广州大学_622数学分析2017_考研专业课真题

合集下载

2017考研数学二真题及答案解析

2017考研数学二真题及答案解析

2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1))若函数1cos ,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则()(A)12ab =(B)12ab =-(C)0ab =(D)2ab =【答案】A【解析】001112lim lim ()2x x xf x ax ax a ++→→-== 在0x =处连续11.22b ab a ∴=⇒=选A.(2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则()()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰【答案】B 【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B.(3)设数列{}n x 收敛,则()()A 当lim sin 0n n x →∞=时,lim 0n n x →∞=()B当lim(0n n x →∞+=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞=()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有lim sin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.(4)微分方程的特解可设为(A )22(cos 2sin 2)xx Ae e B x C x ++(B )22(cos 2sin 2)xx Axee B x C x ++(C )22(cos 2sin 2)xx Aexe B x C x ++(D )22(cos 2sin 2)xx Axee B x C x ++【答案】A【解析】特征方程为:21,248022iλλλ-+=⇒=±222*2*212()(1cos 2)cos 2,(cos 2sin 2),x x x x xf x e x e e x y Ae y xe B x C x =+=+∴==+ 故特解为:***2212(cos 2sin 2),xx y y y Aexe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则(A )(0,0)(1,1)f f >(B )(0,0)(1,1)f f <(C )(0,1)(1,0)f f >(D )(0,1)(1,0)f f <【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数,所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则()(A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=()(A )12αα+(B )232αα+(C )23αα+(D )122αα+【答案】B【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。

考研数学二真题及解析

考研数学二真题及解析

2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1))若函数1,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则() (A)12ab =(B)12ab =-(C)0ab = (D)2ab =【答案】A【解析】001112lim lim ,()2x x xf x ax ax a++→→-==在0x =处连续11.22b ab a ∴=⇒=选A. (2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则() 【答案】B【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx x dx --=-=-<⎰⎰,选B. (3)设数列{}n x 收敛,则()()A 当limsin 0n n x →∞=时,lim 0n n x →∞=()B当lim(0n n x →∞=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞=()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有limsin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D. (4)微分方程的特解可设为(A )22(cos 2sin 2)x x Ae e B x C x ++(B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)x x Ae xe B x C x ++(D )22(cos 2sin 2)x x Axe e B x C x ++ 【答案】A【解析】特征方程为:21,248022i λλλ-+=⇒=± 故特解为:***2212(cos 2sin 2),x x y y y Ae xe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f >(B )(0,0)(1,1)f f <(C )(0,1)(1,0)f f >(D )(0,1)(1,0)f f < 【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数,所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则() (A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为0120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=()(A )12αα+(B )232αα+(C )23αα+(D )122αα+ 【答案】B【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。

2017年全国硕士研究生入学统一考试数学一真题及答案解析

2017年全国硕士研究生入学统一考试数学一真题及答案解析

2017年全国硕士研究生入学统一考试数学一真题及答案解析一、选择题(1~8小题,每小题4分,共32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。

)(B 21-=ab 。

)(C 0=ab 。

D (2=ab 。

【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。

(2)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。

)(B )1()1(-<f f 。

)(C |)1(||)1(|->f f 。

)(D |)1(||)1(|-<f f 。

【答案】)(C【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。

(3)函数22),,(z y x z y x f +=在点)0,2,1(处沿向量}2,2,1{=的方向导数为( ))(A 12。

)(B 6。

)(C 4。

)(D 2。

【答案】)(D【解】xy x f 2=∂∂,2x y f=∂∂,z zf 2=∂∂, 4|)0,2,1(=∂∂x f ,1|)0,2,1(=∂∂y f,0|)0,2,1(=∂∂zf , 32cos ,32cos ,31cos ===γβα,所求的方向导数为2321314|)0,2,1(=⨯+⨯=∂n,应选)(D 。

(4)甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中,实线表示甲的速度曲线)(1t v v =(单位:s m /),虚线表示乙的速度曲线)(2t v v=,三块阴影部分面积的数值依次为3,20,10,计时开始后乙追甲的时刻为0t (单位:s ),则( ))(A 100=t 。

2017考研数学真题及答案汇总

2017考研数学真题及答案汇总

2017考研数学真题及答案汇总
考研英语真题考研数学真题
政治真题
专业课真题英语一真题英语二真题数学一真题数学二真题数学三真题数农真题考研英语答案考研数学答案
政治答案
专业课答案英语一答案英语二答案数学一答案数学二答案数学三答案数农答案2017年考研即将到来,出国留学网考研数学频道将在考后第一时间为大家提供2017考研数学真题及答案汇总,
2017考研数学真题及答案汇总年份数学一数学二数学三数农2017真题答案真题答案真题答案真题答案小编精心为您推荐:
2017考研数学真题及答案解析汇总
2017考研英语一真题及答案已公布
2017考研英语作文真题及范文汇总
2017考研真题及答案汇总
2017考研政治真题及答案
2017考研分数线信息汇总
2017考研成绩查询信息汇总
2017考研国家线信息汇总
2017全国考研调剂信息汇总
2017全国考研复试信息汇总
2017年34所自划线高校分数线汇总。

广州大学数学分析第一学期试卷(B)

广州大学数学分析第一学期试卷(B)

广州大学2005-2006 学年第一学期试卷课程 数学分析 考试形式(闭卷,考试)数信学院数学系 04级 ①②③④⑤⑥班 学号姓名一、填 空 题 ( 共 10分 ,2分 / 题)1 、将函数展开为麦克劳林级数⎰xdt t e 02= _____________。

2 、 将=)(x f {,10,<<-<≤x x x ππ展开的傅里叶级数在点0处收敛于_____。

3 、方程 1)cos(2=++y x xe y x 在点( 0 ,0 )附近可以确定的隐函数关系为_______________。

4 、⎰=-→200cos lim 2πααxdx ex ___________。

5、⎰⎰++SdS z y x )( = 。

其中S 为平面 1=++z y x 在第一卦限部分 。

二、单项选择题 (2分/题 ,共10分)1、幂级数∑∞=-1)1(n nn n x 的收敛半径与收敛域为___________。

A 、 -1 ,( - 1 , 1 ] ;B 、 1 ,[ - 1 , 1 ] ;C 、1, ( - 1 , 1 ];D 、1 , [ - 1 , 1 ) 。

2、关于f ( x , y ) = {)0,0(),(0)0,0(),(22=≠+y x y x y x xy不正确结论为 。

A 、0),(lim )0,0(),(=→y x f y x ; B 、),(y x f 在点( 0 , 0 )连续;C 、),(y x f 在点( 0 , 0 )偏导数存在;D 、),(y x f 在点( 0 , 0 )可微。

3、f 在平面光滑曲线段⋂AB 上连续,则下列叙述正确的是。

A 、⎰⋂BAds y x f ),(=-⎰⋂ABds y x f ),(; B 、⎰⋂BAdx y x f ),(=-⎰⋂ABdx y x f ),(;C 、⎰⋂ABds y x f ),(=⎰⋂ABdx y x f ),(;D 、若f ( x , y )在L 上非负,则⎰⋂ABdx y x f ),(0≥。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档