函数的图像及函数与方程
初中数学函数与方程
初中数学函数与方程函数与方程是初中数学中的重要内容,它们在数学中起着重要的作用。
本文将详细介绍函数和方程的概念、性质以及其在解决数学问题中的应用。
一、函数的概念函数是自变量和因变量之间的一种对应关系。
在数学中,我们用f(x)来表示函数,其中x是自变量,f(x)是与之对应的因变量。
函数可以用图像、表格、公式以及文字描述等形式来表示。
1.1 函数的定义函数就是一种映射关系,它使得每一个自变量x都对应唯一的因变量f(x)。
用数学语言描述就是:对于一个定义域D中的每一个x,都有一个唯一的函数值f(x)。
其中,D表示自变量的取值范围。
1.2 函数的性质函数具有以下几个重要的性质:(1)定义域和值域:定义域是自变量的取值范围,值域是因变量的取值范围。
(2)单调性:函数的单调性可以分为增函数和减函数两种。
增函数表示随着自变量的增大,因变量也增大;减函数则表示随着自变量的增大,因变量减小。
(3)奇偶性:函数的奇偶性根据函数关于y轴对称性来判断。
奇函数表示关于原点对称,即f(-x) = -f(x);偶函数表示关于y轴对称,即f(-x) = f(x)。
1.3 函数的图像函数的图像是表示函数关系的一种形式。
通过绘制函数的图像,可以更直观地了解函数的性质和特点。
函数的图像可以通过手绘或者利用计算机绘图软件来实现。
二、方程的概念方程是含有未知数的等式,需要找到使得等式成立的未知数的值。
方程是数学问题中解决未知数的重要工具。
2.1 线性方程线性方程是一个未知数的一次方程,可表示为ax + b = 0。
其中,a 和b是已知数,x是未知数。
2.2 二次方程二次方程是一个未知数的二次方程,可表示为ax^2 + bx + c = 0。
其中,a、b、c是已知数,x是未知数。
2.3 方程的解方程的解即使能够使得等式成立的未知数的值。
对于线性方程,解可以用一次函数来表示;对于二次方程,解可以用二次函数来表示。
三、函数与方程的应用函数与方程在数学问题中有广泛的应用。
常用函数性质及图像
一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
(二)一次函数1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式y=kx (k 不为零)①k 不为零②x 指数为1③b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时, 直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1)解析式:y=kx(k 是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时, 图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k 不为零)①k 不为零②x 指数为1③b 取任意实数一次函数y=kx+b 的图象是经过(0,b)和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b 是常数,k ≠0)(2)必过点:(0,b)和(-kb,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><0b k 直线经过第一、二、四象限⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移:当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)6、正比例函数和一次函数及性质正比例函数一次函数概念一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数.自变量范围X 为全体实数图象一条直线必过点(0,0)、(1,k)(0,b)和(-kb,0)走向k>0时,直线经过一、三象限;k<0时,直线经过二、四象限k>0,b>0,直线经过第一、二、三象限k>0,b<0直线经过第一、三、四象限k<0,b>0直线经过第一、二、四象限k<0,b<0直线经过第二、三、四象限增减性k>0,y 随x 的增大而增大;(从左向右上升)k<0,y 随x 的增大而减小。
高中常见函数图像及基本性质
常见函数性质汇总及简单评议对称变换常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线一次函数 f (x )=kx +b (k ≠0,b ∈R)1)、两种常用的一次函数形式:斜截式——点斜式——2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势:3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R单调性:当k>0时 ;当k<0时奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。
补充:反函数定义:例题:定义在r 上的函数y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1(x)函数的图像关于y=x 对称,若g (5)=2016,求)=周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: xy b Of (x )=bx y Of (x )=kx +b R 2)点关于直线(点)对称,求点的坐标反比例函数 f (x )=xk(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身补充:1、反比例函数的性质2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较3)、f (x )=dcx bax ++ (c ≠0且 d ≠0)(补充一下分离常数)(对比标准反比例函数,总结各项内容)二次函数一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为②当0>a 时,开口向上,有最低点 当0<a 时。
第7讲函数的图象
第7讲函数的图象一、基础梳理1.作图:描点法作图:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性等);④画出函数的图象.2.图象变换法(1)平移变换①水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.②竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.(2)对称变换①y=f(-x)与y=f(x)的图象关于y轴对称.②y=-f(x)与y=f(x)的图象关于x轴对称.③y=-f(-x)与y=f(x)的图象关于原点对称.④y=f-1(x)与y=f(x)的图象关于直线y=x对称.(3)翻折变换①作为y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象.②作为y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.(4)伸缩变换①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)缩(a<1时)到原来的a倍.②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)缩(a>1时)到原来的1 a.3.识图:对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.4.用图:函数图象形象地显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题路径,获得问题结果的重要工具,要重视数形结合思想的应用.一条规律对于左、右平移变换,可熟记口诀:左加右减.但要注意加、减指的是自变量,否则不成立.两个区别(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.(2)一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种方法画函数图象的方法有:(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响;(3)描点法:当上面两种方法都失效时,则可采用描点法.为了通过描少量点就能得到比较准确的图象,常常需要结合函数的单调性、奇偶性等性质讨论.题型精讲题型一作函数的图象【例1】分别画出下列函数的图象.(1)y=|x2-4x+3|;(2)y=2x+1 x+1;(3)y=10|lg x|.针对训练分别画出下列函数的图象. (1)y =x 2-4|x |+3; (2)y =|log 2(x +1)|.题型二 函数图象的识辨【例2】(1)下列函数图象中不正确的是( ).(2)函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系下的图象大致是(3)设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为A .1B .-1 C.-1-52 D.-1+52针对训练(1)函数f (x )=x +|x |x 的图象是( ).(2)函数y =e x +e -xe x -e-x 的图象大致为( ).题型三 函数图象的应用 【例3】(1)直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是________. (2)函数y =3x -1x +2的图象关于________对称.(3)已知定义在R 上的奇函数y =f (x )的图象关于直线x =1对称,当0<x ≤1时,f (x )=log 12x ,则方程f (x )-1=0在(0,6)内的所有根之和为( ) A .8 B .10 C .12 D .16 针对训练(1)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x-1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1](2)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是(3)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是______.高考中函数图象的考查题型由解析式找图像【示例】函数y =x2-2sin x 的图象大致是( ).二、图象平移问题【示例】若函数f (x )=ka x -a -x (a >0且a ≠1)在(-∞,+∞)上既是奇函数又是增函数,则g (x )=log a (x +k )的图象是( ).三、图象对称问题【示例】y =log 2|x |的图象大致是( ).课时作业7一、选择题1.一次函数y =ax +b (a ≠0)与二次函数y =ax 2+bx +c (a ≠0)在同一坐标系中的图象大致是( ).2.函数f (x )=log a |x |+1(0<a <1)的图象大致为( ).3.已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( ).4.函数y =2x -x 2的图象大致是( ).5.方程|x |=cos x 在(-∞,+∞)内( ). A .没有根 B .有且仅有一个根 C .有且仅有两个根 D .有无穷多个根二、填空题6.把函数f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数解析式是________.7.函数f (x )=x +1x 的图象的对称中心为________.8.已知f (x )=⎝ ⎛⎭⎪⎫13x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________. 三、解答题9.已知函数y =f (x )的图象关于原点对称,且x >0时,f (x )=x 2-2x +3,试求f (x )在R 上的表达式,并画出它的图象,根据图象写出它的单调区间.10.已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ). (1)证明:函数y =f (x )的图象关于直线x =2对称;(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时的f (x )的表达式.。
三角函数公式和图像大全
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。
函数的图像特征
函数图像的参 数影响
参数对函数图像形状的影响
斜率:斜率越大, 函数图像越陡峭
截距:截距越大, 函数图像越远离 原点
正负号:正负号 决定函数图像的 上升或下降趋势
幂指数:幂指数 越大,函数图像
越接近原点
常数项:常数项 影响函数图像的
起始位置
导数:导数决定 函数图像的凹凸
性
参数对函数图像位置的影响
翻转变换
翻转变换的定义:将 函数图像沿x轴或y轴 进行翻转
翻转变换的类型:包 括x轴翻转、y轴翻转 和原点翻转
翻转变换的应用:在 解决实际问题中,如 物理、工程等领域, 经常需要对函数图像 进行翻转变换
翻转变换的性质:翻 转变换不改变函数的 单调性、奇偶性、周 期性等性质
函数图像的对称性
轴对称:函数图像关于x轴、y轴或原点对称 旋转对称:函数图像关于某一点旋转一定角度后与原图像重合 反射对称:函数图像关于某一点或直线反射后与原图像重合 平移对称:函数图像关于某一点或直线平移一定距离后与原图像重合
圆函数:y=f(x)=x^2
开口方向:向上
形状:对称的抛物线
渐近线:y=x和y=-x
顶点:(0,0)
极值:(0,0)是最大值和最小值
函数图像的坐 标轴关系
截距
截距的定义:函数图像与x轴或y轴的交点 截距的作用:确定函数图像的位置和形状 截距的计算:通过函数解析式求解 截距的应用:解决实际问题,如物理、工程等领域
双曲线函数:y=a/x^2,其中a>0
形状:开口向上或向下,取决于a的 正负
顶点:(0,a)或(0,-a),取决于a的正 负
渐近线:y=x和y=-x,与x轴相交于 (0,a)和(0,-a)
焦点:(0,±a/2),取决于a的正负
高考复习函数图象及其变换
高考复习函数图象及其变换.几种函数的图像基本初等函数及图象(大致图像)函数图像一次函数y=kxb二次函数y=axbxc指数函数y=ax对数函数y=logaxy =f(x+h)y=f(mx+h)f(x)+kf(ωx)Af(x)②上下平移:y=eqo(――→,sup(k>时上移k个单位),sdo(k<时下移|k|个单位))f(x)y=()对称变换①y=f(x)与y=-f(x)的图象关于对称②y=f(x)与y=f(-x)的图象关于对称③y=f(x)与y=-f(-x)的图象关于对称x轴y轴原点④y=f(x)与y=f-(x)的图象关于直线对称⑤y=f(x)与y=-f-(-x)的图象关于直线对称⑥y=f(x)与y=f(a-x)的图象关于直线对称.y=xy =-xx=a()翻折变换①作出y=f(x)的图象将图象位于x轴下方的部分以x轴为对称轴翻折到上方其余部分不变得到的图象②作出y=f(x)在y轴上及y轴右边的图象部分并作y轴右边的图象关于y轴对称的图象即得的图象.y=|f(x)|y=f(|x|)()伸缩变换①y=Af(x)(A)的图象可将y=f(x)的图象上所有点的纵坐标变为原来的倍横坐标而得到②y=f(ax)(a)的图象可将y=f(x)的图象上所有点的横坐标变为原来的倍纵坐标而得到A不变不变【答案】B【解析】.f(x)=|x-|的图象为如下图所示中的().为了得到函数y=x--的图象只需把函数y=x的图象上所有的点()A.向右平移个单位长度再向下平移个单位长度B.向左平移个单位长度再向下平移个单位长度C.向右平移个单位长度再向上平移个单位长度D.向左平移个单位长度再向上平移个单位长度【解析】由y=x得到y=x--需用x-换x用y+换y即eqblc{rc(avsalco(x′=x+,y′=y-))∴按平移向量(-)平移即向右平移个单位向下平移个单位.【答案】A.函数f(x)=ax-b的图象如右图所示其中a、b 为常数则下列结论正确的是()A.abB.abC.abD.ab【解析】因图象是递减的故a又图象是将y =ax的图象向左平移了故b∴选D【答案】D设奇函数f(x)的定义域为,.若当x∈,时f(x)的图像如图所示则不等式f(x)的解集是【解析】由奇函数的图象关于原点对称画出x∈,的图象可知不等式f(x)的解集是(,)∪(,.【答案】(,)∪(,作出下列各个函数的图像:()y=-x()y=logeqf(,)(x+)()y=|logeqf(,)(-x)|()作函数y=x的图象关于x轴对称的图象得到y=-x的图象再将图象向上平移个单位可得y=-x的图象.如图()因为y=logeqf(,)(x+)=-log(x+)=-log(x+)-所以可以先将函数y=logx的图象向左平移个单位可得y=log(x+)的图象再作图象关于x轴对称的图象得y=-log(x+)的图象最后将图象向下平移个单位得y=-log(x+)-的图象即为y=logeqf(,)(x+)的图象.如图()作y=logeqf(,)x的图象关于y轴对称的图象得y=logeqf(,)(-x)的图象再把x轴下方的部分翻折到x轴上方可得到y=|logeqf(,)(-x)|的图象.如图作函数图象的一般步骤为:()确定函数的定义域.()化简函数解析式.()讨论函数的性质(如函数的单调性、奇偶性、周期性、最值、极限等)以及图象上的特殊点(如最值点、与坐标轴的交点、间断点等)、线(如对称轴、渐近线等).()选择描点法或图象变换法作出相应的函数图象..采用图象变换法时变换后的函数图象要标出特殊的线(如渐近线)和特殊的点以显示图象的主要特征处理这类问题的关键是找出基本函数将函数的解析式分解为只有单一变换的函数链然后依次进行单一变换最终得到所要的函数图象.作出下列函数的图像解作出的图象将的图象向右平移一个单位再向上平移个单位得的图象()作出的图象保留图象中x≥的部分加上的图象中x的部分关于y轴的对称部分即得的图象其图象依次如下:()若函数解析式中含绝对值可先通过讨论去绝对值再分段作图()利用图象变换作图探究提高作出下列函数的大致图像:()y=eqf(x,|x|)()y=eqf(x+,x-)()y =|logx-|()y=|x-|【解析】()y=eqblc{rc(avsalco(x(x>),-x(x<)))利用二次函数的图象作出其图象如图①()先作出y=logx的图象再将其图象向下平移一个单位保留x轴上及x轴上方的部分将x轴下方的图象翻折到x轴上方即得y=|logx|的图象如图③()先作出y=x的图象再将其图象在y轴左边的部分去掉并作出y轴右边的图象关于y轴对称的图象即得y=|x|的图象再将y=|x|的图象向右平移一个单位即得y=|x|的图象如图④eqx(由图象求解析式)如图所示函数的图象由两条射线及抛物线的一部分组成求函数解析式.【思路点拨】分段求函数解析式再合成分段函数形式本题分别设为一次函数和二次函数形式应抓住特殊点(,)(,)(,)(,)和(,).设左侧射线对应的解析式为y=kx+b(x≤)∵点(,)(,)在此射线上.∴eqblc{rc(avsalco(k+b=,b=))⇒eqblc{rc(avsalco(k=-,b=))∴左侧射线对应的解析式为y =-x+(x≤).同理当x≥时右侧射线对应的解析式为y=x-(x≥).设抛物线对应的解析式为y=a(x-)+(≤x≤a<).将点(,)代入得a+=∴a=-∴抛物线对应的解析式为y=-x+x-(≤x≤)综上所述所求函数解析式为y=eqblc{rc(avsalco(-x+(x<),-x+x-(≤x≤),x -(x>)))由函数图象求其解析式要注意观察各段函数所属的基本函数模型常用待定系数法抓住特殊点从而确定系数..现有四个函数:()y=x·sinx()y=x·cosx()y=x·|cosx|()y=x·x的图象(部分)如下但顺序被打乱则图象()()()()对应的函数序号安排正确的一组是( )A.()()()()B.()()()()C.()()()()D.()()()()【解析】题图①对应的是偶函数图象对应()题图②对应的函数是非奇非偶函数对应()题图③对应的函数当x>时存在函数值为负数对应()故选C【答案】C 例设ab,函数y=(xa)(xb)的图象可能是()解析当xb时y,xb时y≤故选CC()函数y=的图象大致为()A如图所示液体从一圆锥形漏斗漏入一圆柱形桶中开始时漏斗盛满液体经分钟漏完已知圆柱中液面上升的速度是一个常量H是圆锥形漏斗中液面下落的距离则H与下落时间t(分)的函数关系表示的图象只可能是()Bf(x)=|xx|a与x轴恰有三个交点则a=解析y=|xx|,y=a 则两函数图象恰有三个不同的交点如图所示当a=时满足条件已知函数f(x)=|x-x+|()求函数f(x)的单调区间并指出其增减性()求集合M ={m|使方程f(x)=mx有四个不相等的实根}.【思路点拨】()画出f(x)的图象根据图象写出单调区间.()画出两个函数的图象令两个图象有四个交点得m的范围得集合M【解析】f(x)=eqblc{rc(avsalco((x-)-x∈(-∞∪+∞),-(x-)+x∈()))作出图象如图所示.()递增区间为,∞)递减区间为(∞,.()由图象可知y=f(x)与y=mx图象有四个不同的交点直线y=mx应介于x轴与切线l之间.函数的图象形象地显示了函数的性质为研究数量关系问题提供了“形”的直观性它是探求解题途径、获得问题结果、检验解答是否正确的重要工具也是运用数形结合思想解题的前提.从图象的左右分布分析函数的定义域从图象的上下分布分析函数的值域从图象的最高点、最低点分析函数的最值、极值从图象的对称性分析函数的奇偶性从图象的走向趋势分析函数的单调性、周期性等..已知x是方程xlgx=的根x是方程xx=的根则xx等于()A.B.C.D.【答案】D【解析】(分)已知函数f(x)=eqf(ax+,bx +c)(a>b>c∈R)是奇函数当x>时f(x)有最小值其中b∈N*且f()<eqf(,)()试求函数f(x)的解析式()问函数f(x)图象上是否存在关于点(,)对称的两点?若存在求出点的坐标若不存在说明理由.【思路点拨】()根据下列条件:①f(x)为奇函数②当x>时f(x)有最小值③b∈N*且f()<eqf(,)可求abc的值从而可以确定函数f(x)的解析式.()可先假设存在然后根据对称性来解决.【规范解答】()∵f(x)是奇函数∴f(-)=-f()∴eqf(a+,-b+c)=-eqf(a+,b+c)∴c=-c∴c=此时f(x)=eqf(ax+,bx)显然是奇函数分∵a>b>x>∴f(x)=eqf(a,b)x+eqf(,bx)≥eqr(f(a,b))当且仅当x=eqr(f(,a))时等号成立.于是eqr(f(a,b))=∴a =b分由f()<eqf(,)得eqf(a+,b)<eqf(,)即eqf(b+,b)<eqf(,)∴b-b+<解得eqf(,)<b<又b∈N*∴b=∴a=∴f(x)=x+eqf(,x)分()设存在一点(xy)在y=f(x)的图象上并且关于点(,)的对称点(-x-y)也在y=f(x)的图象上.则eqf(xoal(,)+,x)=yeqf((-x)+,-x)=-y分消去y 得xeqoal(,)-x-=∴x=±eqr()∴y=f(x)的图象上存在两点(+eqr()eqr())(-eqr()-eqr())关于点(,)对称分函数的奇偶性、周期性与函数图象的对称性常会放置在一起综合考查.函数f(x)上的某点A(xy)关于点(ab)的对称点为A′(a-x,b-y)利用此关系可求点的坐标或证明函数关于某点的对称问题..要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数等各种基本初等函数的图象..掌握函数作图的两种基本方法:()描点法()图象变换法包括平移变换、对称变换、伸缩变换.理解对数的概念及其运算性质了解对数换底公式能将一般对数转化成自然对数或常用对数了解对数的概念理解对数函数的性质会画对数函数的图象了解指数函数与对数函数互为反函数..对数函数的图象与性质若aa≠xyn∈N则下列各式:①(logax)n=nlogax②(logax)n=logaxn③logax=-logaeqf(,x)④eqr(n,logax)=eqf(,n)logax⑤eqf(logax,n)=logaeqr(n,x)⑥logaeqf(x-y,x+y)=-logaeqf(x+y,x-y)其中正确的个数有()A.个B.个C.个D.个【解析】只有③⑤⑥正确故选B已知loga=mloga=n则am +n=【解析】因为loga=mloga=n所以am=an=所以am+n=(am)·an =×=计算:(lgeqf(,)-lg)÷-eqf(,)=-【解析】原式=-(lg +lg)×eqf(,)=-lg×=-×=-若函数y=f(x)是函数y=ax(a且a≠)的反函数且f()=则f(x)=logx【解析】因为y=ax的反函数为y =f(x)=logax又f()=loga=所以a=所以f(x)=logx已知函数f(x)=eqf(,r(logf(,)x+))则函数f(x)的定义域是()A.(-eqf(,))B.(-eqf(,)C.(-eqf(,)+∞)D.(+∞)【解析】由logeqf(,)(x+)=logeqf(,)得x+所以-x所以-eqf(,)x所以f(x)的定义域为(-eqf(,))故选A一有关对数及对数函数的运算问题【例】()设函数f(x)=eqblc{rc(avsalco(f(,)xx≥,f x+x))则f(log)=()设a=b=则eqf(,a)+eqf(,b)=()计算:lg(lg+lg)+(lgeqr())+lgeqf(,)+lg+log【解析】()因为log所以f(log)=f(+log)=f(+log)=f(+log)=(eqf(,))+log=(eqf(,))·(eqf(,))log=eqf(,)×eqf(,)=eqf(,)()由a=b=得a=logb=log 再根据换底公式得a=log=eqf(,log)b=log=eqf(,log)所以eqf(,a)+eqf(,b)=log+log=log(×)=()原式=lg(lg+)+(eqr()lg)+lg(eqf(,)×eqf(,))+log=lg·lg+lg+lg-+=lg(lg+lg)+lg+=(lg+lg)+=【点评】对数函数的真数与底数应满足的条件是求解有关对数问题时必须予以重视的另外研究对数函数时尽量化为同底.素材()计算:lg+eqf(,)lg+lg·lg+(lg)=()已知log=a,b=则lg=eqf(a,b+)(用ab表示).【解析】()原式=lg+lg+lg(lg+lg)+(lg)=(lg+lg)+(lg)+lg·lg+(lg)=lg+(lg+lg)=+=【解析】()因为log=a所以a=eqf(lg,lg)lg=eqf(,)alg又b=所以b=log=eqf(lg,lg)=eqf(-lg,lg)=eqf(,lg)-lg=eqf(,b+)所以lg=eqf(a,b+)二对数函数的图象与性质问题【例】已知f(x-)=logaeqf(x,-x)(a且a≠).()求f(x)的解析式并判断f(x)的奇偶性()判断函数的单调性()解关于x的方程f(x)=logaeqf(,x)【分析】先用换元法求解解析式用定义判断奇偶性证明单调性解不等式时注意函数的单调性.【解析】()令x-=t则x=t+所以f(t)=logaeqf(+t,-t)又eqf(x,-x)所以x所以t+即-t故f(x)=logaeqf(+x,-x)(-x).而f(-x)=logaeqf(-x,+x)=loga(eqf(+x,-x))-=-logaeqf(+x,-x)=-f(x)故f(x)是奇函数.()设-xx则-x-x所以eqf(,-x)eqf(,-x)eqf(+x,-x)=-+eqf(,-x)eqf(+x,-x)=-+eqf(,-x)(ⅰ)当a时logaeqf(+x,-x)logaeqf(+x,-x)即f(x)f(x)故f(x)在(-,)上是增函数(ⅱ)当a时logaeqf(+x,-x)logaeqf(+x,-x)即f(x)f(x)故f(x)在(-,)上是减函数.()由()可知logaeqf(+x,-x)=logaeqf(,x)所以eqblc{rc(avsalco(f(+x,-x)=f(,x),-x,x))⇒eqblc{rc(avsalco(x+x-=,x))解得x=eqr()-【点评】解决与对数有关问题首先要看对数函数定义域复合函数y=logaf(x)的单调区间也是y=f(x)的单调区间.研究由对数函数与其他函数的复合函数要以这两点为解题的突破口.素材()已知logeqf(,)alogeqf(,)blogeqf(,)c则a,b,c三个数从小到大的排列是cba ()若函数f(x)=loga(-ax)在(,上是减函数则a的取值范围是(,)【解析】()因为logeqf(,)alogeqf(,)blogeqf(,)c又y=logeqf(,)x是减函数所以abc而y=x为增函数所以abc()因为a且a≠所以t=-ax在(,上为减函数且t所以-a即a又f(x)=loga(-ax)在(,上是减函数所以y=logat 是增函数所以a故a即a的取值范围是(,).三有关对数函数的综合问题【例】(·长沙模拟)设f(x)=logeqf(,)eqf(-ax,x-)为奇函数a为常数.()求a的值()若对于,上的每一个x的值不等式f(x)(eqf(,))x+m 恒成立求实数m的取值范围.【解析】()因为f(x)是奇函数所以f(-x)=-f(x)⇒logeqf(,)eqf(+ax,-x-)=-logeqf(,)eqf(-ax,x-)⇔eqf(+ax,-x-)=eqf(x-,-ax)⇔-ax=-x⇒a=±经检验a=-(a=舍去).()对于,上的每一个x的值不等式f(x)(eqf(,))x+m恒成立⇔f(x)-(eqf(,))xm恒成立.令g(x)=f(x)-(eqf(,))x=logeqf(,)(+eqf(,x-))-(eqf(,))xg(x)在,上是单调递增函数所以mg()=-eqf(,)即m的取值范围是(-∞-eqf(,)).素材已知函数y=g(x)的图象与函数y=ax(a且a ≠)的图象关于直线y=x对称又将y=g(x)的图象向右平移个单位长度所得图象的解析式为y=f(x)且y=f(x)在+∞)上总有f(x)()求f(x)的表达式()求实数a的取值范围.【解析】()由已知y=g(x)与y=ax 互为反函数所以g(x)=logax(a且a≠)所以f(x)=loga(x-).()因为f(x)=loga(x-)在+∞)上总有f(x)即loga(x-)所以当a时ax-在+∞)上恒成立所以a又若a则loga(x-)在+∞)上不可能恒成立.综上可得a 的取值范围是(,).备选例题已知x≤且logx≥eqf(,)求函数f(x)=logeqf(x,)·logeqr()eqf(r(x),)的最大值和最小值.【解析】因为x≤=所以x≤又logx≥eqf(,)所以x≥eqr()故x∈eqr().因为f(x)=logeqf(x,)·logeqr()eqf(r(x),)=(logx-)(logx-)=(logx)-logx+令logx =t因为x∈eqr()所以t∈eqf(,)所以y=t-t+=(t-eqf(,))-eqf(,)当t =eqf(,)时即logx=eqf(,)x=eqr()时f(x)min=-eqf(,)当t=即logx=当x=时f(x)max=。
函数的图像和性质
用到数形结合、函数与方程、转化与 化归等数学思想,用好这些思想方法 解题就会事半功倍。
函数的图象和性质专题复习
课堂练习
1. 设函数 f ( x) ln(1 x) ln(1 x) ,则 f ( x) 是 ( A.奇函数,且在 (0,1) 上是增函数 C.偶函数,且在 (0,1) 上是增函数
函数的图象和性质
专题复习
董波
重庆市江津第八中学校
函数的图象和性质专题复习
学过的初等函数
一次函数 二次函数 指数函数 对数函数
反比例函数
三角函数
幂函数
……….
函数的图象和性质专题复习
函数的主要性质
定义域 值 域 奇偶性 周期性
最 值
单调性
对称性
………
函数的图象和性质专题复习
考向分析
函 数 的 图 象 和 性 质
y 的取值范围是 x 1
3 0, 4
作图分析
函数的图象和性质专题复习
考点突破
y
-1
3 k= 4
.
o
1 2
k=0
x
函数的图象和性质专题复习
考点二:函数的性质
考点突破
2
例 2.已知函数 f ( x) x sin x( x R) ,且 f ( x 3x) f ( x 8) 0 ,
有 8 个不同的零点,则实数 b 的取值范围为
1 由方程t bt 1 0得b t , t 典型错误!!! 且t 0,4 ,则b 2, .
2
函数的图象和性质专题复习
考点突破
分析: 方程t bt 1 0有两不同根t 、t , 1, 且t t b,t t 1, 对于b t 1 中的 t 和 t t 就应视为t ,t ,
函数的图像知识点及题型归纳总结
函数的图像知识点及题型归纳总结知识点精讲一、掌握基本初等函数的图像 (1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数. 二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等). 2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①i:函数()y f x =与函数()y f x =-的图像关于y 轴对称; ii:函数()y f x =与函数()y f x =-的图像关于x 轴对称;iii: 函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②i:若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数);ii: 若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图2-21(a )和图2-21(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图2-21(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换. ⑤函数1()y fx -=与()y f x =的图像关于y x =对称.(3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到. 题型归纳及思路提示题型1 由式选图(识图) 思路提示利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案例2.70 函数22xy x =-的图像大致是()分析观察四个选项给出的图像,区别在于函数零点的个数及单调性不同.解析解法一:当0x ≤时,函数2xy =单调递增,同时函数2y x =-单调递增,故函数()f x 在(],0-∞上单调递增,排除,C D ;当0x >时,()f x 存在两个零点122,4x x ==,所以排除选项B .故选A . 解法二:如图2-22所示,有图像可知,函数2xy =与函数2y x =的交点有3个,说明函数22xy x =-的AxOxyO y xx yO O y BCD零点有3个,故排除选项,B C ;当0x x <时,22x x >成立,即220x y x =-<,故排除选项D ,故选A .变式1 函数ln cos 22y x x ππ⎛⎫=-<< ⎪⎝⎭的图像是()变式2 在同一坐标系中画出函数log ,,xa y x y a y x a ===+的图像,可能正确的是()变式3 函数2y ax bx =+与log ,0,b ay x ab a b =≠≠在同一直角坐标系中的图像可能是()变式4(2012新课标全国卷10)已知函数1()ln(1)f x x x=+-,则()y f x =的图像大致为( )题型2 函数图像的应用 思路提示1利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解的个数.例2.71函数0.5()2log 1xf x x =-的零点个数为( ).1A.2B.3C.4D解析令0.5()2log 10xf x x =-=可得0.51log 2xx ⎛⎫= ⎪⎝⎭.设0.5()log g x x =,1()2xh x ⎛⎫= ⎪⎝⎭,在同一坐标系下分别画出函数(),()g x h x 的图像,如图2-23所示.可以发现两个函数一定有2个交点,因此函数()f x 有2个零点.故选B .变式1 已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是变式2 直线1y =与曲线2y x x a =-+有4个交点,则a 的取值范围是变式3 函数()2ln f x x =的图像与函数2()45g x x x =-+的图像的交点个数为().3A .2B .1C .0D变式4 设定义域为R 的函数lg 1(1)()0(1)x x f x x ⎧-≠⎪=⎨=⎪⎩,则关于x 的方程[]2()()0f x bf x c ++=有7个不同实数解的充要条件是().00Ab c <>且.00B b c ><且.00C b c <=且.00Db c ≥=且变式5 设定义域为R 的函数1251(0)()44(0)x x f x x x x -⎧-≥⎪=⎨++<⎪⎩,若关于x 的方程[]22()2()0f x mxf x m -+=有7个不同实数解,则m =思路提示2利用函数图像求解不等式的解集及参数的取值范围.先作出所研究对象的图像,求出它们的交点,根据题意结合图像写出答案例2.72设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是().(1,1)A -.(1,)B -+∞.(,2)(0,)C -∞+∞.(,1)(1,)D -∞-+∞分析作出函数()y f x =与1y =的图像,由图像得不等式的解集.解析作出函数()y f x =与1y =的图像,如图2-24所示,得0()1f x >所对应的0x 的取值范围是(,1)(1,)-∞-+∞,故选D .变式1 (2010新课标全国卷理24)设函数(),142+-=x x f 若不等式()ax x f ≤的解集非空,求a 的取值范围.变式2 已知函数()()(),040422⎪⎩⎪⎨⎧<-≥+=x x x x x x x f 若不等式()()a f a f >-22,则实数a 的取值范围是 ( ) A 、()()+∞⋃-∞-,21, B 、()2,1- C 、()1,2- D 、()()+∞⋃-∞-,12,变式3 (2012福建理15)对于实数a 和b ,定义运算“*”:a *b =⎪⎩⎪⎨⎧>-≤-ba ab b ba ab a ,,22,设()()12-=x x f *()1-x ,且关于x 的方程()()R m m x f ∈=恰有3个互不相等的实数根1x32,,x x ,则321x x x 的取值范围是 .变式4(2010新课标全国卷理11)已知函数()(),10621)100(lg ⎪⎩⎪⎨⎧>+-≤<=x x x x x f 若c b a ,,互不相等,且()()(),c f b f a f ==则abc 的取值范围是 ( )A 、()10,1B 、()6,5C 、()12,10D 、()24,20思路提示3利用函数图像求函数的最值,先做出所涉及到的函数图像,根据题目对函数的要求,从图像上寻找取得最值的位置,计算出结果,这体现出了数形结合的思想。
第七讲函数图像及函数与方程解析版
第七讲:函数图像、函数与方程【考点梳理】 1、函数的图象 (1)平移变换:0,0,||()()a a a a y f x y f x a ><=−−−−−−→=-向右移个单位向左移个单位 0,0,||()()+b b b b y f x y f x b ><=−−−−−−→=向上移个单位向下移个单位(2)伸缩变换:101,11,()()y f x y f x ωωωωω<<>=−−−−−−−−−−−−−→=纵坐标不变,横坐标伸长为原来的倍纵坐标不变,横坐标缩短为原来的倍1,01,()()A A A A y f x y Af x ><<=−−−−−−−−−−−−→=横坐标不变,纵坐标伸长为原来的倍横坐标不变,纵坐标缩短为原来的倍(3)对称变换:()()x y f x y f x =←−−−−→=-关于轴对称()()y y f x y f x =←−−−−→=-关于轴对称()()y f x y f x =←−−−−→=--关于原点对称(4)翻折变换:()(||)y y y y f x y f x =−−−−−−−−−−−→=去掉轴左侧图象,保留轴及右侧图象将轴右侧的图象翻折到左边()|()|x x y f x y f x =−−−−−−−−−→=保留轴及其上方图象将轴下方的图象翻折到上方去2、函数与方程(1)判断二次函数()f x 在R 上的零点个数,一般由对应的二次方程()0f x =的判别式0,0,0∆>∆=∆<来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数()f x 在[,]a b 上的图象是连续不断的一条曲线,且是单调函数,又()()0f a f b ⋅<,则()y f x =在区间(,)a b 内有唯一零点.【典型题型讲解】考点一:函数的图像【典例例题】例1.(多选题)在同一直角坐标系中,函数()()()10,1,xf x a a ag x a x =->≠=-且的图象可能是( )A .B .C .D .【答案】AC 【详解】依题意,当1a >时,函数()g x a x =-图象与y 轴交点在点(0,1)上方,排除B ,C ,而()1,011,0x xxa x f x a a x ⎧-≥=-=⎨-<⎩,因此,()f x 在(,0)-∞上递减,且x <0时,0<f (x )<1,D 不满足,A 满足; 当01a <<时,函数()g x a x =-图象与y 轴交点在原点上方,点(0,1)下方,排除A ,D ,而()1,011,0x xxa x f x a a x ⎧-<=-=⎨-≥⎩,因此,f (x )在(0,)+∞上递增,且x >0时,0<f (x )<1,B 不满足,C 满足, 所以给定函数的图象可能是AC. 故选:AC【方法技巧与总结】1.熟练掌握高中八个基本初等函数的图像的画法2.函数的图像变换:平移,对称、翻折变换 【变式训练】1.已知图①中的图象是函数()y f x =的图象,则图②中的图象对应的函数可能是( )A .(||)y f x =B .|()|y f x =C .(||)y f x =-D .(||)y f x =--【答案】C 【详解】图②中的图象是在图①的基础上,去掉函数()y f x =的图象在y 轴右侧的部分, 然后将y 轴左侧图象翻折到y 轴右侧,y 轴左侧图象不变得来的, ∴图②中的图象对应的函数可能是(||)y f x =-. 故选:C.2.已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是( )A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞【答案】D 【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增, ∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-, 作出函数33y x x =-与直线2y x =-的图象,3.若函数()xf x a =(0a >且1a ≠)在R 上为减函数,则函数()log 1a y x =-的图象可以是( )A .B .C .D .【答案】D 【详解】因为函数()xf x a =(0a >且1a ≠)在R 上为减函数.所以01a << .因为函数()log 1a y x =-,定义域为()()11,-∞-+∞,故排除A 、B.当1x >时,函数()()log 1log 1a a y x x =-=-在1,上单调递减.当1x <-时, 函数()()log 1log 1a a y x x =-=--在()1-∞-单调递增. 故选:D.由图可知,当1a ≤时,函数()f x 有最小值12f ,当1a >时,函数()f x 没有最小值.故选:D.4.函数()ln f x x x =的图象如图所示,则函数()1f x -的图象为( )A .B .C .D .【答案】D 【详解】将函数()f x 的图象作以y 轴为对称轴的翻折变换,得到函数()f x -的图象,再将图象向右平移一个单位,即可得到函数()()()11f x f x -=--的图象. 故选:D .考点二:求函数的零点或零点所在区间判断【典例例题】例1.已知函数()f x 满足()()1f x f x =--,且0x 是()e x y f x =+的一个零点,则0x -一定是下列函数的零点的是( )A .()e 1xy f x =-B .()e 1xy f x =--C .()1e xy f x =+ D .()e xy f x =-【答案】A 【详解】 因为()()1f x f x =--,所以()()f x f x -=-,所以函数()f x 是奇函数.由已知可得()00e 0x f x +=,即()00e x f x =-.所以()00e 1x f x -=-,所以()00e 1x f x --=,故0x -一定是()e 1x y f x =-的零点,故A 正确,B错误; 又由()00e1x f x --=,得()001e x f x --=,所以()0011120e e e e x x x x f x -----+=+=≠,故C 错误;由()()000000e e e e 0x x x x f x f x -----=--=-≠,故D 错误.故选:A .例2.函数()e 26xf x x =+-的零点所在的区间是( )A .()3,4B .()2,3C .()1,2D .()0,1【答案】C 【详解】函数()e 26x f x x =+- 是R 上的连续增函数, 2(1)e 40,(2)e 20f f =-<=->,可得(1)(2)0f f <,所以函数()f x 的零点所在的区间是(1,2). 故选:C【方法技巧与总结】求函数()x f 零点的方法:(1)代数法,即求方程()0=x f 的实根,适合于宜因式分解的多项式;(2)几何法,即利用函数()x f y =的图像和性质找出零点,适合于宜作图的基本初等函数. 【变式训练】1.已知函数()()21,01,0x x f x x x ⎧-≥⎪=⎨+<⎪⎩,则1()2y f x =-的所有零点之和为( )A B C .2 D .0【答案】D 【详解】0x ≥时,由21(1)02x --=得1x =±,0x <时,由1102x +-=得12x =-或32x =-,所以四个零点和为1311022-=. 故选:D .2.已知函数()24x f x x =+-,()e 4x g x x =+-,()ln 4h x x x =+-的零点分别是a ,b ,c ,则a ,b ,c 的大小顺序是( ) A .a b c << B .c b a << C .b a c << D .c a b <<【答案】C 【详解】 由已知条件得()f x 的零点可以看成2x y =与4y x =-的交点的横坐标,()g x 的零点可以看成e x y =与4y x =-的交点的横坐标,()h x 的零点可以看成ln y x =与4y x =-的交点的横坐标,在同一坐标系分别画出2x y =,e x y =,ln y x =,4y x =-的函数图象,如下图所示, 可知c a b >>, 故选:C .3.(2022·广东广州·二模)函数()sin ln 23f x x x π=--的所有零点之和为__________. 【答案】9【详解】由()0sin ln |23|x x f x π=⇔=-,令sin y x =π,ln 23y x =-, 显然sin y x =π与ln 23y x =-的图象都关于直线32x =对称, 在同一坐标系内作出函数sin y x =π,ln 23y x =-的图象,如图,观察图象知,函数sin y x =π,ln 23y x =-的图象有6个公共点,其横坐标依次为123456,,,,,x x x x x x , 这6个点两两关于直线32x =对称,有1625343x x x x x x +=+=+=,则1234569x x x x x x +++++=, 所以函数()sin ln 23f x x x π=--的所有零点之和为9. 故答案为:94.若2log 3x x ⋅=,23y y ⋅=,ln 3z z ⋅=,则x 、y 、z 由小到大的顺序是___________. 【答案】y x z << 【详解】依题意,0,0,0x y z >>>,223log 3log x x x x ⋅=⇔=,3232y yy y ⋅=⇔=,ln 3z z ⋅=3ln z z⇔=,因此,2log 3x x ⋅=成立的x 值是函数12log y x =与43y x=的图象交点的横坐标1t , 23y y ⋅=成立的y 值是函数22x y =与43y x=的图象交点的横坐标2t , ln 3z z ⋅=成立的z 值是函数3ln y x =与43y x=的图象交点的横坐标3t , 在同一坐标系内作出函数1223log ,2,ln xy x y y x ===,43y x=的图象,如图,观察图象得:213t t t <<,即y x z <<,所以x 、y 、z 由小到大的顺序是y x z <<. 故答案为:y x z <<6.函数2()log f x x x =+的零点所在的区间为( ) A .11,32⎛⎫ ⎪⎝⎭B .12,23⎛⎫ ⎪⎝⎭C .23,34⎛⎫ ⎪⎝⎭D .3,14⎛⎫ ⎪⎝⎭【答案】B 【详解】2()log f x x x =+为(0,)+∞上的递增函数,222111112log log 3log 03333332f ⎛⎫=+=-<-< ⎪⎝⎭=-,21111log 02222f ⎛⎫=+=-< ⎪⎝⎭,()22222251log log 353log 333333f ⎛⎫=+=-=- ⎪⎝⎭()221log 32log 2703=->()()22222333511log log 354log 3log log 04444443281f ⎛⎫=+=-+=-+=-+> ⎪⎝⎭,则函数2()log f x x x =+的零点所在的区间为12,23⎛⎫⎪⎝⎭故选:B考点三:函数零点个数的判断【典例例题】例1.函数()32,03e ,0xx x f x x x ⎧+≤=⎨-+>⎩的零点个数为___________. 【答案】2 【详解】当0x ≤时,令320x +=,解得x =0<,此时有1个零点;当0x >时, ()3e x f x x =-+,显然()f x 单调递增,又1215e 0,(1)2e>022f f ⎛⎫=-+<=-+ ⎪⎝⎭,由零点存在定理知此时有1个零点;综上共有2个零点.故答案为:2.例2.定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫⎪⎝⎭ C .e 1e 1,86--⎛⎫⎪⎝⎭ D .()0,e 1-【答案】B 【详解】∴()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数, 故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解,则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<. 故选:B.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解的个数.2.利用函数图像求解不等式的解集及参数的取值范围.先作出所研究对象的图像,求出它们的交点,根据题意结合图像写出答案3.利用函数图像求函数的最值,先做出所涉及到的函数图像,根据题目对函数的要求,从图像上寻找取得最值的位置,计算出结果,这体现出了数形结合的思想。
(完整版)三角函数公式和图像大全(最新整理)
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscαcosα·secαtanα·cotα反三角函数的图形设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。
初中函数与方程知识点归纳
初中函数与方程知识点归纳函数与方程是数学中的重要概念,它们在初中数学中占据着重要的地位。
本文将会对初中函数与方程的知识点进行归纳,帮助同学们更好地理解和掌握这些概念。
一、函数的基本概念 1. 函数的定义:函数是一种特殊的关系,它将一个集合的元素(自变量)映射到另一个集合的元素(因变量)上。
2. 函数的表示方法:可以用函数的解析式、图像、数据表等形式表示函数。
3. 自变量和因变量:自变量是函数中的输入值,通常用x表示;因变量是函数中的输出值,通常用f(x)或y表示。
二、函数的性质 1. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
2. 奇偶性:如果对于任意x值,有f(-x) = f(x),则函数是偶函数;如果对于任意x值,有f(-x) = -f(x),则函数是奇函数。
3. 单调性:函数在定义域内的任意两个点,如果横坐标较大的点对应的纵坐标也较大,则函数是增函数;如果横坐标较大的点对应的纵坐标较小,则函数是减函数。
4. 对称轴:对于奇函数,对称轴为y轴;对于偶函数,对称轴为y轴。
三、常见的函数类型 1. 线性函数:线性函数的解析式为y = kx + b,其中k和b为常数,k为斜率,b为截距。
2. 二次函数:二次函数的解析式为y = ax^2 + bx + c,其中a、b、c为常数,a不等于0,a控制二次项的开口方向和大小。
3. 幂函数:幂函数的解析式为y = x^n,其中n为常数,n可以是整数、分数、负数等。
4. 开方函数:开方函数的解析式为y = √x,实际上是幂函数的一种特殊形式。
5.反比例函数:反比例函数的解析式为y = k/x,其中k为常数,x不等于0。
6. 绝对值函数:绝对值函数的解析式为y = |x|,表示x的绝对值。
四、方程的基本概念 1. 方程的定义:方程是一个等式,其中包含未知数,通过求解方程找到未知数的值。
2. 方程的解:使方程成立的未知数的值称为方程的解。
方程图像知识点梳理总结
方程图像知识点梳理总结1. 方程图像的基本概念方程图像指的是用代数方程表示的一条或者一组曲线,在平面直角坐标系中的图形。
通常来说,代数方程的一般形式为y=f(x),其中x和y分别代表横坐标和纵坐标,而f(x)则代表y值所对应的函数表达式。
方程图像的形状和特征取决于函数的性质及其参数的值,通过对函数的分析和变换,我们可以得到方程图像的各种性质和特征。
2. 一次函数的图像一次函数的一般形式为y=kx+b,其中k和b分别为斜率和截距。
一次函数的图像呈现为一条直线,其斜率决定了直线的倾斜程度,而截距则决定了直线与y轴的交点。
当斜率为正时,直线向右上倾斜;当斜率为负时,直线向右下倾斜;当斜率为零时,直线平行于x 轴。
一次函数的图像具有特定的线性关系,通过观察和分析图像,可以推断出函数的性质和特征。
3. 二次函数的图像二次函数的一般形式为y=ax^2+bx+c,其中a、b和c为常数,且a不等于零。
二次函数的图像呈现为一条抛物线,其开口方向由二次项的系数a的正负来决定。
当a大于零时,抛物线开口向上;当a小于零时,抛物线开口向下。
通过解析二次函数的顶点、判别式、零点等参数,可以确定抛物线的位置和形状。
二次函数的图像具有特定的对称性和凹凸性,通过观察和分析图像,可以推断出函数的性质和特征。
4. 三角函数的图像三角函数包括正弦函数、余弦函数和正切函数等,它们的图像呈现为周期性的波动曲线。
正弦函数的一般形式为y=Asin(Bx+C)+D,其中A、B、C和D均为常数。
正弦函数的图像呈现为一条周期性波浪状曲线,其振幅和周期由A和B来决定。
余弦函数和正切函数的图像具有类似的周期性波动特征,它们的振幅、周期和相位均可以通过函数的参数来确定。
三角函数的图像具有特定的周期性和对称性,通过观察和分析图像,可以推断出函数的性质和特征。
5. 指数函数和对数函数的图像指数函数的一般形式为y=a^x,其中a为底数,x为指数。
对数函数的一般形式为y=log_ax,其中a为底数,x为真数。
二次函数的图象与方程
交点性质:当a>0时,一个交点在原点,另一个在x轴正半轴;当a<0时, 一个交点在原点,另一个在x轴负半轴
单击此处添加标题
交点坐标:当a>0时,交点坐标为(0,0)和(√(-b/a),0);当a<0时,交点坐 标为(0,0)和(-√(-b/a),0)
单击此处添加标题
交点与方程的关系:二次函数与x轴的交点即为方程的根
二次函数与三角 形、四边形等几 何知识的关系: 通过二次函数的 图象,可以研究 三角形、四边形 等几何图形的性
质和特点。
THANK YOU
汇报人:XX
二次方程的解法
二次方程的解的概念
二次方程的标准 形式:ax^2 + bx + c = 0
判别式:Δ = b^2 - 4ac
根的性质:当Δ > 0时,方程有 两个不相等的实 根;当Δ = 0时, 方程有两个相等 的实根;当Δ < 0时,方程无实 根。
解的公式:当Δ ≥ 0时,解为x = [-b ± sqrt(Δ)] / (2a)
二次函数的表达式
二次函数的一般形式 为y=ax^2+bx+c, 其中a、b、c为常数 且a≠0
a的符号决定了抛物 线的开口方向,当 a>0时,抛物线开 口向上;当a<0时, 抛物线开口向下
b和c决定了抛物线 的位置,b和c的值 越大,抛物线越偏离 y轴和x轴
二次函数的顶点坐标 为(-b/2a, cb^2/4a)
二次函数的图象与方程
汇报人:XX
单击输入目录标题 二次函数的基本概念 二次函数的图象 二次方程的解法 二次函数的实际应用 二次函数与其他数学知识的联系
添加章节标题
二次函数的基本概念
一次函数与方程
一次函数与方程一次函数和方程是高中数学中的重要内容,其涉及到直线的方程、斜率、截距等概念。
以下就一次函数和方程进行详细介绍。
一、一次函数一次函数是指函数中只有一项是一次幂的函数,即f(x) = kx + b 的形式,其中k和b是常数。
它的图像为一条直线,称为直线函数,其自变量为x,因变量为y。
其中,k叫做直线的斜率,表示直线的倾斜程度;b叫做直线的截距,表示直线与y轴的交点。
在一次函数中,自变量和因变量通常分别称为x和y,其中x代表自变量,y代表因变量。
1.一次函数的定义域和值域一次函数的定义域是全体实数集,即Df = R。
而一次函数的值域可以通过观察斜率来推断,当k>0时,y的值域为[0,+∞),当k<0时,y的值域为(-∞,0],当k=0时,y的值域为b。
也可以通过求导的方式来确定一次函数的值域。
2.一次函数的性质(1)一次函数是一种线性函数,其图像为一条直线。
(2)斜率为正表示函数单调递增,斜率为负表示函数单调递减。
(3)当斜率k=0时,函数图像为一条水平直线,函数为常函数,截距b为函数的值。
(4)当截距b=0时,函数图像经过原点,称该函数为原点在原处的函数。
(5)当截距b不等于0时,直线与y轴相交于点(0,b),其y坐标为截距b,斜率为k。
二、一次方程一次方程是指方程中只有一项是一次幂的方程,即ax+b=0的形式,其中a和b是常数,且a不等于0。
一次方程的解为x=-b/a,表示方程的解在x轴上的位置。
一次方程中,未知量通常表示为x。
1.一次方程的解法(1)移项法:将方程中已知项移至等式的另一侧,使未知量单独一侧,然后相应地整合方程的两侧,得到未知量的解。
(2)消元法:将方程中含有未知量的项相消,使得未知量单独一项,然后相应地整合方程的两侧,得到未知量的解。
(3)代入法:将方程中一个已知量代入另一个方程中,用代入公式求出未知量的解。
2.一次方程的性质(1)可以通过移项将一次方程变化为确定的形式,形式为x=b/a。
函数、方程、不等式以及它们图像_课件
2019/10/23
30
解: sik n x k ( ) siknx
k2m k(2m 1)mZ
由①②可知,实数k的取值范围是
{kkm,mZ}
2019/10/23
31
例题5、函数 f ( x ) 在 (1,1) 上有定义,
f ( 1 ) 1 且满足 x,y(1,1)时,有
1
nl im lna(n)nl im 2nlna 0
2019/10/23
24
例题4、已知集合M是满足下列性质的 f ( x ) 的全体:存在非零常数T,对任意 xR,有 f(xT)T(fx)成立。
(1)函数 f(x) x是否属于集合M?说明理由; (2)设函数 f (x) a x (a0,a1)的图像与
y
o c
2019/10/23
x
13
解:
(c 1)2 4(c2 c) 0
1 c
2
c
f (c) 3c2 2c 0
2019/10/23
14
解:
1 c0 3
11c 4 , 8 1c2 1 39
ab(1, 4), a2 b2 (8,1)
2019/10/23
46
解(1):
当 0m1时,f(x1)f(x2)0,
函数在 [, ] 上是减函数
当 m1时, f(x1)f(x2)0, 函数在 [, ]上是增函数
2019/10/23
47
解(2):
由(1)可知,当 0m1时,
f (x) 为减函数, 则由其值域为 [lm o m ( g 1 )l,o m m ( g 1 )]
f(x)logm
函数图像
例6、 甲 、 乙 二 人 沿 同 一 方向 去B地 , 途 中 都 用 两 种 不 同的 速 度
v1与v2 (v1 v2 ).甲 前 一 半 的 路 程 用 速 度v1, 后 一 半 的 路 程 用 速 度v2;
乙
前
一
半
的
时
间
使
用
速度v
,
1
后
一
半
的
时
间
使
用
速度v
第八讲 函数的图象
一、 知识要点:
1.函数的图象
在平面直角坐标系中,以函数y=f(x)中的x为横坐标, 函数值y为纵坐标的点(x,y)的集合,就是函数y=f(x)的图 象.图象上每一点的坐标(x,y)均满足函数关系y=f(x), 反过来,满足y=f(x)的每一组对应值x、y为坐标的点(x,
y),均在其图象上 。
cos
logcos x (0 x logcos x (1 x)
1)
x(0 x
1 x
(1
x)
1)
y
o
x
返回
1 (3) log x y log y x log x y log x y log x y 1 y x或y 1 ( x, y 0且x, y 1)
2
y x 2 4 | x | 3 | x |2 4 | x | 3
y
-3
-2
-1
–4 –3 –2 –1
|
|
|
|
o
1 234
|
|
|
|
- –1
x
返回
(2) y cos |logcos x| (0 );
高考数学第一轮复习:《函数的图象》
高考数学第一轮复习:《函数的图象》最新考纲1.在实际情境中,会根据不同的需要选择图象法、列表法、解析法表示函数.2.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式的解的问题.【教材导读】若函数y=f(x+a)是偶函数(奇函数),那么y=f(x)的图象的对称性如何?提示:由y=f(x+a)是偶函数可得f(a+x)=f(a-x),故f(x)的图象关于直线x=a对称(由y=f(x+a)是奇函数可得f(x+a)=-f(a-x),故f(x)的图象关于点(a,0)对称).1.利用描点法作函数图象其基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.图象变换(1)平移变换(2)对称变换①y=f(x)与y=-f(x)关于x轴对称;②y=f(x)与y=f(-x)关于y轴对称;③y=f(x)与y=-f(-x)关于原点对称;④y=a x(a>0且a≠1)与y=log a x(a>0且a≠1)关于y=x对称.(3)翻折变换①y=f(x)――→保留x轴上方图象将x轴下方图象翻折上去y=|f(x)|.②y=f(x)――→保留y轴右边图象,并作其关于y轴对称的图象y=f(|x|).(4)伸缩变换①y=f(x) y=f(ax).②y=f(x)――→a>1,纵向伸长为原来的a倍0<a<1,纵向缩短为原来的a倍y=af(x).【重要结论】1.对于函数y=f(x)定义域内任意一个x的值,若f(a+x)=f(b-x),则函数f(x)的图象关于直线x=a+b2对称.特别地,若f(a+x)=f(a-x),则函数f(x)的图象关于直线x=a对称.2.对于函数y=f(x)定义域内任意一个x的值,若f(a+x)=-f(b-x),则函数f(x)的图象关于点a+b2,0中心对称.特别地,若f(a+x)=-f(a-x),则函数f(x)的图象关于点(a,0)中心对称.1.为了得到函数y=lg x+310的图象,只需把函数y=lg x的图象上所有的点()(A)向左平移3个单位长度,再向上平移1个单位长度(B)向右平移3个单位长度,再向上平移1个单位长度(C)向左平移3个单位长度,再向下平移1个单位长度(D)向右平移3个单位长度,再向下平移1个单位长度答案:C2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车行驶的路程s看作时间t的函数,其图象可能是()答案:B3.函数f(x+2)的图象关于直线x=2对称,则函数f(x)的图象关于()(A)原点对称(B)直线x=2对称(C)直线x=0对称(D)直线x=4对称答案:D4.已知下图(1)中的图象对应的函数为y=f(x),则下图(2)中的图象对应的函数在下列给出的四个式子中,可能是________(填序号).①y=f(|x|);②y=|f(x)|;③y=-f(|x|);④y=f(-|x|).答案:④5.使log2(-x)<x+1成立的x的取值范围是________.答案:x∈(-1,0)考点一作函数的图象作出下列函数的图象.(1)y=x2-2x(|x|>1);(2)y=|x-2|·(x+2);(3)y=2x-1x-1;(4)y=|log2x-1|.解:(1)因为|x|>1,所以x<-1或x>1,图像是两段曲线,如图.(2)函数式可化为y =⎩⎪⎨⎪⎧x 2-4,x ≥2,-x 2+4,x <2,其函数图像如图(3)y =2x -1x -1=2+1x -1,故函数图像可由函数y =1x 的图像向右平移1个单位长度,再向上平移2个单位长度得到,如图.(4)先作出函数y =log 2x 的图像,再将该图像向下平移1个单位长度,保留x 轴上方的部分,将x 轴下方的图像翻折到x 轴上方,即得到y =|log 2x -1|的图像,如图.【反思归纳】 画函数图象的一般方法(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出.(2)图象变换法.若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序.对不能直接找到熟悉的基本初等函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.提醒:可先化简函数解析式,再利用图象的变换作图. 【即时训练】 作出下列函数的图象: (1)y =sin |x |;(2)y =e ln x .解:(1)当x ≥0时,y =sin |x |与y =sin x 的图象完全相同, 又y =sin |x |为偶函数,其图象关于y 轴对称,其图象如图.(2)因为函数的定义域为{x |x >0}且y =e ln x =x (x >0), 所以其图像如图所示.考点二 函数图象的识别(1)函数f (x )=ln ⎝ ⎛⎭⎪⎫x -1x 的图象是( )(2)如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O 沿l1以1 m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()解析:(1)B(2)如图,设∠MON=α,由弧长公式知x=α,在Rt△AOM中,由0≤t≤1,知|AO|=1-t,cos x2=|OA||OM|=1-t,∴y=cos x=2cos2x2-1=2(t-1)2-1.故选B.【反思归纳】知式选图的策略(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性(有时可借助导数判断),判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特殊点(与坐标轴的交点、经过的定点、极值点等),排除不合要求的图象.提醒:注意联系基本初等函数图象的模型,当选项无法排除时,代特殊值,或从某些量上寻找突破口.【即时训练】(2018全国Ⅱ卷)函数f(x)=e x-e-xx2的图象大致为()A BC DB解析:∵y=e x-e-x是奇函数,y=x2是偶函数,∴f(x)=e x-e-xx2是奇函数,图象关于原点对称,排除A选项.当x=1时,f(1)=e-e-11=e-1e>0,排除D选项.又e>2,∴ 1e <12,∴ e -1e >1,排除C 选项. 故选B.考点三 函数图象的应用(高频考点) 考查角度1:研究函数的性质.(2016高考全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )(A)各月的平均最低气温都在0 ℃以上 (B)七月的平均温差比一月的平均温差大 (C)三月和十一月的平均最高气温基本相同 (D)平均最高气温高于20 ℃的月份有5个 解析:依据给出的雷达图,逐项验证.对于选项A ,由图易知各月的平均最低气温都在0 ℃以上,A 正确;对于选项B ,七月的平均最高气温点与平均最低气温点间的距离大于一月的平均最高气温点与平均最低气温点间的距离,所以七月的平均温差比一月的平均温差大,B 正确;对于选项C ,三月和十一月的平均最高气温均为10 ℃,所以C 正确;对于选项D ,平均最高气温高于20 ℃的月份有七月、八月,共2个月份,故D 错误.【反思归纳】 知图选式或选性质的策略(1)从图象的左右、上下分布,观察函数的定义域、值域; (2)从图象的变化趋势,观察函数的单调性; (3)从图象的对称性方面,观察函数的奇偶性; (4)从图象的循环往复,观察函数的周期性; (5)从图象与x 轴的交点情况,观察函数的零点. 利用上述方法,排除、筛选错误与正确的选项. 考查角度2:确定函数零点(方程根)的个数.已知a >0,且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,恒有f (x )<12,则实数a 的取值范围是________.解析:由题意知,当x ∈(-1,1)时,f (x )=x 2-a x <12,即x 2-12<a x .在同一平面直角坐标系中分别作出二次函数y =x 2-12,指数函数y =a x 的图像(图略).当x ∈(-1,1)时,要使指数函数的图像恒在二次函数图像的上方,则⎩⎪⎨⎪⎧a -1≥12,a ≥12,a ≠1,所以12≤a ≤2且a ≠1.故实数a 的取值范围是12≤a <1或1<a ≤2.答案:[12,1)∪(1,2]【反思归纳】 构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.考查角度3:求参数的取值范围.已知函数f (x )=⎩⎨⎧1-|x +1|,x ∈[-2,0]f x -2,x ∈0,+∞,若函数g (x )=13x -f (x )+b 在区间[-2,6]内有3个零点,则实数b 的取值范围是________.解析:若0≤x ≤2,则-2≤x -2≤0,∴f(x)=f(x-2)=1-|x-2+1|=1-|x-1|,0≤x≤2. 若2≤x≤4,则0≤x-2≤2,∴f(x)=f(x-2)=1-|x-2-1|=1-|x-3|,2≤x≤4. 若4≤x≤6,则2≤x-2≤4,∴f(x)=f(x-2)=1-|x-2-3|=1-|x-5|,4≤x≤6. ∴f(1)=1,f(2)=0,f(3)=1,f(5)=1,设y=f(x)和y=13x+b,则方程f(x)=13x+b在区间[-2,6]内有3个不等实根,等价为函数y=f(x)和y=13x+b在区间[-2,6]内有3个不同的零点.作出函数f(x)和y=13x+b的图象,如图:当直线经过点F(4,0)时,两个图象有2个交点,此时直线y=13x+b为y=13x-43,当直线经过点D(5,1),E(2,0)时,两个图象有3个交点;当直线经过点O(0,0)和C(3,1)时,两个图象有3个交点,此时直线y=13x+b为y=13x,当直线经过点B(1,1)和A(-2,0)时,两个图象有3个交点,此时直线y=13x+b为y=1 3x+2 3,∴要使方程f(x)=13x+b,在区间[-2,6]内有3个不等实根,两个图象有3个交点,则b ∈(-43,23], 故答案为:(-43,23].【反思归纳】 由函数零点的个数或由方程根的个数确定参数的取值(范围),常常转化为两函数图象交点个数问题;利用数形结合可求出参数取值(范围).考查角度4:求不等式的解集.已知f (x )=⎩⎨⎧-x -a 2,x ≥0,-x 2-2x -3+a ,x <0,若∀x ∈R ,f (x )≤f (0)恒成立,则实数a 的取值范围为________.解析:由题意,若∀x ∈R ,f (x )≤f (0)即函数f (x )max =f (0)=-a 2, 要使得函数的最大值为-a 2,当x ≥0时,f (x )=-(x -a )2,此时函数的对称轴x =a ≤0,当x <0时,f (x )=-x 2-2x -3+a ,开口向下,对称的方程x =-1, 则f (-1)=-1+2-3+a ≤-a 2,即a 2+a -2≤0,解得-2≤a ≤1, 综上所述,实数a 的取值范围是[-2,0]. 答案:[-2,0]【反思归纳】 当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.利用函数的变化趋势识别函数图象函数y =2|x |sin 2x 的图象可能是( )(A)(B)(C)(D) 审题指导关键点所获信息函数的解析式函数的奇偶性解题突破:用解析式找出函数图象的特殊点.解析:由y=2|x|sin 2x知函数的定义域为R,令f(x)=2|x|sin 2x,则f(-x)=2|-x|sin (-2x)=-2|x|sin 2x.∵f(x)=-f(-x),∴f(x)为奇函数.∴f(x)的图象关于原点对称,故排除A,B.令f(x)=2|x|sin 2x=0,解得x=kπ2(k∈Z),∴当k=1时,x=π2,故排除C.故选D.答案:D命题意图:本题主要考查函数的奇偶性及函数的特殊点坐标,考查学生的识图、读图以及转化能力.课时作业基础对点练(时间:30分钟)1.已知函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,那么它的图象可能是( )答案:D2.若当x ∈R 时,y =1-a |x |均有意义,则函数y =log a |1x |的图象大致是( )答案:B3.已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( ) (A)0<a -1<b <1 (B)0<b <a -1<1 (C)0<b -1<a <-1 (D)0<a -1<b -1<1答案:A4.若直角坐标平面内A 、B 两点满足条件:①点A 、B 都在f (x )的图象上;②点A 、B 关于原点对称,则对称点对(A ,B )是函数的一个“兄弟点对”(点对(A ,B )与(B ,A )可看作一个“兄弟点对”).已知函数f (x )=⎩⎨⎧cos x x ≤0,lg x x >0,则f (x )的“兄弟点对”的个数为( )(A)2 (B)3 (C)4 (D)5 D解析:设P (x ,y )(x <0),则点P 关于原点的对称点为(-x ,-y ),于是cos x =-lg(-x ),只要判断方程根的个数,即y =cos x 与y =-lg(-x )(x <0)图象的交点个数,在同一个坐标系中作出它们的图象,如图所示.所以f (x )的“兄弟点对”的个数为5.故选D. 5.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,log 13x ,x >1,则y =f (2-x )的图象大致是( )A 解析:由题可得y =f (2-x )=⎩⎨⎧32-x ,x ≥1,log 132-x ,x <1,故函数y =f (2-x )仍是分段函数,且以x =1为界分段,只有A 符合条件.6.已知函数f (x )=⎩⎪⎨⎪⎧1x-x ,x <0|ln x |,x >0,则关于x 的方程[f (x )]2-f (x )+a =0(a ∈R )的实根个数不可能为( )(A)2 (B)3 (C)4 (D)5A 解析:当x <0时,f ′(x )=-1x 2-1<0, ∴f (x )在(-∞,0)上是减函数,当x >0时,f (x )=|ln x |=⎩⎪⎨⎪⎧-ln x ,0<x <1ln x ,x ≥1,∴f (x )在(0,1)上是减函数,在[1,+∞)上是增函数,做出f (x )的大致函数图象如图所示:设f (x )=t ,则当t <0时,方程f (x )=t 有一解, 当t =0时,方程f (x )=t 有两解, 当t >0时,方程f (x )=t 有三解. 由[f (x )]2-f (x )+a =0,得t 2-t +a =0.若方程t 2-t +a =0有两解t 1,t 2,则 t 1+t 2=1, ∴方程t 2-t +a =0不可能有两个负实数根, ∴方程[f (x )]2-f (x )+a =0,不可能有2个解. 故选A.7.设函数f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,x 12, x >0若f (x 0)>1,则x 0的取值范围是________.解析:在同一直角坐标系中,作出函数y =f (x )的图象和直线y =1,它们相交于(-1,1)和(1,1)两点,由f (x 0)>1,得x 0<-1或x 0>1.答案:(-∞,-1)∪(1,+∞)8.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________________.解析:当-1≤x ≤0时, 设解析式为y =kx +b , 则⎩⎪⎨⎪⎧ -k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1. 所以y =x +1.当x >0时,设解析式为y =a (x -2)2-1, 因为图象过点(4,0), 所以0=a (4-2)2-1, 得a =14,所以y =14(x -2)2-1. 答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14x -22-1,x >09.设函数y =2x -1x -2,关于该函数图象的命题如下:①一定存在两点,这两点的连线平行于x 轴; ②任意两点的连线都不平行于y 轴; ③关于直线y =x 对称; ④关于原点中心对称. 其中正确的是________.解析:y =2x -1x -2=2x -2+3x -2=2+3x -2, 图象如图所示.可知②③正确. 答案:②③10.已知函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x <2x +22x ,x ≥2,若0<a <b <c ,且f (a )=f (b )=f (c ),则abfc 的范围为________.解析:函数图象如图:若f (a )=f (b )=f (c ),则|log 2a |=|log 2b |,即-log 2a =log 2b ,∴log 2(ab )=0,ab =1,f (c )∈(12,1), ∴abf c ∈(1,2). 答案:(1,2)能力提升练(时间:15分钟)11.函数f (x )=ax +bx +c 2的图象如图所示,则下列结论成立的是( )(A)a >0,b >0,c <0 (B)a <0,b >0,c >0 (C)a <0,b >0,c <0 (D)a <0,b <0,c <0C 解析:由图可知-c >0,∴c <0,令x =0,f (0)=b c 2>0,∴b >0,令y =0,x =-ba >0,∴a <0,故选C.12.已知定义在R 上的函数f (x )满足f (x +2)=2f (x ),当x ∈[0,2]时,f (x )=⎩⎨⎧x ,x ∈[0,1]-x 2+2x ,x ∈[1,2],则函数y =f (x )在[2,4]上的大致图象是( )A 解析:当2≤x <3,0≤x -2<1. ∵f (x +2)=2f (x ), ∴f (x )=2f (x -2)=2x -4; 当3≤x ≤4,1≤x -2≤2. ∵f (x +1)=2f (x ),∴f (x )=2f (x -2)=-2(x -2)2+4(x -2)=-2x 2+12x -16; ∴f (x )=⎩⎪⎨⎪⎧2x -4,x ∈[2,3,-2x 2+12x -16,x ∈[3,4].故选A.13.函数f (x )=-x ⎝ ⎛⎭⎪⎫1e cos(π+x )(x ∈[-π,π])的图象大致是( )B 解析:因为f (x )=-x ⎝ ⎛⎭⎪⎫1e cos(π+x )=-x e cos x ,则f (-x )=x e cos(-x )=x e cos x =-f (x ),所以函数f (x )=-x ⎝ ⎛⎭⎪⎫1e cos(π+x )为奇函数,根据图象排除A 、C ;由于f ⎝ ⎛⎭⎪⎫π2=-π2f (π)=-πe ,即f ⎝ ⎛⎭⎪⎫π2<f (π),排除D ,故选B.14.(2019新余二模)函数y =2xln|x |的图象大致为( )B 解析:函数y =2xln|x |的定义域为{x |x ≠0且x ≠±1},故排除A. ∵f (-x )=-2xln|x |=-f (x ),排除C. 当x =2时,y =4ln 2>0,排除D.故选B.15.已知函数y =|x 2-1|x -1的图象与函数y =kx 的图象恰有两个交点,则实数k 的取值范围是________. 解析:y =|x 2-1|x -1=|x +1x -1|x -1=⎩⎪⎨⎪⎧-x -1,x ∈-1,1,x +1,x ∈-∞,-1]∪1,+∞,函数图象如图实线部分所示,结合图象知k ∈(0,1)∪(1,2).答案:(0,1)∪(1,2)16.(2019银川模拟)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=x 2·[f (x )-a ],且g (x )在区间[1,2]上为增函数.求实数a 的取值范围.解:(1)设f (x )的图象上任一点的坐标为P (x ,y ),点P 关于点A (0,1)的对称点P ′(-x,2-y )在h (x )的图象上,∴2-y =-x +1-x +2,∴y =x +1x ,即f (x )=x +1x . (2)g (x )=x 2·[f (x )-a ]=x 3-ax 2+x ,又g (x )在区间[1,2]上为增函数,∴g ′(x )=3x 2-2ax +1≥0在[1,2]上恒成立,即2a ≤3x +1x 在[1,2]上恒成立,注意到函数r (x )=3x +1x 在[1,2]上单调递增.故r (x )min =r (1)=4.于是2a ≤4,a ≤2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的图像及函数与方程
一、温故
对称变换:①奇函数的图象关于______对称;偶函数的图象关于____轴对称; ②f (x )与f (-x )的图象关于____轴对称;③f (x )与-f (x )的图象关于____轴对称;
④f (x )与-f (-x )的图象关于______对称;⑤f (x )与f (2a -x )的图象关于直线______对称; ⑥|f (x )|的图象先保留f (x )原来在x 轴______的图象,作出x 轴下方的图象关于x 轴的对称图形,然后擦去x 轴下方的图象得到;
⑦f (|x |)的图象先保留f (x )在y 轴______的图象,擦去y 轴左方的图象,然后作出y 轴右方的图象关于y 轴的对称图形得到.
如果函数y =f (x )在区间[a ,b ]上的图象是一条不间断的曲线,且____________,那么函数y =f (x )在区间________上有零点.
二、例题讲解
考点一 作图
例1 (1)作函数y =|x -x 2|的图象(2)作函数y =x 2-|x |的图象;
(3)作函数y =1|x |-1
的图象.(4)作函数x y --=524的图像
(5)作函数2log 2-=x y 的图像
考点二 识图
例2 (1)函数2log 2x y =|的图象大致是________(填入正确的序号).
(2)函数f (x )的部分图象如图所示,则函数f (x )的解析式是下列四者之一,正确的序号为________.
①f (x )=x +sin x ;②f (x )=cos x x ;③f (x )=x cos x ;④f (x )=x ·(x -π2)·(x -3π2
). 变式 已知y =f (x )的图象如图所示,则y =f (1-x )的图象为________(填序号).
例3.已知f (x )=⎝⎛⎭⎫13x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的
表达式为________.
例4. 函数f (x )=⎩⎪⎨⎪⎧
3x ,x ≤1,log 13x ,x >1,则y =f (x +1)的图象大致是________.
变式1.已知图1是函数y =f (x )的图象,则图2中的图象对应的函数可能是________(填序号).
①y =f (|x |);②y =|f (x )|;③y =f (-|x |);④y =-f (-|x |).
变式2.已知f (x )=a x -
2,g (x )=log a |x |(a >0且a ≠1),若f (4)·g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是________(填序号).
变式3.已知函数y =f (x )(x ∈R )满足f (x +1)=f (x -1),且x ∈[-1,1]时,f (x )=x 2,则函数y =f (x )与y =log 5x 的图象交点的个数为________.
变式4. 已知函数f (x )=|x 2-4x +3|.
(1)求函数f (x )的单调区间,并指出其增减性;
(2)若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.
考点三 图象的应用
例5 直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围为________.
变式1:若函数()22
241f x x a x a =++-的零点有且只有一个,则实数a =___________.
变式2:已知函数()421x x
f x m =+⋅+有且只有一个零点,则实数m 的值为.
变式3:使log 2(-x )<x +1成立的x 的取值范围是________.
变式4:已知函数f (x )=⎩⎪⎨⎪⎧
2x -1,x >0,-x 2-2x ,x ≤0.若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.
变式5:已知函数f (x )=x 2+(1-k )x -k 的一个零点在(2,3)内,则实数k 的取值范围是________.
变式6:已知a 是实数,函数f (x )=2ax 2+2x -3-a ,如果函数y =f (x )在区间[-1,1]上有两个零点,求a 的取值范围.
变式7若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是________.
例6:若()y f x =是定义在R 上周期为2的周期函数, 且()f x 是偶函数, 当[0,1]x ∈时, ()21x f x =-, 则函数5()()log ||g x f x x =-的零点个数为.
变式:设,m n Z ∈,已知函数()()2log 4f x x =-+的定义域是[],m n ,值域是[]0,2, 若关于x 的方程12
10x m -++=有唯一的实数解,则m n +=.
思考:若关于的方程
有四个不同的实数根,则实数的取值范围是.
变式:设定义域为R 的函数1251,0()44,0
x x f x x x x -⎧-≥⎪=⎨++<⎪⎩,若关于x 的方程22()(21)()0f x m f x m -++=有5个不同的实数解,则m = x 2||1
x kx x =-k。