伏逆变器可以通过调整输出电压的频率来实现功率调节。

通过改变输出电压的频率,可以调整逆变器输出的功率。

4. 即时响应技术:光伏逆变器需要具备快速的响应能力,能迅速根据负载要求调整输出功率。

一些先进的逆变器会采用即时响应技术,通过实时检测负载需求,迅速调整输出电压或频率,以确保稳定的输出功率。

以上是一些常见的光伏逆变器功率调节原理,不同的逆变器厂家和型号可能会采用不同的调节策略,但核心目标都是确保光伏发电系统的输出功率始终与负载需求匹配。

太阳能光伏逆变器的工作原理和作用介绍

太阳能光伏逆变器的工作原理和作用介绍

光伏逆变器又称电源调整器,可以将光伏太阳能板产生的可变直流电压转换为市电频率交流电的逆变器,可以反馈回商用输电系统,或是供离网的电网使用。

一、光伏逆变器工作原理逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关,使直流输入变成交流输出。

当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。

一般需要采用高频脉宽调制,使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列。

然后让脉冲波通过简单的滤波器形成正弦波。

二、光伏逆变器的作用光伏逆变器不只具有直交流变换功用,还具有最大限制地发扬太阳电池功能的功用和系统毛病维护功用。

归结起来有主动运转和停机功用、最大功率跟踪节制功用、防独自运转功用、主动电压调整功用、直流检测功用、直流接地检测功用。

1、主动运转和停机功能早晨日出后,太阳辐射强度逐步加强,太阳能电池的输出也随之增大,当达到逆变器任务所需的输出功率后,逆变器即主动开始运转,进入运转后,逆变器便每时每刻看管太阳能电池组件的输出,只需太阳能电池组件的输出功率大于逆变器任务所需的输出功率,逆变器就继续运转;直到日落停机,即便阴雨天逆变器也能运转。

当太阳能电池组件输出变小,逆变器输出接近0时,逆变器便构成待机状态。

2、最大功率追踪MPPT功能当日照强度和环境温度变化时,光伏组件输入功率呈现非线性变化,光伏组件既不是恒压源,也不是恒流源,它的功率随着输出电压改变而改变,和负载没有关系。

它的输出电流随着电压升高一开始是一条水平线,到达一定功率时,随着电压升高而降低,当到达组件开路电压时,电流下降到零。

3、孤岛效应的检测及控制功能在正常发电时,光伏并网发电系统连接在电网上,向电网输送有效功率,但是,当电网失电时,光伏并网发电系统可能还在持续工作,并和本地负载处于独立运行状态,这种现象被称为孤岛效应。

逆变器出现孤岛效应时,会对人身安全,电网运行,逆变器本身造成极大的安全隐患,因此逆变器入网标准规定,光伏并网逆变器必须有孤岛效应的检测及控制功能。

光伏逆变器的原理

光伏逆变器的原理

光伏逆变器的原理
首先,光伏逆变器通过电路驱动电池板。

当太阳照射在光伏电池板上时,光子将会与电池板上的半导体材料相互作用,产生电子-空穴对。

半导体材料内部的电场将使这些电子和空穴分离。

这将在电池板上形成一个正极和一个负极,从而产生一个直流电压。

逆变器将驱动电路连接到这些正负极,以便有效地收集和输出电流。

其次,光伏逆变器通过调制技术将直流电能转换为交流电能。

由于我们的电网系统一般使用交流电能,因此需要将直流电能转换为交流电能以便实际使用。

逆变器使用一种叫做PWM(脉宽调制)的技术来实现这个过程。

PWM技术通过在一个周期内改变信号的脉冲宽度来调制输出信号的频率和幅度。

每个脉冲的宽度和周期决定了输出交流电的频率和幅度,从而使逆变器能够产生符合电网要求的交流电。

最后,光伏逆变器将调制后的交流电能输出到电网。

逆变器首先将调制后的交流电通过滤波电路进行滤波,去除其中的谐波和噪声。

然后通过变压器将电压升高或降低到所需的电压水平。

最后,逆变器使用同步整流技术将输出交流电能与电网电压同步,将交流电能有效地注入到电网中。

需要注意的是,光伏逆变器还需要具备一些保护功能,以确保设备的安全和稳定。

例如,逆变器需要具备过压保护、过流保护、短路保护等功能,以防止因异常情况导致设备损坏或安全事故。

总的来说,光伏逆变器是将光伏电池板产生的直流电能转换为交流电能的关键设备。

通过驱动、调制和输出这三个步骤,逆变器能够将太阳能转化为可供电网使用的电能。

在实际应用中,逆变器还需要具备一些保护功能,以确保设备的安全和稳定运行。

太阳能光伏逆变器工作原理

太阳能光伏逆变器工作原理

太阳能光伏逆变器工作原理太阳能光伏逆变器是将太阳能光伏发电系统产生的直流电转换为交流电的关键设备。

它通过波形质量控制和频率变换,实现太阳能发电系统向电网输出电能,从而满足家庭和工业用电需求。

本文将详细介绍太阳能光伏逆变器的工作原理及其技术特点。

一、太阳能光伏逆变器的工作原理1. 光伏效应太阳能光伏逆变器的工作原理基于光伏效应。

光伏效应是指在半导体材料中,当太阳光照射到半导体表面时,光子激发了半导体中的电子,使其跃迁到导带形成电子-空穴对。

由于半导体结构的特殊性质,电子-空穴对会在材料内部产生电流。

2. 太阳能光伏电池组件太阳能光伏电池组件是太阳能光伏逆变器的输入端,将光伏效应产生的直流电源输入到逆变器中。

太阳能光伏电池组件由多个太阳能光伏电池单元串联或并联而成,能够将太阳能转换为直流电能。

3. 推进器/变换器光伏电池组件产生的直流电必须经过推进器或变换器进行电压调整和电流整流。

推进器/变换器能够根据电网的要求调整直流电的电压和电流,保证输出的电能符合电网标准。

4. 逆变器逆变器是太阳能光伏逆变器的关键部件,主要负责将直流电转换为交流电。

逆变器具备波形质量控制和频率转换的能力,能够将直流电转换为符合电网要求的交流电。

5. 电网连接逆变器将转换后的交流电能够直接连接到电网中,供家庭和工业用电。

同时,逆变器还能根据电网的变化实时调整电流和电压的波形,确保输出电能的稳定性和安全性。

二、太阳能光伏逆变器的技术特点1. 系统效率太阳能光伏逆变器的主要目标是提高太阳能发电系统的效率。

通过优化功率转换过程,减少能量损失,提高系统的总体效率。

一般来说,高效率的太阳能光伏逆变器能够提高整个系统的能量输出。

2. MPPT技术最大功率点跟踪(MPPT)是太阳能光伏逆变器的关键技术之一。

MPPT技术能够根据太阳能的辐射强度和温度变化,实时调整太阳能电池的工作电压和电流,以确保将光伏组件的输出功率最大化。

3. 波形控制太阳能光伏逆变器的另一项重要技术是波形控制。

光伏逆变器工作原理

光伏逆变器工作原理

光伏逆变器工作原理
光伏逆变器作为光伏发电系统的关键设备,主要用于将光伏电池组发出的直流电转换成交流电,以满足电网输送或者供给给住户使用。

其工作原理主要分为以下几个步骤:
1. 光伏电池的直流电输入:光伏逆变器首先通过直流输入端口接收来自光伏电池阵列的直流电能。

2. MPPT(最大功率点跟踪):光伏逆变器内置MPPT控制器,通过监测光伏电池组的输出电压和电流,实时跟踪最大功率点,并调节输入电压和电流以确保光伏电池组以最佳工作状态工作。

3. 直流电-交流电变换:光伏逆变器将直流电信号转换为交流
电信号。

这一过程主要通过使用高频PWM(脉宽调制)技术
来实现。

通过逆变器内部的电子开关,将直流电能转换为交流电信号,并通过输出端口传输到电网或负载。

4. 输出电网连接和工作模式选择:光伏逆变器可以选择不同的工作模式,包括并网模式和离网模式。

在并网模式下,逆变器将交流电能发送到电网中,以满足电网供电需求,并与电网保持同步。

在离网模式下,逆变器可以将交流电能供给负载,同时也可以将多余的电能存储或馈回电网。

5. 目标电压输出控制:光伏逆变器还可以根据需求控制输出电压,以适应不同负载的要求。

通过内部的电压控制回路,逆变器可以稳定输出电压,并提供相应的保护机制来防止电压过高或过低。

总体而言,光伏逆变器通过将光伏电池组的直流电能转换成交流电能,实现将太阳能转化为可供给电网或负载使用的电能。

其工作原理涉及到电子开关、控制器和保护机制等关键部件,以确保逆变器的稳定工作和安全性能。

光伏 逆变器 基本原理

光伏 逆变器 基本原理

光伏逆变器基本原理
光伏逆变器是将光伏电池发出的直流电转换成交流电的装置。

它是光伏发电系统中重要的组成部分,在将直流电转换成交流电的同时,还能根据需要调整输出的电压和频率。

光伏逆变器的基本原理是利用半导体器件和电路来实现直流电到交流电的转换。

首先,直流电从光伏电池输出进入逆变器。

逆变器内部的控制电路通过检测输入的直流电的电压和电流情况,控制半导体开关元件的导通和断开时间,从而调整输出的电压和电流。

在逆变器内部,直流电首先经过一个整流器,将其转换为脉冲状的直流电。

然后,这些脉冲电流被送入一个高频变压器或电感器,通过变压器或电感器的电感和容性元件将脉冲电流转换成含有多个频率的正弦波交流电。

最后,通过滤波电路将交流电平滑成纯净的交流电。

光伏逆变器也包括一些保护和监测功能。

例如,过载保护功能可以防止过大的电流侵害逆变器和光伏电池,防止系统损坏;电压监测功能可以检测输出的交流电的电压是否正常,保证系统的稳定性。

总而言之,光伏逆变器是将光伏电池输出的直流电转换成交流电的装置,其基本原理是利用半导体器件和电路实现直流到交流的转换,同时具备保护和监测功能。

光伏逆变器工作原理

光伏逆变器工作原理

光伏逆变器工作原理
1.直流输入:
2.MPPT调节:
由于光能的强度、温度和其他因素的变化,光伏发电板的输出电压和电流也会有所变化。

为了最大限度地提取光能,光伏逆变器内部会有一个最大功率点跟踪(MPPT)装置,用于调节光伏电池板的工作点,让电池板工作在最大功率点上。

3.直流-直流转换:
在光伏逆变器内部,直流输入的电流首先通过直流-直流转换器进行电流和电压的转换,以使得电流和电压的特性适合逆变器的工作要求。

4.逆变器电路:
转换为直流后的电流进入逆变器电路,逆变器电路将直流电转换为交流电。

逆变器电路一般采用高频开关电路,通过调节开关管的通断状态来改变电流方向和周期,从而将直流电转换为交流电,并且输出的交流电的频率和电压符合电网或电器的使用要求。

5.输出电压控制:
逆变器的输出电压控制是为了确保输出电压的稳定性和符合电网的要求。

逆变器会根据电网电压的变化,通过反馈控制回路来调整输出电压,保持输出电压在预定范围内,同时可以确保逆变器对电网的输入符合电网的质量和功率要求。

6.系统监测与保护:
综上所述,光伏逆变器是光伏系统中的关键设备,通过将光伏电池板产生的直流电转换成交流电,实现了对电网或电器的供电。

其工作原理主要包括直流输入、MPPT调节、直流-直流转换、逆变器电路、输出电压控制以及系统监测与保护等环节。

通过科学而稳定的工作原理,光伏逆变器使得光能的利用更加高效和可靠。

光伏逆变器工作原理通俗易懂

光伏逆变器工作原理通俗易懂

光伏逆变器工作原理通俗易懂
光伏逆变器是将太阳能电池板产生的直流电转换为交流电的设备。

它的工作原理可以用下面的简单步骤来解释:
1. 太阳能电池板吸收阳光并将其转化为直流电流。

太阳能电池板是由许多个太阳能电池组成的。

当阳光照射到太阳能电池板上时,太阳能电池会吸收光的能量,将其转化为电能,产生直流电流。

2. 直流电流进入光伏逆变器。

直流电需要经过逆变器进行转换,以便将其变为可以在家庭或工业用电网络中使用的交流电。

光伏逆变器是一个通过电子元件来改变电流类型的设备。

3. 光伏逆变器使用交流转换电路将直流电转换为交流电。

它采用一种称为PWM(脉宽调制)或MPPT(最大功率点跟踪)
的技术,根据太阳能电池板产生的电压和电流状况,调整电流和电压,确保在输出电流和电压的范围内实现最大功率输出。

4. 交流电进入电网供电。

经过逆变器转换后的交流电可以直接连接到家庭或工业用电网络中。

它可以为家庭或工业设备提供电力,用于照明、冷暖空调、电脑和其他用电设备。

总之,光伏逆变器通过将太阳能电池板产生的直流电转换为交流电,实现了可以在家庭和工业用电网络中使用的电力供应。

光伏逆变器的工作原理

光伏逆变器的工作原理

光伏逆变器的工作原理
光伏逆变器是将光伏发电系统输出的直流电转换为交流电的设备。

其工作原理如下:
1. 光伏阵列发电:光照照射到光伏电池上,激发电子流动,产生直流电。

2. 直流电输入:光伏电池组的直流电输出,经过保险丝和DC
隔离开关,进入逆变器。

3. 光伏逆变器的控制:逆变器内部具有控制系统,监测光伏电池组的电流、电压和功率等信息,根据需求对逆变器进行控制。

4. 直流电-交流电转换:逆变器将直流电转换为交流电。

逆变
器内部的功率电子器件(如IGBT)将直流电输入变成高频交
流电。

然后经过滤波电路处理,得到稳定的交流电输出。

5. 网络连接:逆变器将转换后的交流电接入电网。

逆变器内部具有输出过压、过流、欠压等保护功能,以确保输出的交流电质量和稳定性。

通过逆变器转换后的交流电可以用于供电给家庭、工业、商业等电器设备使用,也可以反向输送到电网中,实现光伏发电系统的并网发电。

光伏发电逆变器原理

光伏发电逆变器原理

光伏发电逆变器原理
光伏发电逆变器是将光伏电池阳极输出的直流电转换成交流电的电器设备。

逆变器是光伏电站电量转换的核心设备,其工作原理如下:
光伏电池输出的直流电经过汇流排进入逆变器,经过变压器升高电压后进入交流电输出电路;在逆变器的直流电端口处,通过选择逆变器的硅控整流器,将太阳能电池板输出的直流电波形进行变化,变成适合于交流电电网的正弦波形电流,从而使太阳能发电的直流电得以转换为交流电,进入电网。

逆变器的主体部分由控制系统、电源系统、整流器及逆变器和滤波器组成。

整流器和逆变器环节实现了直流到交流的转换,以及直流电的流变成交流电的流,但目前市场上的大部分光伏逆变器采用Boost电路,其性能的优劣关键在于Boost电路的稳定性和转换效率。

由於太阳光的变化以及形成它的环境的变化,可获得的电功率的大小随时间而异,逆变器因此需要在一个很广的输出范围内工作,从几百瓦到几兆瓦不等。

在输出功率变化过程中,它应能快速稳定输出电压和电流的非常小的毛波动,同时保护负载不被破坏。

总之,光伏发电逆变器采用相应的电路和控制系统来对光伏电池输出的直流电进行转换和输出,进一步实现太阳能发电的利用。

光伏逆变器简介完整版

光伏逆变器简介完整版

(2)现代控制理论的控制策略:
1、多变量状态反馈控制 多变量状态反馈控制的优点在于可以大大改善系统的动态品质,因为 它可以任意的配置系统的极点,但是建立逆变器的状态模型时很难将负载 的动态特性考虑在内,所以,状态反馈只能针对空载或假定负载进行,对 此应采用负载电流前馈补偿,预先进行鲁棒性分析,才能使系统有好的稳 态和动态性能。 2、无差拍控制 无差拍控制的基本思想是将给定的正弦参考波形等间隔的划分成若干 个周期,根据每个采样周期的起始值采用预测算法计算出在采样结束时
图2 高频环节逆变原理图
单相逆变电路拓扑的介绍:
实现逆变有很多种典型的电路拓扑,主要有推挽逆变拓扑、半桥 逆变拓扑、全桥逆变拓扑三种,下文将对这三种拓扑进行介绍。
推挽逆变拓扑:
图3 所示的推挽电路只用两个开关元器件,比全桥电路少用了 一半的开关器件,可以提高能量利用率,另外驱动电路具有公共地, 驱动简单,适用原边电压比较低的场合,但由于本身电路的结构特点, 推挽电路拓扑无法输出正弦电压波形,只能输出方波电压波形,适用 于1KW 以下的方波电压方案。
按逆变器输出电压或电流的波形分可分为: (1)方波逆变器
方波逆变器输出的电压波形为方波,此类逆变器所使用的逆变电 路也不。设计功率一般在百瓦至千瓦之间。 方波逆变器的优点是:线路简单,维修方便,价格便宜。 缺点是方波电压中含有大量的高次谐波,在带有铁心电感或变压 器的负载用电器中将产生附加损耗,对收音机 和某些通讯设备有干 扰。此外,这类逆变器还有调压范围不够宽,保护功能不够完善,噪 声比较大等缺点。
(3)正弦波逆变器
正弦波逆变器输出的电压波形为正弦波 正弦波逆变器的优点是:输出波形好,失真度很低,对收音机及通讯设备 干扰小,噪声低。此外,保护功能齐全,整机效率高。

光伏逆变器的工作原理

光伏逆变器的工作原理

光伏逆变器的工作原理
光伏逆变器是将直流电转换为交流电的关键设备之一。

它的工作原理如下:
1. 光伏电池阵列:在光照条件下,光伏电池将太阳能转化为直流电。

多个光伏电池组合在一起形成光伏电池阵列。

2. MPPT (Maximum Power Point Tracking, 最大功率点跟踪):光伏逆变器通过最大功率点跟踪技术追踪光伏电池阵列的最佳工作点。

该技术能够确保在不同光照条件下,从光伏电池阵列中提取最大功率。

3. 直流到直流变换:光伏逆变器将光伏电池阵列输出的低压直流电转换为高压直流电。

这个环节主要是为了提供给后面的逆变器模块提供足够的电压。

4. 逆变器模块:逆变器模块将高压直流电转换为交流电。

逆变器通过使用半导体开关将直流电转换为交流电,并根据需要调整输出的电压和频率。

逆变器可以根据负载需求和电网要求调整输出电压和频率的稳定性。

5. 网络连接:光伏逆变器将生成的交流电连接到电网中。

在连接到电网之前,光伏逆变器会根据电网的要求进行电压和频率的调整,并将逆变器输出的交流电与电网保持同步。

总的来说,光伏逆变器通过一系列的转换和调整过程将光伏电
池阵列产生的直流电转换成符合电网要求的交流电。

这样就能够将太阳能转化为可供家庭、企业等使用的电能。

光伏逆变器的基本原理

光伏逆变器的基本原理

光伏逆变器的基本原理
光伏逆变器是将太阳能电池板产生的直流电转换为交流电的设备,其基本原理是利用电子元件将直流电转换为交流电。

下面详细介绍光伏逆变器的基本原理。

1. 太阳能电池板产生直流电
太阳能电池板是由多个太阳能电池组成,当阳光照射在太阳能电池板上时,太阳能电池板会产生直流电。

2. 直流输入
直流输入是将太阳能电池板产生的直流电输入到光伏逆变器中。

通常情况下,直流输入需要经过保护装置进行保护,以防止过压、过温等情况发生。

3. 滤波
由于太阳能电池板产生的直流信号中含有一些杂波和谐波,因此需要对其进行滤波处理,以确保输出的交流信号质量良好。

4. 逆变
逆变是指将直流信号转换为交流信号。

通常情况下,光伏逆变器采用高频开关技术进行逆变处理。

高频开关技术可以使得输出的交流信号具有更高的质量和更低的谐波含量。

5. 输出
输出是将逆变后的交流信号输出到负载端。

通常情况下,光伏逆变器的输出电压和频率需要与负载端匹配,以确保负载能够正常工作。

6. 监测和保护
光伏逆变器需要对输出电压、电流、温度等参数进行监测和保护。

当发生异常情况时,光伏逆变器会自动停机或降低输出功率,以避免损坏设备。

综上所述,光伏逆变器的基本原理是将太阳能电池板产生的直流电转换为交流电。

其主要过程包括直流输入、滤波、逆变、输出以及监测和保护等步骤。

通过这些步骤的处理,可以使得太阳能电池板产生的直流信号转换为高质量的交流信号,从而实现太阳能电池板的有效利用。

光伏逆变器简介及原理讲解

光伏逆变器简介及原理讲解

二、光伏逆变器的分类
9
按逆变器输出电压或电流的波形分可分为:
(1)方波逆变器 方波逆变器输出的电压波形为方波,此类逆变器所使用的逆变 电路也不完全相同 ,但共同的特点是线路比较简单,使用的功率 开关数量很少。设计功率一般在百瓦至千瓦之间。 方波逆变器的优点是:线路简单,维修方便,价格便宜。 缺点是:方波电压中含有大量的高次谐波,在带有铁心电感或 变压器的负载用电器中将产生附加损耗,对收音机 和某些通讯设 备有干扰。此外,这类逆变器还有调压范围不够宽,保护功能不够 完善,噪声比较大等缺点。
光伏逆变器简介及
原理讲解
2018年1月
主要内容
一 光伏逆变器概述 二 光伏逆变器分类 三 光伏逆变器的工作原理 四 逆变器的控制方案 五 逆变器对于孤岛效应的检测与控制 六 光伏逆变器的主要技术指标 七 光伏逆变器的应用
一、光伏逆变器概述 1
逆变器的概述
通常,把将交流电能变换成直 流电能的过程称为整流,把完成 整流功能的电路称为整流电路, 把实现整流过程的装置称为整流 设备或整流器。与之相对应,把 将直流电能变换成交流电能的过 程称为逆变,把完成逆变功能的 电路称为逆变电路,把实现逆变 过程的装置称为逆变设备或逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功 能。
逆变器简单原理图
四、逆变器的控制方案:
逆变器的控制方法主要有采用经典控制理论的 控制策略和采用现代控制理论的控制策略两种。
(1)经典控制理论的控制策略 1、电压均值反馈控制 它是给定一个电压均值,反馈采样输出电压的均值,两 者相减得到一个误差,对误差进行PI调节,去控制输出。他 是一个恒值调节系统,优点是输出可以达到无净差,缺点是 快速性不好。 2、电压单闭环瞬时值反馈控制 电压单闭环瞬时值反馈控制采用的电压瞬时值给定,输 出电压瞬时值反馈,对误差进行PI调节,去输出控制。他是 一个随动调节系统,由于积分环节存在相位滞后,系统不可 能达到无净差,所以这种控制方法的稳态误差比较大,但快 速性比较好

光伏逆变器的原理和例子[1]

光伏逆变器的原理和例子[1]

逆变器的的功能是将直流电转换为交流电,为“逆向”的整流过程,因此称为“逆变”。

光伏阵列所发的电能为直流电能,然而许多负载需要交流电能,如变压器和电机等。

直流供电系统有很大的局限性,不便于变换电压,负载应用范围也有限。

除特殊用电负荷外,均需要使用逆变器将直流电变换为交流电。

逆变器除r能将直流电能变换为交流电能外,还具有自动稳压的功能,可以改善风光互补发电系统的供电质量,在联网型光伏发电系统也需要使用具有并网功能的交流逆变器。

逆变器种类很多,根据逆变器线路逆变原理的不同,有自激振荡型逆变器、阶梯波叠加逆变器和脉宽调制(PWM)逆变器等。

根据逆变器主回路拓扑结构不同,可分为半桥结构、全桥结构、推挽结构等。

逆变器的控制可以使用逻辑电路或专用的控制芯片,也可以使用通用单片机或DSP芯片等,控制功率开关管的门极驱动电路。

逆变韶输出可以带有一定的稳压能力,以桥式逆变器为例,如果设计逆变器输出的交流母线额定电压峰值比其直流母线额定电压低10%~20%(目的是储备一定的稳压能力),则逆变器经PWM 凋制输出其幅值叮以有向高10%~20%调节的裕量,向低调节则不受限制,只需降低PWM的开通占空比即可。

因此逆变器输人直流电压波动范围向下可以到-15%~20% ,向上只要器件耐压允许则不受限制,只需调小输出脉宽即可(相当于斩波)口当蓄电池或光伏电池输出电压较低时,逆变器内部需配置升压电路,升压可以使用开关电源方式升压也司以使用直流充电泵原理升压。

逆变器使用输出变压器形式升压,即逆变器电压与蓄电池或光伏电池阵列电压相匹配,逆变器输出较低的交流电压,再经工频变压器升压送人输电线路。

需要说明的是,不论是变压器还是电子电路升压,都要损失一部分能量。

最佳逆变器工作模式是直流输人电压与输电线路所需要的电压相匹配,直流电力只经过一层逆变环一节,以降低变换环..-的损耗口一般来说逆变器的效率在90%以上。

逆变环节损耗的能量转换为功率管、变压器的热形式能量,该热量对逆变器的运行是不利的,威胁装置的安全,要使用散热器、风扇等将此热量排出装置以外。

深度总结光伏逆变器的工作原理

深度总结光伏逆变器的工作原理

深度总结光伏逆变器的工作原理光伏逆变器是将太阳能光伏电池板采集的直流电转换为交流电的设备。

它是光伏系统的核心部件之一,可将太阳能转化为供给家庭和企业使用的电能。

光伏逆变器主要由整流器、DC/DC变换器、H桥逆变器、滤波器和控制电路组成。

以下将深入分析光伏逆变器的工作原理,以及它的各个部件的功能。

首先,光伏逆变器的整流器将光伏电池板输出的直流电转换为稳定的直流电。

直流电通过插接到光伏电池板上的串联二极管流入整流器。

接下来,DC/DC变换器对电流和电压进行稳定调节。

它根据逆变器的工作要求将直流电进行升压或降压,以得到适合逆变器输入的直流电源。

接下来,H桥逆变器将稳定的直流电转换为交流电。

H桥逆变器由四个开关管组成,通过控制这些开关管的导通和断开状态,将直流电转换为交流电。

当S1和S4导通,S2和S3断开时,电流流向负载线路;当S2和S3导通,S1和S4断开时,电流反向流向负载线路。

通过这种方式,逆变器可以实现正弦波交流电的输出。

为了确保交流电的纹波(ripple)不会影响负载的性能,逆变器还包含了滤波器。

滤波器通常由电容器和电感器组成,用于平滑交流电的输出并减少谐波干扰。

最后,光伏逆变器的控制电路用于监测和控制逆变器的运行状态。

它可以监测直流电流、直流电压、交流电流、交流电压等参数,并根据需要进行调整。

控制电路还可以实现逆变器的最大功率点追踪,以提高系统效率。

总的来说,光伏逆变器的工作原理是将太阳能光伏电池板产生的直流电转换为交流电。

它通过整流器、DC/DC变换器、H桥逆变器、滤波器和控制电路实现,确保电能的稳定输出和系统的高效运行。

光伏逆变器在可再生能源领域发挥着重要的作用,为人们提供清洁和可持续的能源解决方案。

光伏发电站逆变器的原理

光伏发电站逆变器的原理

光伏发电站逆变器的原理最近在研究光伏发电站逆变器的原理,发现了一些挺有趣的事儿,今天来聊聊这个原理吧。

大家都知道太阳能板能发电,它发出来的电是直流电。

这直流电就像平静的湖水,只能朝着一个方向流动,比较单一。

可是咱们家里用的电器大多数需要交流电,交流电就好比是湖水一会儿向左流,一会儿向右流,不停地变换方向。

这怎么办呢?这就要靠逆变器来大显身手啦。

打个比方吧,逆变器就像是一个神奇的翻译官。

直流电说的是自己的那种单一语言,逆变器要把它翻译成电器能听懂的交流电语言。

具体是怎么做到的呢?这就要说到逆变器里面的电路结构啦。

这其中有着复杂的电子元件协同合作,通过特定的电路设计来周期性地改变电流的方向。

我一开始看到这里也很困惑,这么多复杂的线路和元件,到底是怎么实现这么神奇的转换功能的呢?我自己学习的时候就觉得挺难理解的,后来了解到一个很重要的理论依据就是电力电子技术里的逆变理论。

逆变器里面有着很多像三极管这样的半导体器件,它们像一个个小开关一样,在精确的控制下不断地开合,从而把直流电切割、重组,让电流按交流电的规律流动。

比如说在一些偏远的小山村,如果建立了光伏发电站,发出的直流电,通过逆变器变成交流电之后,就能给村民家里的电器供电了。

这体现了逆变器很大的实用价值。

说到这里,你可能会问,那逆变器是不是一直都能很完美地进行转换呢?其实不是的。

在实际应用中,逆变器也会面临一些问题,像高温的时候,逆变器的性能可能会下降。

还有如果输入的直流电压不稳定的时候,也会影响转换的效果。

所以在使用光伏发电站的时候,要定期对逆变器进行检测和维护。

那对于逆变器原理的理解我也还有很多的局限性,我想这也是不断学习进步的动力。

不知道大家对这个光伏发电站逆变器原理有什么自己的思考或者有着怎样独特的理解呢?欢迎大家一起来讨论呀。

光伏逆变器的工作原理

光伏逆变器的工作原理

光伏逆变器的工作原理
1、全控型逆变器工作原理:为通常使用的单相输出的全桥逆变主电路,交流元件采用IGBT管Q11、Q1
2、Q1
3、Q14。

并由PWM脉宽调制控制IGBT管的导通或截止。

当逆变器电路接上直流电源后,先由Q11、Q14导通,Q1、Q13截止,则电流由直流电源正极输出,经Q11、L或感、变压器初级线圈图1-2,到Q14回到电源负极。

当Q11、Q14截止后,Q12、Q13导通,电流从电源正极经Q13、变压器初级线圈2-1电感到Q12回到电源负极。

此时,在变压器初级线圈上,已形成正负交变方波,利用高频PWM控制,两对IGBT管交替重复,在变压器上产生交流电压。

由于LC交流滤波器作用,使输出端形成正弦波交流电压。

当Q11、Q14关断时,为了释放储存能量,在IGBT处并联二级管D11、D12,使能量返回到直流电源中去。

2、半控型逆变器工作原理:半控型逆变器采用晶闸管元件。

Th1、Th2为交替工作的晶闸管,设Th1先触发导通,则电流通过变压器流经Th1,同时由于变压器的感应作用,换向电容器C被充电到大的2倍的电源电压。

按着Th2被触发导通,因Th2的阳极加反向偏压,Th1截止,返回阻断状态。

这样,Th1与Th2换流,然后电容器C又反极性充电。

如此交替触发晶闸管,电流交替流向变压器的初级,在变压器的次级得到交流电。

在电路中,电感L可以限制换向电容C的放电电流,延长放电时间,保证电路关断时间大于晶闸管的关断时间,而不需容量很大的电容器。

D1和D2是2只反馈
二极管,可将电感L中的能量释放,将换向剩余的能量送回电源,完成能量的反馈作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

逆变器的的功能是将直流电转换为交流电,为“逆向”的整流过程,因此称为“逆变”。

光伏阵列所发的电能为直流电能,然而许多负载需要交流电能,如变压器和电机等。

直流供电系统有很大的局限性,不便于变换电压,负载应用范围也有限。

除特殊用电负荷外,均需要使用逆变器将直流电变换为交流电。

逆变器除r能将直流电能变换为交流电能外,还具有自动稳压的功能,可以改善风光互补发电系统的供电质量,在联网型光伏发电系统也需要使用具有并网功能的交流逆变器。

逆变器种类很多,根据逆变器线路逆变原理的不同,有自激振荡型逆变器、阶梯波叠加逆变器和脉宽调制(PWM)逆变器等。

根据逆变器主回路拓扑结构不同,可分为半桥结构、全桥结构、推挽结构等。

逆变器的控制可以使用逻辑电路或专用的控制芯片,也可以使用通用单片机或DSP芯片等,控制功率开关管的门极驱动电路。

逆变韶输出可以带有一定的稳压能力,以桥式逆变器为例,如果设计逆变器输出的交流母线额定电压峰值比其直流母线额定电压低10%~20%(目的是储备一定的稳压能力),则逆变器经PWM 凋制输出其幅值叮以有向高10%~20%调节的裕量,向低调节则不受限制,只需降低PWM的开通占空比即可。

因此逆变器输人直流电压波动范围向下可以到-15%~20% ,向上只要器件耐压允许则不受限制,只需调小输出脉宽即可(相当于斩波)口当蓄电池或光伏电池输出电压较低时,逆变器内部需配置升压电路,升压可以使用开关电源方式升压也司以使用直流充电泵原理升压。

逆变器使用输出变压器形式升压,即逆变器电压与蓄电池或光伏电池阵列电压相匹配,逆变器输出较低的交流电压,再经工频变压器升压送人输电线路。

需要说明的是,不论是变压器还是电子电路升压,都要损失一部分能量。

最佳逆变器工作模式是直流输人电压与输电线路所需要的电压相匹配,直流电力只经过一层逆变环一节,以降低变换环..-的损耗口一般来说逆变器的效率在90%以上。

逆变环节损耗的能量转换为功率管、变压器的热形式能量,该热量对逆变器的运行是不利的,威胁装置的安全,要使用散热器、风扇等将此热量排出装置以外。

逆变损耗通常包括二部分:导通损耗和开关损耗,MOSFET管开关频率较高,导通阻抗较大,由其构成的逆变器多工作在儿十到上百千赫兹频率下;而IGBT则导通压降相对较小,开关损耗较大,开关频率在几千到几十千赫兹之间一般选择十千赫兹以下。

开关并非理想开关,当其开通过程中电流有一上升过程,管子端电压有一下降过程,电压与电流交又过程的损耗就是开通损耗,关断损耗为电压电流相反变化方向的交叉损耗。

降低逆变器损耗主要是要降低开关损耗,新型的谐振型开关逆变器,在电压或电流过零点处实施开通或关断,从而可以降低开关损耗。

一般来说,逆变器的技术指标包括:使用环境为海拔不超过3000m, 温度0~+40C (也有特殊用途的逆变器要求低温为- 10C或更低的),相对湿度90以下,直流输人额定电压士15%,输出电压波动范围不超过-5%,频率波动范围不超过-1%,谐波畸变率不超过10%,允许负载功率因数变化范围0. 5~1, 0。

三相输出电压不对称度小于5%,噪声小于80dB,具有过载200%额定输出电流1分钟的能力,逆变器在额定负载下应能够可靠地启动。

逆变器保护功能应具有:输出短路保护、输出过电流保护、输出过电压保护、输出欠电压保护、输出缺相保护、功率电路超温保护等。

例如,当传感器检测到输出有短路时,控制电路立即关闭功率管的驱动从而关断功率管的输出,实现对逆变器的保护。

1.方波逆变器
此逆变器输出的电压波形为方波,逆变器线路简单,价格便宜,实现较为容易。

缺点是方波电压中含有大量的高次谐波成分,在负载中会产生附加的损耗,并对通信等设备产生较大的干扰,需要外加额外的滤波器。

此类逆变器多见于早期,设计功率不超过几百瓦的小容量逆变器。

2.阶梯波逆变器
阶梯波逆变器输出的电压波形为阶梯波形,阶梯波逆变器的优点是输出波形接近正弦波,比方波有明显的改善,高次谐波含量减少。

当阶梯波的阶梯达到16个以上付,输出的波形为准正弦波,整机效率较高。

但此逆变器往往需要多组直流电源供电,需要的功率开关管也较多,给光伏阵列分组和蓄电池分组带来不便。

3.正弦波PWM逆变器
正弦波逆变器的优点是输出波形基本为正弦波,在负载中只有很少的谐波损耗,对通信设备干扰小,整机效率高。

缺点是设备复杂、价格高。

随着电力电子技术的进步,脉宽调制技术的普及,大容量PWM型正弦波逆变器逐渐成为逆变器的主流产品。

以典型的单相全桥式逆变器为例,四个对角的开关功率管以每个对角线的二个开关管为一组,依次导通和关断,在负载二端就产生交替的正负电压,形成交流输出。

当此交替导通的频率与负载所需的交流频率相同时,其输出的电压就为方波电压。

当开关管以比逆变交流输出电压高许多的频率开关,且每次开关的脉宽按照正弦波的幅值调制时,就变成了正弦波脉宽调制输出的逆变器,加滤波器后其输出的电压波形就是正弦波输出逆变器。

PWM型逆变器广泛使用功率场效应管(Power MOSFET)、绝缘栅双极型晶体管(IGBT)、可关断型晶闸管(GTO)等作为开关管,而控制部分使用专用型PWM开关集成电路以及带有PWM输出的DSP和单片机芯片。

构成一台实用型逆变器需要主功率电路、控制电路和辅助电路(如保护、测量和监控等)。

其逆变过程为:光伏阵列或蓄电池输出的直流电进人逆变器直流母线,经开关电路(如桥式电路)将直流电变成正反方向输出的、脉宽为正弦调制的交流脉冲波,此脉宽调制的交流电压经滤波电路变成正弦交流电压输出,如需要升压则外接升压变压器,再经输电线路将交流电力送往负载。

PWM调制输出信号频率称作逆变器的调制频率或开关频率,它一般是逆变器输出交流基波频率的十几倍、几十倍到上百倍。

典型的逆变器交流输出频率为50Hz,逆变器开关频率可以儿百到儿十千赫。

PWM调制的开关频率愈高,则逆变器输出波形谐波愈小,但开关过程带来的功率损耗则愈大,要权衡选取开关管PWM调制的开关频率。

逆变器输出所接的滤波器通常为低通滤波器,由电感器和电容器构成T型低通滤波形式。

滤波器的设计要考虑滤波能力也要考虑可能带来的电磁谐振。

逆变器按输出类型,又分为电压型逆变器和电流型逆变器。

4.变颇器
变频器是由三相整流器、电压源的无源逆变器和控制器构成,由于光伏发电系统所发电力为直流的特殊性,光伏变频器不需要三相整流器,而直接将变频器的直流母线接到光伏发电系统的直流母线上。

鉴于光伏电力受光照的自然环境影响较大,直流母线一般要加蓄电池来稳定变频器的运行;在变频器控制端子要加弱电控制信号,不停地调节变频器的设定频率,改变变频器输出功率,以达到与光伏阵列最大功率点跟踪的目的。

变频器作为可调节性负载要与光伏阵列的MPPT联合控制,在光伏发电系统中,电动机类动力性负荷尽量配合使用变频器,以减少电动机启动电流的冲击,并可以灵活调节电动机负荷。

相关文档
最新文档