2021高考数学专项预测《压轴题大全》+答案、解析
2021年高考压轴卷 数学(理) 含解析
2021年高考压轴卷数学(理)含解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1. 已知复数满足,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 设集合,集合,则 = ()A. B. C. D.3.设是两个不同的平面,直线,则“”是“”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4. 某几何体的三视图如图所示,则它的表面积为( ).A. B. C. D.5.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.1206.按照如图的程序运行,已知输入的值为,则输出的值为( )A. 7B. 11C. 12D. 247.已知是公差为的等差数列,为的前项和.若成等比数列,则()A. B. C. D.8.一个大风车的半径为8m,12min旋转一周,它的最低点Po离地面2m,风车翼片的一个端点P从P o开始按逆时针方向旋转,则点P离地面距离h(m)与时间f(min)之间的函数关系式是()A. B.C. D.9.设函数是()的导函数,,且,则的解集是( )A. B. C. D.10. 已知点是抛物线的对称轴与准线的交点,点为该抛物线的焦点,点在抛物线上且满足,当取最小值时,点恰好在以,为焦点的双曲线上,则该双曲线的离心率为()A. B. C. D.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11. 已知向量,满足,,则 .12. 二项式展开式中的常数项为 .13. 若x,y满足约束条件则目标函数z=﹣2x+y的最小值为.14.已知点在单位圆上运动,点到直线与的距离分别记为、,则最小值为__________.15.现定义一种运算“”;对任意实数,,设,若函数的图象与轴恰有二个公共点,则实数的取值范围是__________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(本小题满分12分)在中,内角的对边为,已知.(1)求角的值;(2)若,且的面积为,求.17. (本小题满分12分)在三棱柱中,,侧棱平面,且,分别是棱,的中点,点在棱上,且.(1)求证:平面;(2)求二面角的余弦值.18.(本小题满分12分)已知等差数列的前项和满足:,,数列的前项和满足:,.(Ⅰ)求与;(Ⅱ)比较与的大小,并说明理由.19. (本小题满分12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按 1小时计算).有甲、乙两人独立来该租车点车租骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.20. (本小题满分13分)已知直线被圆截得的弦长恰与椭圆的短轴长相等,椭圆的离心率.(1)求椭圆的方程;(2)已知过点的动直线交椭圆于两点,试问:在轴上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标,若不存在,请说明理由.21. (本小题满分14分)已知函数ln()()ln(),[,0),(),xf x ax x x eg x ex-=--∈-=-其中是自然对数的底数,.(1)当时,讨论函数的单调性并求的最小值;(2)求证:在(1)的条件下,;(3)是否存在实数,使的最小值是,如果存在,求出的值;若不存在,请说明理由.xx山东高考压轴卷数学理word版参考答案1.【答案】D【解析】由题意得,所以,所以在复平面内对应的点位于第四象限,故选D.2.【答案】A【解析】由已知,,所以.故选A.3.【答案】C【解析】一条直线垂直于两个不同的平面,则这两个平面平行;反之也成立(面面平行的判定与性质)。
2021届高考数学复习压轴题训练双曲线2含解析
双曲线一、单项选择题1.1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左,右焦点,过1F 的直线交双曲线的左支于A ,B 两点,假如113AF F B =,23cos 5AF B ∠=,如此双曲线的离心率(e =)A .52B .52C .102D .53 解:设1||BF m =,如此1||3AF m =,由双曲线的定义知,21||||2BF BF a -=,21||||2AF AF a -=,2||2BF m a ∴=+,2||32AF m a =+,在2ABF ∆中,由余弦定理知,22222222||||||cos 2||||AF BF AB AF B AF BF +-∠=⋅,∴2223(32)(2)(4)52(32)(2)m a m a m m a m a +++-=++,化简得,22230a am m +-=, m a ∴=或13m a =-〔舍负〕,1||BF a ∴=,2||3BF a =,2||5AF a =,||4AB a =, 22222||||||AB BF AF ∴+=,即290ABF ∠=︒,2221212||||||BF BF F F ∴+=,即222(3)(2)a a c +=,2252a c ∴=,∴离心率102c e a ==.2.双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,假如直线:l y x =,3[,3]3∈与双曲线C 交于M 、N 两点,且11MF NF ⊥,如此双曲线C 的离心率的取值X 围是() A .(1,2)B .[2,2)C .[2,31]+D .(2,31]+解:如图,由直线:l y x =,3[,3]3∈,可得直线l 的倾斜角为[6πα∈,]3π, 11MF NF ⊥,∴由对称性可得四边形12MF NF 为矩形,如此12||||2MN F F c ==,如此||ON c =,得(cos ,sin )N c c αα,由N 在双曲线上,可得22222221c cos c sin a c aαα-=-, 整理可得:422cos 210e e α-+=. 解得211sin e α=-或211sin e α=+〔舍).[6πα∈,]3π,222243(31)23e ∴=+=-,231e +;又3b a >∴2223c a a ->,即224c a >,得2c e a =>.∴双曲线C 的离心率的取值X 围是(231].曲线C 的左、右支上,假如5MN AM =,2MB MN MB =⋅,且||||MB NB <,如此双曲线C 的离心率为()解:设||AM m =,如此||5(0)MN m m =>,22()MB MN MB MB BN MB MB BN MB =⋅=+⋅=+⋅,∴0BN MB ⋅=,即BN MB ⊥,如此222||||||MB BN MN +=,即222(2)(62)(5)a m m a m ++-=, 解得m a =或23m a =.①假如23m a =时,8||3BM a =,||2NB a =,不满足||||MB NB <〔舍去〕,②假如m a =时,||3BM a =,||4NB a =,满足||||MB NB <,如此m a =.||44cos ||55BN a MNB MN a ∠===, 在ANB ∆中,222||||||2||||cos AB AN BN AN BN MNB =+-⋅∠ 即2224436162645c a a a a =+-⨯⨯⨯,整理得226845c a =,即2175e =,得e =. 应当选:B .4.双曲线22:1916x y C -=,其左、右焦点分别为1F ,2F ,点M 的坐标为(3,2),双曲线C 上的点0(P x ,00)(0y x >,00)y >满足11121112||||F P F M F F F M F P F F ⋅⋅=,如此1PMF ∆与2PMF ∆面积的差12(PMF PMF SS-=)A .2-B .2C .4D.6解:双曲线22:1916x y C -=的3a =,4b =,5c =,11121112||||F P F M F F F M F P F F ⋅⋅=,11112||cos ||cos MF MF P MF MF F ∴⋅∠=⋅∠,112MF P MF F ∴∠=∠,1(5,0)F -、2(5,0)F ,点(3,2)M ,1||217MF ∴=2||22MF =,12||210F F c ==,故由余弦定理可得222112212112||||||cos 2||||22171017MF F F MF MF F MF F F +-∠===⋅⋅⋅,2121215cos 2cos 117PF F MF F ∴∠=∠-=, 212128sin 117PF F cos PF F ∴∠=-∠, 121212sin 8tan cos 15PF F PF F PF F ∠∴∠==∠,∴直线1PF 的方程为8(5)15y x =+. 把它与双曲线联立可得16(5,)3P ,134||3PF ∴=,12sin MF F ∴∠=113434233S MPF ∴∆=⋅⋅=,2116162233PMF S=⋅⋅=,∴123416633PMF PMF S S-=-=. 应当选:D .是以1F P 为底边的等腰三角形,且2160120PF F ︒<∠<︒,如此该双曲线的离心率的取值X 围是()解:△12PF F 是以1F P 为底边的等腰三角形,212||||2PF F F c ∴==,在△12PF F 中,由余弦定理知,222112212221||||||2||||cos PF F F PF F F PF PF F =+-⋅∠222212144222cos 8(1cos )c c c c PF F c PF F =+-⋅⋅⋅∠=-∠1||PF ∴=由双曲线的定义知,122|||||||2|a PF PF c =-=,2160120PF F ︒<∠<︒,∴2111cos 22PF F -<∠<,∴<,∴022)c c <<,∴02(232)a c <<-,∴离心率312c e a +=>,即31(,)2e +∈+∞. 应当选:B .6.双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点P 在双曲线C 支上,满足1212||||PF PF PF PF +=-,12||3||PF PF >,又直线:3430l x y c +-=与双曲线C的左、右两支各交于一点,如此双曲线C 的离心率的取值X 围是()A .105(,)34B .135(,)34C .513(,)42D .510(,)42 解:以1PF ,2PF 为边,作平行四边形12PF EF , 如下列图:如此12PF PF PE +=,1221PF PF F F -=, 又1212||||PF PF PF PF +=-,所以21||||PE F F =,因为对角线相等的平行线四边形是矩形,所以12PF PF ⊥, 根据双曲线的性质,可知12||||2PF PF a -=,因为12||3||PF PF >,所以122||||22||PF PF a PF -=>, 即2||PF a <,12||2||3PF a PF a =+<,在Rt △12PF F 中,有22221212||||||4PF PF F F c +==,又12||||2PF PF a -=,所以2222121212(||||)||||2||||4PF PF PF PF PF PF a -=+-=, 所以2222212122||||||||444PF PF PF PF a c a ⋅=+-=-, 因为2||PF a <,1||3PF a <,即212||||3PF PF a ⋅<,所以222122||||446PF PF c a a ⋅=-<,解得22252c e a =<,又因为双曲线的离心率(1,)e ∈+∞,所以1e << 由题意知,双曲线的渐近线方程为by x a=±,又直线:3430l x y c +-=与双曲线C 的左右两支各交于一点, 所以直线l 的斜率大于双曲线的渐近线by x a =-的斜率,所以34b a -<-,即34b a >,所以2222229116b c a e a a -==->,解得54e >〔或54e <-舍去〕,综上所述,5(4e ∈. 应当选:D .心率的取值X 围是()解:由题意可知FM FN ⊥,设双曲线右焦点为F ',如此四边形MFNF '为矩形,OM OF c ∴='=,MF FN '=,设MF m =,MF n '=,如此2224m n c +=,由双曲线定义可知:2m n a -=,故22224m n mn a +-=,2222mn c a ∴=-,2212MFF S mn c a ∆'∴==-,设FMN α∠=,如此2MOF α∠'=,故211sin 2sin 222MOF S c c c αα∆'==, 又2MFF MOF S S ∆'∆'=,222sin 2c a c α∴-=,5[,]312FNM ππ∠∈,所以[,]126ππα∈故22(1sin 2)a c α=-,22211sin 2c e a α∴==-,2[6πα∴∈,]3π,1sin 2[2α∴∈,22e ∴,故2e.并且2423e +,故31e +.该双曲线的离心率的取值X 围是1]应当选:B .8.设1F 、2F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共点,且12||||PF PF <,线段1||PF 垂直平分线经过2F ,假如1C 和2C 的离心率分别为1e 、2e ,如此129e e +的最小值() A .2B .4C .6D .8解:设椭圆1C 的方程为2222111x y a b +=,焦距为12c ,双曲线2C 的方程为2222221x y a b -=,焦距为22c ,1F 、2F 是椭圆1C 和双曲线2C 的公共焦点,1222c c c ∴==.线段1||PF 垂直平分线经过2F ,212||||2PF F F c ∴==,12||22PF a c =-+,由1212||||242PF PF a c a +==-,得122a a c +=, 如此1212112a a e e c ++==,如此12111()12e e +=, 10e >,20e >,∴1212121221911119(9)()(10)22e e e e e e e e e e +=++=++1221911(102)(1023)822e e e e +⋅=+⨯=. 当且仅当123e e =时,上式等号成立.129e e ∴+的最小值为8.应当选:D .9.双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,以1OF 为直径的圆与双曲线的一条渐近线交于点M ,假如线段1MF 交双曲线于点P ,且21||5||PF PF =,如此双曲线的离心率为()A .264B .344C .2D .3 解:由双曲线的定义知,21||||2PF PF a -=,21||5||PF PF =,1||2a PF ∴=,25||2aPF =, 点M 在以1OF 为直径的圆上,190F MO ∴∠=︒,∴焦点1(,0)F c -到渐近线b y x a =-的距离12||||()1bc a MF b ba⋅==+,在Rt △1F MO 中,1121||cos ||MF bMF F OF c∠==, 在△12PF F 中,由余弦定理知,22222222112212112254||||||2344cos 2||||222a a c PF F F PF c a MF F a PF F F ac c +-+--∠===⋅⨯⨯, ∴2223b c a c ac-=,化简得2223c a ab -=, 2222()3a b a ab ∴+-=,解得b a =或2b a =-〔舍),22221()2a b b e a a+∴==+=.应当选:C .10.点1F 、2F 分别为双曲线2222:1(0,0)x y T a b a b-=>>的左、右焦点,过2F 的直线与双曲线T 的左、右两支分别交于A 、B 两点,假如11||:||:||5:5:4AF BF AB =,如此双曲线T 的离心率为()A .462B .46C .27D .7 解:11||:||:||5:5:4AF BF AB =,设2||BF m =,1||5AF t =,||4AB t =,如此1||5BF t =,1||5AF t =,根据双曲线的定义,得2112||||||||2AF AF BF BF a -=-=, 即4552t m t t m a +-=-=,解得t a =,3m a =,即1||5AF a =,2||7AF a =,1||5BF a =,|△21F BF 中,22212121221||||||2||||cos F F BF BF BF BF F BF =+-⋅∠222214925235cos c a a a a F BF =+-⨯⨯⨯∠,在三角形12ABF F 中,2221111||||||2||||cos AF BF AB BF AB ABF =+-⋅∠222141625245cos c a a a a ABF =+-⨯⨯⨯∠,211cos cos 0F BF ABF ∠+∠=,22446c a =,可得462c a =, 因此,该双曲线的离心率462e =. 应当选:A .二、多项选择题11.1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,1A ,2A 分别为其实轴的左、右端点,且212||b F F a=,点P 为双曲线右支一点,I 为△12PF F 的内心,如此如下结论正确的有()A .离心率21e =+B .点I 的横坐标为定值aC .假如1212()IPF IPF IF F SSSR λλ=+∈成立,如此21λ=-D .假如PH 垂直x 轴于点H ,如此212||||||PH HA HA =⋅解:212||2b F F c a==,且222b c a =-,2220c ac a ∴--=,1ce a=>,2210e e ∴--=,21e ∴=+,即选项A 正确;设内切圆I 与△12PF F 的三边分别相切于点M ,N ,T ,如下列图, 由圆的切线长定理知,||||PM PN =,11||||F M FT =,22||||F N F T =,由双曲线的定义知,1212122||||||||(||||)||||a PF PF PM F M PN F N FT F T =-=+-+=-, 而12||||2FT F T c +=,1||FT c a ∴=+,2||FT c a =-,(,0)T a ∴,即点I 的横坐标为定值a ,应当选项B 正确;设圆I 的半径为r ,1212()IPF IPF IF F SSSR λλ=+∈,∴1212111||||||222PF r PF r F F r λ⋅=⋅+⋅⋅,即1212||||||PF PF F F λ=+, 1212||||||PF PF F F λ∴-=,即22a c λ=⋅,11a c e λ∴====,即选项C 正确; 假设点P 在第一象限,设其坐标为(,)m n ,如此22221m n a b-=,PH 垂直x 轴于点H ,22222||(1)m PH n b a∴==-,1||HA m a =+,2||HA m a =-,2212||||()()HA HA m a m a m a ∴⋅=+-=-,假如212||||||PH HA HA =⋅,如此22222(1)m b m a a-=-,化简得22m a =,此时点P 与H 重合,不符合题意,即选项D 错误.应当选:ABC .为双曲线的半焦距〕,点P 为双曲线右支上的点,点I 为△12PF F 的内心.假如1212IPF IPF IF F SSSλ=+成立,如此如下结论正确的答案是()C.512λ-=D.点I的横坐标为定值a解:a,b,c成等比数列,2b ac∴=,对于A,当2PF x⊥轴时,点P为2(,)bca,221212||1tan||222bPF acaPF FF F c ac∴∠====,显然1230PF F∠≠︒,即选项A错误;对于B,222b ac c a==-,1cea=>,210e e∴--=,解得152e±=〔舍负〕,即选项B正确;对于C,设圆I的半径为r,1212IPF IPF IF FS S Sλ=+,∴1212111||||||222r PF r PF r F Fλ⋅=⋅+⋅⋅,即1212||||||PF PF F Fλ=+,由双曲线的定义知,12||||2PF PF a-=,22a cλ∴=⋅,即1512ac eλ-===,应当选项C正确;对于D,设直线1PF,2PF和12F F分别与圆I相切于点M,N,T,如下列图,由双曲线的定义和切线长的性质可知,1212||||2||||PF PF a TF TF-==-,12||||2TF TF c +=,2||TF c a ∴=-,即(,0)T a ,∴点I 的横坐标为定值a ,即选项D 正确.应当选:BCD .的面积为20,如此如下说法正确的答案是()解:设△12F PF 的内心为I ,连接IP ,1IF ,2IF ,双曲线22:1169x y E -=中的4a =,3b =,5c =,不妨设(,)P m n ,0m >,0n >,由△12PF F 的面积为20,可得121||5202F F n cn n ===,即4n =,由2161169m -=,可得203m =,故A 符合题意;由20(3P ,4),且1(5,0)F -,2(5,0)F , 可得12135kPF =,1225kPF =,如此121212360535tan 12123191535F PF -∠==∈⨯+⨯,如此123F PF π∠<,故C 符合题意;由2123525371350||||161699333PF PF +=+++=+=, 如此△12PF F 的周长为50801033+=,故B 符合题意; 设△12PF F 的内切圆半径为r ,可得12121211(||||||)||422r PF PF F F F F ++=,可得80403r =,解得32r =,故D 不符合题意.应当选:ABC .14.1F ,2F 分别为双曲线22221(0,0)x y a b a b -=>>的左右焦点,且2122||b F F a=,点P 为双曲线右支上一点,I 为△12PF F 的内心,过原点O 作PI 的平行线交1PF 于K ,假如1212IPF IPF IF F SSSλ=+成立,如此如下结论正确的有()A .512λ-=B .512λ+= C .点I 的横坐标为a D .PK a = 解:2122||b F F a =,2222222b c a c a a-∴==,整理得210(e e e --=为双曲线的离心率〕,1e >,15e +∴=设△12PF F 的内切圆半径为r ,由双曲线的定义得12||||2PF PF a -=,12||2F F c =,111||2IPF SPF r =,221||2IPF S PF r =,12122IF F S c r cr ==, 1212IPF IPF IF F SSSλ=+,∴1211||||22PF r PF r cr λ=+, 故12||||51215PF PF a c c λ--===+,所以A 正确,B 错误. 设内切圆与1PF 、2PF 、12F F 的切点分别为M ,N ,T , 可得||||PM PN =.11||||F M FT =,22||||F N F T =.由121212||||||||||||2PF PF F M F N FT F T a -=-=-=,1212||||||2F F FT F T c =+=, 可得|2|F T c a =-,可得T 的坐标为(,0)a ,即I 的横坐标为a ,故C 正确; 设PI 延长线与12F F 交于H ,可得2211||||||||PF F H PF F H =,由12||||2PF PF a -=, 可得1122||||||a OH PF F H =,①由三角形的相似的性质可得11||||||||PF PK OH HF =,② 由①②可得||PK a =.故D 正确.应当选:ACD .三、填空题解:由双曲线方程22194x y -=,得(3,0)A -,由题意设0(B x ,00)(0)y x <,如此点0(C x -,0)y ,得2200194x y -=,且00y ≠. 直线AB 的斜率003ABy x =+,如此直线BD 的方程为00003()x y y x x y +-=--. 同理可得直线CD 的方程为00003()x y y x x y --=+, 联立000000003()3()x y y x x y x y y x x y +⎧-=--⎪⎪⎨-⎪-=+⎪⎩,解得03134x y y =⎧⎪⎨=⎪⎩,如此013(3,)4y D ,结合0||2||BC x =,得0000013192||||||244BCD y S x y x y ∆=⨯⨯-=,BCD S ∆=∴22009(||)4x y =,又2200194x y -=,∴42004120y y +-=,解得202y =,如此0||x =, 0||2||BC x ∴==.故答案为:36.16.如图,F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,过点F 的直线交两渐近线于A ,B两点.假如120OAB ∠=︒,OAB ∆内切圆的半径35a b r -=,如此双曲线的离心率为194.解:过(,0)F c 作FH 垂直渐近线b y x a =于H ,如此2||||1()bc a FH b b a⋅==+, 120OAB ∠=︒,60FAH ∴∠=︒,23||3AF b ∴=, 在OAF ∆中,由余弦定理知,222||||||2||||cos120OF OA AF OA AF =+-⋅⋅︒,即2222323||()2||cos12033c OA b OA b =+-⋅⋅⋅︒, 解得3||3OA a b =-,设OAB ∆的内心为M ,作MN OA ⊥于N ,如此60MAO ∠=︒,||MN r ==,|||AN MN ∴==||||||ON OA AN a =-=--=||tan ||MN MON ON ∴∠===b a =,e ∴==.(0)k k >的直线l 与双曲线的右支交于A ,B 两点,△12AF F 的内切圆圆心为1O ,半径为1r ,△12BF F 的内切圆圆心为2O ,半径为2r ,如此直线12O O 的方程为:x a =;假如123r r =,如此k =.解:△12AF F 的内切圆圆心为1O ,边1AF 、2AF 、12F F 上的切点分别为M 、N 、E , 如此||||AM AN =,11||||F M F E =,22||||F N F E =,由12||||2AF AF a -=,得12||||(||||)2AM MF AN NF a +-+=,如此12||||2MF NF a -=, 即12||||2F E F E a -=,记1O 的横坐标为0x ,如此0(E x ,0), 于是00()2x c c x a +--=,得0x a =,同理可得内心2O 的横坐标也为a ,如此有直线12O O 的方程为x a =;设直线l 的倾斜角为θ,如此222OF O θ∠=,12902O F O θ∠=︒-,在△12O EF 中,1122tan tan(90)2||r O F O EF θ∠=︒-=,在△22O EF 中,2222tan tan2||r O F O EF θ∠==, 由123r r =,可得3tantan(90)cot 222θθθ=︒-=, 解得3tan23θ=, 如此直线的斜率为2232tan32tan 311123tan θθθ===--. 3k ∴=.故答案为:a ;3.18.双曲线2212:1(0)y C x b b-=>的一条渐近线方程为3y x =,如此双曲线1C 的离心率为2;假如抛物线22:2(0)C y px p =>的焦点F 与双曲线1C 的一个焦点一样,M 是抛物线2C 上一点,FM 的延长线交y 轴的正半轴于点N ,交抛物线2C 的准线l 于点P ,且3FM MN =,如此||NP =.解:由双曲线2212:1(0)y C x b b-=>的一条渐近线方程为3y x =,得3b =∴222c a b =+=,如此双曲线1C 的离心率为2ce a==; 且双曲线1C 的右焦点为(2,0),而抛物线22:2(0)C y px p =>的焦点F 与双曲线1C 的一个焦点一样, ∴抛物线22:2(0)C y px p =>的焦点F 为(2,0),如此22p=,4p =. ∴抛物线22:8C y x =.抛物线2:8C y x =的焦点为(2,0)F ,准线方程为:2l x =-,根据题意画出图形,根据3FM MN =,设||FM a =,如此1||3MN a =,过M 作MA 垂直于准线,垂足为A ,交y 轴于点B ,由抛物线的定义知||||FM MA a ==, 由BMN OFN ∆∆∽,得||||1||||4BM MN OF NF ==, 即11||||42BM OF ==,15||||222MA MF ∴==+=,155||326MN ∴=⨯=.又BMN APM ∆∆∽, ∴||||1||||4MN BM NP AB ==,如此510||4||463NP MN ==⨯=. 故答案为:2;103.。
高考数学复习压轴题型专题讲解与练习01 集合(解析版)
高考数学复习压轴题型专题讲解与练习专题01 集合一、单选题1.(2021·上海杨浦·高三期中)非空集合A ⊆R ,且满足如下性质:性质一:若a ,b A ∈,则a b A +∈;性质二:若a A ∈,则a A -∈.则称集合A 为一个“群”以下叙述正确的个数为( )①若A 为一个“群”,则A 必为无限集;②若A 为一个“群”,且a ,b A ∈,则a b A -∈;③若A ,B 都是“群”,则A B 必定是“群”;④若A ,B 都是“群”,且A B A ≠,A B B ≠,则A B 必定不是“群”;A .1B .2C .3D .4【答案】C【分析】根据性质,运用特例法逐一判断即可.【详解】①:设集合{}1,0,1A =-,显然110,101,101-+=-+=-+=,符合性质一,同时也符合性质二,因此集合{}1,0,1A =-是一个群,但是它是有限集,故本叙述不正确; ②:根据群的性质,由b A ∈可得:b A -∈,因此可得a b A -∈,故本叙述是正确; ③:设A B C =,若c C ∈,一定有,c A c B ∈∈,因为A ,B 都是“群”,所以,c A c B -∈-∈,因此c C -∈,若d C ∈,所以,d A d B ∈∈,c d C +∈,故本叙述正确;④:因为A B A ≠,A B B ≠,一定存在a A ∈且a B ∉,b A ∉且b B ∈,因此a b A +∉且a b B +∉,所以()a b A B +∉,因此本叙述正确,故选:C【点睛】关键点睛:正确理解群的性质是解题的关键.2.(2021·贵州贵阳·高三开学考试(文))“群”是代数学中一个重要的概念,它的定义是:设G 为某种元素组成的一个非空集合,若在G 内定义一个运算“*”,满足以下条件:①a ∀,b G ∈,有a b G *∈②如a ∀,b ,c G ∈,有()()a b c a b c **=**;③在G 中有一个元素e ,对a G ∀∈,都有a e e a a *=*=,称e 为G 的单位元;④a G ∀∈,在G 中存在唯一确定的b ,使a b b a e *=*=,称b 为a 的逆元.此时称(G ,*)为一个群.例如实数集R 和实数集上的加法运算“+”就构成一个群(),+R ,其单位元是0,每一个数的逆元是其相反数,那么下列说法中,错误的是( )A .G Q =,则(),+G 为一个群B .G R =,则(),G ⨯为一个群C .{}1,1G =-,则(),G ⨯为一个群D .G ={平面向量},则(),+G 为一个群【答案】B【分析】对于选项A,C,D 分别说明它们满足群的定义,对于选项B, 不满足④,则(),G ⨯不为一个群,所以该选项错误.【详解】A. G Q =,两个有理数的和是有理数,有理数加法运算满足结合律,0为G 的单位元,逆元为它的相反数,满足群的定义,则(),+G 为一个群,所以该选项正确;B. G R =,1为G 的单位元,但是1a b b a ⨯=⨯=,当0a =时,不存在唯一确定的b ,所以不满足④,则(),G ⨯不为一个群,所以该选项错误;C. {}1,1G =-,满足①②,1为G 的单位元满足③,1-是-1的逆元,1是1的逆元,满足④,则(),G ⨯为一个群,所以该选项正确;D. G ={平面向量},满足①②,0→为G 的单位元,逆元为其相反向量,则(),+G 为一个群,所以该选项正确.故选:B3.(2022·上海·高三专题练习)设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中,R a b ∈,下列说法正确的是( ) A .对任意a ,1P 是2P 的子集,对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集,对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集,存在b ,使得1Q 是2Q 的子集【答案】B【分析】运用集合的子集的概念,令1m P ∈,推得2m P ∈,可得对任意a ,1P 是2P 的子集;再由1b =,5b =,求得1Q ,2Q ,即可判断B 正确,A ,C ,D 错误.【详解】解:对于集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,可得当1m P ∈,即210m am ++>,可得220m am ++>,即有2m P ∈,可得对任意a ,1P 是2P 的子集;故C 、D 错误当5b =时,21{|50}Q x x x R =++>=,22{|250}Q x x x R =++>=,可得1Q 是2Q 的子集;当1b =时,21{|10}Q x x x R =++>=,22{|210}{|1Q x x x x x =++>=≠-且}x R ∈,可得1Q 不是2Q 的子集,故A 错误.综上可得,对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集.故选:B.4.(2022·浙江·高三专题练习)设3124a M a a a =+,其中1a ,2a ,3a ,4a 是1,2,3,4的一个组合,若下列四个关系:①11a =;②21a ≠;③33a =;④44a ≠有且只有一个是错误的,则满足条件的M 的最大值与最小值的差为( )A .233B .323C .334D .454【答案】C【分析】因为只有一个错误,故分类讨论,若①错,有两种情况,若②错则互相矛盾,若③错,有三种情况,若④错,有一种情况,分别求解M 即可得结果.【详解】若①错,则11a ≠,21a ≠,33a =,44a ≠有两种情况:12a =,24a =,33a =,41a =,3124324111a M a a a =+=⨯+= 或14a =,22a =,33a =,41a =,3124342111a M a a a =+=⨯+=; 若②错,则11a =,21a =,互相矛盾,故②对;若③错,则11a =,21a ≠,33a ≠,44a ≠有三种情况:11a =,22a =,34a =,43a =,31244101233a M a a a =+=⨯+=;11a =,23a =,34a =,42a =,312441352a M a a a =+=⨯+=; 11a =,24a =,32a =,43a =,31242141433a M a a a =+=⨯+=; 若④错,则11a =,21a ≠,33a =,44a =只有一种情况:11a =,22a =,33a =,44a =,31243111244a M a a a =+=⨯+= 所以max min 11331144M M -=-= 故选:C 5.(2021·福建·福州四中高三月考)用()C A 表示非空集合A 中元素的个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧*=⎨-<⎩,已知集合{}2|0A x x x =+=,()(){}22|10B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =( )A .0B .1C .2D .3【答案】D【分析】根据条件可得集合B 要么是单元素集,要么是三元素集,再分这两种情况分别讨论计算求解.【详解】由{}2|0A x x x =+=,可得{}1,0A =-因为22()(1)0x ax x ax +++=等价于20x ax 或210x ax ++=,且{}1,0,1A A B =-*=,所以集合B 要么是单元素集,要么是三元素集.(1)若B 是单元素集,则方程20x ax 有两个相等实数根,方程210x ax ++=无实数根,故0a =;(2)若B 是三元素集,则方程20x ax 有两个不相等实数根,方程210x ax ++=有两个相等且异于方程20x ax 的实数根,即2402a a -=⇒=±且0a ≠.综上所求0a =或2a =±,即{}0,22S =-,,故()3C S =, 故选:D .【点睛】关键点睛:本题以A B *这一新定义为背景,考查集合中元素个数问题,考查分类讨论思想的运用,解答本题的关键是由新定义分析得出集合B 要么是单元素集,要么是三元素集,即方程方程20x ax 与方程210x ax ++=的实根的个数情况,属于中档题.6.(2020·陕西·长安一中高三月考(文))在整数集Z 中,被4除所得余数k 的所有整数组成一个“类”,记为[]k ,即[]{}4k n k n Z =+∈,0,1,2,3k =.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =;④“整数a ,b 属于同一‘类’”的充要条件是“[]0a b -∈”.其中正确的个数为( )A .1B .2C .3D .4【答案】C【分析】根据“类”的定义计算后可判断①②④的正误,根据集合的包含关系可判断③的正误,从而可得正确的选项.【详解】因为201550343=⨯+,故[]20153∈,故①错误,而242-=+,故[]22-∈,故②正确.若整数a ,b 属于同一“类”,设此类为[]{}()0,1,2,3r r ∈,则4,4a m r b n r =+=+,故()4a b m n -=-即[]0a b -∈,若[]0a b -∈,故-a b 为4的倍数,故,a b 除以4的余数相同,故a ,b 属于同一“类”, 故整数a ,b 属于同一“类”的充要条件为[]0a b -∈,故④正确.由“类”的定义可得[][][][]0123Z ⊆,任意c Z ∈,设c 除以4的余数为{}()0,1,2,3r r ∈,则[]c r ∈,故[][][][]0123c ∈,所以[][][][]0123Z ⊆, 故[][][][]0123Z =,故③正确.故选:C.【点睛】方法点睛:对于集合中的新定义问题,注意根据理解定义并根据定义进行相关的计算,判断两个集合相等,可以通过它们彼此包含来证明.7.(2021·全国·高三专题练习(理))在整数集Z 中,被6除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}6k n k n Z =+∈,1k =,2,3,4,5给出以下五个结论:①[]55-∈;②[][][][][][]012345Z =;③“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”;④“整数a 、b 满足[]1∈a ,[]2b ∈”的充要条件是“[]3+∈a b ”,则上述结论中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】 根据“类”的定义逐一进行判断可得答案.【详解】①因为[]{}565|n n Z =+∈,令655n +=-,得10563n =-=-Z ∉,所以[]55-∉,①不正确; ②[][][][][][]012345{}{}{}1122336|61|62|n n Z n n Z n n Z =∈+∈+∈{}4463|n n Z +∈{}5564|n n Z +∈{}6665|n n Z +∈Z =,故②正确;③若整数a 、b 属于同一“类”,则整数,a b 被6除所得余数相同,从而-a b 被6除所得余数为0,即[]0a b -∈;若[]0a b -∈,则-a b 被6除所得余数为0,则整数,a b 被6除所得余数相同,故“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”,所以③正确; ④若整数a 、b 满足[]1∈a ,[]2b ∈,则161a n =+,1n Z ∈,262b n =+,2n Z ∈, 所以126()3a b n n +=++,12n n Z +∈,所以[]3+∈a b ;若[]3+∈a b ,则可能有[][]2,1a b ∈∈,所以“整数a 、b 满足[]1∈a ,[]2b ∈”的必要不充分条件是“[]3+∈a b ”,所以④不正确. 故选:B【点睛】关键点点睛:对新定义的理解以及对充要条件的理解是本题解题关键.8.(2021·浙江·路桥中学模拟预测)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈ ,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是( )A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素【答案】A【分析】不妨设{,}S a b =,由②知集合S 中的两个元素必为相反数,设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,得到至少还有另外一个元素m T ∈,分集合T 有2个元素和多于2个元素分类讨论,即可求解.【详解】若S 有2个元素,不妨设{,}S a b =,以为T 中至少有两个元素,不妨设{},x y T ⊆,由②知,x y S y x S -∈-∈,因此集合S 中的两个元素必为相反数,故可设{,}S a a =-, 由①得0T ∈,由于集合T 中至少两个元素,故至少还有另外一个元素m T ∈, 当集合T 有2个元素时,由②得:m S -∈,则,{0,}m a T a =±=-或{0,}T a =.当集合T 有多于2个元素时,不妨设{0,,}T m n =,其中,,,,,m n m n m n n m S ----∈,由于,0,0m n m n ≠≠≠,所以,m m n n ≠-≠-,若m n =-,则n m =-,但此时2,2m n m m m n n n -=≠-=-≠,即集合S 中至少有,,m n m n -这三个元素,若m n ≠-,则集合S 中至少有,,m n m n -这三个元素,这都与集合S 中只有2个运算矛盾,综上,{0,,}S T a a =-,故A 正确;当集合S 有3个元素,不妨设{,,}S a b c =,其中a b c <<,则{,,}a b b c c a T +++⊆,所以,,,,,c a c b b a a c b c a b S ------∈,集合S 中至少两个不同正数,两个不同负数,即集合S 中至少4个元素,与{,,}S a b c =矛盾,排除C ,D.故选:A.【点睛】解题技巧:解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.9.(2021·广东番禺中学高一期中)设{}1,2,3,4I =,A 与B 是I 的子集,若{}1,2A B =,则称(),A B 为一个“理想配集”.规定(),A B 与(),B A 是两个不同的“理想配集”,那么符合此条件的“理想配集”的个数是( )A .4B .6C .8D .9【答案】D【分析】对子集A 分{}1,2A =,{}1,2,3A =,{}1,2,4A =,{}1,2,3,4A =四种情况讨论,列出所有符合题意的集合B 即可求解.【详解】{}1,2,3,4I =,A 与B 是I 的子集,{}1,2A B =, 对子集A 分情况讨论:当{}1,2A =时,{}1,2B =,{}1,2,3B =,{}1,2,4B =,{}1,2,3,4B =,有4种情况;当{}1,2,3A =时,{}1,2B =,{}1,2,4B =,有2种情况; 当{}1,2,4A =时,{}1,2B =,{}1,2,3B =,有2种情况; 当 {}1,2,3,4A =时,{}1,2B =,有1种情况; 所以共有42219+++=种, 故选:D.10.(2020·上海奉贤·高一期中)对于区间(1,10000)内任意两个正整数m ,n ,定义某种运算“*”如下:当m ,n 都是正偶数时,n m n m *=;当m ,n 都为正奇数时,log m m n n *=,则在此定义下,集合(){},4M a b a b =*=中元素个数是( ) A .3个 B .4个 C .5个 D .6个【答案】C 【分析】分别讨论a ,b 都是正偶数时,4b a b a *==,a ,b 都是正奇数时,log 4a a b b *==,所以4a b =,再由,(1,10000)a b ∈即可求出集合M ,进而可得集合M 中的元素的个数. 【详解】因为当m ,n 都是正偶数时,n m n m *=; 当m ,n 都为正奇数时,log m m n n *=,所以当a ,b 都是正偶数时,4b a b a *==,可得2a b ==; 当a ,b 都是正奇数时,log 4a a b b *==,所以4a b =, 因为,(1,10000)a b ∈, 所以3a =,81b =;5a =,625b =; 7a =,2401b =;9a =,6561b =;所以()()()()(){}2,2,3,81,5,625,7,2401,9,6561M =, 所以集合M 中的元素有5个, 故选:C.11.(2021·全国·高三专题练习)设X 是直角坐标平面上的任意点集,定义*{(1X y =-,1)|(x x -,)}y X ∈.若*X X =,则称点集X“关于运算*对称”.给定点集{}22(,)|1A x y x y +==,{}(,)|1==-B x y y x ,(){},|1|||1=-+=C x y x y ,其中“关于运算 * 对称”的点集个数为( )A .0B .1C .2D .3【答案】B 【分析】令1y X -=,1x Y -=,则1y X =-,1x Y =+,从而由A ,B ,C 分别求出*A ,*B ,*C ,再根据点集X “关于运算*对称”的定义依次分析判断即可得出答案. 【详解】解:令1y X -=,1x Y -=, 则1y X =-,1x Y =+,22{(,)|1}A x y x y =+=,*{(A X∴=,22)|(1)(1)1}Y Y X ++-=,故*A A ≠;{(,)|1}B x y y x ==-,*{(,)|111B X Y X Y ∴=-=+-,即1}Y X =-,故*B B ≠;{(,)||1|||1}C x y x y =-+=,*{(,)||11||1|1C X Y Y X ∴=+-+-=,即|||1|1}Y X +-=,故*C C =;所以“关于运算 * 对称”的点集个数为1个. 故选:B.12.(2021·黑龙江·哈师大附中高一月考)设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,那么称0x 为集合X 的聚点.则在下列集合中,以0为聚点的集合是( ) A .{|0}1nn Z n n ∈≥+, B .{|0}x x x ∈≠R ,C .221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣D .整数集Z【答案】B 【分析】根据给出的聚点定义逐项进行判断即可得出答案. 【详解】 A 中,集合{|0}1n n Z n n ∈≥+,中的元素除了第一项0之外,其余的都至少比0大12, 所以在102a <<的时候,不存在满足0x a <<的x ,0∴不是集合{|0}1nn Z n n ∈≥+,的聚点;故A 不正确;B 中,集合{|0}x x x ∈≠R ,,对任意的a ,都存在(2a x =实际上任意比a 小的数都可以),使得02a x a <=<,所以0是集合{|0}x x x ∈≠R ,的聚点;故B 正确;C 中,因为2211n n+>,所以当01a <<时,不存在满足0x a <<的x ,0∴不是集合221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣的聚点,故C 不正确;D ,对于某个1a <,比如0.5a =,此时对任意的x ∈Z ,都有00x -=或者01x -≥,也就是说不可能满足000.5x <-<,从而0不是整数集Z 的聚点.故D 不正确. 综上得以0为聚点的集合是选项B 中的集合. 故选:B .二、多选题13.(2020·广东广雅中学高三月考)设整数4n ≥,集合{}1,2,3,,X n =.令集合{(,,),,S x y z x y z X =∈,且三条件,x y z <<,y z x <<z x y <<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项不正确的是( ) A .(),,y z w S ∈,(),,x y w S ∉ B .(),,y z w S ∈,(),,x y w S ∈ C .(),,y z w S ∉,(),,x y w S ∈ D .(),,y z w S ∉,(),,x y w S ∉【答案】ACD 【分析】根据集合S 的定义可以得到,,x y z 和,,z w x 的大小关系都有3种情况,然后交叉结合,利用不等式的传递性和无矛盾性原则得到正确的选项. 【详解】因为(,,)x y z S ∈,则,,x y z 的大小关系有3种情况,同理,(,,)z w x S ∈,则,,z w x 的大小关系有3种情况,由图可知,,,,x y w z 的大小关系有4种可能,均符合(,,)y z w S ∈,(,,)x y w S ∈,所以ACD 错, 故选:ACD. 【点睛】本题考查新定义型集合,涉及不等式的基本性质,首先要理解集合S 中元素的性质,利用列举画图,根据无矛盾性原则和不等式的传递性分析是关键.14.(2021·河北·石家庄二中高三月考)若集合A 具有以下性质:(1)0A ∈,1A ∈;(2)若x 、y A ,则x y A -∈,且0x ≠时,1A x∈.则称集合A 是“完美集”.下列说法正确的是( )A .集合{}1,0,1B =-是“完美集” B .有理数集Q 是“完美集”C .设集合A 是“完美集”,x 、y A ,则x y A +∈D .设集合A 是“完美集”,若x 、y A 且0x ≠,则yA x∈ 【答案】BCD 【分析】利用第(2)条性质结合1x =,1y =-可判断A 选项的正误;利用题中性质(1)(2)可判断B 选项的正误;当y A 时,推到出y A -∈,结合性质(2)可判断C 选项的正误;推导出xy A ∈,结合性质(2)可判断D 选项的正误.【详解】对于A 选项,取1x =,1y =-,则2x y A -=∉,集合{}1,0,1B =-不是“完美集”,A 选项错误;对于B 选项,有理数集Q 满足性质(1)、(2),则有理数集Q 为“完美集”,B 选项正确; 对于C 选项,若y A ,则0y y A -=-∈,()x y x y A ∴+=--∈,C 选项正确; 对于D 选项,任取x 、y A ,若x 、y 中有0或1时,显然xy A ∈; 当x 、y 均不为0、1且当x A ∈,y A 时,1x A -∈,则()11111A x x x x -=∈--,所以()1x x A -∈,()21x x x x A ∴=-+∈,()()2222221111122A xy xy xy x y x y x y x y ∴=+=+∈+--+--,xy A ∴∈, 所以,若x 、y A 且0x ≠,则1A x∈,从而1yy A x x=⋅∈,D 选项正确. 故选:BCD. 【点睛】本题考查集合的新定义,正确理解定义“完美集”是解题的关键,考查推理能力,属于中等题.15.(2022·全国·高三专题练习)(多选)若非空数集M 满足任意,x y M ∈,都有x y M +∈,x y M-∈,则称M 为“优集”.已知,A B 是优集,则下列命题中正确的是( )A .AB 是优集B .A B 是优集C .若A B 是优集,则A B ⊆或B A ⊆D .若A B 是优集,则A B 是优集【答案】ACD 【分析】结合集合的运算,紧扣集合的新定义,逐项推理或举出反例,即可求解. 【详解】对于A 中,任取,x A B y A B ∈∈,因为集合,A B 是优集,则,x y A x y B +∈+∈,则 x y A B +∈,,x y A x y B -∈-∈,则x y A B -∈,所以A 正确;对于B 中,取{|2,},{|3,}A x x k k Z B x x m m Z ==∈==∈, 则{|2A B x x k ⋃==或3,}x k k Z =∈,令3,2x y ==,则5x y A B +=∉,所以B 不正确; 对于C 中,任取,x A y B ∈∈,可得,x y A B ∈, 因为A B 是优集,则,x y A B x y A B +∈-∈, 若x y B +∈,则()x x y y B =+-∈,此时 A B ⊆; 若x y A +∈,则()x x y y A =+-∈,此时 B A ⊆, 所以C 正确;对于D 中,A B 是优集,可得A B ⊆,则A B A =为优集; 或B A ⊆,则A B B =为优集,所以A B 是优集,所以D 正确. 故选:ACD. 【点睛】解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.16.(2020·山东·高三专题练习)已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( ) A .1M B .2MC .3MD .4M【答案】BD 【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断. 【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以1M 不是“互垂点集”集合;对y = 所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在x y e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合, 故选:BD . 【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.第II 卷(非选择题)三、填空题17.(2021·上海市进才中学高三期中)进才中学1996年建校至今,有一同学选取其中8个年份组成集合{}1996,1997,2000,2002,2008,2010,2011,2014A =,设i j x x A ∈、,i j ≠,若方程i j x x k -=至少有六组不同的解,则实数k 的所有可能取值是_________.【答案】{}3,6,14 【分析】根据i j x x k -=,用列举法列举出集合A 中,从小到大8个数中(设两数的差为正),相邻两数,间隔一个数,间隔二个数,间隔三个数,间隔四个数,间隔五个数,间隔六个数的两数差,从中找出差数出现次数不低于3的差数即可. 【详解】集合A 中,从小到大8个数中,设两数的差为正: 则相邻两数的差:1,3,2,6,2,1,3; 间隔一个数的两数差:4,5,8,8,3,4; 间隔二个数的两数差:6,11,10,9,6; 间隔三个数的两数差:12,13,11,12; 间隔四个数的两数差:14,14,14; 间隔五个数的两数差:15,17; 间隔六个数的两数差:18;这28个差数中,3出现3次,6出现3次,14出现3次,其余都不超过2次, 故k 取值为:3,6,14时,方程i j x x k -=至少有六组不同的解, 所以k 的可能取值为:{}3,6,14, 故答案为:{}3,6,1418.(2021·北京·高三开学考试)记正方体1111ABCD A B C D -的八个顶点组成的集合为S .若集合M S ⊆,满足i X ∀,j X M ∈,k X ∃,l X M ∈使得直线i j k l X X X X ⊥,则称M 是S 的“保垂直”子集. 给出下列三个结论:①集合{}1,,,A B C C 是S 的“保垂直”子集;②集合S 的含有6个元素的子集一定是“保垂直”子集;③若M 是S 的“保垂直”子集,且M 中含有5个元素,则M 中一定有4个点共面. 其中所有正确结论的序号是______. 【答案】② 【分析】首先弄清楚可取其中的5,6,7,8个点时,符合M 是S 的“保垂直”子集,且正方体的两条体对角线不垂直,然后根据定义逐项判断可得答案. 【详解】对于①,当取体对角线1AC 时,找不到与之垂直的直线,①错误; 对于②,当8个点任取6个点时,如图当M 集合中的6个点是由上底面四个点和下底面两个点;或者由上底面两个点和下底面四个点构成时,必有四点共面,根据正方体的性质,符合M 是S 的“保垂直”子集; 当M 集合中的6个点是由上底面三个点和下底面三个点构成时,如{}111,,,,,M B C A C A B =,则存在11,,,B A A B 四点共面,根据正方体的性质,符合M 是S 的“保垂直”子集; 如{}111,,,,,M B C A C A D =,取,B A 存在11BC A D ⊥,取,B C 存在11BC C D ⊥,取,C A 存在1AC BD ⊥,符合M 是S 的“保垂直”子集,所以②正确;对于③,举反例即可,如{}11,,,,M B C D C A =,③错误.故答案为:②.19.(2021·江苏扬州·模拟预测)对于有限数列{}n a ,定义集合()1212,110k i i i k a a a S k s s i i i k ⎧⎫+++⎪⎪==≤<<<≤⎨⎬⎪⎪⎩⎭,,其中k ∈Z 且110k ≤≤,若n a n =,则()3S 的所有元素之和为___________.【答案】660【分析】可得()3S 123123,1103i i i s s i i i ⎧⎫++==≤<<≤⎨⎬⎩⎭,得出()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,求出每个数字被选中的次数即可求解.【详解】()1231233,1103i i i a a a S s s i i i ⎧⎫++⎪⎪==≤<<≤⎨⎬⎪⎪⎩⎭ 123123,1103i i i s s i i i ⎧⎫++==≤<<≤⎨⎬⎩⎭, 则()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,1,2,,10每个被选出的次数是相同的,若()110i i ≤≤被选中,则共有29C 种选法,即1,2,,10每个被选出的次数为29C ,则()3S 的所有元素之和为()()29101109812102266033C ⨯+⨯⨯⋅+++==. 故答案为:660.【点睛】关键点睛:解决本题的关键是判断出()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,再求出每个数字被选中的次数.20.(2021·北京东城·一模)设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题:①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ≠∅,则12A A 具有性质P ; ③若12,A A 具有性质P ,则12A A 具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②④【分析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈,所以12A A 具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A ∈,23A ∈,但1223A A +∉,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④正确;故答案为:①②④【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。
压轴25 直线的方程 备战2021年高考数学二轮必刷压轴题精选精炼(解析版)
压轴25 直线的方程一、单选题1. 若椭圆x 29+y 24=1的弦AB 被点P (1,1)平分,则AB 所在直线的方程为A. 9x +4y −13=0B. 4x +9y −13=0C. x +2y −3=0D. x +3y −3=0 【答案】B【解析】解:设过点A(1,1)的直线与椭圆相交于两点,E(x 1,y 1),F(x 2,y 2),由中点坐标公式可知:{x 1+x 22=1y 1+y22=1, 则{x 129+y 124=1x 229+y 224=1,两式相减得:(x 1+x 2)(x 1−x 2)9+(y 1+y 2)(y 1−y 2)4=0,∴y 1−y2x 1−x 2=−49,∴直线EF 的斜率k =y 1−y 2x 1−x 2=−49,∴直线EF 的方程为:y −1=−49(x −1),整理得:4x +9y −13=0, 故选B .2. 已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F(−c,0),上顶点为A ,离心率为√32,直线FA 与抛物线E:y 2=4cx 交于M ,N 两点,则|MA|+|NA|=A. 2√3aB. 5aC. 4√3aD. 10a【答案】D 【解析】解:如图,离心率为√32,即c a =√32,解得a =2b ,c =√3b ,由F(−c,0),A(0,b),则k AF =bc =√33,∴直线FA 的方程y =√33x +b ,又y2=4cx,即y2=4√3bx与y=√33x+b联立消去y得,x2−10√3bx+3b2=0,设M(x1,y1),N(x2,y2),∴x1+x2=10√3b,则|MA|+|NA|=(√33)1+x2)=√310√3b=20b=10a.故选D.3.下列四个命题:①经过定点P0(x0,y0)的直线都可以用方程y−y0=k(x−x0)表示;②经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(x2−x1)(x−x1)=(y2−y1)(y−y1)表示;③不经过原点的直线都可以用方程xa +yb=1表示;④经过定点A(0,b)的直线都可以用方程y=kx+b表示.其中正确命题的个数是A. 0B. 1C. 2D. 3【答案】A【解析】解:经过定点P0(x0,y0),且斜率存在的直线都可以用方程y−y0=k(x−x0)表示,①故为假命题;把直线的两点式方程变形,即(x2−x1)(y−y1)=(y2−y1)(x−x1),故②为假命题;不经过原点,且与坐标轴不垂直的直线都可以用方程xa +yb=1表示,故③为假命题;经过定点A(0,b),且斜率存在的直线都可以用方程y=kx+b表示,故④为假命题;故选A.4.已知直线l1:mx−y+m=0与直线l2:x+my−1=0的交点为P,若点Q为直线l3:x−y+3=0上的一个动点,则|PQ|的最小值为A. B. C. D.【答案】B【解析】解:易知直线l1:mx−y+m=0过定点A(−1,0),直线l2:x+my−1=0过定点B(1,0),当m=0时l1⊥l2,当m≠0时,l1与l2斜率乘积为m·(−1m)=−1,所以l1⊥l2,所以点P 在以AB 为直径的圆上,圆的方程为x 2+y 2=1, 圆心(0,0)到直线x −y +3=0的距离为√2=3√22, 所以|PQ|的最小值为圆心到直线x −y +3=0的距离减去半径,即32√2−1, 故选B .5. 如已知点A(−1,0),B(1,0),C(0,1),直线y =kx +b(k >0)将三角形ABC 分割成面积相等的两个部分,则b 的取值范围是A. (1−√22,12) B. (1−√22,12] C. [13,12)D. (0,12]【答案】A【解析】解:由题意可得,三角形ABC 的面积为12⋅AB ⋅OC =1, 由于直线y =kx +b(k >0)与x 轴的交点为M(−b k ,0),由直线y =kx +b(k >0)将△ABC 分割为面积相等的两部分,可得b >0, 故−bk <0,故点M 在射线OA 上.设直线y =kx +b 和BC 的交点为N ,则由{y =kx +b x +y =1可得点N 的坐标为(1−b k+1,k+bk+1).①若点M 和点A 重合,则点N 为线段BC 的中点,故N (12,12), 把A 、N 两点的坐标代入直线y =kx +b ,求得k =b =13.②若点M 在点O 和点A 之间,此时b >13,点N 在点B 和点C 之间, 由题意可得三角形NMB 的面积等于12,即12⋅MB ⋅y N =12,即 12×(1+bk )·k+bk+1=12,可得k =b 21−2b >0,求得b <12 , 故有13<b <12.③若点M 在点A 的左侧,则b <13,由点M 的横坐标−bk <−1,求得b >k . 设直线y =kx +b 和AC 的交点为P ,则由{y =kx +b y =x +1求得点P 的坐标为(1−b k−1,k−b k−1),此时,由题意可得,△CPN 的面积等于12,即12⋅(1−b)⋅|x N −x P |=12, 即12(1−b )·|1−bk+1−1−bk−1|=12,化简可得2(1−b)2=|k 2−1|. 由于此时b >k >0,0<k <1,∴2(1−b)2=|k 2−1|=1−k 2 .两边开方可得√2(1−b )=√1−k 2<1,∴1−b <√2,化简可得b >1−√22,故有1−√22<b <13.再把以上得到的三个b 的范围取并集,可得b 的取值范围应是(1−√22,12) ,故选A .6. 在平面直角坐标系xOy 中,过点P(1,4)向圆C:(x −m)2+y 2=m 2+5(1<m <6)引两条切线,切点分别为A ,B ,则直线AB 过定点A. (−12,1)B. (−1,32)C. (−12,32)D. (−1,12)【答案】B【解析】解:在平面直角坐标系xOy 中,过点P(1,4),向圆C :(x −m)2+y 2=m 2+5(1<m <6)引两条切线,则切线长为√PC 2−r 2=√42+(m −1)2−(m 2+5)=√12−2m ,∴以点P 为圆心,切线长为半径的圆的方程为(x −1)2+(y −4)2=12−2m , ∴直线AB 的方程为[(x −m)2+y 2]−[(x −1)2+(y −4)2]=(m 2+5)−(12−2m), 整理得:(x +4y −5)−m(1+x)=0. 令{x +4y −5=0x +1=0,解得{x =−1,y =32. 所以直线AB 过定点(−1,32). 故答案为(−1,32). 故选B .7. 已知直线2x +y +2+λ(2−y)=0与两坐标轴围成一个三角形,该三角形的面积记为S(λ),当λ∈(0,+∞)时,S(λ)的最小值是A. 12B. 10C. 8D. 4【答案】C【解析】解:如图,由直线2x +y +2+λ(2−y)=0,分别可得与坐标轴的交点(−1−λ,0),(0,2+2λλ−1),λ∈(0,+∞),则S(λ)=12(1+λ)×2+2λλ−1=λ−1+4λ−1+4≥2×2+4=8,当且仅当λ=3时取等号.故选C .8. 已知直线(3+2λ)x +(3λ−2)y +5−λ=0恒过定点P ,则与圆C:(x −2)2+(y +3)2=16有公共的圆心且过点P 的圆的标准方程为A. (x −2)2+(y +3)2=36B. (x −2)2+(y +3)2=25C. (x −2)2+(y +3)2=18D.(x −2)2+(y +3)2=9【答案】B【解析】解:因为(3+2λ)x +(3λ−2)y +5−λ=0,所以λ(2x +3y −1)+3x −2y +5=0, {2x +3y −1=03x −2y +5=0,解得{x =−1y =1,即P(−1,1),C:(x −2)2+(y +3)2=16的圆心为(2,−3), 则所求圆的半径为√(2+1)2+(1+3)2=5, 故所求圆的方程为,故选B .9. 已知点A(−2,0),B(2,0),C(1,1),D(−1,1),直y =kx +m (k >0)将四边形ABCD 分割为面积相等的两部分,则m 的取值范围是A. (0,1)B. (13,12]C. (13,4−√102] D.【答案】D【解析】解:∵点A(−2,0),B(2,0),C(1,1),D(−1,1), 如图,四边形的面积为12×(4+2)×1=3,①若直线在第一象限与CD 相交,设交点为F , 则直线必与OA 交于一点,设为E , 连接BF ,DE ,要使直线平分梯形, 只须CF +BE =DF +AE =3,设BE =t ,则E 点坐标为(2−t,0),F 点坐标为(t −2,1),EF 关于(0,12)对称,此时m=12②若直线与梯形在第一象限的交点在BC上,设交点为F,BC所在直线的方程为x+y=2.此时直线与AB相交,或者与AD相交,(1)若与AB相交,设交点为E点坐标为(t,0),则BE=2−t,∴三角形BEF在BE边上的高为32−t ≤1,F点横坐标为(2−32−t,32−t),其中−2≤t≤−1,经计算,m=3(−t−1t)+4(−2≤t≤−1),当t=−1时,m有最大值12,t=−2时,m有最小值613,(2)若两交点分别在AD和BC上,如图,此时,过A点时,m最大,为617,当斜率k→0时,有最小值(取不到)4−√102,综上,m∈(4−√102,1 2 ]故选D.二、填空题10.在平面直角坐标系xOy中,已知点A(−4,0),B(0,4),从直线AB上一点P向圆x2+y2=4引两条切线PC,PD,切点分别为C,D.设线段CD的中点为M,则线段AM长的最大值为______.【答案】3√2【解析】解:因为点A(−4,0),B(0,4), 所以直线AB 的方程为x −y +4=0. 设P (x 0,y 0),因为P 是直线AB 上一点,所以y 0=x 0+4.①又因为以AP 为直线的圆的方程为:x (x −x 0)+y (y −y 0)=0, 即x 2+y 2−xx 0−yy 0=0.由{x 2+y 2=4x 2+y 2−xx 0−yy 0=0两式相减得xx 0+yy 0=4,② 即直线CD 的方程为xx 0+yy 0=4.又因为线段CD 的中点为M ,所以直线OM 的方程为:xy 0−yx 0=0.③ 联立①②③消去x 0,y 0得点M 的轨迹方程为(x +12)2+(y −12)2=12.又因为 A(−4,0),所以|AM |max =√(−4+12)2+(12)2+√22=3√2.故答案为3√2.11. 等差数列{a n }的前n 项和为S n ,a 4=72,且2√S n+1=√S n +√S n+2(n ∈N ∗),直线√S n+1x +√S n y =1与两坐标轴围成的三角形的面积为T n ,则T 1+T 2+T 3+...+T 2159的值为__________. 【答案】21592160【解析】解:由2√S n+1=√S n +√S n+2(n ∈N ∗)可得, √S n+2−√S n+1=√S n+1−√S n ,则{√S n }为等差数列, 又 S n =na 1+n(n−1)2d =d 2n 2+(a 1−d2)n ,∵√S n 为等差数列,∴a 1=d2,又a 4=72,a 4=a 1+3d , 则a 4=a 1+3d =d2+3d =72d =72, 故d =1,S n =n 22,√S n =√n 22,√S n ⋅S n+1=√n 22⋅(n+1)22=n⋅(n+1)2,因直线√S n+1x +√S n y =1, 当x =0时,y =S , 当y =0时,x =S ,T n=2S√S =12⋅1n⋅(n+1)2=1n⋅(n+1)=1n−1n+1,T1+T2+T3+⋯+T2159=1−12+12−13+13−14+⋯+12159−12160=1−12160=21592160.12.若动点P在直线a:x−2y−2=0上,动点Q在直线b:x−2y−6=0上,记线段PQ的中点为M(x0,y0),且(x0−2)2+(y0+1)2≤5,则x02+y02的取值范围为________.【答案】[165,16]【解析】解:由题意知,直线a:x−2y−2=0与直线b:x−2y−6=0平行,因为动点P在直线a上,动点Q在直线b上,所以PQ的中点M在与a,b平行,且到a,b的距离相等的直线上,设该直线为l,则直线l的方程为x−2y−4=0.因为线段PQ的中点为M(x0,y0),且(x0−2)2+(y0+1)2≤5,所以点M(x0,y0)在圆(x−2)2+(y+1)2=5的内部或在圆上,设直线l交圆于点A,B,则点M在线段AB上运动.联立直线l与圆的方程,得{x−2y−4=0,(x−2)2+(y+1)2=5,解得A(4,0),B(0,−2).因为x02+y02=|OM|2,x02+y02表示的几何意义为线段上的点到原点的距离的平方,所以原点到直线的距离的平方为最小,所以x02+y02的最小值为(()22=165,当M与A重合时,x02+y02取得最大值,且最大值为42+02=16,即x02+y02的最大值为16,所以x02+y02的取值范围是[165,16].13.已知直线l:恒过定点A,点B,C为圆O:上的两动点,满足,则弦BC长度的最大值为______.【答案】4√5【解析】解:直线l:,即为,可得时,,即直线l恒过定点,取BC的中点M,连接AM,OM,OB,圆O:的半径,设,则,由,可得, 由,可得,设,则,再由cosα⩽1,即,,解得5⩽a 2⩽20,即√5⩽a ⩽2√5,可得a 的最大值为2√5,此时A ,M ,O 三点共线, 则弦长BC 的最大值为4√5, 故答案为:4√5.三、解答题14. 已知椭圆C:x 2a 2+y2b 2=1的右焦点为(1,0),且经过点A(0,1). (1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t(t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =1.求证:直线l 经过定点. 【答案】(1)解:设椭圆的焦距为2c , 则{c =11b 2=1a 2=b 2+c 2,解得{a =√2b =1c =1,∴椭圆C 的方程为x 22+y 2=1.(2)证明:设P(x 1,y 1),Q(x 1,x 2), 由{x 22+y 2=1y =kx +t, 消去y 得:(2k 2+1)x 2+4ktx +2t 2−2=0,由韦达定理得: x 1+x 2=−4kt2k 2+1,x 1x 2=2t 2−22k 2+1,……① ∵A(0,1),P(x 1,y 1), ∴直线AP 的方程为:y =y 1−1x 1x +1,∴M(−x 1y 1−1,0),同理:N(−x 2y 2−1,0),∵OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =1, ∴x 1x 2y 1−1y 2−1=1,化简得x 1x 2−y 1y 2+(y 1+y 2)−1=0,∴(1−k 2)x 1x 2+(k −kt )(x 1+x 2)−t 2+2t −1=0, 将①代入并化简有:t 2+2t −3=0, ∴t =−3或t =1(舍),∴直线l 的方程为:y =kx −3,经过定点(0,−3).15. 在平面直角坐标系中,A(−1,0),B(1,0),设△ABC 的内切圆分别与边AC ,BC ,AB 相切于点P ,Q ,R ,已知|CP|=1,记动点C 的轨迹为曲线E . (1)求曲线E 的方程;(2)过G(2,0)的直线与y 轴正半轴交于点S ,与曲线E 交于点H ,HA ⊥x 轴,过S 的另一直线与曲线E 交于M 、N 两点,若S △SMG =6S △SHN ,求直线MN 的方程. 【答案】解:(1)由题意可知,|CA |+|CB |=|CP |+|CQ |+|AP |+|BQ |=2|CP |+|AB |=4>|AB |, ∴曲线E 是以A ,B 为焦点,长轴长为4的椭圆(除去与x 轴的交点), 设曲线E 方程为:x 2a 2+y 2b 2=1(a >b >0,y ≠0),则c =1,2a =4, ∴a =2,b 2=a 2−c 2=3, 即曲线E 的方程为:x 24+y 23=1(y ≠0);(2)∵HA ⊥x 轴,∴H (−1,32),设S(0,y 0),则−y 0−2=−323,∴y 0=1,即S(0,1). ∵a =2c ,∴|SG |=2|SH |,∴S △SMGS △SHN=12|SM ||SG |sin∠MSG 12|SN ||SH |sin∠NSH =2|SM ||SN |=6,∴|SM ||SN |=3,即SM ⃗⃗⃗⃗⃗⃗ =−3SN⃗⃗⃗⃗⃗ , 设M(x 1,y 1),N(x 2,y 2),则SM ⃗⃗⃗⃗⃗⃗ =(x 1,y 1−1),SN⃗⃗⃗⃗⃗ =(x 2,y 2−1),∴x1=−3x2.①当直线MN的斜率不存在时,MN的方程为x=0,此时|SM||SN|=√3+1√3−1=2+√3,不符合条件;②当直线MN的斜率存在时,设直线MN的方程为y=kx+1.联立{y=kx+1x24+y23=1,整理得:(3+4k2)x2+8kx−8=0,∴{x1+x2=−8k3+4k2x1x2=−83+4k2,将x1=−3x2代入得:{−2x2=−8k3+4k2−3x22=−83+4k2,∴3(4k3+4k2)2=83+4k2,解得:k=±√62,故直线MN的方程为y=√62x+1或y=−√62x+1.16.在平面直角坐标系xOy中,已知点A(−1,0),B(1,2),直线l与AB平行.(1)求直线l的斜率;(2)已知圆C:x2+y2−4x=0与直线l相交于M,N两点,且MN=AB,求直线l的方程;(3)在(2)的圆C上是否存在点P,使得PA2+PB2=12?若存在,求点P的个数;若不存在,说明理由.【答案】解:(1)∵点A(−1,0),B(1,2),直线l与AB平行,∴直线l的斜率k=k AB=2−01−(−1)=1.(2)∵圆C:x2+y2−4x=0,∴圆C的标准方程为:(x−2)2+y2=4,圆心C(2,0),半径为2,由(1)知直线l的斜率k=1,设直线l的方程为x−y−m=0,则圆心C到直线l的距离d=√2=√2,∵MN=AB=√22+22=2√2,而CM2=d2+(MN2)2,∴4=(2+m)22+2,解得m=0或m=−4,故直线l的方程为x−y=0或x−y+4=0.(3)假设圆C上存在点P,设P(x,y),则(x−2)2+y2=4,PA2+PB2=(x+1)2+(y−0)2+(x−1)2+(y−2)2=12,整理,得x2+y2−2y−3=0,即x2+(y−1)2=4,∵|2−2| <√(2−0)2+(0−1)2<2+2,∴圆(x −2)2+y 2=4与圆x 2+(y −1)2=4相交,∴点P 的个数为2.17. 如图,在平面直角坐标系xOy 中,已知点P(2,4),圆O :x 2+y 2=4与x 轴的正半轴的交点是Q ,过点P 的直线l 与圆O 交于不同的两点A ,B .(1)若直线l 与y 轴交于D ,且DP ⃗⃗⃗⃗⃗ ·DQ⃗⃗⃗⃗⃗⃗ =16,求直线l 的方程; (2)设直线QA ,QB 的斜率分别是k 1,k 2,求k 1+k 2的值;(3)设AB 的中点为M ,点N(43,0),若MN =√133OM ,求△QAB 的面积. 【答案】解:(1)若直线l 垂直于x 轴,则其方程为x =2,与圆只有一个交点,不合题意. 故l 存在斜率,设直线l 的方程为:y −4=k(x −2),即:kx −y −2k +4=0, 则圆心到直线l 的距离:d =√k 2+1,因为直线l 与圆O 交于不同的两点A ,B ,所以d =√k 2+1<2,解得k >34. 又D(0,−2k +4),Q(2,0),所以DQ⃗⃗⃗⃗⃗⃗ =(2,2k −4),DP ⃗⃗⃗⃗⃗ =(2,2k), 所以DP ⃗⃗⃗⃗⃗ ·DQ⃗⃗⃗⃗⃗⃗ =4+2k(2k −4)=16, 解得k =3或k =−1(舍去),所以直线l 的方程为:y =3x −2;(2)由题意可知,联立{y −4=k(x −2),x 2+y 2=4,, 得(1+k 2)x 2−4k(k −2)x +(2k −4)2−4=0,设A(x 1,y 1),B(x 2,y 2),则{x 1+x 2=4k(k−2)1+k 2,x 1·x 2=(2k−4)2−41+k 2,,所以k 1+k 2=y 1x 1−2+y2x 2−2 =k(x 1−2)+4x 1−2+k(x 2−2)+4x 2−2=2k +4x 1−2+4x 2−2 =2k +4(x 1+x 2−4)x 1x 2−2×(x 1+x 2)+4=2k +4×[4k(k −2)1+k 2−4](2k −4)2−41+k 2−2×4k(k −2)1+k 2+4 =2k −4×(8k +4)16 =2k −2k −1=−1.即k 1+k 2的值是−1;(3)设中点M(x 0,y 0),则由(2)知{x 0=x 1+x 22=2k(k−2)1+k 2,y 0=k(x 0−2)+4=−2(k−2)1+k 2,(∗) 又由MN =√133OM ,得(x 0−43)2+y 02=139(x 02+y 02), 化简得:x 02+y 02+6x 0−4=0, 将(∗)代入上式并解得:k =3. 因为圆心到直线l 的距离:d =√k 2+1=10, 所以AB =2√4−d 2=65√10,Q 到直线l 的距离:ℎ=25√10, 所以S △ABQ =12AB ·ℎ=125,即△QAB 的面积为125.。
北京市2021年高考数学压轴卷含解析.doc
北京市2021年高考数学压轴卷(含解析)本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{(1)(2)0}M x x x =-+<|,{1}N x x =-|,则M N =( )A .(2,1)-B .[1,1)-C .[1,)-+∞D .(1,1)-2.设复数z 满足(1)1i z i -=+,则z 等于( ) A .i -B .iC .2i -D .2i3.在61x ⎫⎪⎭的展开式中,常数项为( )A .15B .30C .20D .404.已知两条直线m ,n 和平面α,且//n α,则“m n ⊥”是“m α⊥”的( ) A .充分必要条件 B .充分而不必要条件 C .必要而不充分条件D .既不充分也不必要条件5.在平面直角坐标系xOy 中,直线l 的方程为(1)3y k x =++,以点(1,1)为圆心且与直线l 相切的所有圆中,半径最大的圆的半径为( ) A .2B.C .4D .86.在ABC 中,90,4,3C AC BC =︒==,点P 是AB 的中点,则CB CP ⋅=( ) A .94B .4C .92D .67.已知函数211,0,()221,0,x x f x x x x ⎧+≤⎪=⎨⎪-++>⎩则不等式()20x f x ->的解集是( )A .(1,0)(0,1)- B .(1,1)- C .(0,1) D .(1,)-+∞8.将函数()sin f x x ω=(0>ω)的图象向左平移2π个单位长度后得到函数()g x 的图象,且()01g =,下列说法错误..的是( ) A .()g x 为偶函数 B .02g π-=⎛⎫⎪⎝⎭C .当5ω=时,()g x 在0,2π⎡⎤⎢⎥⎣⎦上有3个零点D .若()g x 在0,5π⎡⎤⎢⎥⎣⎦上单调递减,则ω的最大值为9 9.数列{}n a 是等差数列,{}n b 是各项均为正数的等比数列,公比1q >,且44a b =,则( ) A .2635a a b b +>+ B .2635a a b b +=+C .2635a a b b +<+D .26a a +与35b b +大小不确定10.形状、节奏、声音或轨迹,这些现象都可以分解成自复制的结构.即相同的形式会按比例逐渐缩小,并无限重复下去,也就是说,在前一个形式中重复出现被缩小的相同形式,依此类推,如图所示,将图1的正三角形的各边都三等分,以每条边中间一段为边再向外做一个正三角形,去掉中间一段得到图2,称为“一次分形”;用同样的方法把图2中的每条线段重复上述操作,得到图3,称为“二次分形”;依次进行“n 次分形”,得到一个周长不小于初始三角形周长100倍的分形图,则n 最小值是( )(取lg30.4771,lg 20.3010≈≈)A .15B .16C .17D .18第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。
2021高考数学押题专练圆锥曲线(解析版)
由两圆方程作差即② ①得: 4x py 0 .
所以,切点弦 QR 所在直线的方程为 4x py 0 .
法二(求 Q、R 均满足的同一直线方程切点弦方程):
设 D 1, 0 , Q x1, y1 , R x2, y2 .
由 DQ PQ ,可得 Q 处的切线上任一点 T (x, y) 满足 QT DQ 0 (如图),
则 QR 恒过坐标原点 O 0, 0 .
4x py 0,
由 x 12 y2
消去 x 并整理得 4
16
p2
y2 8 py 48 0 .
设 Q x1,
y1
,
R x2,
y2
,则
y1
y2
8p 16 p2
.
点N
纵坐标
yN
y1 2
y2
4p 16 p2
.
因为 p 0 ,显然 yN 0 ,
由圆的性质,可得 DN QR ,即 DN ON (如图).
所以点
N
在以
OD
为直径的圆上,圆心为
G
1 2
,
0
,半径
r
1 2
.
因为直线 3x 4 y 6 分别与 x 轴、 y 轴交于点 E 、 F ,
所以
E
2,
0
,
F
0,
3 2
,
EF
5
.
2
又圆心
G
1 2
,
0
到直线
3x
4
y
6
0
的距离
d
【模拟专练】
21.(2021·山东高三二模)已知椭圆 C
:
x2 a2
y2 b2
1(a
天津市2021年高考数学压轴卷含解析
某某市2021年高考数学压轴卷(含解析)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A 与事件B 互斥,那么()()()P A B P A P B =+.·如果事件A 与事件B 相互独立,那么()()()P AB P A P B =.·球的表面积公式24πS R =,其中R 表示球的半径.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ⋂=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2.“12x -<成立”是“(3)0x x -<成立”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.为了了解一片经济林的生长情况,随机抽取了其中60株树木的底部周长(单位:cm ),所得数据均在[80,130]上,其频率分布直方图如图所示,若在抽测的60株树木中,树木的底部周长小于100cm 的株数为( )A .15B .24C .6D .304.函数2tan 1x y x =+在(),ππ-的图象大致为( ) A .B .C .D .5.已知034.a =,40.3b =,3log 10c =,则( )A .b c a >>B .a c b >>C .c a b >>D .c b a >>6.将长、宽分别为4和3的长方形ABCD 沿对角线AC 折成直二面角,得到四面体A BCD -,则四面体A BCD -的外接球的表面积为( )A .25πB .50πC .5πD .10π7.已知抛物线()220y px p =>上一点()()1,0M m m >到其焦点的距离为5,双曲线221x y a-=的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是 A .19B .125C .15D .138.已知函数2()sin 22sin 1f x x x =-+,给出下列四个结论,其中正确的结论是( )A .函数()f x 的最小正周期是2πB .函数()f x 在区间5[,]88ππ上是减函数C .函数()f x 的图象关于16x π=对称D .函数()f x的图象可由函数2y x =的图象向左平移4π个单位得到 9.已知函数()y f x =是R 上的偶函数,对于x ∈R 都有(6)()+(3)f x f x f +=成立,且(6)2f -=-,当12x x ,[0,3]∈,且12x x ≠时,都有1212()()0f x f x x x ->-.则给出下列命题:①(2016)2f =-;②6x =-为函数()y f x =图象的一条对称轴;③函数()y f x =在(9,6)--上为减函数;④方程()0f x =在[9,9]-上有4个根;其中正确的命题个数为( )A .1B .2C .3D .4第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.i 是虚数单位,复数212i i-+的共轭复数为______.11.在612x ⎫⎪⎭的展开式中,常数项为______. 12.圆222430x y x y +--+=的圆心到直线10x ay -+=的距离为2,则a =__________. 13.已知0a >,0b >22的最小值为___________.14.对某种型号的仪器进行质量检测,每台仪器最多可检测3次,一旦发现问题,则停止检测,否则一直检测到3次为止,设该仪器一次检测出现问题的概率为0.2,则检测2次停止的概率为______;设检测次数为X ,则X 的数学期望为______.15.在ABC 中,60A ∠=︒,2AC =,3BA BC BA ⋅=,则AB =______;若AE EC λ=,CF FB λ=,0λ>,则AE BF ⋅的最大值为______.三.解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分14分)在ABC ∆中,内角A 、B 、C 的对边分别为a ,b ,c (cos cos )0C a B b A c ++=.(1)求角C 的大小;(2)若a =2b =.求:(ⅰ)边长c ;(ⅱ)sin(2)B C -的值.17.(本小题满分15分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面1,,2,3ABC AC BC AC BC CC ⊥===,点D ,E 分别在棱1AA 和棱1CC 上,且1,2AD CE ==,M 为棱11A B 的中点.(1)求证:11C M B D ⊥;(2)求平面1B ED 与平面1BEB 的夹角余弦值;(3)求直线AB 与平面1DB E 所成角的正弦值.18.(本小题满分15分)已知椭圆()2222:10x y C a b a b +=>>的右焦点为()1,0F ,离心率为22. (1)求椭圆C 的方程;(2)设经过点F 的直线l 不与坐标轴垂直,直线l 与椭圆C 相交于点A ,B ,且线段AB 的中点为M ,经过坐标原点O 作射线OM 与椭圆C 交于点N ,若四边形OANB 为平行四边形,求直线l 的方程.19.(本小题满分15分)数列{}n a 是等比数列,公比大于0,前n 项和*()n S n N ∈,{}n b 是等差数列,已知112a =,32114a a =+,3461ab b =+,45712a b b =+. (Ⅰ)求数列{}n a ,{}n b 的通项公式n a ,n b ;(Ⅱ)设{}n S 的前n 项和为*():n T n N ∈(ⅰ)求n T ;(ⅱ)若11312()n n n n n n T b b c b b +++++-=,记1n n n n R C ==∑,求n R 的取值X 围.20.(本小题满分16分)已知函数()x ax b f x e x+=,a ,b R ∈,且0a >. (1)若函数()f x 在1x =-处取得极值1e ,求函数()f x 的解析式; (2)在(1)的条件下,求函数()f x 的单调区间;(3)设()()()1xg x a x e f x -=-,()g x '为()g x 的导函数.若存在()01,x ∈∞+,使()()000g x g x '+=成立,求b a的取值X 围. 2021某某市高考压轴卷 数学试卷答案1.【答案】A【解析】={1,3}U C A -,则(){1}U C A B =-故选:A2.【答案】B【解析】由|x-1|<2得-1<x <3,由x (x-3)<0得0<x <3,所以“|x-1|<2成立”是“x (x-3)<0成立”的必要不充分条件考点:1.解不等式;2.充分条件与必要条件故选:B3.【答案】B【解析】底部周长小于100cm 的树木的频率为()0.0250.015100.4+⨯=,故树木的底部周长小于100cm 的株数为0.46024⨯=,故选:B4.【答案】D由于正切函数有意义,故需2x π≠±,即可排除A ,B ; 由于2tan 1x y x =+为奇函数,其图象应关于原点对称,即可排除C , 故选:D5.【答案】C【解析】因为05032441..=>>,4010.3<<,33log 10log 92>=,所以12,01,2a b c <<<<>,因此c a b >>,故选:C6.【答案】A【解析】取AC 的中点,连接OB 、OD ,如下图所示:由题意22345AC =+=,因为90ABC ADC ∠=∠=,O 为AC 的中点,所以,1522OB OD AC OA OC =====, 所以,O 为四面体A BCD -的外接球的球心,且球O 的半径为52R =, 因此,四面体A BCD -的外接球的表面积为2425R ππ=.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.7.【答案】A【解析】因为抛物线()220y px p =>上一点()()1,0M m m >到其焦点的距离为5, 所以15,82p p +==,即228104m m m =⨯⨯>∴=,因为(A 19a == 故选:A【点睛】凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.即若00(,)P x y 为抛物线22(0)y px p =>上一点,则由定义易得0||2p PF x =+. 8.【答案】B【解析】2()sin 22sin 1sin 2cos 224f x x x x x x π⎛⎫=-+=+=+ ⎪⎝⎭ A 选项,因为2ω=,则()f x 的最小正周期T π=,结论错误;B 选项,当5,88x ππ⎡⎤∈⎢⎥⎣⎦时,32,422x πππ⎡⎤+∈⎢⎥⎣⎦,则()f x 在区间5,88ππ⎡⎤⎢⎥⎣⎦上是减函数,结论正确; C 选项,因为16f π⎛⎫≠ ⎪⎝⎭,则()f x 的图象不关于直线16x π=对称,结论错误; D 选项,设()g x x,则()2442g x x x x f x πππ⎛⎫⎛⎫⎛⎫+=+=+=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,结论错误. 故选:B【点睛】本题考查三角函数的恒等变换及三角函数的性质,属于中档题.9.【答案】D【解析】对于①,令3x =-,由(6)()+(3)f x f x f +=得(3)0f -=,又函数()y f x =是R 上的偶函数,∴(3)(3)0f f =-=,∴(6)()f x f x +=,即函数()y f x =是以6为周期的周期函数, ∴(2016)(3366)(0)f f f =⨯=;又(6)2f -=-,所以(0)2f =-,从而(2016)2f =-,即①正确;对于②,函数关于y 轴对称,周期为6,∴函数()y f x =图象的一条对称轴为6x =-,故②正确;对于③,当12x x ,[0,3]∈,且12x x ≠时,都有1212()()0f x f x x x ->-设12x x <,则12()()f x f x <,故函数()y f x =在[0,3]上是增函数,根据对称性,易知函数()y f x =在[3,0]-上是减函数,根据周期性,函数()y f x =在(9,6)--上为减函数,故③正确;对于④,因为(3)(3)0f f =-=,又由其单调性及周期性可知在[9,9]-,有且仅有(3)(3)(9)(9)0f f f f =-==-=,即方程()0f x =在[9,9]-上有4个根,故④正确. 故选:D【点睛】本题考查抽象函数的周期性和单调性,做题时要认真审题,属于中档题,10.【答案】i【解析】()()()()212251212125i i i i i i i i ----===-++-,因此,复数212i i-+的共轭复数为i . 故答案为:i 11.【答案】154 【解析】612x ⎫⎪⎭的展开式的通项为61331221661122r rr r r r r T C x x C x ---+⎛⎫⎛⎫⎛⎫=⋅-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由330,22r r -==得,常数项为226111515244C ⎛⎫-=⨯= ⎪⎝⎭故答案为:15412.【答案】0【解析】222431x y x y +--+=的标准方程为()()22122x y -+-=,则圆心为()1,2,圆心()1,2到直线10x ay -+=的距离为 2d ==,解得0a =,故答案为:0点睛:本题主要考查圆的一般方程化为标准方程,由圆的标准方程求圆心,以及得到直线距离公式,意在考查综合运用所学知识解决问题的能力,属于简单题. 13.【答案】2 【解析】因为0a >,0b >,所以22212,a b a +≥+≥,22222≥==,当且仅当1,a b ==时等号成立,22最小值为2.故答案为:2 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 14.【答案】0.16 2.44 【解析】检测2次停止的概率为(10.2)0.20.16-⨯= 检测次数X 可取1,2,3(1)0.2,(2)0.80.20.16,(3)0.80.80.80.80.80.20.64P X P X P X ====⨯===⨯⨯+⨯⨯=()10.220.1630.64 2.44E X =⨯+⨯+⨯=故答案为: 0.16 2.44 【点睛】方法点睛:离散型随机变量的均值的求法(1)理解随机变量X 的意义,写出X 的所有可能取值 (2)求X 取每个值的概率 (3)写出X 的分布列 (4)由均值的定义求()E X15.【答案】13+334- 【解析】①如图,作CD AB ⊥,垂足为D ,因为3BA BC BA ⋅=, 所以||||cos 3||BA BC ABC BA ∠=,所以||cos 3BC ABC ∠=3BD =又60A ∠=,2AC =,所以||cos 2cos 601AC A ∠==,即1AD =, 所以13AB =+②因为AE EC λ=,CF FB λ=,所以1λAE AC λ=+,11BF BC λ=+, 所以2222()()(1)(1)(1)AC BC AE B AC AC AB AC C AB F A ⋅⋅=⋅++=-=-⋅+λλλλλλ22(||||||cos )(1)AC AC AB A =-∠+λλ2(33)21=⋅++λλλ333333122+2---=≤++⋅λλλλ,当且仅当1λλ=,即1λ=时,等号成立.所以AE BF ⋅.故答案为:1+34-. 【点睛】关键点点睛:本题的关键是灵活应用向量的投影及用基底法表示向量.16.【答案】(1)34C π=; (2)(ⅰ)c =;(ii )sin(2)B C -=【解析】解:(1(sin cos sin cos )sin 0C A B B A C ++=∴sin sin 0C C C +=,∴cos 2C =-,0C π<<, ∴34C π=(2)(ⅰ)因为2a b ==,34C π=,由余弦定理得2222cos 2422(102c a b ab C =+-=+-⨯=,∴c =(ⅱ)由sin sin sin 5c b B C B =⇒=,因为B 为锐角,所以cos 5B =4sin 22555B =⨯=,223cos 2cos sin 5B B B =-=,43sin(2)sin 2cos cos2sin (55B C B C B C -=-=⨯-=【点睛】本题考查了利用正弦定理和余弦定理解三角形,还考查同角三角函数的基本关系式,二倍角公式以及两角差的正弦公式.17.【答案】(1)证明见解析;(2(3【解析】解:依题意,以C为原点,分别以,CA,CB1CC的方向为,x,y z轴,建系如图,得(0,0,0)C,(2,0,0)A,(0,2,0)B,1(0,0,3)C,1(2,0,3)A,1(0,2,3)B,(2,0,1)D,(0,0,2)E,(1,1,3)M.(1)证明:依题意,1(1,1,0)C M=,1(2,2,2)B D=--,从而112200C M B D⋅=-+=,所以11C M B D⊥.(2)解:依题意,(2,0,0)CA=是平面1BB E的一个法向量,1(0,2,1)EB=,(2,0,1)ED=-.设(,,)n x y z=为平面1DB E的法向量,则1n EBn ED⎧⋅=⎪⎨⋅=⎪⎩,即2020y zx z+=⎧⎨-=⎩,取(1,1,2)n =-.因此有6cos,||CA nCA nCA n⋅〈〉==||,所求平面1B ED与平面1BEB6(3)解:依题意,(2,2,0)AB=-.由(2)知(1,1,2)n =-为平面1DB E 的一个法向量, 于是3cos ,||||AB n AB n AB n ⋅〈〉==-.所以,AB 与平面1DB E【点睛】本题考查利用空间向量证明线线垂直,求面面所成的角和线面所成的角的有关问题,属中档题,关键是掌握平面的法向量的求法和向量夹角的余弦值公式,准确进行向量的数量积的坐标运算余弦值.18.【答案】(1)2212x y +=;(2)22y x =-或22y x =-+. 【解析】(1)解:设右焦点为(),0c ,由题意可知22212c c e a a b c =⎧⎪⎪==⎨⎪=+⎪⎩,解得1a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程为2212x y +=.(2)(方法一)解:由题意,设直线l 的方程为()1y k x =-,且0k ≠.与椭圆方程联立()22112y k x x y ⎧=-⎪⎨+=⎪⎩,整理得()2222124220k x k x k +-+-=. 设(),A A A x y ,(),B B B x y ,(),M M M x y ,则224212A M B k x x x k +==+,222212A B k x x k -=+.因此()2222111212M M k k y k x k k k ⎛⎫-=-=-= ⎪++⎝⎭,即22212,1212k k M k k ⎛⎫- ⎪++⎝⎭.于是直线OM 的斜率为12k -,直线OM 的方程为2xy k =-,与椭圆方程联立22212x y k x y ⎧=-⎪⎪⎨⎪+=⎪⎩,整理得221122x k ⎛⎫+= ⎪⎝⎭. 设(),N N N x y ,解得222412Nk x k=+. 在平行四边形OANB 中,M 为ON 中点,从而2M N x x =,即224M N x x =,因此222222441212k k k k ⎛⎫= ⎪++⎝⎭,解得2k =±. 所以,直线l的方程为22y x =-或22y x =-+. (方法二)解:求得2222,1212k k M k k ⎛⎫- ⎪++⎝⎭的过程同方法一,在平行四边形OANB 中,有2ON OA OB OM =+=,设(),N N N x y ,所以22242,1212k k N k k ⎛⎫- ⎪++⎝⎭.又因为点N 在椭圆C 上,从而2222241221212k k k k ⎛⎫⎪+-⎛⎫⎝⎭+= ⎪+⎝⎭,解得2k =±. 所以,直线l的方程为22y x =-或22y x =-+. 【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 19.【答案】(Ⅰ)12n n a =;1n b n =-;(Ⅱ)(i )112n nT n =-+;(ii )3[8,1)2. 【解析】解:(Ⅰ)设数列{}n a 的公比为(0)q q >,因为112a =,32114a a =+,可得121112114a a qa q ⎧=⎪⎪⎨⎪=+⎪⎩,整理得21120q q--=, 解得1q =-(舍)或 12q =,所以数列{}n a 通项公式为12n n a =. 设数列{}n b 的公差为d ,因为3461a b b =+,45712a b b =+,即1128831616b d b d +=⎧⎨+=⎩,解得10b =,1d =,所以数列{}n b 的通项公式为1n b n =-;(Ⅱ)(ⅰ)由等比数列的前n 项和公式可得11(1)12211212n n n S -==--, 所以211111(111)()(1)122222n n n n T n n =++⋯+-++⋯+=--=-+;(ⅱ)由(ⅰ)可得111311121()(2)()(2)112(1)(1)22(1)2n n n n n n n n n n n n n T b b n c b b n n n n n n +++++++++-+-+====-+++, 所以{}n c 的前n 项和122231111111111()()()122222322(1)22(1)2n n n n n R c c c n n n ++=++⋯+=-+-+⋯+-=-++.又n R 在*n N ∈上是递增的,∴13182n R R =<. 所以n R 的取值X 围为3[8,1)2.【点睛】本题考查等差数列和等比数列的通项公式和前n 项和公式,考查分组求和法与裂项相消法,解题过程只要按照题意计算即可,考查了学生的运算求解能力. 20.【答案】(1)()()210xx f x e x x+=≠;(2)调递增区间是(),1-∞-,1,2⎛⎫+∞ ⎪⎝⎭;单调递减区间是()1,0-,10,2⎛⎫ ⎪⎝⎭;(3)()1,-+∞. 【解析】解:(1)函数()f x 的定义域为()(),00,-∞⋃+∞.()22xax bx b f x e x +-'=,由题知()()1011f f e ⎧-=⎪⎨-'=⎪⎩即()()112011a b e a b e e --⎧-=⎪⎨-+⋅=⎪-⎩解得2a =,1b =,所以函数()()210xx f x e x x+=≠. (2)()()()2212121x xx x x x f x e e x x+-+-'=⋅=⋅ 令()0f x '>得1x <-或12x >, 令()0f x '<得10x -<<或102x <<. 所以函数()f x 的单调递增区间是(),1-∞-,1,2⎛⎫+∞ ⎪⎝⎭单调递减区间是()1,0-,10,2⎛⎫ ⎪⎝⎭(3)()2x b g x ax a e x ⎛⎫=-- ⎪⎝⎭,()0a >()2x b b g x ax a e x x ⎛⎫'∴=+-- ⎪⎝⎭22221()()23(23)x x xxxxe e x g x g x axe ae b e ax a b x x --∴+'=--=--,由条件存在0(1,)x ∈+∞,使00()()0g x g x +'=成立,得22230x xxxxe e axe ae bx ---=,对(1,)x ∈+∞成立,又0x e >221230x ax a bx -∴--=对(1,)x ∈+∞成立,化简得2(23)21b x x a x -=-,令2(23)()21x x h x x -=-,则问题转化为求()h x 在区间(1,)+∞上的值域,求导得222(463)()(21)x x x h x x -+'=-,令2463y x x =-+,为二次函数,图象开口向上,△120=-<,则24630x x -+>,又0x >,则()0h x '>,()h x 在区间(1,)+∞上单调递增,值域为(1,)-+∞, 所以ba的取值X 围是(1,)-+∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。
2021届高三高考数学复习压轴题专练32—椭圆(4)【含答案】
2021届高三高考数学复习压轴题专练32—椭圆(4)【含答案】1.直线10x y -+=经过椭圆22221(0)x y a b a b+=>>的左焦点F ,交椭圆于A ,B 两点,交y轴于C 点,若2FC AC =,则该椭圆的离心率是( ) A .1022- B .312- C .222- D .21-解:如图所示:对直线10x y -+=,令0x =,解得1y =,令0y =,解得1x =-, 故(1,0)F -,(0,1)C ,则(1,1)FC =, 设0(A x ,0)y ,则00(,1)AC x y =--, 而2FC AC =,则00212(1)1x y -=⎧⎨-=⎩,解得001212x y ⎧=-⎪⎪⎨⎪=⎪⎩,点A 又在椭圆上,所以222211()()221a b-+=,222(1,)c a b c ==+, 整理得4224421a a a -=-, 所以235a +=所以241245(102)102354435c e a ---=-+.故选:A .2.已知椭圆2214x y +=的上顶点为A ,B 、C 为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点( ) A .(1,0)B .(3,0)C .1(0,)2D .3(0,)5-解:因为AB AC ⊥,所以10AB AC k k =-<,所以直线BC 斜率存在,设直线:(1)BC l y kx m m =+≠,1(B x ,1)y ,2(C x ,2)y ,联立方程2244y kx mx y =+⎧⎨+=⎩, 消y 得222(41)8440k x kmx m +++-=,122814kmx x k -+=+,21224414m x x k -=+,(*) 又1212111AB AC y y k k x x --=⋅=-, 整理得1212(1)(1)0y y x x --+=, 即1212(1)(1)0kx m kx m x x +-+-+=,所以221212(1)(1)()(1)0(*)k x x k m x x m ++-++-=,代入得:2222224(1)(1)8(1)(1)01414k m k m m m k k+---+-=++, 整理得530m +=得35m =-,所以直线BC 过定点3(0,)5-.故选:D .3.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,上顶点为A ,右顶点为B ,若OAB ∠,OAF ∠的平分线分别交x 轴于点D ,E ,且222||||||2||||AD AE DE AD AE +-=⋅,则椭圆C 的离心率为( ) A .22B .312- C .512- D .32解:如下图所示: 因为222||||||2|||AD AE DE AD AE +-⋅,所以由余弦定理得222||||||2||||22||||AD AE DE AD AE AD AE +-⋅=⋅,又(0,)2DAE π∠∈,所以45DAE ∠=︒.因为AD ,AE 分别为OAB ∠,OAF ∠的平分线,所以290BAF DAE ∠=∠=︒, 所以AB AF ⊥.由题意可知,点(,0)F c -,(0,)A b ,(,0)B a ,则(,),(,)AF c b AB a b =--=-. 由20AF AB ac b ⋅=-+=,可得220a c ac --=,即220c ac a +-=, 在等式220c ac a +-=的两边同时除以2a ,可得210e e +-=, 因为01e <<,解得512e -=. 故选:C .4.如图,椭圆22221(0)x y a b a b +=>>的右焦点为F ,A ,B 分别为椭圆的上、下顶点,P 是椭圆上一点,//AP BF ,||||AF PB =,记椭圆的离心率为e ,则2(e = )A .22B .1718- C .12D .1518- 解:(0,)B b -,(,0)F c ,则BFb kc =,∴直线:bAP y x b c=+, 与椭圆方程联立,可得2222()20a c x a cx ++=,可得P 点的横坐标为2222a c x a c =-+,则322b y a c =-+,即2222(a c P a c -+,322)b a c -+,由||||AF PB =,得22||PB a =,即2322222222()()a c b b a a c a c+-+=++, 整理为:6244264320c a c a c a --+=,则64243210e e e --+=,即242(1)(41)0e e e -+-=, 210e -≠,42410e e ∴+-=,解得2171e -=或2171e --=. 故选:B .5.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A 和B ,P 是椭圆上不同于A ,B的一点.设直线AP ,BP 的斜率分别为m ,n ,则当239(3)(||||)32a ln m ln nb mn mn -+++取最小值时,椭圆C 的离心率为( ) A .223B .45C .32 D .15解:(,0)A a -,(,0)B a ,设0(P x ,0)y ,则2222002()b y a x a=-,则00y n x a =-,200y m x a =+,2202220y b mn x a a∴==--,则222222239239(3)(||||)(3)3232a a a a b ln m ln n ln b mn mn b b b a -+++=+-+ 322()3()393a a a a ln b b b b=-+-. 令322()3393f t t t t lnt =-+-,(1)t >,322292639(3)(23)()263t t t t t f t t t t t t-+--+'=-+-==, 故3t =时,()f t 取最小值, 椭圆C 22221b a -故选:A .6.卡西尼卵形线是1675年卡西尼在研究土星及其卫星的运行规律时发现的.在数学史上,同一平面内到两个定点(叫做焦点)的距离之积为常数的点的轨迹称为卡西尼卵形线.已知卡西尼卵形线是中心对称图形且有唯一的对称中心.若某卡西尼卵形线C 两焦点间的距离为2,且C 上的点到两焦点的距离之积为1,则C 上的点到其对称中心距离的最大值为( )A .1B .2C .3D .2解:设左、右焦点分别为1F ,2F ,以线段12F F 的中点为坐标原点, 1F ,2F 所在的直线为x 轴建立平面直角坐标系,则1(1,0)F -,2(1,0)F .设曲线上任意一点(,)P x y ,则2222(1)(1)1x y x y ++⋅-+=, 化简得该卡西尼卵形线的方程为22222()2()x y x y +=-,显然其对称中心为(0,0).由22222()2()x y x y +=-得222222()2()40x y x y y +-+=-, 所以22222()2()x y x y ++, 所以2202x y +,所以222x y +.当且仅当0,2y x ==±时等号成立,所以该卡西尼卵形线上的点到其对称中心距离的最大值为2. 故选:B .7.已知椭圆22143x y +=上有三个点A 、B 、C ,AB ,BC ,AC 的中点分别为D 、E 、F ,AB ,BC ,AC 的斜率都存在且不为0,若3(4OD OE OF k k k O ++=-为坐标原点),则111(AB BC ACk k k ++= ) A .1 B .1-C .34-D .34解:如图,设1(A x ,1)y ,2(B x ,2)y ,3(C x ,3)y ,则 2211143x y +=,2222143x y +=, 两式作差得,12121212()()()()43x x x x y y y y -+-+=-,∴121212124()3()x x y y y y x x -+=--+,即143OD AB k k =-. 同理可得,143OE BC k k =-,143OF AC k k =-, ∴111443()()1334OD OE OF AB BC AC k k k k k k ++=-++=-⨯-=, 故选:A .8.已知点A 为椭圆2222:1(0)x y C a b a b+=>>的左顶点,(,0)F c 为椭圆的右焦点,B 、E 在椭圆上,四边形OABE 为平行四边形(O 为坐标原点),过直线AE 上一点P 作圆222()4b x c y -+=的切线PQ ,Q 为切点,若PQF ∆面积的最小值大于28b ,则椭圆C 的离心率的取值范围是( )A .102(0,)3- B .102(,1)3- C .51(0,)3- D .51(,1)3- 解:因为四边形OABE 为平行四边形, 所以//BE AO ,||||BE AO a ==,设E 点纵坐标为m ,代入椭圆的方程得22221x m a b+=,解得22a x b m b=-2222()a a b m b m a b b--=,解得3m =, 当3m =,可得223()22a ax b b b -=, (2aE 3),(,0)A a -, 所以直线AE 的方程为332())32b y x a x a a =+=+,3330bx ay ab -=,所以||min PF 即为点F 到直线AE 的距离223()39b a c d b a+=+,所以22221||4PQ d R d b =-=-,所以222111()||22248PFQ minb b S PQ R d b ∆=⋅=⋅⋅->, 整理得2212d b >,故22222222222223()3()(1)1393()942b a c a c b e b b b a a c a e +++==>+-+-, 所以221(1)(4)2e e +>-,所以23420e e +->, 所以210(3e s --<舍去)或1023e ->,所以e 的取值范围为102(3-,1). 故选:B . 二、多选题9.如图所示,“嫦娥五号”月球探测器飞行到月球附近时,首先在以月球球心F 为圆心的圆形轨道Ⅰ上绕月飞行,然后在P 点处变轨进入以F 为一个焦点的椭圆轨道Ⅱ上绕月飞行,最后在Q 点处变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,设圆形轨道Ⅰ的半径为R ,圆形轨道Ⅲ的半径为r ,则( )A .椭圆轨道Ⅱ上任意两点距离最大为2RB .椭圆轨道Ⅱ的焦距为R r -C .若r 不变,则R 越大,椭圆轨道Ⅱ的短轴越短D .若R 不变,则r 越小椭圆轨道Ⅱ的离心率越大 解:由题可知椭圆轨道Ⅰ的半径为R ,Ⅱ为椭圆,设为22221x y a b+=,所以a c R +=①,Ⅲ为圆形轨道,半径为r ,所以a c r -=②,对于A :由题可知椭圆Ⅱ上任意两点最大距离为22a R r R =+≠,故A 不正确; 对于B :椭圆Ⅱ的焦距为2c , ①-②得,2c R r =-,故B 正确; 对于C :由①②得2R ra +=,2R r c -=,所以2222()()222244R r R r b a c Rr +-=-=-=, 若r 不变,R 越大,2b 越大,故C 不正确;对于222:1112R rc R r r D e R r R a R r R r r--====-=-++++, R 不变,r 越小,Rr 越大,21R r+越小,则e 越大,故D 正确.故选:BD .10.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点P 在椭圆C 上,点Q 在圆22:(3)(4)4E x y ++-=上,且圆E 上的所有点均在椭圆C 外,若||||PQ PF -的最小值为256-,且椭圆C 的长轴长恰与圆E 的直径长相等,则下列说法正确的是( )A .椭圆C 的焦距为2B .椭圆C 的短轴长为3C .||||PQ PF +的最小值为23D .过点F 的圆E 的切线斜率为473-± 解:对于A :因为椭圆C 的长轴长与圆E 的直径长相等, 所以24a =,即2a =, 设椭圆的左焦点(,0)F c '-,由椭圆的定义可知||||24PF PF a '+==,所以||||||(4||)||||4||4||24256PQ PF PQ PF PQ PF QF EF -=--'=+'-'-'--=, 所以22||25(3)(40)EF c '=-++-1c =或5, 因为2c a <=,所以1c =,即椭圆的焦距为22c =,故A 正确, 对于B :由2222213b a c =-=-=, 所以椭圆的短轴长为23,故B 错误, 对于22:||||||||||(13)(04)422C PQ PF QF EF EQ +-=++-=-,故C 错误,对于D :设过点F 的切线方程为(1)y k x =-, 则2|(31)4|21k k ---=+,解得473k -±=,故D 正确, 故选:AD .11.如图,已知椭圆221:14x C y +=,过抛物线22:4C x y =焦点F 的直线交抛物线于M ,N两点,连接NO ,MO 并延长分别交1C 于A ,B 两点,连接AB ,OMN ∆与OAB ∆的面积分别记为OMN S ∆,.OAB S ∆则下列命题:A .若记直线NO ,MO 的斜率分别为1k ,2k ,则12k k 的大小是定值14-B .OAB ∆的面积OAB S ∆是定值1C .线段OA ,OB 长度的平方和22||||OA OB +是定值5D .设OMNOABS S λ∆∆=,则5λ其中正确的命题有( )A .AB .BC .CD .D解:(0,1)F ,设直线MN 方程为1y k =+,代入抛物线方程得:2440x kx --=, 设1(M x ,1)y ,2(N x ,2)y ,则124x x k +=,124x x =-,1212121211164y y k k x x x x ===-,A 正确. 设直线OA 的方程为:1y k x =,由对称性令10k >, 代入椭圆的方程得:12211(1414A k k++,同理可得,22222(1414B kk++,212121||14k OA k+=+点B 到直线OA 的距离122221141d kk++,22121222221111214()4()1||12(14)(14)4(2)OABk k k k S OA d k k k k k k ∆--==++-+,B 正确. 22221222124444||||1414k k OA OB k k +++=+++ 222212212212(1)(14)(1)(14)4(14)(14)k k k k k k +++++=⨯++ 22122212555245244k k k k ++=⨯=++,C 正确. 221212||||||(14)(14)||||||A B x x OM ON k k OA OB x x λ⋅===++⋅2222121224()2422k k k k =+++⨯⋅=,当且仅当12k k =-时等号成立.D 不正确. 故选:ABC .12.已知椭圆22:14x C y +=的左、右两个焦点分别为1F 、2F ,直线(0)y kx k =≠与C 交于A 、B 两点,AE x ⊥轴,垂足为E ,直线BE 与椭圆C 的另一个交点为P ,则下列结论正确的是( )A .若1260F PF ∠=︒,则△12F PF 的面积为36B .四边形12AF BF ,可能为矩形C .直线BE 的斜率为12kD .若P 与A 、B 两点不重合,则直线PA 和PB 斜率之积为4-解:由椭圆22:14x C y +=,得2a =,1b =,3c =在△12PF F 中,由余弦定理可得,222121212||||||2||||cos60F F PF PF PF PF =+-︒, 即2212443||||c a PF PF =-,解得124||||3PF PF =, ∴12143323F PF S=⨯=,故A 错误; 若四边形12AF BF 为矩形,则11AF BF ⊥,即110F A F B ⋅=, 即()()0A B A B x c x c y y +++=, 联立2214y kx x y =⎧⎪⎨+=⎪⎩,得22(41)4k x +=, 得0A B x x +=,2441A B x x k =-+,22441A B k y y k =-+,即22244304141k k k -+-=++,得2810k -=,该方程有实根,故B 正确;由22(41)4k x +=,得2141x k =±+0k >,得21(241A k +241k +,21(41B k -+241k +,则21(241E k +0),则22414241BE kk k k +==-+,故C 正确;A PB P B PPA A P B P B Py y y y y y k x x x x x x ---+===---+,BE 所在直线方程为22()241k y x k =-+,与椭圆2214x y +=联立, 可得22222()4041x k x k +--=+,即22222244(1)404141k k k x x k k +-+-=++. 得22214141B P k x x k k +=⋅++, 2222221442()214141(1)41B P k k ky y k k k k k -+=⋅-=+++++,故12PA k k =-,则11224PA PB k k k k ⋅=-⋅=-,故D 错误. 故选:BC .三、填空题13.设椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,P 是椭圆上一点,且123F PF π∠=,若△12F PF 的外接圆和内切圆的半径分别为R ,r ,当4R r =时,椭圆的离心率为 .解:△12F PF 的外接圆的半径R ,由正弦定理1212||22sin sin 3F F cR F PF π==∠,所以23R =, 又由于4R r =,所以3r =, 在△12F PF 中,由余弦定理可得22212121212||||||2||||cos F F PF PF PF PF F PF =+-⋅∠,而123F PF π∠=,所以2212443||||c a PF PF =-,所以可得:22124||||()3PF PF a c =-,由三角形的面积相等可得:1212121211(||||||)||||sin 22PF PF F F r PF PF F PF ++⋅=∠,所以2243(22)()3a c r a c +=-所以223432(()3a c a c +=-, 整理可得:2320e e --=,解得23e =或1e =-, 故答案为:23. 14.已知(1,0)F 为椭圆2222:1(0)x y E a b a b+=>>的右焦点,过E 的下顶点B 和F 的直线与E的另一交点为A ,若45BF FA =,则a = .解:法(1)由椭圆的方程可得(0,)B b -,(1,0)F ,所以0()10BF b k b --==-, 所以直线:(1)BF y b x =-,联立2222(1)1y b x x y ab =-⎧⎪⎨+=⎪⎩,整理可得222(1)20a x a x +-=,可得0x =或2221a x a =+, 所以2221A a x a=+,所以22(1)1A b a y a -=+, 因为45BF FA =,则4(1,222)5(11a b a =-+,22(1))1b a a -+,所以22(1)451b a b a-=⋅+,解得29a =,即3a =, 法(2)作AH 垂直于x 轴于H ,易知Rt AHF Rt BOF ∆∆∽, 因为45BF FA =,所以||4||||||||5||||AF AH AH FH BF BO b OF ====, 所以A 的纵坐标为45b ,A 的横坐标为491155+⋅=,所以A 的坐标为:9(5,4)5b ,将A 点的坐标代入椭圆的方程:222294()()551b a b+=,解得29a =,即3a =,故答案为:3.15.曲面22z x y =+被平面1x y z ++=截成一椭圆,则椭圆上的点到原点距离的取值范围是 .解:设椭圆上的点(x ,y ,)z ,则椭圆上的点到原点的距离2222d x y z =++, x ,y ,z 满足的条件为:22z x y =+,1x y z ++=,作拉格朗日函数22222()(1)L x y z z x y x y z λμ=+++--+++-, 22022020x y zL x x L y y L z λμλμλμ=-+=⎧⎪=-+=⎨⎪=++=⎩,可得(1)()0x y λ--=, 所以有1λ=或x y =,有10λμ=⇒=,12z =-,不符合题意,所以舍弃,将x y =代入22z x y =+和1x y z ++=可得:22z x =,2212210x z x x +=⇒+-=, 解得:13x y -±==,3z =+ 113(M -+13-+23)-,213(M --13--23), 由题意可知这种距离的最大值和最小值一定存在,所以距离的最大值和最小值分别在这两点处取到处取得,而22132()3)95-±++=+3 所以最大值和最小值分别为:1953max M d d =+,2953min M d d ==-故答案为:[953-953]+.16.已知A 、B 为椭圆22:143x y C +=上两点,线段AB 的中点在圆221x y +=上,则直线AB 在y 轴上截距的取值范围为 .解:设点1(A x ,1)y 、2(B x ,2)y ,线段AB 的中点为(,)m n ,则221m n +=, ∴22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减整理得,121212123()4()y y x x x x y y -+=--+ ①当0n ≠,即10n -<或01n <时,121234y y mx x n-=--,此时直线AB 的方程为3()4my n x m n-=--, 令0x =,则222343(1)313()44444m n n n y n n n n n n +-=+==+=+,若10n -<,则13()4y n n=+在[1-,0)上单调递减,1y ∴-;若01n <,则13()4y n n =+在(0,1]上单调递减,1y ∴,(y ∴∈-∞,1][1-,)+∞;②当0n =时,直线AB 过点(1,0)或(1,0)-,且垂直于x 轴,在y 轴上无截距. 综上所述,直线AB 在y 轴上截距的取值范围为(-∞,1][1-,)+∞. 故答案为:(-∞,1][1-,)+∞.。
2021年高考数学高考数学压轴题 三角函数与解三角形多选题分类精编含解析
2021年高考数学高考数学压轴题 三角函数与解三角形多选题分类精编含解析一、三角函数与解三角形多选题1.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( )A .AB AC →→⋅为定值B .2210AC AB += C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当b c =时,等号成立),由A 选项知cos 3bc A =,22cos cos 1133cos AA A∴≥-=-, 解得3cos 5A ≥,故C 错误; 对于D,2222213cos 44c c BAD c c +-+∠==≥=(当且仅当c =立),因为BAD ABD ∠<∠, 所以(0,)2BAD π∠∈,又cos BAD ∠≥BAD ∠的最大值30,D 选项正确. 故选:ABD 【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题.2.函数()sin 24f x x π⎛⎫=+⎪⎝⎭,则( ) A .函数()y f x =的图象可由函数sin 2y x =的图象向右平移4π个单位得到 B .函数()y f x =的图象关于直线8x π=轴对称C .函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称D .函数2()y x f x =+在08π⎛⎫ ⎪⎝⎭,上为增函数 【答案】BCD 【分析】对四个选项,一一验证:对于选项A ,利用三角函数相位变化即可;对于选项B ,利用正弦函数的对称轴经过最高(低)点判断; 对于选项C ,利用正弦函数的对称中心直接判断; 对于选项D ,利用复合函数的单调性“同增异减”判断; 【详解】由题意,对于选项A ,函数sin 2y x =的图象向右平移4π个单位可得到()sin 2sin 2cos 242f x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以选项A 错误;对于选项B ,sin 21884f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,取到了最大值,所以函数()y f x =的图象关于直线8x π=轴对称,所以选项B 正确;对于选项C ,08f π⎛⎫-= ⎪⎝⎭,所以函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称,所以选项C 正确;对于选项D ,函数2yx 在08π⎛⎫ ⎪⎝⎭,上为增函数,08x π⎛⎫∈ ⎪⎝⎭,时,2442x πππ⎛⎫+∈ ⎪⎝⎭,,单调递增,所以函数2()y x f x =+在08π⎛⎫⎪⎝⎭,上为增函数,所以选项D 正确. 故选:BCD. 【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式.3.函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则下列结论正确的是( )A .1()2sin 36f x x π⎛⎫=-⎪⎝⎭ B .若把()f x 的横坐标缩短为原来的23倍,纵坐标不变,得到的函数在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位,则所得函数是奇函数 D .函数()y f x =的图象关于直线4x π=-对称【答案】ACD 【分析】根据函数的图象求出函数的解析式,得选项A 正确; 求出213263x πππ--得到函数在[],ππ-上不是增函数,得选项B 错误;求出图象变换后的解析式得到选项C 正确; 求出函数的对称轴方程,得到选项D 正确. 【详解】 A, 如图所示:1732422T πππ=-=, 6T π∴=,∴2163πωπ==,(2)2f π=,∴2(2)2sin()23f ππϕ=+=,即2sin()13πϕ+=, ∴22()32k k Z ππϕπ+=+∈,∴2()6k k Z πϕπ=-∈,||ϕπ<,∴6πϕ=-,∴1()2sin()36f x x π=-,故选项A 正确;B, 把()y f x =的横坐标缩短为原来的23倍,纵坐标不变,得到的函数12sin()26y x π=-,[x π∈-,]π,∴213263x πππ--,∴12sin()26y x π=-在[π-,]π上不单调递增,故选项B 错误;C, 把()y f x =的图象向左平移2π个单位,则所得函数12sin[()]2sin 3223xy x ππ=-+=,是奇函数,故选项C 正确; D, 设1,,32,362x k k Z x k πππππ-=+∈∴=+当24k x π=-⇒=-,所以函数()y f x =的图象关于直线4x π=-对称,故选项D 正确.故选:ACD 【点睛】方法点睛:求三角函数的解析式,一般利用待定系数法,一般先设出三角函数的解析式sin()y A wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.4.已知函数()22sin cos f x x x x =+,则下列结论中正确的是( )A .()f x 的图象是由y= 2sin2x 的图象向左移3π个单位得到的 B .()f x 在,03π⎡⎤-⎢⎥⎣⎦上单调递增 C .()f x 的对称中心的坐标是(),026k k Z ππ⎛⎫-∈⎪⎝⎭D .函数()()g x f x =[]0,10内共有8个零点 【答案】BCD 【分析】A.化简得()2sin(2)3f x x π=+,利用函数的图象变换得该选项错误;B.利用复合函数的单调性原理分析得该选项正确;C. 由2,3x k k Z ππ+=∈得该选项正确;D.解方程sin 232x π⎛⎫+= ⎪⎝⎭得该选项正确. 【详解】()2π2sin cos sin 222sin 22sin 236f x x x x x x x x π⎛⎫⎛⎫=+-=+=+=+ ⎪ ⎪⎝⎭⎝⎭,把2sin 2y x =的图象向左平移6π个单位,得到()f x ,所以选项A 不正确; 设23t x π=+,则t 在,03π⎡⎤-⎢⎥⎣⎦上单调增, ,03x π⎡⎤∈-⎢⎥⎣⎦2,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦,,33t ππ⎡⎤∴∈-⎢⎥⎣⎦又sin y t =在,33ππ⎡⎤-⎢⎥⎣⎦上单调递增, ()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭在,03π⎡⎤-⎢⎥⎣⎦上单调递增,所以选项B 正确;由2,3x k k Z ππ+=∈得对称中心为(),062k k Z ππ⎛⎫-+∈ ⎪⎝⎭,所以选项C 正确;由sin 232x π⎛⎫+= ⎪⎝⎭得2233x k πππ+=+或222,33x k k Z πππ+=+∈ 解得x k π=或,6x k k Z ππ=+∈,又[]0,10,x ∈0,1,2,3k ∴=时,713190,,,,2,,3,6666x πππππππ=,共8个零点,所以选项D 正确. 故选:BCD 【点睛】方法点睛:函数的零点问题的研究,常用的方法有:(1)方程法(解方程即得解);(2)图象法(直接画出函数的图象得解);(3)方程+图象法(令()=0f x 得()()g x h x =,再分析函数(),()g x h x 的图象得解). 要根据已知条件灵活选择方程求解.5.下列结论正确的是( )A .在三角形ABC 中,若AB >,则sin sin A B > B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则三角形ABC 为等腰三角形D .在锐角三角形ABC 中,sin sin cos cos A B A B +>+【答案】ABD 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,利用锐角△ABC 这个条件,可得2A B π+>,结合三角函数的单调性比较sin A 与cos B 大小即可判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a bA B=,得sin sin A B >,A 正确; 在锐角三角形ABC 中,222222cos 0,02b c a A b c a bc+-=>∴+->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B ︒+=,即A B =或90A B ︒+=,ABC 为等腰三角形或直角三角形,C 错误;在锐角三角形ABC 中,2A B π+>,022A B ππ∴>>->,sin sin 2A B π⎛⎫∴>- ⎪⎝⎭,即sin cos A B >,同理:sin cos B A >sin sin cos cos A B A B ∴+>+,D 正确.故选:ABD. 【点睛】关键点睛:本题考查正弦定理,余弦定理,正弦函数的性质,诱导公式等,学会公式的灵活应用是解答本题的关键.6.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则下列说法正确的是( )A .23ϕπ=B .()f x 的最小正周期为πC .()f x 的图象关于直线12x π=对称D .()f x 的图象关于点5,06π⎛⎫⎪⎝⎭对称 【答案】BCD 【分析】利用图象,把(代入求ϕ,利用周期求出2ω=,从而2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,研究对称轴和对称中心. 【详解】由图可知2sin ϕ=sin 2ϕ=,根据图象可知0x =在()f x 的单调递增区间上,又0ϕπ<<,所以3πϕ=,A 项错误;因为()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,所以结合图像,由五点法得33ωπππ+=,解得2ω=,则()f x 的最小正周期2T ππω==,B 项正确;将12x π=代入2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,得2sin 21263f πππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称,C 项正确﹔将56x π=代入可得552sin 0633f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以点5,06π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心,D 项正确. 故选:BCD. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.7.已知函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭,则下列结论正确的是( ) A .函数()f x 的初相为6π- B .若函数()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增,则(0,2]ω∈ C .若函数()f x 关于点,02π⎛⎫⎪⎝⎭对称,则ω可以为12D .将函数()f x 的图象向左平移一个单位得到的新函数是偶函数,则ω可以为2023 【答案】AB 【分析】根据选项条件一一判断即可得结果. 【详解】A 选项:函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭的初相为6π-,正确; B 选项:若函数()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增,则2266k ππωππ-+≤-,2362k πωπππ-≤+,k Z ∈,所以21226k k ω-+≤≤+,k Z ∈,又因为0ω<,则02ω<≤,正确;C 选项:若函数()f x 关于点,02π⎛⎫⎪⎝⎭对称,则,26k k Z πωππ-=∈,所以12,3k k Z ω=+∈故ω不可以为12,错误; D 选项:将函数()f x 的图象向左平移一个单位得到()12sin 6f x x πωω⎛⎫+=+- ⎪⎝⎭是偶函数,则,62k k Z ππωπ-=+∈,所以2,3k k Z πωπ=+∈故ω不是整数,则ω不可以为2023,错误; 故选:AB 【点睛】掌握三角函数图象与性质是解题的关键.8.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()10αβ+=-,则( )A .cos α=B .sin cos 5αα-=C .34πβα-= D .cos cos 5αβ=-【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 55αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos 5αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()αβ+=所以34cos()cos[()2]1051052βααβα⎛⎫⎛⎫-=+-=--+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()0αβ+=<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.9.将函数cos 2y x =的图象上所有点向左平移6π个单位长度,再向下平移1个单位长度,得到函数()y f x =的图象,则( ) A .()f x 的图象的对称轴方程为()62k x k Z ππ=-+∈ B .()f x 的图象的对称中心坐标为(),0212k k Z ππ⎛⎫+∈⎪⎝⎭ C .()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭ D .()f x 的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】AC 【分析】首先根据图象平移求函数()y f x =的解析式,再根据整体代入的方法判断函数的对称性和单调区间. 【详解】cos 2y x =的图象上所有点向左平移π6个单位长度,得到cos 26y x π⎛⎫=+ ⎪⎝⎭,再向下平移1个单位长度后得到()cos 213y f x x π⎛⎫==+- ⎪⎝⎭, 对于A ,令23x k ππ+=,解得,62k x k Z ππ=-+∈,函数的对称轴是,62k x k Z ππ=-+∈,故A 正确; 对于B ,令232x k πππ+=+,解得:,122k x k Z ππ=+∈,所以函数的对称中心,1,122k k Z ππ⎛⎫+-∈ ⎪⎝⎭,故B 不正确; 对于C ,令2223k x k ππππ-+≤+≤,解得:236k x k ππ-+π≤≤-+π,所以函数的单调递增区间是2,,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦,由于单点不具有单调性,所以()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭也正确,故C 正确; 对于D ,令2223k x k ππππ≤+≤+,解得:63k x k ππππ-+≤≤+,所以函数单调递减区间是,63k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈,故D 不正确. 故选:AC【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.10.已知函数()()cos 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭,()()124F x f x f x π⎛⎫=+ ⎪⎝⎭为奇函数,则下述四个结论中说法正确的是( )A .tan ϕ=B .()f x 在[],a a -上存在零点,则a 的最小值为6π C .()F x 在3,44ππ⎛⎫ ⎪⎝⎭上单调递增 D .()F x 的图象可由()f x 的图象向左平移2π个单位得到 【答案】ABC【分析】首先得到()()1224F x f x f x π⎛⎫=++ ⎪⎝⎭的解析式,再根据函数的奇偶性求出参数ϕ,最后结合三角函数的性质一一验证即可.【详解】 解:因为()cos(2)f x x ϕ=+,所以11()()+cos(2))cos 22423F x f x f x x x x ππϕϕϕ⎛⎫⎛⎫==++=++ ⎪ ⎪⎝⎭⎝⎭, 因为()F x 为奇函数,则(0)0F =,即cos 03πϕ⎛⎫+= ⎪⎝⎭,所以32k ππϕπ+=+,k Z ∈,因为||2ϕπ<,所以6π=ϕ;对于A ,tan tan 63πϕ==,故A 正确; 对于B ,令()cos 206f x x π⎛⎫=+= ⎪⎝⎭,得26k x ππ=+,k ∈Z ,若()f x 在[,]a a -上存在零点,则0a >且a 的最小值为6π,故B 正确; 对于C ,()cos 2sin 263F x x x ππ⎛⎫=++=- ⎪⎝⎭,当3,44x ππ⎛⎫∈ ⎪⎝⎭时,2,232x ππ⎛⎫∈ ⎪⎝⎭,则()F x 在3,44ππ⎛⎫ ⎪⎝⎭上单调递增,故C 正确. 对于D ,因为()cos 26f x x π⎛⎫=+ ⎪⎝⎭, ()cos 266F x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,根据“左加右减”,()F x 的图象可由()f x 的图象向左平移6π个单位得到,故D 错误.故选:ABC .【点睛】关键点点睛:本题解答的关键是先根据()()124F x f x f x π⎛⎫=++ ⎪⎝⎭为奇函数,确定参数ϕ的值,再结合三角函数的性质逐一判断即可.。
高考数学压轴题100题汇总(含答案)
高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
高考数学压轴题大全
高考数学压轴题大全高考数学压轴题大全1.(本小题满分14分)如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C 的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求△APB的重心G的轨迹方程.(2)证明PFA=PFB.解:(1)设切点A、B坐标分别为,切线AP的方程为:切线BP的方程为:解得P点的坐标为:因此△APB的重心G的坐标为,因此,由点P在直线l上运动,从而得到重心G的轨迹方程为:(2)方法1:因为由于P点在抛物线外,则同理有AFP=PFB.方法2:①当因此P点坐标为,则P点到直线AF的距离为:即因此P点到直线BF的距离为:因此d1=d2,即得AFP=PFB.②当时,直线AF的方程:直线BF的方程:因此P点到直线AF的距离为:,同理可得到P点到直线BF的距离,因此由d1=d2,可得到AFP=PF B.2.(本小题满分12分)设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(Ⅰ)确定的取值范畴,并求直线AB的方程;(Ⅱ)试判定是否存在如此的,使得A、B、C、D四点在同一个圆上?并说明理由.(此题不要求在答题卡上画图)本小题要紧考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(Ⅰ)解法1:依题意,可设直线AB的方程为,整理得①设是方程①的两个不同的根,且由N(1,3)是线段AB的中点,得解得k=-1,代入②得,的取值范畴是(12,+).因此,直线AB的方程为解法2:设则有依题意,∵N(1,3)是AB的中点,又由N(1,3)在椭圆内,的取值范畴是(12,+).直线AB的方程为y-3=-(x-1),即x+y-4=0.(Ⅱ)解法1:∵CD垂直平分AB,直线CD的方程为y-3=x-1,即x-y+ 2=0,代入椭圆方程,整理得又设CD的中点为是方程③的两根,因此由弦长公式可得④将直线AB的方程x+y-4=0,代入椭圆方程得⑤同理可得⑥∵当时,假设存在12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.点M到直线AB的距离为⑦因此,由④、⑥、⑦式和勾股定理可得故当12时,A、B、C、D四点匀在以M为圆心,为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A、B、C、D共圆△ACD为直角三角形,A为直角|AN|2=|CN||DN|,即⑧由⑥式知,⑧式左边由④和⑦知,⑧式右边⑧式成立,即A、B、C、D四点共圆.解法2:由(Ⅱ)解法1及12,∵CD垂直平分AB,直线CD方程为,代入椭圆方程,整理得将直线AB的方程x+y-4=0,代入椭圆方程,整理得解③和⑤式可得不妨设运算可得,A在以CD为直径的圆上.又B为A关于CD的对称点,A、B、C、D四点共圆.(注:也可用勾股定理证明ACAD)3.(本小题满分14分)已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足(Ⅰ)证明(Ⅱ)推测数列是否有极限?假如有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N,使得当时,对任意b0,都有本小题要紧考查数列、极限及不等式的综合应用以及归纳递推的思想.(Ⅰ)证法1:∵当即因此有所有不等式两边相加可得由已知不等式知,当n3时有,证法2:设,第一利用数学归纳法证不等式(i)当n=3时,由知不等式成立.(ii)假设当n=k(k3)时,不等式成立,即则即当n=k+1时,不等式也成立.由(i)、(ii)知,又由已知不等式得(Ⅱ)有极限,且则有故取N=1024,可使当nN时,都有4.如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A 1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P为l上的动点,求F1PF2最大值.本题要紧考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的差不多思想方法和综合解题能力.满分14分.解:(Ⅰ)设椭圆方程为,半焦距为,则5.已知函数和的图象关于原点对称,且.(Ⅰ)求函数的解析式;(Ⅱ)解不等式;(Ⅲ)若在上是增函数,求实数的取值范畴.本题要紧考查函数图象的对称、二次函数的差不多性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力.满分14分.解:(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则∵点在函数的图象上(Ⅱ)由当时,,现在不等式无解.当时,,解得.因此,原不等式的解集为.6.(本题满分16分)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.对定义域分别是Df、Dg的函数y=f(x) 、y=g(x),f(x)g(x) 当xDf且xDg规定: 函数h(x)= f(x) 当xDf且xDgg(x) 当xDf且xDg若函数f(x)=,g(x)=x2,xR,写出函数h(x)的解析式;求问题(1)中函数h(x)的值域;(3)若g(x)=f(x+), 其中是常数,且[0,],请设计一个定义域为R的函数y=f (x),及一个的值,使得h(x)=cos4x,并予以证明.[解] (1)h(x)= x(-,1)(1,+)1 x=1(2) 当x1时, h(x)= =x-1++2,若x1时, 则h(x)4,其中等号当x=2时成立若x1时, 则h(x) 0,其中等号当x=0时成立函数h(x)的值域是(-,0] {1}[4,+)(3)令f(x)=sin2x+cos2x,=则g(x)=f(x+)= sin2(x+)+cos2(x+)=cos2x-sin2x,因此h(x)= f(x)f(x+)= (sin2x+co2sx)( cos2x-sin2x)=cos4x.另解令f(x)=1+sin2x, =,g(x)=f(x+)= 1+sin2(x+)=1-sin2x,因此h(x)= f(x)f(x+)= (1+sin2x)( 1-sin2x)=cos4x..(本题满分18分)本题共有3个小题,第1小题满分4分, 第2小题满分8分, 第3小题满分6分.在直角坐标平面中,已知点P1(1,2),P2(2,22),,Pn(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点, A2为A1关于点P2的对称点, , AN为AN-1关于点PN的对称点.(1)求向量的坐标;(2)当点A0在曲线C上移动时, 点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式;(3)对任意偶数n,用n表示向量的坐标.[解](1)设点A0(x,y), A0为P1关于点的对称点A0的坐标为(2-x,4-y), A1为P2关于点的对称点A2的坐标为(2+x,4+y),={2,4}.(2) ∵={2,4},f(x)的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此, 曲线C是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x(-2,1]时,g(x)=lg(x+2)-4.因此,当x(1,4]时,g(x)=lg(x-1)-4.另解设点A0(x,y), A2(x2,y2),因此x2-x=2,y2-y=4,若36,则0 x2-33,因此f(x2)=f(x2-3)=lg(x2-3).当14时, 则36,y+4=lg(x-1).当x(1,4]时,g(x)=lg(x-1)-4.(3) =,由于,得13分)如图,已知双曲线C:的右准线与一条渐近线交于点M,F是双曲线C 的右焦点,O为坐标原点.(I)求证:;(II)若且双曲线C的离心率,求双曲线C的方程;(III)在(II)的条件下,直线过点A(0,1)与双曲线C右支交于不同的两点P、Q且P在A、Q之间,满足,试判定的范畴,并用代数方法给出证明.解:(I)右准线,渐近线3分(II)双曲线C的方程为:7分(III)由题意可得8分证明:设,点由得与双曲线C右支交于不同的两点P、Q11分,得的取值范畴是(0,1)13分2.(本小题满分13分)已知函数,数列满足(I)求数列的通项公式;(II)设x轴、直线与函数的图象所围成的封闭图形的面积为,求;(III)在集合,且中,是否存在正整数N,使得不等式对一切恒成立?若存在,则如此的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.(IV)请构造一个与有关的数列,使得存在,并求出那个极限值.解:(I)1分将这n个式子相加,得3分(II)为一直角梯形(时为直角三角形)的面积,该梯形的两底边的长分别为,高为16分(III)设满足条件的正整数N存在,则又均满足条件它们构成首项为2021,公差为2的等差数列.设共有m个满足条件的正整数N,则,解得中满足条件的正整数N存在,共有495个,9分(IV)设,即则明显,其极限存在,同时10分注:(c为非零常数),等都能使存在.19. (本小题满分14分)设双曲线的两个焦点分别为,离心率为2.(I)求此双曲线的渐近线的方程;(II)若A、B分别为上的点,且,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线;(III)过点能否作出直线,使与双曲线交于P、Q两点,且.若存在,求出直线的方程;若不存在,说明理由.解:(I),渐近线方程为4分(II)设,AB的中点则M的轨迹是中心在原点,焦点在x轴上,长轴长为,短轴长为的椭圆.(9分)(III)假设存在满足条件的直线设由(i)(ii)得k不存在,即不存在满足条件的直线.14分3. (本小题满分13分)已知数列的前n项和为,且对任意自然数都成立,其中m为常数,且.(I)求证数列是等比数列;(II)设数列的公比,数列满足:,试问当m为何值时,成立?解:(I)由已知(2)由得:,即对任意都成立事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。
2021年全国浙江卷-高考数学压轴题
绝密★启用前2021年普通高等学校招生全国统一考试数学试题(浙江卷)压轴题详解10.已知数列{}n a 满足11a =,1*)n a n N +∈.记数列{}n a 的前n 项和为n S ,则( )A .100132S << B .10034S << C .100942S <<D .100952S << 分析:本题主要考查数列的递推关系式及其应用,数列求和与放缩的技巧等知识,考查数学抽象,运算求解能力. 答案:A解:由题意可得:22111111)?)242n n a a +=+=+<+,∴1?111222n n +<++=, 从而1241,2(1)3111n n nn n na a n a a a n n a n ++==+++++, ∴1100161111316(?)133(1)(2)24522n n na n a S a n n n ++⇒⇒+++<++=+++. 故选:A .16.已知椭圆22221(0)x y a b a b+=>>,焦点1(,0)F c -,2(F c ,0)(0)c >.若过1F 的直线和圆2221()2x c y c -+=相切,与椭圆的第一象限交于点P ,且2PF x ⊥轴,则该直线的斜率是 ,椭圆的离心率是 .分析:本题考查了椭圆、圆的简单几何性质,以及点到直线的距离公式,考查分类讨论,逻辑推理,数学运算能力 解:直线斜率不存在时,直线与圆不相切,不符合题意;由直线过1F ,设直线的方程为()y k x c =+, 直线和圆2221()2x c y c -+=相切,∴圆心1(,0)2c 到直线的距离与半径相等,∴|0|ck kc c ⋅-+=,解得k =,将x c=代入22221x ya b+=,可得P点坐标为2(,)bP ca,221212tan2bPF aPF F kF F c∠====,∴222a cac-=,∴212ee-=,∴e=17.已知平面向量,,(0)a b c c ≠满足1,2,0,()0a b a b a b c==⋅=-⋅=记平面向量d在,a b方向上的投影分别为,,x y d a-在c方向上的投影为z,则222x y z++的最小值是分析:考查向量的投影,向量的数量积运算,均值不等式,考查分析问题,数学运算的能力答案:25解:令(1,0),(0,2),(,)a b c m n===,因为()0a b c-⋅=,故(1,2)(m-⋅,)0n=,20m n∴-=,令(2,)c n n=,?d a在c 方向上的投影分别为x,y,设(,)d x y=,则:?(1,),()2(1),||5d a x y d a c n xny c n=--⋅=-+=,从而:()2||da c xzc-⋅==,故22xy+=,则222x y z++表示空间中坐标原点到平面22x y+=上的点的距离的平方,由平面直角坐标系中点到直线距离公式推广得到的空间直角坐标系中点到平面距离公式可得:222242()105minx y z++===.21.如图,已知F是抛物线22(0)y px p=>的焦点,M是抛物线的准线与x轴的交点,且||2MF=.(Ⅰ)求抛物线的方程:(Ⅱ)设过点F的直线交抛物线于A,B两点,若斜率为2的直线l与直线MA,MB,AB,x轴依次交于点P,Q,R,N,且满足2||||||RN PN QN=⋅,求直线l在x轴上截距的取值范围.分析:本题抛物线的标准方程,直线与抛物线的位置关系,求范围问题,考查逻辑推理能力,数学运算能力。
高考数学压轴卷含解析试题 2
智才艺州攀枝花市创界学校2021年高考数学压轴卷〔含解析〕一、选择题:本大题一一共10小题,每一小题4分,一共40分。在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.1.集合{|||2}A x x =<,{1,0,1,2,3}B =-,那么A B =A .{0,1}B .{0,1,2}C .{1,0,1}- D .{1,0,1,2}-2.复数21+i〔i 为虚数单位〕的一共轭复数是〔〕A .−1+iB .1−iC .1+iD .−1−i3.记n S 为等差数列{}n a 的前n 项和.假设4524a a +=,648S =,那么{}n a 的公差为A .1B .2C .4D .84.底面是正方形且侧棱长都相等的四棱锥的三视图如以下图,那么该四棱锥的体积是()A.B .8 CD .835.假设实数,x y 满足不等式组02222y x y x y ⎧⎪-⎨⎪-⎩,那么3x y -()A .有最大值2-,最小值83- B .有最大值83,最小值2 C .有最大值2,无最小值D .有最小值2-,无最大值6.“a=1〞是“直线x+y=0和直线x-ay=0互相垂直〞的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.函数()()11x xe f x x e +=-〔其中e 为自然对数的底数〕的图象大致为〔〕A .B .C .D .8.a 、b R ∈,且a b >,那么〔〕A .11a b<B .sin sin a b >C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .22a b >9.设P ABCD -是一个高为3,底面边长为2的正四棱锥,M 为PC 中点,过AM 作平面AEMF与线段PB ,PD 分别交于点E ,F 〔可以是线段端点〕,那么四棱锥P AEMF -的体积的取值范围为〔〕A .4,23⎡⎤⎢⎥⎣⎦B .43,32⎡⎤⎢⎥⎣⎦C .31,2⎡⎤⎢⎥⎣⎦D .[]1,210假设对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,34349x y a x y -++--的取值与x ,y 无关,那么实数a 的取值范围是()A .4a ≤B .46a -≤≤C .4a ≤或者6a ≥D .6a ≥第II 卷〔非选择题)二、填空题:本大题一一共7小题,多空题每一小题6分,单空题每一小题4分,一共36分11.九章算术中有一题:“今有女子善织,日自倍,五日织五尺.〞该女子第二日织______尺,假设女子坚持日日织,十日能织______尺.12.二项式521()x x 的展开式中常数项为__________.所有项的系数和为__________. 13.设双曲线()222210x y b a a b-=>>的半焦距为c ,直线l 过〔a ,0〕,〔0,b 〕两点,原点到直线l 3,那么双曲线的离心率为____;渐近线方程为_________.14.函数22,0()log (),0x x f x x a x ⎧<=⎨-≥⎩,假设(1)(1)f f -=,那么实数a =_____;假设()y f x =存在最小值,那么实数a 的取值范围为_____. 15.设向量,,a b c 满足1a =,||2b =,3c =,0b c ⋅=.假设12λ-≤≤,那么(1)a b cλλ++-的最大值是________.16.某班同学准备参加在假期里组织的“社区效劳〞、“进敬老院〞、“参观工厂〞、“民俗调查〞、“环保宣传〞五个工程的社会理论活动,每天只安排一项活动,并要求在周一至周五内完成.其中“参观工厂〞与“环保宣讲〞两项活动必须安排在相邻两天,“民俗调查〞活动不能安排在周一.那么不同安排方法的种数是________.17.函数()2122,01()2,10x x x m x f x x m x +⎧+≤≤⎪=⎨---≤<⎪⎩假设在区间[1,1]-上方程()1f x =只有一个解,那么实数m 的取值范围为______.三、解答题:本大题一一共5小题,一共74分,解容许写出文字说明、证明过程或者演算步骤。18.函数()()222cos 1x R f x x x -+∈.(1)求()f x 的单调递增区间;(2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域. 19.如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形AC BD O =,1A O ⊥底面ABCD ,12AA AB ==.〔1〕求证:平面1ACO ⊥平面11BB D D ; 〔2〕假设60BAD ∠=︒,求OB 与平面11A B C 所成角的正弦值. 20.等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.〔1〕求数列{}n a 的通项公式;〔2〕设31323log log ......log n n b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 21.抛物线22y px =〔0p >〕上的两个动点()11,A x y 和()22,B x y ,焦点为F.线段AB 的中点为()03,My ,且点到抛物线的焦点F 的间隔之和为8〔1〕求抛物线的HY 方程; 〔2〕假设线段AE 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.22.函数2()(1)(0)x f x x e ax x =+->.〔1〕假设函数()f x 在(0,)+∞上单调递增,务实数a 的取值范围; 〔2〕假设函数()f x 有两个不同的零点12,x x . 〔ⅰ〕务实数a 的取值范围;〔ⅱ〕求证:12011111x x t +->+.〔其中0t 为()f x 的极小值点〕参考答案及解析1.【答案】C【解析】 由,得,选C.2.【答案】C【解析】因为21+i =1−i ,所以其一共轭复数是1+i ,选C. 【点睛】此题考察一共轭复数概念,考察根本分析求解才能,属基此题. 3.【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,应选C. 点睛:求解等差数列根本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,假设m n p q +=+,那么m n p q a a a a +=+. 4.【答案】C【解析】根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2, 画出图形,如以下图;所以该四棱锥的底面积为224S ==,高为22213h =-=; 所以该四棱锥的体积是114343333V Sh ==⨯⨯=. 应选:C. 【点睛】此题考察了利用三视图求几何体体积的问题,属于中档题. 5.【答案】C【解析】画出不等式组02222y x y x y ⎧⎪-⎨⎪-≥⎩表示的平面区域,如图阴影所示;设3z x y =-,那么直线30x y z --=是一组平行线;当直线过点A 时,z 有最大值,由022y x y =⎧⎨-=⎩,得(2,0)A ;所以z 的最大值为3202x y -=-=,且z 无最小值. 应选:C.6.【答案】C 【解析】直线0x y +=和直线0x ay -=互相垂直的充要条件是1()110a ⨯-+⨯=,即1a =,应选C7.【答案】A【解析】∵f 〔﹣x 〕()()()111111x x x x x xe e e x e x e x e--+++====-----f 〔x 〕, ∴f 〔x 〕是偶函数,故f 〔x 〕图形关于y 轴对称,排除C ,D ; 又x=1时,()e 111ef +=-<0, ∴排除B , 应选A . 8.【答案】C 【解析】对于A 选项,取1a =,1b =-,那么a b >成立,但11a b>,A 选项错误; 对于B 选项,取a π=,0b =,那么a b >成立,但sin sin0π=,即sin sin a b =,B 选项错误;对于C 选项,由于指数函数13x y ⎛⎫= ⎪⎝⎭在R 上单调递减,假设a b >,那么1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,C选项正确;对于D 选项,取1a =,2b =-,那么a b >,但22a b <,D 选项错误. 应选:C. 9.【答案】D【解析】依题意343493434955x y ax y x y a x y -+---++--=+表示(),P x y 到两条平行直线340x y a -+=和3490x y --=的间隔之和与,x y 无关,故两条平行直线340x y a -+=和3490x y --=在圆22(1)(1)1x y -+-=的两侧,画出图像如以下图所示,故圆心()1,1到直线340x y a -+=的间隔3415ad -+=≥,解得6a ≥或者4a ≤-〔舍去〕 应选:D. 10.【答案】B【解析】首先证明一个结论:在三棱锥S ABC -中,棱,,SA SB SC 上取点111,,A B C那么111111S A B C S ABCV SA SB SC V SA SB SC--⋅⋅=⋅⋅,设SB 与平面SAC 所成角θ,11111111111111sin sin 3211sin sin 32S A B C B SA C S ABC B SAC SA SC ASC SB V V SA SB SC V V SA SB SC SA SC ASC SB θθ----⨯⋅⋅∠⋅⋅⋅⋅===⋅⋅⨯⋅⋅∠⋅⋅,证毕.四棱锥P ABCD -中,设,PE PF x y PB PD ==,212343P ABCD V -=⨯⨯=12222P AEMF P AEF P MEF P AEF P MEF P AEF P MEFP ABCD P ABD P ABD P DBC P ABD P DBCV V V V V VV V V V V V V -------------⎛⎫+==+=+ ⎪⎝⎭111222PA PE PF PE PM PF xy xy PA PB PD PB PC PD ⋅⋅⋅⋅⎛⎫⎛⎫=+=+ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭所以3P AEMF V xy -=又12222P AEMF P AEM P MAF P AEM P MAF P AEM P MAFP ABCD P ABC P ABC P DAC P ABC P DACV V V V V VV V V V V V V -------------⎛⎫+==+=+ ⎪⎝⎭11112222PA PE PM PA PM PF x y PA PB PC PA PC PD ⋅⋅⋅⋅⎛⎫⎛⎫=+=+ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭所以P AEMF V x y -=+ 即3,31x x y xy y x +==-,又01,0131xx y x ≤≤≤=≤-, 解得112x ≤≤ 所以体积2313,[,1]312x V xy x x ==∈-,令131,[,2]2t x t =-∈2(1)111()(2),[,2]332t V t t t t t +==++∈根据对勾函数性质,()V t 在1[,1]2t ∈递减,在[1,2]t ∈递增 所以函数()V t 最小值4(1)3V =,最大值13(2)()22V V ==, 四棱锥P AEMF -的体积的取值范围为43,32⎡⎤⎢⎥⎣⎦应选:B11.【答案】1031165 【解析】设该女子每天的织布数量为n a ,由题可知数列{}n a 为公比为2的等比数列, 设数列{}n a 的前n 项和为n S ,那么()51512512a S -==-,解得1531a =, 所以2110231a a ==,()10105123116512S -==-. 故答案为:1031,165. 【点睛】此题考察了等比数列的应用,关键是对于题目条件的转化,属于根底题. 12.【答案】532【解析】展开式的通项为5552215521()r r rr r r T C C xx--+==, 令55022r -=,解得1r =, 所以展开式中的常数项为1255T C ==,令1x =,得到所有项的系数和为5232=,得到结果.点睛:该题考察的是有关二项式定理的问题,涉及到的知识点有展开式中的特定项以及展开式中的系数和,所用到的方法就是先写出展开式的通项,令其幂指数等于相应的值,求得r ,代入求得结果,对于求系数和,应用赋值法即可求得结果. 13.【答案】2y =【解析】由题可设直线l 方程为:1x ya b+=,即0bx ay ab,那么原点到直线的间隔ab d c ===,解得24ab =,两式同时平方可得224163a b c =,又222b c a =-,代换可得()2224163a c a c -=,展开得:224416162a c a c -=,同时除以4a 得:2416163e e -=,整理得()()223440e e --=,解得243e =或者4,又0b a >>,所以2222222222b a c a a c a e >⇒->⇒>⇒>,所以24,2ce e a===;b a a a===b y x a =±= 故答案为:2;y = 14.【答案】1[1,0)-【解析】(1)(1)f f -=,122log (1)a -∴=-,1212a ∴-=,1a ∴=-易知0x <时,()2(0,1)xf x =∈;又0x 时,2()log ()f x x a =-递增,故2()(0)log ()f x f a =-, 要使函数()f x 存在最小值,只需2()0a log a ->⎧⎨-⎩,解得:10a -<.故答案为:1-[1,0)-. 15.【答案】1【解析】令()1n b c λλ=+-,那么()2211318n b c λλλλ⎡⎤=+-=-⎣⎦因为12λ-≤≤,所以当1λ=-,max 13n ==n 与a 同向时a n +的模最大,max 2101a n a n +=+=+16.【答案】36【解析】把“参观工厂〞与“环保宣讲〞当做一个整体,一共有4242A A 48=种,把“民俗调查〞安排在周一,有3232A A 12⋅=,∴满足条件的不同安排方法的种数为481236-=, 故答案为:36.17.【答案】1|12m m ⎧-≤<-⎨⎩或者1}m = 【解析】当01x ≤≤时,由()1f x =,得()221xx m +=,即212xx m ⎛⎫=+ ⎪⎝⎭;当10x -≤<时,由()1f x =,得1221x x m +--=,即1221x x m +-=+.令函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩,那么问题转化为函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与函数()h x =2x m +的图像在区间[1,1]-上有且仅有一个交点.在同一平面直角坐标系中画出函数11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与2y x m =+在区间函数[1,1]-上的大致图象如以下图所示:结合图象可知:当(0)1h =,即1m =时,两个函数的图象只有一个交点;当(1)(1),11(1)(1)2h g m h g <⎧⇒-≤<-⎨-≥-⎩时,两个函数的图象也只有一个交点,故所务实数m 的取值范围是1|112m m m ⎧⎫-≤<-=⎨⎬⎩⎭或. 18.【答案】〔1〕,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;〔2〕3⎡-⎣. 【解析】 (1)函数()2322cos 1322226f x x sin x cos x in x x s π⎛⎫ ⎪=⎝=-+-=⎭-,令222()262πππππ-≤-≤+∈k x k k Z ,求得()63k x k k Z ππππ-≤≤+∈,故函数f(x)的增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)假设,64x ππ⎡⎤∈-⎢⎥⎣⎦,那么2,623x πππ⎡⎤-∈-⎢⎥⎣⎦,故当262x ππ-=-时,函数f(x)获得最小值为−2;当263x ππ-=时,函数f(x)33⎡-⎣. 【点睛】此题考察三角恒等变换,考察正弦型函数的性质,考察运算才能,属于常考题.19.【答案】〔1〕证明见解析〔2〕217【解析】〔1〕证明:由1A O ⊥底面ABCD 可得1AO BD ⊥, 又底面ABCD 是菱形,所以CO BD ⊥, 因为1AO CO O ⋂=,所以BD ⊥平面1A CO , 因为BD ⊂平面11BB D D ,所以平面1ACO ⊥平面11BB D D . 〔2〕因为1A O ⊥底面ABCD ,以O 为原点,OB ,OC ,1OA 为x ,y ,z 轴建立如以下图空间直角坐标系O xyz -,那么(1,0,0)B ,3,0)C ,(0,3,0)A ,1(0,0,1)A ,11(1,3,0)A B AB ==,()13,1AC =-, 设平面11A B C 的一个法向量为(,,)m x y z =,由111030030m A B x m ACz ⎧⋅=⇒+=⎪⎨⋅=⇒-=⎪⎩,获得1x =31,13m ⎛⎫=-- ⎪⎝⎭,又(1,0,0)OB =,所以21cos ,7||||123OB mOB m OB m ⋅===+,所以OB 与平面11A B C 所成角的正弦值为217.20.【答案】〔1〕13n n a =〔2〕21nn -+【解析】〔Ⅰ〕设数列{a n }的公比为q,由23a =9a 2a 6得23a =924a ,所以q 2=19. 由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n . 〔Ⅱ〕b n =log 3a 1+log 3a 2+…+log 3a n =-〔1+2+…+n 〕=-()21n n +.故()1211211n b n n n n ⎛⎫=-=-- ⎪++⎝⎭. 121111111122122311n n b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=--+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为21nn -+21.【答案】〔1〕24y x =〔2〕9【解析】〔1〕由题意知126x x +=,那么1268AF BF x x p p +=++=+=,2p ∴=,∴抛物线的HY 方程为24y x =〔2〕设直线AB :x my n =+〔0m ≠〕,由24x my n y x=+⎧⎨=⎩,得2440y my n --=, 124y y m ∴+=212426x x m n ∴+=+=,即232n m =-,即()21221216304812m y y m y y m ⎧∆=->⎪⎪+=⎨⎪⋅=-⎪⎩, 12AB y y ∴=-=设AB 的中垂线方程为:()23y m m x -=--,即()5y m x =--, 可得点C 的坐标为()5,0,直线AB :232x my m =+-,即2230x my m -+-=,∴点C 到直线AB的间隔d ==()21412S AB d m ∴=⋅=+令t =那么223m t =-〔0t <<,令()()244f t tt =-⋅,()()2443f t t '∴=-,令()0f t '∴=,那么3t =,在⎛ ⎝⎭上()0f t '>;在3⎛ ⎝上()0f t '<, 故f t在⎛ ⎝⎭单调递增,⎝单调递减, ∴当t =,即m =±,max S =22.【答案】〔1〕1(2,2⎛⎫+⋅-∞ ⎪ ⎪⎝⎭;〔2〕〔ⅰ〕12⎛⎫++∞ ⎪ ⎪⎝⎭;〔ⅱ〕证明见解析. 【解析】〔1〕由2()(1)x f x x e ax =+-,得2()2x x f x x e a x +⎛⎫'=-⎪⎝⎭,设2()x x g x e x +=⋅,(0)x >;那么2222()xx x g x e x +-'=⋅;由()0g x ',解得1x ≥-,所以()g x 在1)上单调递减,在1,)+∞上单调递增,所以1min ()1)(2==⋅g x g因为函数()f x 在(0,)+∞上单调递增,所以()0f x '在(0,)+∞恒成立所以1(22⋅≥a ;所以,实数a 的取值范围是:1(2,2⎛⎫+⋅-∞ ⎪ ⎪⎝⎭.〔2〕〔i 〕因为函数()f x 有两个不同的零点,()f x 不单调,所以1(22a +⋅>.因此()0f x '=有两个根,设为10,t t ,且1001t t <<<,所以()f x 在()10,t 上单调递增,在()10,t t 上单调递减,在()0,t +∞上单调递增; 又()1(0)1f t f >=,()22()(1)(1)xxxf x x e ax a e xx a e =+-=-++-⋅,当x 充分大时,()f x 取值为正,因此要使得()f x 有两个不同的零点,那么必须有()00f t <,即()200010t t e a t +-⋅<; 又因为()()0000220tf t t e at '=+-=;所以:()()000002202ttt t e t e +-⋅+<,解得0t >1122+>=a g ;因此当函数()f x 有两个不同的零点时,实数a 的取值范围是12⎛⎫++∞ ⎪⎪⎝⎭.〔ⅱ〕先证明不等式,假设12,(0,)x x ∈+∞,12x x ≠,211221112x x x xnx nx -+<-.证明:不妨设210x x >>,即证2212211211ln 1x x x x x x x ⎛⎫-- ⎪⎝⎭<<+,设211x t x =>,()ln g t t =-2(1)()ln 1t h t t t -=-+,只需证()0g t <且()0h t >;因为()0g t '=<,22(1)()0(1)t h t t t -'=>+, 所以()g t 在(1,)+∞上单调递减,()h t 在(1,)+∞上单调递增, 所以()(1)0g t g <=,()(1)0h t h >=,从而不等式得证.12011111x x t +->+. 由()()1200f x f x ⎧=⎪⎨=⎪⎩得()()122112221010x x x e ax x e ax ⎧+-=⎪⎨+-=⎪⎩; 所以()()2212221211xx x e x e xx++=,两边取对数得:()()()2121212ln ln ln 1ln 1x x x x x x ⎡⎤--+-+=-⎣⎦;即()()()()()212121212ln ln ln 1ln 1111x x x x x x x x -+-+-=-+-+. 因为()()()()()()()2121212112211111121111nx nx n x n x x x x x x x -+-+-<--+-++++,所以121221112x x x x +<<+++, 因此,要证12011111x x t +->+. 只需证1202x x t +<;因为()f x 在()0,t +∞上单调递增,1020x t x <<<,所以只需证()()2022f x f t x <-,只需证()()1012f x f t x <-,即证()()00f t x f t x +<-,其中()0,0x t ∈-; 设()()00()r x f t x f t x =+--,00t x -<<,只需证()0r x <; 计算得()()00000()224ttr x x t e x x t e x at '=++++-++--;()()2000()33t xr x e x x t e x t ''⎡⎤=-+++--⎣⎦.由()()20033xy x t ex t =+++--在()0,0t -上单调递增,得()()0003030y t e t <++--=,所以()0r x ''<;即()r x '在()0,0t -上单调递减, 所以:()0()(0)20r x r f t '''>==;即()r x 在()0,0t -上单调递增,所以()(0)0r x r <=.。
2021年全国高考数学(文)押题试卷含答案解析(10套).doc
OA1 OA5 (1,0) (1,1) 1
OA2 OA3 (1, 1) (0, 1) 1
OA2 OA4 (1, 1) (0,1) 1
OA2 OA5 (1, 1) (1,1) 2
OA3 OA4 (0, 1) (0,1) 1
OA3 OA5 (0, 1) (1,1) 1
OA4 OA5 (0,1) (1,1) 1
(Ⅱ) bn an
2n1, bn
an 2n1
(2n 1) 2n1 ………………7 分
Tn 3 20 5 21 7 22 (2n 1) 2n1 ①
2Tn 3 21 5 22 7 23 (2n 1) 2n1 (2n 1) 2n
②…………9 分
两式相减得: Tn
3
优质资料
15.两千多年前,古希腊毕达哥
拉斯学派的数学家曾经在沙滩
上研究数学问题,他们在沙滩上
画点或用小石子来表示数,按照
点或小石子能排列的形状对数
第 15 题图
进行分类,如下图中的实心点个 数 1,5,12,22,…, 被称
为五角形数,其中第 1 个五角形数记作 a1 1,第 2 个五角形数记作 a2 5 ,第 3 个五
(Ⅱ)设 A x1, y1 ,则 Bx1, y1
(i)当直线 AB 的斜率为 0 时, AB 的垂直平分线就是 y 轴,
y 轴与直线 l : x y 3 0 的交点为 P(0,3) ,
又 AO 3, PO 3 | AB || PA || PB | 2 3 , 所以 PAB 是等边三角形,所以 k 0 满足条件;………………6 分 (ii)当直线 AB 的斜率存在且不为 0 时,设 AB 的方程为 y kx
则 PO
9k 2 9 ……………… 10 分 (k 1)2
2021年高考数学压轴题100题精选含答案
∴若其内切圆半径为 r ,则有 3
3 ,即 3 ,所以内切球的表面积为
3 .故
错误.
D:正方体 ABCD ABCD 中,点 P 在底面 ABCD(所在的平面)上运动且 MAC PAC ,
即 P 的轨迹为面 ABCD 截以 AM、AP 为母线,AC’为轴的圆锥体侧面所得曲线,如下图曲线 GPK ,
利用面面垂直的判定定理与性质定理得到 A' 到平面面 BCED 的高 A'H,并根据二面角的平面角,在直
角三角形中计算求得 A'H 的值,从而判定 A;根据异面直线所成角的定义找到∠A'DN 就是直线 A'D 与 CE 所成的角,利用余弦定理计算即可判定 B;利用勾股定理检验可以否定 C;先证明底面的外接圆 的圆心为 N,在利用外接球的球心的性质进行得到四棱锥 A'-BCED 的外接球的球心为 O,则 ON⊥平面 BCED,且 OA'=OC,经过计算求解可得半径从而判定 D. 【详解】 如图所示,作 AM⊥DE,交 DE 于 M,延长 AM 交 BC 于 N,连接 A'M,A'N. 则 A'M⊥DE,MN⊥DE, ,
B1N B1M
4 3
1
,故错误;
对于 D.同 A 选项证明方法一样可证的 GC1 //B1M ,
因为
E
为棱 CC1 上的中点, C1 为棱 B1N
GC1 =
上的中点,所以
1 2
B1M
3 2
所以
D1G=
1 2
,所以
D1G
:
GC1
1:
3
,故正确.
故选:ABD 【点睛】 求体积的常用方法: (1)直接法:对于规则的几何体,利用相关公式直接计算; (2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一 个面可作为三棱锥的底面进行等体积变换; (3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的 几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.
高考数学压轴卷含解析试题
卜人入州八九几市潮王学校2021年高考数学压轴卷〔含解析〕一、 选择题〔本大题一一共10小题.每一小题45分,一共40分在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕 1.设复数z 满足13izz +=,那么||z =〔〕A .1010B .55C .5D .102.设集合{}1,0,1,2,3A =-,2{|20},B x x x =->那么()R A B =〔〕A .{}1,3- B .{}0,1,2C .{}1,2,3D .{}0,1,2,33.定义域为R 的奇函数()f x 满足(2)()f x f x +=,且当01x ≤≤时,3()f x x =,那么52f ⎛⎫-= ⎪⎝⎭〔〕 A .278-B .18-C .18D .2784.函数()21cos 1xf x x e ⎛⎫=- ⎪+⎝⎭图象的大致形状是〔〕 A . B . C .D .5.坐标原点到直线l 的间隔为2,且直线l 与圆()()223449x y -+-=相切,那么满足条件的直线l 有〔〕条 A .1 B .2C .3D .46.函数()sin(2)6f x x π=+的单调递增区间是〔〕A .()2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .(),,2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C .(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .(),,2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦7.某三棱锥的三视图如下列图,那么该三棱锥的体积为〔〕 A .20 B .10C .30D .608.点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,那么直线AF 的斜率为〔〕A .43- B .1-C .34-D .12-9.1a =,那么“()a a b ⊥+〞是“1a b ⋅=-〞的〔〕A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件10.随机变量ξ的分布列,那么以下说法正确的选项是()A .存在x ,y ∈(0,1),E (ξ)>12B .对任意x ,y ∈(0,1),E (ξ)≤14C .对任意x ,y ∈(0,1),D (ξ)≤E (ξ) D .存在x ,y ∈(0,1),D (ξ)>14二.填空题〔本大题一一共5小题.每一小题5分,一共25分〕 11.曲线()212f x x x =+的一条切线的斜率是3,那么该切点的横坐标为____________. 12.函数2cos 2sin y x x =-的最小正周期等于_____.13.在△ABC 中,假设30B=,23AB =,2AC =,求△ABC 的面积14.{a n }是各项均为正数的等比数列,a 1=1,a 3=100,那么{a n }的通项公式a n =_____;设数列{lga n }的前n 项和为T n ,那么T n =_____. 15.函数①是奇函数;②在上是单调递增函数;③方程有且仅有1个实数根;④假设对任意,都有,那么的最大值为2.注:此题给的结论中,有多个符合题目要求,全部选对得5分,不选或者有选错得0分,其他得3分.三、解答题〔本大题一一共6小题,一共85分.解答题应写出文字说明、证明过程或者演算步骤〕 16.函数()log k f x x =〔k 为常数,0k >且1k ≠〕.〔1〕在以下条件中选择一个________使数列{}n a 是等比数列,说明理由;①数列(){}nf a 是首项为2,公比为2的等比数列;②数列(){}nf a 是首项为4,公差为2的等差数列;③数列(){}nf a 是首项为2,公差为2的等差数列的前n 项和构成的数列.〔2〕在〔1〕的条件下,当k =12241+=-n n n a b n ,求数列{}n b 的前n 项和n T . 17.在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 为直角梯形,//AD BC ,AD AB ⊥,2PA AD ==,1AB BC ==,Q 为PD 中点.〔1〕求证:PD BQ ⊥;〔2〕求异面直线PC 与BQ 所成角的余弦值. 18.函数()()22ln R f x a x x ax a =-+∈.〔Ⅰ〕求函数()f x 的单调区间;〔Ⅱ〕当0a>时,假设()f x 在()1,e 上有零点,务实数a 的取值范围.19.自由购是通过自助结算方式购物的一种形式.某大型超为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:〔Ⅰ〕现随机抽取1名顾客,试估计该顾客年龄在[)30,50且未使用自由购的概率;〔Ⅱ〕从被抽取的年龄在[]50,70使用自由购的顾客中,随机抽取3人进一步理解情况,用X 表示这3人中年龄在[)50,60的人数,求随机变量X 的分布列及数学期望;〔Ⅲ〕为鼓励顾客使用自由购,该超拟对使用自由购的顾客赠送1个环保购物袋.假设某日该超预计有5000人购物,试估计该超当天至少应准备多少个环保购物袋. 20.椭圆22:24C x y +=〔1〕求椭圆C 的HY 方程和离心率; 〔2〕是否存在过点()0,3P的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =.假设存在,求出直线l 的方程;假设不存在,请说明理由.21.对于n ∈N *〔n ≥2〕,定义一个如下数阵:111212122212n n nn n n nn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,其中对任意的1≤i ≤n ,1≤j ≤n ,当i 能整除j 时,a ij =1;当i 不能整除j 时,a ij =0.设()121nij j j nj i tj a a a a ===+++∑.〔Ⅰ〕当n =6时,试写出数阵A 66并计算()61j t j =∑; 〔Ⅱ〕假设[x ]表示不超过x 的最大整数,求证:()11 n nj i n t j i ==⎡⎤=⎢⎥⎣⎦∑∑; 〔Ⅲ〕假设()()11 n j f n t j n ==∑,()11 ng n dx x =⎰,求证:g 〔n 〕﹣1<f 〔n 〕<g 〔n 〕+1.2021高考压轴卷数学Word 含解析参考答案1.【答案】A【解析】13iz z +=,1131313101010i z i i +===+-,||z =. 应选:A. 2.【答案】B【解析】由220x x ->,得0x <或者2x >,即{|0B x x =<或者2}x >,={|02}R B x x ∴≤≤,又{}1,0,1,2,3A =-()={0,1,2}R A B ∴.应选:B. 3.【答案】B【解析】由()f x 满足(2)()f x f x +=, 所以函数的周期2T =,又因为函数()f x 为奇函数,且当01x ≤≤时,3()f x x =,所以51112228f f f ⎛⎫⎛⎫⎛⎫-=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 应选:B【解析】()21e 1cos cos 1e 1e x x x f x x x -⎛⎫=-= ⎪++⎝⎭,()1e cos()1e x xf x x ----=-=+e 1cos e 1x x x -+ ()f x =-,故()f x 为奇函数,排除选项A 、C ;又1e(1)cos101ef -=<+,排除D ,选B. 应选:B. 5.【答案】A【解析】显然直线l 有斜率,设l :y kx b =+,2=,即()2241b k =+,①又直线l 与圆相切,7=,②联立①②,34k =-,52b =-, 所以直线l 的方程为3542y x =--.应选:A 6.【答案】C【解析】 令222262k x k πππππ-+≤+≤+因此36k x k ππππ-≤≤+故函数()sin(2)6f x x π=+的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦应选:C【解析】由三视图可得几何体直观图如以下列图所示:可知三棱锥高:4h =;底面面积:1155322S =⨯⨯= ∴三棱锥体积:1115410332V Sh ==⨯⨯=此题正确选项:B 8.【答案】C【解析】试题分析:由得,抛物线22y px =的准线方程为2p x =-,且过点(2,3)A -,故22p-=-,那么4p =,(2,0)F ,那么直线AF 的斜率303224k -==---,选C . 9.【答案】C【解析】由()a a b ⊥+,那么2()00⋅+=⇒+⋅=a a b a a b 又1a =,所以1a b ⋅=-假设1a b ⋅=-,且1a =,所以20+⋅=a a b ,那么()a a b ⊥+ 所以“()a a b ⊥+〞是“1a b ⋅=-〞的充要条件 应选:C 10.【答案】C【解析】依题意可得()2E xy ξ=,()()()()()()()222222222212121212D x xy y y xy x y x y x y x y x x y yxξ⎡⎤=-+-=-+-=-+-⎣⎦因为1x y +=所以()21222x y xy +≤=即()12E ξ≤故A ,B 错误;()()()()()()222221121212D x x x y yx x x y yx x yx ξ⎡⎤∴=-+-=-+=-⎣⎦01x <<1211x ∴-<-<()20211x ∴<-< ()D yx ξ∴<即()()12D E ξξ<,故C 成立; ()()()2211244x y D x yx xy ξ+=-<≤=故D 错误应选:C 11.【答案】2【解析】 由于()212f x x x =+,那么()1f x x '=+, 由导数的几何意义可知,曲线的切线斜率即对应的函数在切点处的导数值, 曲线21()2f x x x =+的一条切线斜率是3, 令导数()13f x x '=+=,可得2x =, 所以切点的横坐标为2. 故答案为:2. 12.【答案】π【解析】因为函数21cos 231cos 2sin cos 2cos 2222x y x x x x -=-=-=- 故最小正周期等于π. 故答案为:π13.【答案】【解析】在ABC 中,设BC x =,由余弦定理可得241230x =+-,2680x x -+=,2x ∴=,或者4x =.当2x =时,ABC的面积为111222AB BC sinB x ⋅⋅=⨯⋅= 当4x =时,ABC的面积为111222AB BC sinB x ⋅⋅=⨯⋅=,14.【答案】10n ﹣1()12n n -【解析】设等比数列{a n }的公比为q ,由题知q >0. ∵a 1=1,a 3=100, ∴q ==10, ∴a n =10n ﹣1;∵lga n =lg 10n ﹣1=n ﹣1,∴T n ()12n n -=.故答案为:(1).10n ﹣1(2).()12n n - 15.【答案】①②④【解析】对于①中,,定义域是,且是奇函数,所以是正确的; 对于②中,假设,那么,所以的递增,所以是正确的;对于③中,,令, 令可得,,即方程有一根,,那么方程有一根之间,所以是错误的; 对于④中,假设对于任意,都有,即恒成立,令,且,假设恒成立,那么必有恒成立,假设,即恒成立,而,假设有,所以是正确的,综上可得①②④正确.16.【答案】〔1〕②,理由见解析;〔2〕21n nT n =+ 【解析】〔1〕①③不能使{}n a 成等比数列.②可以:由题意()4(1)222n f a n n =+-⨯=+, 即log 22k n a n =+,得22n n a k+=,且410a k =≠,2(1)22122n n n n a k k a k++++∴==. 常数0k >且1k ≠,2k ∴为非零常数,∴数列{}n a 是以4k 为首项,2k 为公比的等比数列.〔2〕由〔1〕知()14222n k n a k kk -+=⋅=,所以当2k =12n n a +=.因为12241+=-n n n a b n ,所以2141n b n =-,所以1111(21)(21)22121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,12111111L 1L 23352121n n T b b b n n ⎛⎫=+++=-+-++- ⎪-+⎝⎭11122121nn n ⎛⎫=-= ⎪++⎝⎭. 17.【答案】〔1〕详见解析;〔2〕3. 【解析】〔1〕由题意在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 为直角梯形,AD AB ⊥,以A 为原点,分别以AB ,AD ,AP 为x 轴,y 轴,z 轴,建立空间直角坐标系, 那么()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,2,0D ,()002P ,,.因为Q 为PD 中点,所以()0,1,1Q ,所以()0,2,2PD =-,()1,1,1BQ =-,所以()()0,2,21,1,10PD BQ ⋅=-⋅-=,所以PD BQ ⊥.〔2〕由〔1〕得()1,1,2PC =-,()()1,1,21,1,12PC BQ ⋅=-⋅-=-,6PC =,3BQ =,2,3PC BQ COS PC BQ PC BQ⋅==,所以PC 与BQ所成角的余弦值为3. 18.【答案】〔Ⅰ〕见解析〔Ⅱ〕)1e 1,2⎛⎫⎪ ⎪⎝⎭【解析】〔Ⅰ〕函数()f x 的定义域为()0,+∞,()()()2222a x a x a ax x f x x x-++='-=. 由()0f x '=得x a =或者2ax =-.当0a =时,()0f x '<在()0,+∞上恒成立,所以()f x 的单调递减区间是()0,+∞,没有单调递增区间. 当0a >时,()(),,x f x f x '的变化情况如下表:所以()f x 的单调递增区间是()0,a ,单调递减区间是(),a +∞. 当0a <时,()(),,x f x f x '的变化情况如下表:所以()f x 的单调递增区间是0,2a ⎛⎫-⎪⎝⎭,单调递减区间是,2a ⎛⎫-+∞ ⎪⎝⎭.〔Ⅱ〕当0a >时,()f x 的单调递增区间是()0,a ,单调递减区间是(),a +∞. 所以()f x 在()1,e 上有零点的必要条件是()0f a ≥, 即2ln 0a a ≥,所以1a ≥. 而()11f a =-,所以()10f ≥.假设1a =,()f x 在()1,e 上是减函数,()10f =,()f x 在()1,e 上没有零点. 假设1a >,()10f >,()f x 在()1,a 上是增函数,在(),a +∞上是减函数,所以()f x 在()1,e 上有零点等价于()e 01e f a ⎧<⎨<<⎩,即22e e 01e a a a ⎧-+<⎨<<⎩,解得)1e 12a <<.综上所述,实数a的取值范围是)1e 1,2⎛⎫⎪ ⎪⎝⎭. 19.【答案】17100;〔Ⅱ〕详见解析;〔Ⅲ〕2200 【解析】〔Ⅰ〕在随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的一共有3+14=17人, 所以,随机抽取1名顾客,估计该顾客年龄在[30,50)且未使用自由购的概率为17100P =. 〔Ⅱ〕X 所有的可能取值为1,2,3,()124236C C 115C P X ===, ()214236C C 325C P X ===, ()304236C C 135C P X ===. 所以X 的分布列为所以X 的数学期望为1311232555EX =⨯+⨯+⨯=. 〔Ⅲ〕在随机抽取的100名顾客中,使用自由购的一共有3121764244+++++=人, 所以该超当天至少应准备环保购物袋的个数估计为4450002200100⨯=.20.【答案】〔1〕22142x y+=,e=;〔2〕存在,7x+30或者7x﹣0 【解析】〔1〕由22142x y+=,得2,a b==c==2cea==;〔2〕假设存在过点P〔0,3〕的直线l与椭圆C相交于A,B两点,且满足2PB PA=,可设直线l的方程为x=m〔y﹣3〕,联立椭圆方程x2+2y2=4,可得〔2+m2〕y2﹣6m2y+9m2﹣4=0,△=36m4﹣4〔2+m2〕〔9m2﹣4〕>0,即m2<47,设A〔x1,y1〕,B〔x2,y2〕,可得y1+y2=2262mm+,y1y2=22942mm-+,①由2PB PA=,可得〔x2,y2﹣3〕=2〔x1,y1﹣3〕,即y2﹣3=2〔y1﹣3〕,即y2=2y1﹣3,②将②代入①可得3y1﹣3=2262mm+,y1〔2y1﹣3〕=22942mm-+,消去y1,可得22232mm++•22322mm-+=22942mm-+,解得m2=2747<,所以7m=±,故存在这样的直线l,且方程为7xy0或者7x﹣0.21.【答案】〔Ⅰ〕66111111 010101 001001 000100 000010 000001A⎛⎫⎪⎪⎪= ⎪⎪⎪⎪⎪⎝⎭,()6114jt j==∑.〔Ⅱ〕见解析〔Ⅲ〕见解析【解析】〔Ⅰ〕依题意可得,66111111010101001001000100000010000001A ⎛⎫⎪⎪ ⎪=⎪ ⎪ ⎪⎪⎪⎝⎭,()6112232414j t j ==+++++=∑.〔Ⅱ〕由题意可知,t 〔j 〕是数阵A nn 的第j 列的和,可得()1nj t j =∑是数阵A nn所有数的和.而数阵A nn 所有数的和也可以考虑按行相加.对任意的1≤i ≤n ,不超过n 的倍数有1i ,2i ,…,n i i ⎡⎤⎢⎥⎣⎦.得数阵A nn 的第i 行中有n i ⎡⎤⎢⎥⎣⎦个1,其余是0,即第i 行的和为n i ⎡⎤⎢⎥⎣⎦.从而得到结果.〔Ⅲ〕由[x ]的定义可知,1n n n i i i ⎡⎤-≤⎢⎥⎣⎦<,得111 n nn i i i n n nn i i i===⎡⎤-≤⎢⎥⎣⎦∑∑∑<.进而()1111 1?nni i f n i i ==-≤∑∑<.再考察定积分11 n dx x ⎰,根据曲边梯形的面积的计算即可证得结论. 【详解】〔Ⅰ〕依题意可得,66111111010101001001000100000010000001A ⎛⎫⎪⎪⎪=⎪ ⎪ ⎪⎪⎪⎝⎭.()6112232414j t j ==+++++=∑. 〔Ⅱ〕由题意可知,t 〔j 〕是数阵A nn 的第j 列的和,因此()1nj t j =∑是数阵A nn所有数的和.而数阵A nn 所有数的和也可以考虑按行相加.对任意的1≤i ≤n ,不超过n 的倍数有1i ,2i ,…,n i i ⎡⎤⎢⎥⎣⎦.因此数阵A nn 的第i 行中有n i ⎡⎤⎢⎥⎣⎦个1,其余是0,即第i 行的和为n i⎡⎤⎢⎥⎣⎦.所以()11 n nj i n t j i ==⎡⎤=⎢⎥⎣⎦∑∑.〔Ⅲ〕证明:由[x ]的定义可知,1n n n i i i⎡⎤-≤⎢⎥⎣⎦<, 所以111 nn n i i i n n nn i i i ===⎡⎤-≤⎢⎥⎣⎦∑∑∑<.所以()1111 1?n ni i f n i i ==-≤∑∑<. 考察定积分11 ndx x ⎰,将区间[1,n ]分成n ﹣1等分,那么11n dx x ⎰的缺乏近似值为21 ni i =∑,11 n dx x ⎰的过剩近似值为111 n i i -=∑.所以1211111n n n i i dx i x i -==∑∑⎰<<. 所以11 1ni i =-∑<g 〔n 〕11ni i=∑<.所以g 〔n 〕﹣1()11111?nni i f n i i==-≤∑∑<<<g 〔n 〕+1.所以g 〔n 〕﹣1<f 〔n 〕<g 〔n 〕+1.。
专题05 不等式之恒成立问题(填空题)(解析版))2021年新高考数学考前压轴冲刺(新高考地区专用)
专题05 不等式之恒成立问题2021年新高考填空题考点预测新高考近几年不等式常以压轴题的题型出现,常见的考试题型有恒成立,有解问题,此类题型丰富多变,综合性强,有一定的难度,但只要我们理解问题的本质,就能解决这类问题,常用的知识点如下:1.若)(x f 在区间D 上存在最小值,A x f >)(在区间D 上恒成立,则A x f >min )(.2.若)(x f 在区间D 上存在最大值,B x f <)(在区间D 上恒成立,则B x f <max )(.3.若)(x f 在区间D 上存在最大值,A x f >)(在区间D 上有解,则A x f >max )(.4.若)(x f 在区间D 上存在最小值,B x f <)(在区间D 上有解,则B x f <min )(.5.],,[,21b a x x ∈∀)()(21x g x f ≤,则min max )()(x g x f ≤.6.],,[1b a x ∈∀],[2n m x ∈∃,)()(21x g x f ≤,则max max )()(x g x f ≤.7.],,[1b a x ∈∃],[2n m x ∈∃,)()(21x g x f ≤,则max min )()(x g x f ≤.8.],,[b a x ∈∀)()(x g x f ≤,则0)()(≤-x g x f .典型例题1.若不等式|x ﹣2|﹣|x +2|≤21﹣3a 对任意实数x 都成立,则实数a 的最大值为 .【分析】依据题设借助绝对值的几何意义得|x ﹣2|﹣|x +2|≤4,然后由不等式恒成立可得a 的范围.【解答】解:由绝对值的几何意义知|x ﹣2|﹣|x +2|≤|(x ﹣2)﹣(x +2)|=4,当且仅当(x ﹣2)(x +2)≤0,即﹣2≤x ≤2时取等号,∵|x ﹣2|﹣|x +2|≤21﹣3a 对任意实数x 都成立,∴21﹣3a≥(|x﹣2|﹣|x+2|)max=4=22,∴1﹣3a≥2,∴a≤﹣,∴实数a的最大值为:﹣.故答案为:﹣.【知识点】不等式恒成立的问题2.已知a是实数,若对于任意的x>0,不等式恒成立,则a的值为.【分析】设y=(4a﹣2)x+,y=x2+ax﹣,分别作出y=(4a﹣2)x+,y=x2+ax﹣的图象,讨论4a ﹣2≥0,不符题意;4a﹣2<0,且y=(4a﹣2)x+经过二次函数y=x2+ax﹣图象的B(x2,0),将B的坐标分别代入一次函数和二次函数解析式,解方程可得a,检验可得所求值.【解答】解:设y=(4a﹣2)x+,y=x2+ax﹣,由△=a2+>0,可得y=x2+ax﹣的图象与x轴有两个交点,分别作出y=(4a﹣2)x+,y=x2+ax﹣的图象,可得4a﹣2≥0,不满足题意;则4a﹣2<0,即a<,且y=(4a﹣2)x+经过二次函数y=x2+ax﹣图象的B(x2,0),即有(4a﹣2)x2+=0,即x2=,代入x2+ax﹣=0,化为48a2﹣40a+7=0,解得a=或a=>(舍去),故答案为:.【知识点】不等式恒成立的问题3.若对于任意x∈[1,4],不等式0≤ax2+bx+4a≤4x恒成立,|a|+|a+b+25|的范围为.【答案】[25,57]【分析】由题意不等式恒成立化为﹣b≤a(x+)≤4﹣b恒成立,设f(x)=x+,x∈[1,4],求出f(x)的值域,根据一次函数的性质转化为,即;设,求出a、b的表达式,把目标函数z=|a|+|a+b+25|化为关于y、x的解析式,利用线性规划的知识求出z的取值范围,即可得出结论.【解答】解:对于任意x∈[1,4],不等式0≤ax2+bx+4a≤4x恒成立,可得当x∈[1,4]时,不等式﹣b≤a(x+)≤4﹣b恒成立,设f(x)=x+,x∈[1,4];可得x∈[1,2]时f(x)递减,x∈[2,4]时f(x)递增,可得f(2)时取得最小值4,f(1)=f(4)时取得最大值5,所以f(x)的值域为[4,5];所以原不等式恒成立,等价于,(y=af(x)为f(x)的一次函数,最大值与最小值都在端点处)即,设,则,所以,所以目标函数z=|a|+|a+b+25|=|y﹣x|+|4x+3y+25|=|y﹣x|+4x+3y+25,画出不等式组表示的平面区域,如图所示;当y≥x时,目标函数z=3x+4y+25,所以x=0,y=0时z min=25,x=4,y=5时z max=57;当y<x时,目标函数z=5x+2y+25,所以x=0,y=0时为临界值z min=25,x=4,y=4时z max=53;综上可得,|a|+|a+b+25|的范围是[25,57].故答案为:[25,57].【知识点】不等式恒成立的问题专项突破一、填空题(共14小题)1.设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.【分析】分类讨论,(1)a=1;(2)a≠1,在x>0的整个区间上,我们可以将其分成两个区间,在各自的区间内恒正或恒负,即可得到结论.【解答】解:(1)a=1时,代入题中不等式明显不成立.(2)a≠1,构造函数y1=(a﹣1)x﹣1,y2=x 2﹣ax﹣1,它们都过定点P(0,﹣1).考查函数y1=(a﹣1)x﹣1:令y=0,得M(,0),∴a>1;考查函数y2=x2﹣ax﹣1,∵x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,∴y2=x2﹣ax﹣1过点M(,0),代入得:,解之得:a=,或a=0(舍去).故答案为:.【知识点】不等式恒成立的问题2.若存在实数b使得关于x的不等式|a sin2x+(4a+b)sin x+13a+2b|﹣2sin x≤4恒成立,则实数a的取值范围是﹣.【答案】[-1,1]【分析】运用正弦函数的值域可得2+sin x∈[1,3],可得|a(2+sin x)++b|≤2恒成立,讨论a=0,a >0,a<0,结合绝对值不等式的解法和不等式恒成立思想,可得所求范围.【解答】解:|a sin2x+(4a+b)sin x+13a+2b|﹣2sin x≤4,即为|a(sin2x+4sin x+4)+b(2+sin x)+9a|≤2(2+sin x),即有|a(2+sin x)2+b(2+sin x)+9a|≤2(2+sin x),由2+sin x∈[1,3],可得|a(2+sin x)++b|≤2恒成立,当a=0时,显然成立;当a>0,可得a(2+sin x)+∈[6a,10a],﹣2﹣b≤a(2+sin x)+≤2﹣b,可得﹣2﹣b≤6a且2﹣b≥10a,可得﹣2﹣6a≤b≤2﹣10a,即﹣2﹣6a≤2﹣10a,可得0<a≤1;当a<0,可得a(2+sin x)+∈[10a,6a],可得﹣2﹣b≤10a且2﹣b≥6a,可得﹣2﹣10a≤b≤2﹣6a,即﹣2﹣10a≤2﹣6a,可得﹣1≤a<0;综上可得a的范围是[﹣1,1].故答案为:[﹣1,1].【知识点】不等式恒成立的问题3.若不等式≥a对x<2恒成立,则a的最大值是﹣【分析】设t=2﹣x,得出x=2﹣t,其中t>0,把化为f(t),利用基本不等式求出f(t)的最小值,由此求出a的最大值.【解答】解:不等式≥a对x<2恒成立,设t=2﹣x,则x=2﹣t,其中t>0,所以化为f(t)==+t﹣3≥2﹣3=2﹣3,当且仅当=t,即t=时取“=”,∴f(t)的最小值为2﹣3;∴不等式≥a对x<2恒成立时,a的最大值是2﹣3.故答案为:2﹣3.【知识点】不等式恒成立的问题4.若不等式|x﹣2|﹣|x+2|≤21﹣3a对任意实数x都成立,则实数a的最大值为.【分析】依据题设借助绝对值的几何意义得|x﹣2|﹣|x+2|≤4,然后由不等式恒成立可得a的范围.【解答】解:由绝对值的几何意义知|x﹣2|﹣|x+2|≤|(x﹣2)﹣(x+2)|=4,当且仅当(x﹣2)(x+2)≤0,即﹣2≤x≤2时取等号,∵|x﹣2|﹣|x+2|≤21﹣3a对任意实数x都成立,∴21﹣3a≥(|x﹣2|﹣|x+2|)max=4=22,∴1﹣3a≥2,∴a≤﹣,∴实数a的最大值为:﹣.故答案为:﹣.【知识点】不等式恒成立的问题5.已知a,b∈R,若关于x的不等式lnx≤a(x﹣2)+b对一切正实数x恒成立,则当a+b取最小值时,b的值为﹣.【分析】由题意可得只要考虑直线y=a(x﹣2)+b与y=lnx相切,设出切点(m,lnm),运用导数的几何意义,可得a,b,m的方程,再由x=3时,a+b取得最小值,结合构造函数法,运用导数求得最小值,即可得到所求b的值.【解答】解:设y=lnx的图象与直线y=a(x﹣2)+b相切的切点为(m,lnm),由y=lnx的导数为y′=,可得a=,lnm=a(m﹣2)+b,可得b=2a﹣lna﹣1,由x=3时,可得a+b≥ln3,可得a+b的最小值为ln3,即有2a﹣lna﹣1=ln3﹣a,即3a﹣lna=1+ln3,由y=3x﹣lnx的导数为y′=3﹣,可得0<x<时,函数y=3x﹣lnx递减,在x>时,函数y=3x﹣lnx递增,可得x=处函数y取得最小值1+ln3,则3a﹣lna=1+ln3的解为a=,即有b=ln3﹣.故答案为:ln3﹣.【知识点】不等式恒成立的问题6.已知等比数列{a n}的前n项和为S n,且S n=,若对任意的n∈N*,(2S n+3)λ≥27(n﹣5)恒成立,则实数λ的取值范围是.【分析】根据等比数列前n项和公式,求得a n,即可求得t的值,代入根据函数的单调性即可求得实数λ的取值范围.【解答】解:由题意可知:2S n=3n+1+t,当n≥2时,2a n=2S n﹣2S n﹣1=3n+1+t﹣3n﹣t=2×3n,∴a n=3n,由数列{a n}为等比数列,则a1=3,当n=1,则a1=S1==3,则t=﹣3,∴S n=(3n﹣1),对任意的n∈N*,(2S n+3)λ≥27(n﹣5),即3n+1λ≥27(n﹣5),∴λ≥=,n∈N*,由对任意的n∈N*,(2S n+3)λ≥27(n﹣5)恒成立,则λ≥()max,由函数f(x)=在[1,+∞),f′(x)==,令f′(x)=0,则x=+5,则f(x)在[1,+5)单调递增,在(+5,+∞)单调递减,由n∈N*,f(5)=0,f(6)=,∴当n=6时,取最大值,最大值为,∴实数λ的取值范围[,+∞),故答案为:[,+∞).【知识点】不等式恒成立的问题、利用导数研究函数的单调性7.已知函数f(x)=,设a∈R,若关于x的不等式在R上恒成立,则a的取值范围是﹣【分析】根据题意,分段讨论x≤1和x>1时,关于x的不等式f(x)≥|+a|在R上恒成立,去掉绝对值,利用函数的最大、最小值求得a的取值范围,再求它们的公共部分.【解答】解:函数f(x)=,当x≤1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣x2+x﹣3≤+a≤x2﹣x+3,即有﹣x2+x﹣3≤a≤x2﹣x+3,由y=﹣x2+x﹣3的对称轴为x=<1,可得x=处取得最大值为﹣;由y=x2﹣x+3的对称轴为x=<1,可得x=处取得最小值为,则﹣≤a≤;…①当x>1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣(x+)≤+a≤x+,即有﹣(x+)≤a≤+,由y=﹣(x+)≤﹣2=﹣2(当且仅当x=>1)取得最大值﹣2;由y=x+≥2=2(当且仅当x=2>1)取得最小值2.则﹣2≤a≤2;…②由①②可得,﹣≤a≤2;综上,a的取值范围是﹣≤a≤2.故答案为:﹣≤a≤2.【知识点】不等式恒成立的问题8.若不等式(x+1)1n(x+1)<ax2+2ax在(0,+∞)上恒成立,则a的取值范围是.【分析】当x>0时a>在x>0恒成立,设g(x)=,g(x)﹣=,求得y=2(x+1)ln(x+1)﹣x(x+2),x>0的导数和符号,即可得到所求a的范围.【解答】解:不等式(x+1)1n(x+1)<ax2+2ax在(0,+∞)上恒成立,即有a>在x>0恒成立,设g(x)=,由y=lnx﹣x+1的导数为y′=﹣1=,x>1时,函数y递减;0<x<1时,函数y递增,可得y=lnx﹣x+1的最大值为0,即lnx≤x﹣1,则g(x)﹣=,由y=2(x+1)ln(x+1)﹣x(x+2),x>0的导数为y′=2(1+ln(x+1))﹣2(x+1)=2[ln(x+1)﹣x],由ln(x+1)<x,即ln(x+1)﹣x<0,(x>0),可得g(x)﹣<0,即g(x)<,可得a≥,则a的范围是[,+∞).故答案为:[,+∞).【知识点】不等式恒成立的问题9.对于任意的正数a,b,不等式(2ab+a2)k≤4b2+4ab+3a2恒成立,则k的最大值为.【分析】通过变形,换元可得,接下来只需求出在(1,+∞)上的最小值即可.【解答】解:依题意,,令,则,令μ=2t+1>1,则,而函数在(1,+∞)上的最小值为,故,即k的最大值为.故答案为:.【知识点】不等式恒成立的问题10.设a>0,若关于x的不等式x≥9在x∈(3,+∞)恒成立,则a的取值范围为.【答案】3【分析】利用基本不等式,确定x的最小值,即可求得a的最小值.【解答】解:∵a>0,x>1,∴x=(x﹣3)+3≥2+1∵a>0,若关于x的不等式x≥9在x∈(3,+∞)恒成立,∴2+3≥9.∴a≥3∴a的最小值为3.故答案为:3.【知识点】不等式恒成立的问题11.不等式(a﹣2)x2+(a﹣2)x+1>0对一切x∈R恒成立,则实数a的取值范围是.【答案】[2,6)【分析】由于二次项系数含有参数,故需分a﹣2=0与a﹣2≠0两类讨论,特别是后者:对于(a﹣2)x2+(a﹣2)x+1>0对一切x∈R恒成立,有求出a的范围,再把结果并在一起.【解答】解:当a=2时,原不等式即为1>0,原不等式恒成立,即a=2满足条件;当a≠2时,要使不等式(a﹣2)x2+(a﹣2)x+1>0对一切x∈R恒成立,必须解得,2<a<6.综上所述,a的取值范围是2≤a<6,故答案为:[2,6).【知识点】不等式恒成立的问题12.若对任意a∈[1,2],不等式ax2+(a﹣1)x﹣1>0恒成立,则实数x的取值范围是﹣∞﹣【答案】(-∞,-1)∪(1,+∞)【分析】通过变换主元,利用函数恒成立转化为不等式组求解即可.【解答】解:由题意对任意a∈[1,2],不等式ax2+(a﹣1)x﹣1>0恒成立,即为a(x2+x)﹣x﹣1>0对任意a∈[1,2]恒成立,所以,解得x<﹣1或x>1.故答案为:(﹣∞,﹣1)∪(1,+∞).【知识点】不等式恒成立的问题13.若不等式2kx2+kx+<0对于一切实数x都成立,则k的取值范围是﹣∞﹣.【答案】(-∞,-2)【分析】根据不等式2kx2+kx+<0对一切实数x都成立,讨论k=0和k≠0时,即可求出k的取值范围.【解答】解:不等式2kx2+kx+<0对一切实数x都成立,k=0时,不等式化为<0不成立,k≠0时,应满足,解得k<﹣2.综上,不等式2kx2+kx+<0对一切实数x都成立的k的取值范围是(﹣∞,﹣2).故答案为:(﹣∞,﹣2).【知识点】二次函数的性质与图象、不等式恒成立的问题14.若关于x的不等式(x2﹣a)(2x+b)≥0在(a,b)上恒成立,则2a+b的最小值为.【答案】0【分析】设f(x)=(x2﹣a)(2x+b),x∈(a,b),讨论a>0和a≤0时,利用f(x)≥0在x∈(a,b)恒成立,即可求出2a+b的最小值.【解答】解:关于x的不等式(x2﹣a)(2x+b)≥0在(a,b)上恒成立,当a>0时,b>a>0,f(x)=(x2﹣a)(2x+b)的三个零点分别为±,﹣;显然有>﹣,>﹣;则f(x)在(a,b)上是单调增函数,f(x)≥0在(a,b)上恒成立,则f(a)=(a2﹣a)(2a+b)=a(a﹣1)(2a+b)≥0,即或;则2a+b≥0或无最小值;当a≤0时,x2﹣a≥0恒成立,f(x)≥0时只需2x+b≥0恒成立,又x∈(a,b),∴2a+b≥0;综上所述,2a+b的最小值为0.故答案为:0.【知识点】不等式恒成立的问题。
高考数学压轴题精选精编附详细解答试题
卜人入州八九几市潮王学校2021年高考数学压轴题精选精编附详细解答1、〔本小题总分值是14分〕如图,点(4,0)N p -〔p >0,p 是常数〕,点T 在y 轴上,0MT NT ⋅=,MT 交x 轴于点Q ,且2TM QM =.〔Ⅰ〕当点T 在y 轴上挪动时,求动点M 的轨迹E 的方程;(4分) 〔Ⅱ〕设直线l 过轨迹E 的焦点F,且与该轨迹交于A 、B 两点, 过A 、B 分别作该轨迹的对称轴的垂线,垂足分别为12,,A A 求证:OF是1OA 和2OA 的等比中项;〔5分〕(Ⅲ)对于该轨迹E ,能否存在一条弦CD 被直线l 垂直平分?假设存在,求出直线CD 的方程;假设不存在,试说明理由。
〔5分〕 2、〔本小题总分值是14分〕 设函数)(x f 的定义域为R ,当0<x 时,0()1f x <<,且对任意的实数x 、R y ∈,有).()()(y f x f y x f =+〔Ⅰ〕求)0(f ;〔2分〕 (Ⅱ)试判断函数)(x f 在(,0]-∞上是否存在最大值,假设存在,求出该最大值,假设不存在说明理由;〔5分〕〔Ⅲ〕设数列{}n a 各项都是正数,且满足1(0),a f =22111(),()(32)n n n n f a a n N f a a *++-=∈--又设1322121111,,)21(++++=+++==n n n n n a na a a a a a Tb b b S b n ,试比较S n 与n T 的大小.〔7分〕3、〔此题总分值是13分〕椭圆221:36(0)x c y t t+=>的两条准线与双曲线222:536c x y -=的两条准线所围成的四边形之面积为直线l 与双曲线2c 的右支相交于,P Q 两点(其中点P ),线段OP 与椭圆1c 交于点,A O 为坐标原点(如下列图).〔I 〕务实数t 的值;〔II 〕假设3OP OA =⋅,PAQ ∆的面积26tan S PAQ =-⋅∠,求直线l 的方程.4、〔此题总分值是14分〕数列{}n a 的前n 项和n S 满足:11,S =-121(),n n S S n N *++=-∈数列{}n b 的通项公式为34().n b n n N *=-∈〔I 〕求数列{}n a 的通项公式;〔II 〕试比较n a 与n b 的大小,并加以证明; 〔III 〕是否存在圆心在x轴上的圆C 及互不相等的正整数n m k 、、,使得三点(,),(,),(,)n n n m m m k k k A b a A b a A b a 落在圆C 上说明理由.5、(本小题总分值是14分)一次国际乒乓球比赛中,甲、乙两位选手在决赛中相遇,根据以往经历,单局比赛甲选手胜乙选手的概率为0.6,本场比赛采用五局三胜制,即先胜三局的选手获胜,比赛完毕.设全局比赛互相间没有影响,令ξ为本场比赛甲选手胜乙选手的局数〔不计甲负乙的局数〕,求ξ〕. 6、(本小题总分值是14分) 数列{}n a 的前n 项和为S n *()n N∈,点〔a n,S n〕在直线y =2x -3n 上.〔1〕假设数列{}的值求常数成等比数列C c a n ,+;〔5分〕〔2〕求数列}{n a 的通项公式;〔3分〕 〔3〕数列{}请求出一组若存在它们可以构成等差数列中是否存在三项,?,n a 适宜条件的项;假设不存在,请说明理由.〔6分〕7、〔本小题14分〕数列}{n a 的前n 项和为n S ,且满足211=a ,)2(021≥-n S S a n n n =+. 〔1〕问:数列}1{nS 是否为等差数列?并证明你的结论;(5分) 〔2〕求n S 和n a ;(5分)〔3〕求证:nS S S S n 41212232221-≤+⋅⋅⋅+++(4分) 8、〔本小题总分值是14分〕函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0.〔Ⅰ〕假设b =2,且h (x )=f (x )-g(x )存在单调递减区间,求a 的取值范围;(7分)〔Ⅱ〕设函数f (x )的图象C 1与函数g(x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行.(7分) 9、〔本小题总分值是14分〕设抛物线214C ymx =:(0)m >的准线与x 轴交于1F ,焦点为2F ;以12F F 、为焦点,离心率12e =的椭圆2C 与抛物线1C 的一个交点为P .〔Ⅰ〕当1m =时,直线l 经过椭圆2C 的右焦点2F ,与抛物线1C 交于12A A 、,假设弦长12A A 等于三角形12PF F 的周长,求直线l 的斜率.〔Ⅱ〕求最小实数m ,使得三角形12PF F 的边长是自然数.10、〔本小题总分值是14分〕〔Ⅰ〕函1()2()(),([0,),n n n f x x a x a x n -=+-+∈+∞〔Ⅱ〕明:()(0,0,)22n n na b a b a b n N *++≥>>∈;〔Ⅲ〕定理:假设123,,k a a a a 均为正数,那么有123123()n n nn n kka a a a a a a a kk++++++++≥成立(其中2,,)kk N k *≥∈为常数.请你构造一个函数()g x ,证明:当1231,,,,,k k a a a a a +均为正数时,12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++.11、 本小题总分值是14分〕如图,在OAB ∆中,||||4OA OB ==,点P 分线段AB 所成的比3:1,以OA 、OB 所在 直线为渐近线的双曲线M 恰好经过点P ,且离心率为2.〔Ⅰ〕求双曲线M 的HY 方程; 〔Ⅱ〕假设直线y kx m =+〔0k ≠,0m ≠〕与双曲线M 交于不同的两点E 、F ,且E 、F 两点都在以(0,3)Q -为圆心的同一圆上,务实数m 的取值范围.12、本小题总分值是14分函数()f x 是定义在[,0)(0,]e e -上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+〔其中e 为自然对数的底,a ∈R 〕.〔Ⅰ〕求函数()f x 的解析式;〔Ⅱ〕设ln ||()||x g x x =〔[,0)(0,]x e e ∈-〕,求证:当1a =-时,1|()|()2f xg x >+; 〔Ⅲ〕试问:是否存在实数a ,使得当[,0)x e ∈-,()f x 的最小值是3?假设存在,求出实数a 的值;假设不存在,请说明理由.13、〔小题总分值是14分〕锐角α、β满足sin cos()m βαβ=+〔0m >,2παβ+≠〕,令tan y β=,tan x α=。
浙江省2021年高考数学压轴卷(含解析)
浙江省2021年高考数学压轴卷〔含解析〕本试题卷分选择题和非选择题两局部。
全卷共4页 , 选择题局部1至2页 ; 非选择题局部3至4页。
总分值150分。
考试用时120分钟。
参考公式 : 如果事件A ,B 互斥 , 那么()()()P A B P A P B +=+如果事件A , B 相互独立 , 那么()()()P AB P A P B =如果事件A 在一次试验中发生的概率是p , 那么n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn kn nP k p p k n -=-=台体的体积公式11221()3V S S S S h =++其中12,S S 分别表示台体的上、下底面积 ,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积 , h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积 , h 表示锥体的高球的外表积公式 24S R =π球的体积公式 343V R =π 其中R 表示球的半径选择题局部〔共40分〕一、选择题 : 本大题共10小题 , 每道题4分 , 共40分。
在每道题给出的四个选项中 ,只有一项为哪一项符合题目要求的。
1.已知集合{0A x x =≤或}2x ≥ , {}|11B x x =-<< , 那么A B =〔 〕A .()1,-+∞B .()1,1-C .(]1,0-D .[)0,12.已知i 是虚数单位 , 那么()()112i i +-=〔 〕 A .3i +B .3i -C .1i -+D .1i --3.已知a 、b R ∈ , 且a b > , 那么A .11a b<B .sin sin a b >C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .22a b >4.函数()2cos xx x f x e+=在[]2,2ππ-上的大致图象为〔 〕A .B .C .D .5.设m R ∈ , 那么〞12m ≤≤〞是〞直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点〞的〔 〕A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知离散型随机变量X 的所有可能取值为0 , 1 , 2 , 3 , 且()213P X ≥=, 1(3)6P X ==, 假设X 的数学期望()54E X = , 那么()43D X -=〔 〕A .19B .16C .194 D .747.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为()12,0F - , ()22,0F , P为双曲线上位于第二象限内的一点 , 点Q 在y 轴上运动 , 假设21PQ QF PF +-的最小值为233, 那么双曲线的离心率为〔 〕 A .3B .23C .33D .438.已知1x , 2x , 是函数()()()tan 0,0f x x ωϕωϕπ=-><<的两个零点 , 且12x x -的最小值为3π, 假设将函数()f x 的图象向左平移12π个单位长度后得到的图象关于原点对称 , 那么ϕ的最大值为〔 〕 A .34π B .4π C .78π D .8π 9.如以下图 , 正方形ABCD 和正方形ADEF 成60︒的二面角 , 将DEF 绕DE 旋转 ,在旋转过程中〔1〕对任意位置 , 总有直线AC 与平面DEF 相交 ;〔2〕对任意位置 , 平面DEF 与平面ABCD 所成角大于或等于60︒ ; 〔3〕存在某个位置 , 使DF ⊥平面ABCD ; 〔4〕存在某个位置 , 使DF BC ⊥. 其中正确的选项是〔 〕. A .〔1〕〔3〕 B .〔2〕〔3〕C .〔2〕〔4〕D .〔3〕〔4〕10.已知函数()321162f x x bx cx =++的导函数()'f x 是偶函数 , 假设方程()'ln 0f x x -=在区间1,e e ⎡⎤⎢⎥⎣⎦(其中e 为自然对数的底)上有两个不相等的实数根 , 那么实数c 的取值范围是 A .2111,2e 2⎡⎤---⎢⎥⎣⎦B .2111,2e 2⎡⎫---⎪⎢⎣⎭C .2111e ,22⎡⎫--⎪⎢⎣⎭D .2111e ,22⎡⎤--⎢⎥⎣⎦非选择题局部〔共110分〕二、填空题 : 本大题共7小题 , 多空题每道题6分 , 单空题每道题4分 , 共36分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学压轴题大全1.(本小题满分14分)如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程.(2)证明∠PFA=∠PFB.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x 切线BP 的方程为:;02211=--x y x x 解得P 点的坐标为:1010,2x x y x x x P P =+=所以△APB 的重心G 的坐标为P PG x x x x x =++=310,,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为41,(),41,2(),41,(2111010200-=-+=-=x x FB x x x x FP x x FA 由于P 点在抛物线外,则.0||≠FP ∴||41)41)(41(2||||cos 102010010FP x x x x x x x x FA FP FA FP AFP +=--+⋅+==∠同理有||41)41)(41(2||||cos 102110110FP x x x x x x x x FB FP FB FP BFP +=--+⋅+==∠∴∠AFP=∠PFB.方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x 所以P 点到直线BF 的距离为:2||412||41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即直线BF 的方程:,04141(),0(041411121121=+-----=-x y x x x x x x y 即所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB.2.(本小题满分12分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.(此题不要求在答题卡上画图)本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(Ⅰ)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设212211,),,(),,(x x y x B y x A 则是方程①的两个不同的根,∴,0])3(3)3([422>--+=∆k k λ②且,3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λλ即,12>的取值范围是(12,+∞).于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即解法2:设),,(),,(2211y x B y x A 则有.0))(())((332121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ依题意,.)(3,212121y y x x k x x AB ++-=∴≠∵N (1,3)是AB 的中点,∴.1,6,22121-==+=+AB k y y x x 从而又由N (1,3)在椭圆内,∴,1231322=+⨯>λ∴λ的取值范围是(12,+∞).直线AB 的方程为y -3=-(x -1),即x+y -4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0,代入椭圆方程,整理得.04442=-++λx x 又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根,∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且于是由弦长公式可得.)3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程x+y -4=0,代入椭圆方程得016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即).2||)(2||(2||(2d CD d CD AB -+=⑧由⑥式知,⑧式左边,212-=λ由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ∴⑧式成立,即A 、B 、C 、D 四点共圆.解法2:由(Ⅱ)解法1及λ>12,∵CD 垂直平分AB ,∴直线CD 方程为13-=-x y ,代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程x+y -4=0,代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得.231,21224,32,1-±-=-±=λλx x不妨设)233,231(),233,231(12213,12211(-+-+---------+λλλλλλD C A ∴)21233,23123(---+-+-+=λλλλCA 21233,23123(-------+=λλλλDA 计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD )3.(本小题满分14分)已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数.设数列}{n a 的各项为正,且满足,4,3,2,),0(111=+≤>=--n a n na a b b a n n n (Ⅰ)证明,5,4,3,][log 222=+<n n b ba n (Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N ,使得当N n >时,对任意b>0,都有.51<n a 本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想.(Ⅰ)证法1:∵当,111,0,211111na na a n a a n na a n n n n n n n n +=+≥∴+≤<≥-----时即,1111na a n n ≥--于是有.111,,3111,211112312na a a a a a n n ≥-≥-≥-- 所有不等式两边相加可得.13121111na a n +++≥- 由已知不等式知,当n ≥3时有,].[log 211121n a a n >-∵.][log 22.2][log 2][log 2111,2221n b ba bn b n b a b a n n +<+=+>∴=证法2:设nn f 13121)(+++=,首先利用数学归纳法证不等式.,5,4,3,)(1 =+≤n bn f ba n (i )当n=3时,由.)3(11223313333112223b f ba a a a a a +=++⋅≤+=+≤知不等式成立.(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1bk f ba k +≤则1)(1)1(11)1(1)1()1(1++⋅++≤+++=+++≤+bb k f k k a k k a k a k a k kk k ,)1(111)((1)()1()1()1(bk f bb k k f bbb k f k k bk ++=+++=+++++=即当n=k+1时,不等式也成立.由(i )、(ii )知,.,5,4,3,)(1 =+≤n b n f ba n 又由已知不等式得.,5,4,3,][log 22][log 21122 =+=+<n n b bb n ba n (Ⅱ)有极限,且.0lim =∞→n n a (Ⅲ)∵,51][log 2,][log 2][log 22222<<+n n n b b 令则有,10242,10][log log 1022=>⇒>≥n n n 故取N=1024,可使当n>N 时,都有.51<n a 4.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则()2111222222,2242,1 1.43a MA a A F a cca a a c c a abc a b c x y =-=-⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩∴===+=由题意,得 故椭圆方程为(Ⅱ)()004,,0P y y -≠设001122121102112212000121212350,2215tan .11515tan y yPF k PF k F PF PF M F PF y k k F PF k k y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤++=±∠∠∠ 设直线的斜率,直线的斜率 为锐角。