法拉第电磁感应定律知识点 及例题
法拉第电磁感应定律
法拉第电磁感应定律一1.感应电动势:在 现象中产生的电动势.产生感应电动势的部分相当于 .2.法拉第电磁感应定律:公式 =E 。
注意:(1)利用上式计算的是平均感应电动势。
(2)区别磁通量、磁通量的变化、磁通量的变化率.(3)感应电量:在时间△t 内通过任一截面的电量为:q=I △t=E △t/R =N △φ/R .3.导线切割磁感线产生的感应电动势:(1)公式:=E(2)L 为导体切割磁感线的 长度(3)若v 为瞬时速度,则E 为 电动势. 二、考点整合1.动生电动势对应的电路问题:【例1】 如右图,ab 金属棒以2m/s 速度向右运动,棒的电阻为1Ω,电阻R=4Ω,其它电阻不计,ab 棒有效长度为30cm,匀强磁场的磁感应强度B=0.6T 。
则流过R 电流为________,a 、b 两点电压为________.变式:把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感应强度为B 的匀强磁场中,如图所示,一长度为2a ,电阻等于R ,粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的电接触.当金属棒以恒定速度v 向右移动经过环心O 时,求:(1)棒上电流的大小和方向;(2)棒两端的电压U MN ;(3)在圆环和金属棒上消耗的总热功率。
足够长的平行金属导轨AB 、CD ,在导体的AC 端连接一阻值为R的电阻,一根垂直于导体放置的金属棒ab ,质量为m ,导轨和金属棒的电阻及它们间的摩擦不计,若用恒力F 沿水平方向向右拉棒运动,求:金属棒的最大速度。
变式:如图,一个半径为L 的半圆形硬导体ab 在竖直U 型框架上释放从静止,匀强磁场的磁感应强度为B ,回路电阻为R ,半圆形硬导体ab 的质量为m ,电阻为r ,重力加速度为g ,其余电阻不计,(1)当半圆形硬导体ab 的速度为v 时(未达到最大速度),求ab 两端的电压;(2)求半圆形硬导体ab 所能达到的最大速度.【例3】如图所示,竖直向上的匀强磁场磁感强度B 0=0.5T ,并以t B ∆∆=0.1T/s 在变化。
(完整版)法拉第电磁感应定律的例题
法拉第电磁感应定律的例题【例1】如图所示,磁感强度B=1.2T的匀强磁场中有一折成30°角的金属导轨aob,导轨平面垂直磁场方向。
一条直线MN垂直ob方向放置在轨道上并接触良好。
当MN以v=4m/s从导轨O点开始向右平动时,若所有导线单位长度的电阻r=0.1Ω/m。
求:(1)经过时间t后,闭合回路的感应电动势的瞬时值和平均值;(2)闭合回路中的电流大小和方向。
【分析】磁场B与平动速度v保持不变,但MN切割磁感线有效【解答】 (1)设运动时间为t后,在ob上移动S=vt=4t,MN的回路总电阻R=Lr=10.9t×0.1=1.09t【说明】 (1)本题切割的有效长度是时间的函数,所以电动势的平均值、即时值与有效长度的平均值、即时值有关(2)解这一类有效长度随时间变化的问题,关键是找到有效长度与时间的函数关系。
【例2】如图所示,匀强磁场的磁感应强度为B,方向垂直纸面向里,长L电阻R0的裸电阻丝cd在宽L的平行金属轨道上向右滑行,速度为v。
已知R1=R2=R0,其余电阻忽略不计,求电键K闭合与断开时,M、N两点的电势差U MN。
【分析】 cd在磁场中做切割磁感线的运动,这部分电路是电源,你知道电键K 断开和闭合,U cd有什么不同吗?电键K断开时,电路abcd不闭合,只产生感应电动势,而没有感应电流,N、c、b等势,M、a、d等势,U MN=U dc=E;电键K闭合时,电路中有感应电流,此时U MN=U dc为路端电压。
【解答】ε=BLvK断开时,U MN=U dc=ε=BLv【说明】 1、不要以为切割磁感线导体两端电压都等于感应电动势,通过此题想想在什么情况下,两端电压不等于电动势的值。
2、cd部分是电源,在电源内部,电流方向是从低电势流向高电势(规定为电动势的方向),所以U MN=U dc为正值。
【例3】如图所示,小灯泡的规格为“2V、4W”,接在光滑水平导轨上,轨距0.1m,电阻不计。
法拉第电磁感应定律 典例与练习
法拉第电磁感应定律典例与练习【典型例题】类型一、法拉第电磁感应定律的应用例1、(2015 安徽) 如图所示,abcd为水平放置的平行“匚”形光滑金属导轨,间距为l。
导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计。
已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好)。
则A.电路中感应电动势的大小为sinBlvθB.电路中感应电流的大小为sinBvrθC.金属杆所受安培力的大小为2sinlvrBθD.金属杆的热功率为22sinlrvBθ【答案】B【解析】导体棒切割磁力线产生感应电动势E=Blv,故A错误;感应电流的大小sinsinE BvIl rrθθ==,故B正确;所受的安培力为2sinl B lvF BIrθ==,故C错误;金属杆的热功率222sinsinl B vQ I rrθθ==,故D错误。
【考点】考查电磁感应知识。
举一反三【变式】如图所示,水平放置的平行金属导轨,相距L=0.50 m,左端接一电阻R =0. 20n,磁感应强度B=0.40 T,方向垂直于导轨平面的匀强磁场,导体棒a b垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当a b以v=4.0 m/s的速度水平向右匀速滑动时,求:(1)a b棒中感应电动势的大小,并指出a、b哪端电势高?(2)回路中感应电流的大小;(3)维持a b 棒做匀速运动的水平外力F 的大小。
【答案】(1)0.8V ;a 端电势高;(2)4.0A ;(3)0. 8 N 。
【解析】(1)根据法拉第电磁感应定律,a b 棒中的感应电动势为0.40.5 4.00.8E BLv V V ==⨯⨯= 根据右手定则可判定感应电动势的方向由b a →,所以a 端电势高。
(2)导轨和导体棒的电阻均可忽略不计,感应电流大小为 0.8 4.00.2E I A A R === (3)由于a b 棒受安培力,棒做匀速运动,故外力等于安培力 4.00.50.40.8F BIL N N ==⨯⨯=, 故外力的大小为0. 8 N 。
第二讲法拉第电磁感应定律自感现象(原卷版+解析)
第二讲 法拉第电磁感应定律 自感现象➢ 知识梳理一、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E =n ΔΦΔt ,其中n 为线圈匝数。
(3)感应电流与感应电动势的关系I =ER +r 。
3.导线切割磁感线时的感应电动势二、自感、涡流 1.互感现象两个互相靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势。
这种现象叫作互感,这种感应电动势叫作互感电动势。
2.自感现象(1)定义:当一个线圈中的电流变化时,它所产生的变化的磁场在线圈本身激发出感应电动势,这种现象称为自感。
(2)自感电动势①定义:由于自感而产生的感应电动势。
②表达式:E =L ΔIΔt 。
③自感系数L相关因素:与线圈的大小、形状、匝数以及是否有铁芯等因素有关。
单位:亨利(H),1 mH =10-3 H ,1 μH =10-6 H 。
3.涡流、电磁阻尼和电磁驱动(1)涡流:如果穿过导体的磁通量发生变化,由于电磁感应,导体内会产生感应电流,这种电流像水中的漩涡,所以叫作涡电流,简称涡流。
(2)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼。
(3)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,它使导体受到安培力的作用,安培力使导体运动起来,这种作用常常称为电磁驱动。
交流感应电动机就是利用电磁驱动的原理工作的。
(4)电磁阻尼和电磁驱动的原理体现了楞次定律的推广应用。
考点一、法拉第电磁感应定律的理解和应用1.磁通量Φ、磁通量的变化量ΔΦ、磁通量的变化率ΔΦΔt 的比较2.法拉第电磁感应定律公式的物理意义:E =n ΔΦΔt 求的是Δt 时间内的平均感应电动势,当Δt →0时,E 为瞬时感应电动势。
法拉第电磁感应定律知识点及例题培训讲学
法拉第电磁感应定律知识点及例题第3讲 法拉第电磁感应定律及其应用一、感应电流的产生条件1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。
2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。
3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。
二、法拉第电磁感应定律 公式一: t n E ∆∆=/φ注意: 1)该式普遍适用于求平均感应电动势。
2)E 只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。
公式tnE ∆∆=φ中涉及到磁通量的变化量∆φ的计算, 对∆φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由∆∆φ=BS , 此时S tBn E ∆∆=, 此式中的∆∆B t 叫磁感应强度的变化率, 若∆∆Bt是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。
2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则∆∆φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。
严格区别磁通量φ, 磁通量的变化量∆φB 磁通量的变化率∆∆φt, 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量∆φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率∆∆φt表示磁通量变化的快慢,公式二: θsin Blv E =要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。
4.4_法拉第电磁感应定律(自整理)
E t
E t
En t
(国际单位时)
若有n匝线圈,则相当于有n个电源串联,总电动势为:
注意:公式中Δφ应取绝对值,不涉及正负.
二、法拉第电磁感应定律
1、内容:
电路中感应电动势的大小,跟穿过这 一电路的磁通量变化率成正比 。 2、公式:
楞次定律
楞次定律指出:感应电流的方向,总是使感应 电流的磁场阻碍引起感应电流的磁通量的变化,它 是判断感应电流方向的普遍规律。 1.应用楞次定律判断步骤
愣次定律 感应电流磁场 B2方 向 原磁通变化(增加或减少 ) (与B1相 同 或 相 反 ) 原磁场B1方向
右手螺旋定则
感应电流方向
4.4法拉第电磁 感应定律
穿过回路的磁感 线的条数多少
穿过回路的磁通 量变化了多少 穿过回路的磁通 量变化的快慢
无直接关系
产生感应电动 势的条件 决定感应电动 势的大小
ΔΦ/Δt
注意:磁通量Ф=BS (与匝数无关)
思考与讨论
问题1:磁通量大,磁通量变化一定大吗? 问题2:磁通量变化大,磁通量的变化率一定大吗? 磁通量的变化率和磁通量、磁通量的变化无 直接关系:磁通量大(小,零),磁通量的变化率不 一定大(小,零);磁通量的变化大(小),磁通量的变 化率不一定大(小). (可以类比速度、速度的变化和加速度)
例1、在赤道的上方,一根沿东西方向
的水平导体自由下落,下落过程中导体上各
点的电势高低是( A ) A.东端高 B.西端高
C.中点高 D.无感应电动势产生
探究: 影响感应电动势大小的因素
我们怎样能够感知到感应电动势的大小?
法拉第电磁感应定律习题知识点及练习题附答案解析
法拉第电磁感应定律习题知识点及练习题附答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析【解析】【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义W E q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况.【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t ∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q=解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用.【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值. 【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220 B l t m【解析】【分析】【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=- ⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E R ⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m3.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向;(2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q.【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C【解析】【分析】【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V B E L L t t∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件:F +mg sin30° -F 安=0F =-0.5N外力F 大小为0.5N .方向沿斜面向上(3)q =It ,E I R r =+;E t ∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512C 1.5C 1.50.5BL S q R r ⨯⨯===++4.如图甲所示,光滑且足够长的平行金属导轨MN 和PQ 固定在同一水平面上,两导轨间距L=0.2m ,电阻R=0.4Ω,导轨上停放一质量m=0.1kg 、电阻r=0.1Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B=0.5T 的匀强磁场中,磁场的方向竖直向下,现用一外力F 沿水平方向拉杆,使之由静止开始运动,若理想电压表示数U 随时间t 变化关系如图乙所示。
第二讲 法拉第电磁感应定律
第二讲 法拉第电磁感应定律【知识要点】一、一、法拉第电磁感应定律(1)内容:电磁感应中线圈里的感应电动势跟穿过线圈的磁通量变化率成正比.(2)表达式:t E ∆∆Φ=或t n E ∆∆Φ=. (3)说明:①式中的n 为线圈的匝数,∆Φ是线圈磁通量的变化量,△t 是磁通量变化所用的时间.t∆∆Φ又叫磁通量的变化率. ②∆Φ是单位是韦伯,△t 的单位是秒,E 的单位是伏特. ③t nE ∆∆Φ=中学阶段一般只用来计算平均感应电动势,如果t ∆∆Φ是恒定的,那么E 是稳恒的.二、导线切割磁感线的感应电动势1.公式:E=BLv2.导线切割磁感线的感应电动势公式的几点说明:(1)公式仅适用于导体上各点以相同的速度切割匀强磁场的磁感线的情况.(2)公式中的B 、v 、L 要求互相两两垂直.当L ⊥B ,L ⊥v ,而v 与B 成θ夹角时,导线切割磁感线的感应电动势大小为θsin BLv E =.(3)适用于计算当导体切割磁感线产生的感应电动势,当v 为瞬时速度时,可计算瞬时感应电动势,当v 为平均速度时,可计算平均电动势.(4)若导体棒不是直的,θsin BLv E =中的L 为切割磁感线的导体棒的有效长度.3.导体切割磁感线产生的感应电动势大小两个特例:(1)长为L 的导体棒在磁感应强度为B 的匀强磁场中以ω匀速转动,导体棒产生的感应电动势:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===))((212121022212不同两段的代数和以任意点为轴时,)线速度(平均速度取中点位置以端点为轴时,(不同两段的代数和)以中点为轴时,L L B E L L B E E ωωω (2)面积为S 的矩形线圈在匀强磁场B 中以角速度ω绕线圈平面内的任意轴匀速转动,产生的感应电动势:⎪⎩⎪⎨⎧===θωθωsin 0BS E E BS E 时,为线圈平面与磁感线夹角时,线圈平面与磁感线垂直时,线圈平面与磁感线平行 【典型例题】例1、单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图所示,则线圈中 ( ) A .0时刻感应电动势最大B .D 时刻感应电动势为零C .D 时刻感应电动势最大D .0至D 时间内平均感生电动势为0.4V 例2、用均匀导线做成的正方形线框每边长为0.2m ,正方形的一半放在和纸面垂直向里的匀强磁场中,如图甲所示,当磁场以每秒10T 的变化率增强时,线框中点a 、b 两点电势差是:( )A 、U ab =0.1V ;B 、U ab =-0.1V ;C 、U ab =0.2V ;D 、U ab =-0.2V 。
法拉第电磁感应定律专题zyq
法拉第电磁感应定律一、磁通量:穿过某个面的磁通量1. S与B垂直时,Ф=BS;S与B平行时,Ф=0;S与B成夹角θ时,Ф=BSsinθ2.物理意义:表示穿过某个面的磁感线的条数。
3.Ф等于S乘以与S垂直的B的分量,Ф等于B乘以与B垂直的S的投影。
4.初状态B与S垂直,Ф1=BS,转过1800后的末状态B与S也垂直,Ф2=BS,但初末状态的磁通量是不同的,一正一负,△Ф=2 BS,而不是零。
二、法拉第电磁感应定律1.内容:电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
2.公式:3.导体棒切割磁感线时产生的感应电动势E=BLV,应用E=BLV时注意B、L、V必须两两相互垂直。
①B与L垂直、V与B、L不垂直时,感应电动势等于B乘以L再乘以与B、L垂直的V的分量。
②L与V垂直、B与L、V不垂直时,感应电动势等于L乘以V再乘以与L、V垂直的B的分量。
③B与V垂直、L与B、V不垂直时,感应电动势等于B乘以V再乘以与B、V垂直的L的投影。
4.在匀强磁场中,导体棒以端点为轴在垂直于磁感线的平面内匀速转动产生的感应电动势。
棒上各点的线速度不同,应用E=BLV计算感应电动势时,V取平均速度,即棒中点的线速度。
5.矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势E=nBsωsinωt。
①条件:从中性面开始计时。
②S与B垂直也就是线圈处于中性面时,Ф=BS最大,感应电动势E=0;S与B平行时,Ф=0,感应电动势最大。
③线圈从垂直中性面的位置开始计时,感应电动势E=nBsωcosωt。
④公式的推导如下,注意如何将立体图转化为平面图:三、典型例题【例1】关于感应电动势,下列说法正确的是()A.穿过回路的磁通量越大,回路中的感应电动势就越大B.穿过回路的磁通量变化量越大,回路中的感应电动势就越大C.穿过回路的磁通量变化率越大,回路中的感应电动势就越大D.单位时间内穿过回路的磁通量变化量越大,回路中的感应电动势就越大【例2】一个面积S=4×10-2m2,匝数N=100的线圈,放在匀强磁场中,磁场方向垂直线圈平面,磁场的磁感应强度B随时间变化规律为△B/△t=2T/s,则穿过线圈的磁通量变化率为Wb/s,线圈中产生的感应电动势E=V。
高中物理法拉第电磁感应定律压轴题知识点及练习题及答案
高中物理法拉第电磁感应定律压轴题知识点及练习题及答案一、高中物理解题方法:法拉第电磁感应定律1.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)00.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J 【解析】【详解】解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ=== 感应电流为:0.25A E I R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL =由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=-联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯= 设3s 后到撤去外力F 时又运动了1s ,则有: 11BLs q q I t R RΦ-=== 解得:16m s = 此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得:可得:21210.195J 2Q mv mgs μ=-=2.如图为电磁驱动与阻尼模型,在水平面上有两根足够长的平行轨道PQ 和MN ,左端接有阻值为R 的定值电阻,其间有垂直轨道平面的磁感应强度为B 的匀强磁场,两轨道间距及磁场宽度均为L .质量为m 的金属棒ab 静置于导轨上,当磁场沿轨道向右运动的速度为v 时,棒ab 恰好滑动.棒运动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.(1)判断棒ab 刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力f 大小; (2)若磁场不动,将棒ab 以水平初速度2v 运动,经过时间22mR t B L =停止运动,求棒ab 运动位移x 及回路中产生的焦耳热Q ;(3)若t =0时棒ab 静止,而磁场从静止开始以加速度a 做匀加速运动,下列关于棒ab 运动的速度时间图像哪个可能是正确的?请分析说明棒各阶段的运动情况.【答案】(1)22B L v f R=;(2)22 mvR x B L = 2Q mv =;(3)丙图正确 【解析】【详解】(1)根据右手定则,感应电流方向a 至b依题意得,棒刚要运动时,受摩擦力等于安培力:f=F A又有F A =BI 1L ,1BLv I R = 联立解得:22B L v f R= (2)设棒的平均速度为v ,根据动量定理可得:02Ft ft mv --=-又有F BIL =,BLv I R =,x vt = 联立得:22mvR x B L= 根据动能定理有:()21022A fx W m v --=-根据功能关系有:Q =W A得:Q =mv 2(3)丙图正确当磁场速度小于v 时,棒ab 静止不动;当磁场速度大于v 时,E=BLΔv ,棒ab 的加速度从零开始增加,a 棒<a 时,Δv 逐渐增大,电流逐渐增大,F A 逐渐增大,棒做加速度逐渐增大的加速运动; 当a 棒=a 时,Δv 保持不变,电流不变,F A 不变,棒ab 的加速度保持不变,开始做匀加速运动.3.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。
高中物理 法拉第电磁感应定律 (提纲、例题、练习、解析)
法拉第电磁感应定律【学习目标】1.通过实验过程理解法拉第电磁感应定律,理解磁通量的变化率tϕ∆∆,并能熟练地计算;能够熟练地计算平均感应电动势(E ntϕ∆=∆)和瞬时感应电动势(sin E BLv α=),切割情形)。
2.了解感生电动势和动生电动势产生机理。
3.熟练地解决一些电磁感应的实际问题。
4.理解并运用科学探究的方法。
【要点梳理】要点一、感应电动势在电磁感应现象中产生的电动势叫做感应电动势,产生感应电动势的那部分导体相当于电源。
要点诠释:(1)感应电动势的存在与电路是否闭合无关。
(2)感应电动势是形成感应电流的必要条件。
有感应电动势(电源),不一定有感应电流(要看电路是否闭合),有感应电流一定存在感应电动势。
要点二、法拉第电磁感应定律1.定律内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
2.公式:ФE nt ∆=∆。
式中n 为线圈匝数,Фt∆∆是磁通量的变化率,注意它和磁通量西以及磁通量的变化量21ФФФ∆=-的区别。
式中电动势的单位是伏(V )、磁通量的单位是韦伯(Wb ),时间的单位是秒(s )。
要点诠释:(1)感应电动势E 的大小决定于穿过电路的磁通量的变化率Фt∆∆,而与Ф的大小、Ф∆的大小没有必然的联系,和电路的电阻R 无关;感应电流的大小和E 及回路总电阻R 有关。
(2)磁通量的变化率Фt∆∆是Фt -图象上某点切线的斜率。
(3)公式ФE k t∆=⋅∆中,k 为比例常数,当E 、Ф∆、t ∆均取国际单位时,1k =,所以有ФE t∆=∆。
若线圈有n 匝,则相当于n 个相同的电动势Фt∆∆串联,所以整个线圈中电动势为ФE nt∆=∆。
(4)磁通量发生变化有三种方式:一是Ф∆仅由B 的变化引起,21||B B B ∆=-,B E nSt ∆=∆;二是Ф∆仅由S 的变化引起,21||S S S ∆=-,SE nB t∆=∆;三是磁感应强度B 和线圈面积S 均不变,而线圈绕过线圈平面内的某一轴转动,此时21||ФФE n t -=∆。
法拉第电磁感应定律(含答案解析)
8 电动势的论述,正确的是( )
老师 8182 3.1-9 9 A.图甲中回路产生的感应电动势恒定不变 亮 4 B.图乙中回路产生的感应电动势一直在变大 8 C.图丙中回路在 0〜t0 时间内产生的感应电动势大于 t0〜2t0 时间内产生的感应电动势 许 2 D.图丁回路产生的感应电动势先变小再变大
3.1-8
A.恒为nS(B2-B1)
B.从
0
nS(B2-B1) 均匀变化到
t2-t1
t2-t1
7.
C.恒为-nS(B2-B1) t2-t1
D.从
0
nS(B2-B1) 均匀变化到-
t2-t1
8 (多选)穿过闭合回路的磁通量 Φ 随时间 t 变化的图象分别如图 3.1-9 甲、乙、丙、丁所示,下列关于回路中产生的感应
y t 【注意】
B a 产生感应电动势的那部分导体相当于电源,感应电动势即该电源的电动势。
h 3.1.1.2.3
ΔΦ
c 3.1-1
Φ
ΔΦ
Δt
3.1-1
/We 磁通量 Φ
Wb
表示某时刻或某位置时穿过某一面积
的磁感线条数的多少
Q 磁通量的变化量 QΔΦ
Wb
表示在某一过程中穿过某一面积磁通 量变化的多少
Φ=B·S⊥ ΔΦ=Φ2-Φ1
W (1) S 闭合后,通过 R2 的电流大小;
QQ/ (2) S 闭合后一段时间又断开,则 S 切断后通过 R2 的电量是多少?
3.1-7
第3⻚
3
3.1.3.2
6. 如图 3.1-8 为无线充电技术中使用的受电线圈示意图,线圈匝数为 n,面积为 S。若在 t1 到 t2 时间内,匀强磁场平行于 线圈轴线向右穿过线圈,其磁感应强度大小由 B1 均匀增加到 B2,则该段时间线圈两端 a 和 b 之间的电势差 φa-φb( )
法拉第电磁感应定律习题知识点及练习题含答案解析
法拉第电磁感应定律习题知识点及练习题含答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.(1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少?(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少?【答案】(1)1.2 V(2)3.2 J(3)0.9 J【解析】【详解】(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:10.44V=1.6 VE BLv==⨯⨯因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:U eb=34E=1.2 V.(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:F安=BLI根据闭合电路欧姆定律有:I=E R联立解得解得F安=4 N所以克服安培力做功:=2=420.4J=3.2J W F L ⨯⨯⨯安安而Q =W 安,故该过程中产生的焦耳热Q =3.2 J(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:22122v v a L -=而根据牛顿运动定律可知:()M m g a M m-=+ 联立整理得: 12(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:W F -W'安+(M-m )g ·2L =12(M+m )( 21v -v 2) 联立解得:W F -W'安=0而W'安= Q',故Q'=3.6 J又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:Q eb =14Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V.(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J.(3) eb 边上产生的焦耳Q eb =0.9J.2.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取210/(m s 忽略ab 棒运动过程中对原磁场的影响).()1判断金属棒两端a 、b 的电势哪端高;()2求磁感应强度B 的大小;()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.【答案】(1) b 端电势较高(2)0.1B T = (3) 0.26J 【解析】【详解】()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。
法拉第电磁感应定律习题知识点及练习题及答案解析
法拉第电磁感应定律习题知识点及练习题及答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。
(1)求金属棒达到稳定时的速度是多大;(2)金属棒从静止开始到稳定速度的过程中,电阻R 上产生的热量是多少?(3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t =1s 时磁感应强度应为多大? 【答案】(1)8m/s 5 (2)0.0183J(3) 5T 46【解析】 【详解】(1) 在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有sin A mg F θ=其中,A EF BIL I R r==+ 根据法拉第电磁感应定律,有E BLv = 联立解得:m 1.6sv =(2) 根据能量关系有21·sin 2mgs mv Q θ=+ 电阻R 上产生的热量R RQ Q R r=+ 解得:0.0183J R Q =(3) 当回路中的总磁通量不变时,金属棒中不产生感应电流,此时金属棒将沿导轨做匀加速运动,根据牛顿第二定律,有:sin mg ma θ=根据位移时间关系公式,有212x vt at =+设t 时刻磁感应强度为B ,总磁通量不变,有:()BLs B L s x '=+当t =1s 时,代入数据解得,此时磁感应强度:5T 46B '=3.如图1所示,MN 和PQ 为竖直放置的两根足够长的光滑平行金属导轨,两导轨间距为l ,电阻均可忽略不计.在M 和P 之间接有阻值为R 的定值电阻,导体杆ab 质量为m 、电阻不计,并与导轨接触良好.整个装置处于磁感应强度为B 、方向垂直纸面向里的匀强磁场中.将导体杆ab 由静止释放.求:(1)a. 试定性说明ab 杆的运动;b. ab 杆下落稳定后,电阻R 上的热功率.(2)若将M 和P 之间的电阻R 改为接一电动势为E ,内阻为r 的直流电源,发现杆ab 由静止向上运动(始终未到达MP 处),如图2所示.a. 试定性说明ab 杆的运动:b. 杆稳定运动后,电源的输出功率.(3)若将M 和P 之间的电阻R 改为接一电容为C 的电容器,如图3所示.ab 杆由静止释放.请推导证明杆做匀加速直线运动,并求出杆的加速度.【答案】(1)加速度逐渐减小的变加速直线运动;P=2222m g RB l (2)加速度逐渐减小的加速;P=mgE Bl -2222m g r B l(3)a=22mgm B l C + 【解析】(1)a 、对ab 杆下滑过程,由牛顿第二定律22B l vmg ma R-=,可知随着速度的增大,加速度逐渐减小,当22B l vmg R=时,加速度为零,杆做匀速直线运动;故杆先做加速度逐渐减小的加速,再做匀速直线运动.b 、ab 杆稳定下滑时,做匀速直线运动:22B l vmg R=,可得22mgR v B l =故22222222B l v mgR m g RP v mg R B l B l=⋅=⋅=(2)a 、对ab 杆上滑过程,由牛顿第二定律:BIL mg ma -=,上滑的速度增大,感应电流与电源提供的电流方向相反,总电流逐渐减小,故加速度逐渐减小;同样加速度为零时杆向上匀速直线运动.B 、杆向上匀速时,BIl mg = mg I Bl=电源的输出功率2P EI I r =- 解得:2()Emg mg P r Bl Bl=- (3)设杆下滑经t ∆时间,由牛顿第二定律:mg BIl ma -=, 电容器的充电电流QI t∆=∆ 电容器增加的电量为:Q C U CBL v ∆=∆=∆ 而va t∆=∆ 联立解得:mg B CBla l ma -⋅⋅=可知杆下滑过程给电容器充电的过程加速度恒定不变,故为匀加速直线运动. 解得:22mga m B l C=+【点睛】对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键.4.如图所示,一无限长的光滑金属平行导轨置于匀强磁场B 中,磁场方向垂直导轨平面,导轨平面竖直且与地面绝缘,导轨上M 、N 间接一电阻R ,P 、Q 端接一对沿水平方向的平行金属板,导体棒ab 置于导轨上,其电阻为3R ,导轨电阻不计,棒长为L ,平行金属板间距为d .今导体棒通过定滑轮在一物块拉动下开始运动,稳定后棒的速度为v ,不计一切摩擦阻力.此时有一带电量为q 的液滴恰能在两板间做半径为r 的匀速圆周运动,且速率也为v .求: (1)速度v 的大小; (2)物块的质量m .【答案】(1)2gdrL,(222B l dLrR g【解析】 【详解】(1)设平行金属板间电压为U .液滴在平行金属板间做匀速圆周运动,重力与电场力必定平衡,则有:Uqmg d= 由2v qvB m r=得mv r qB=联立解得gdrBU v=则棒产生的感应电动势为: ·(3)4U gdrB B R R R v=+= 由E BLv =棒, 得 4gdrv vL=棒 (2)棒中电流为:U gdrB I R vR== ab 棒匀速运动,外力与安培力平衡,则有 2gdrLB F BIL vR ==而外力等于物块的重力,即为 2gdrLB mg vR=解得2drLB m vR=5.如图所示,一个单匝矩形线圈水平放在桌面上,在线圈中心上方有一竖直的条形磁体,此时线圈内的磁通量为0.05Wb.在0.5s 的时间内,将该条形磁体从图示位置竖放到线圈内的桌面上,此时线圈内的磁通量为0.10Wb ,试求此过程: (1)线圈内磁通量的变化量;(2)线圈中产生的感应电动势大小。
高考物理法拉第电磁感应定律习题知识点及练习题及答案解析
高考物理法拉第电磁感应定律习题知识点及练习题及答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向; (2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q. 【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C 【解析】 【分析】 【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V BE L L t t∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件: F +mg sin30° -F 安=0 F =-0.5N外力F 大小为0.5N .方向沿斜面向上 (3)q =It ,EI R r =+;E t∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512C 1.5C 1.50.5BL S q R r ⨯⨯===++2.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m 的金属棒ab 垂直于MN 、PQ 放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
法拉第电磁感应定律及应用(一)
电磁感应定律的应用(一) 知识点1、感生电动势例题1、一匀强磁场,磁场方向垂直纸面,规定向里的方向为正。
在磁场中有一细金属圆环,线圈平面位于纸面内,如图甲所示。
现令磁感应强度B 随时间t 变化,先按图乙中所示的Oa 图象变化,后来又按图象bc 和cd 变化,令E 1、E 2、E 3分别表示这三段变化过程中感应电动势的大小,I 1,I 2,I 3分别表示对应的感应电流,则( BD )A .E 1>E 2,I 1沿逆时针方向,I 2沿顺时针方向B .E 1<E 2,I 1沿逆时针方向,I 2沿顺时针方向C .E 1<E 2,I 2沿顺时针方向,I 3沿逆时针方向D .E 2=E 3,I 2沿顺时针方向,I 3沿顺时针方向 例题2.如图,线圈内有理想边界的匀强磁场,当磁感应强度均匀增加时,有一带电微粒静止于水平放置的平行板电容器中间,若线圈的匝数为n ,粒子的质量为m ,带电量为q ,线圈面积为s ,平行板电容器两板间的距离为d ,求磁感应强度的变化率。
例题3、如图18(a )所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。
线圈的半径为r 1。
在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图18(b )所示。
图线与横、纵轴的截距分别为t 0和B 0。
导线的电阻不计。
求0至t 1时间内(1)通过电阻R 1上的电流大小和方向;(2)通过电阻R 1上的电量q 及电阻R 1上产生的热量。
(1)20203n B r Rt π,电流由b 向a 通过1R (2)2224021229n B r t Rt π 练习、如图所示,U 形导线框固定在水平面上,右端放有质量为m 的金属棒ab ,ab 与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L 1、L 2,回路的总电阻为R 。
从t =0时刻起,在竖直向上方向加一个随时间均匀变化的匀强磁场B =kt ,(k >0)那么在t 为多大时,金属棒开始移动2212211,L L k mgRt mg R L kL L kt μμ==⋅⋅ 知识点2、动生电动势例题.如图所示,空间存在两个磁场,磁感应强度大小均为B ,方向相反B甲乙顺时针Oabcd12345678910t× × ×× × × × × × ×baBL 1L 2且垂直纸面,MN 、PQ 为其边界,OO ′为其对称轴。
法拉第电磁感应定律习题知识归纳总结附答案
法拉第电磁感应定律习题知识归纳总结附答案一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。
PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。
一根电阻为r 、质量为m 的导体棒置于导轨上,0〜t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。
求:(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00mB SBLt【解析】 【详解】(1)由法拉第电磁感应定律得 :010B SBS E t t t ∆Φ∆===∆∆ 所以此时回路中的电流为:()100B S E I R r R r t ==++ 根据右手螺旋定则知电流方向为a 到b.因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:()00==BB SLF F BIL R t r =+安由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:2E BLv =由题意知:12E E =所以联立解得:00B Sv BLt =所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:000mB SI mv BLt =-=答:(1)0~t 0时间内导体棒ab 所受水平外力为()00=BB SLt F R r +,方向水平向左.(2)t 0时刻给导体棒的瞬时冲量的大小00mB SBLt2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。
法拉第电磁感应定律及应用(二)
电磁感应定律的应用(二)知识点1、动生电动势中的安培力例题1.如图所示,一质量m =0.1kg 的金属棒ab 可沿接有电阻R =1Ω的足够长的竖直导体框架无摩擦地滑动,框架间距L =50cm ,匀强磁场的磁感应强度B =0.4T ,方向如图示,其余电阻均不计。
若棒ab 由静止开始沿框架下落 ,且与框保持良好接触,那么在下落的前一阶段,棒ab 将做 运动,当棒ab 运动达到稳定状态时的速度v = 。
(g =10m/s 2)例题2. 如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距L =1m ,导轨平面与水平面成θ=37º角,下端连接着阻值为R 的电阻。
匀强磁场方向与导轨平面垂直,质量m =0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数μ=0.25,g 取10m/s 2 (1)求金属棒沿导轨由静止开始下滑时的加速度大小; (2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8W ,求该速度的大小;(3)在上问中,若R =2Ω,金属棒中的电流由a 到b ,求磁感应强度的大小和方向。
(a =4m/s 2 ,v =10m/s ,B =0.4T ,方向垂直导轨平面向下)例题3.如图,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平。
在竖直面内有一矩形金属统一加线圈,线圈上下边的距离很短,下边水平。
线圈从水平面a 开始下落。
已知磁场上下边界之间的距离大于水平面a 、b 之间的距离。
若线圈下边刚通过水平面b 、c (位于磁场中)和d 时,线圈所受到的磁场力的大小分别为b F 、c F 和d F ,则( D )A.d F >c F >b FB.c F <d F <b FC.c F >b F >d FD.c F <b F <d F练习1、均匀导线制成的单位正方形闭合线框abcd ,每边长为L ,总电阻为R ,总质量为m 。
法拉第电磁感应定律习题知识归纳总结
法拉第电磁感应定律习题知识归纳总结一、高中物理解题方法:法拉第电磁感应定律1.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m3.如图甲所示,光滑导体轨道PMN 和P ′M ′N ′是两个完全一样的轨道,是由半径为r 的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M 和M ′点相切,两轨道并列平行放置,MN 和M ′N ′位于同一水平面上,两轨道之间的距离为L ,PP ′之间有一个阻值为R 的电阻,开关K 是一个感应开关(开始时开关是断开的),MNN ′M ′是一个矩形区域内有竖直向上的磁感应强度为B 的匀强磁场,水平轨道MN 离水平地面的高度为h ,其截面图如图乙所示.金属棒a 和b 质量均为m 、电阻均为R ,在水平轨道某位置放上金属棒b ,静止不动,a 棒从圆弧顶端PP ′处静止释放后,沿圆弧轨道下滑,若两导体棒在运动中始终不接触,当两棒的速度稳定时,两棒距离2222mR grx B L=,两棒速度稳定之后,再经过一段时间,b 棒离开轨道做平抛运动,在b 棒离开轨道瞬间,开关K 闭合.不计一切摩擦和导轨电阻,已知重力加速度为g .求:(1)两棒速度稳定时的速度是多少? (2)两棒落到地面后的距离是多少?(3)从a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热是多少? 【答案】(1)12gr v =rhx ∆=12Q mgr =【解析】 【分析】 【详解】(1)a 棒沿圆弧轨道运动到最低点M 时,由机械能守恒定律得:2012mgr mv =解得a 棒沿圆弧轨道最低点M 时的速度02v gr =从a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:012mv mv =解得两棒以相同的速度做匀速运动的速度0122gr v v ==(2)经过一段时间,b 棒离开轨道后,a 棒与电阻R 组成回路,从b 棒离开轨道到a 棒离开轨道过程中a 棒受到安培力的冲量大小:2222A B L xI ILBt BL Rit R∆Φ===由动量定理:21A I mv mv --=解得224grv =由平抛运动规律得,两棒落到地面后的距离()1222h rh x v v g ∆=-= (3)由能量守恒定律可知,a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热:220111(2)22Q mv m v =- 解得:12Q mgr =4.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m 的金属棒ab 垂直于MN 、PQ 放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
法拉第电磁感应定律知识点与例题
,且导线与磁感线互相垂直-■匀速转动,转动的区域 正比,所以AC 切割的速度可用其平均切割速1第3讲法拉第电磁感应定律及其应用一、 感应电流的产生条件1、 回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化, 因此研究磁通量的变化是关键, 由磁通量的广义公式中=B • Ssi nv (二是B 与S 的夹角)看,磁通量的变化•可由面积的变化 S 引起;可由磁感应强度 B 的变化:B 引起;可由B 与S 的夹角二的变化 T 引起;也可由B 、S 、二中的两个量的变化,或三 个量的同时变化引起。
2、 闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过 的,其本质也是闭合回路中磁通量发生变化。
3、 产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。
二、 法拉第电磁感应定律 公式一: E 二 n L ■-/ X注意:1)该式普遍适用于求平均感应电动势。
2)E 只与穿过电路的磁通量的变化率 .:r :t 有关,而与磁通的产生、磁通的大小及变化方式、 电路是否闭合、电路的结构与材料等因素无关。
公式E =n 中涉及到磁通量的变化量 的计算,对的计算,一般遇到有两种情况:A t1) 回路与磁场垂直的面积 S 不变,磁感应强度发生变化,由― 1BS,此时E = n=B S ,此式中的二B 叫------------------------------------------------------------------------------ A tA tA B 磁感应强度的变化率,若二B 是恒定的,即磁场变化是均匀的,那么产生的感应电动势是恒定电动势。
2)磁感应强度 B 不变,回路与磁场垂直的面积发生变化 ,则.■: ' =B •AS ,线圈绕垂直于匀强磁场的轴匀速 转动产生交变电动势就属这种情况。
严格区别磁通量'',磁通量的变化量 -B 磁通量的变化率,磁通量= B • S ,表示穿过研究平面的磁感 A t线的条数,磁通量的变化量.-■: ■- = 2 - '1,表示磁通量变化的多少,磁通量的变化率表示磁通量变化的快慢, t公式二:E = BIvsin v 要注意:1)该式通常用于导体切割磁感线时2)日为v 与B 的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是机械能向电能转化的过程;合外力(重力和安培力)做功的过程是动 能增加的过程;电流做功的过程是电能向内能转化的过程。达到稳定速 度后,重力势能的减小全部转化为电能,电流做功又使电能全部转化为 内能。这时重力的功率等于电功率也等于热功率。
进一步讨论:如果在该图上端电阻的右边串联接一只电键,让 ab下落一段距离后再闭合电键,那么闭合电键后ab的运动情况又将如 何?(无论何时闭合电键,ab可能先加速后匀速,也可能先减速后匀 速,还可能闭合电键后就开始匀速运动,但最终稳定后的速度总是一样 的)。 b a
③(4分) 由①②③式得
(1分)
例9.(20分)如图所示,位于竖直平面内的1/4光滑圆弧轨道,半径为 R,O点为切点,离水平地面高R,
右侧为匀强电场和匀强磁场叠加,大小分别为E、B,方向如图所 示。质量为m、带电 q的小球a从A静止释放,并与在B点质量也为m不 带电小球b正碰,碰撞时间极短,且a球电量不变,碰后a沿水平方向做 直线运动,b落到水平地面C点。求:C点与O点的水平距离S。
解:给ab冲量后,ab获得速度向右运动,回路中产生感应电流,cd 受安培力作用而加速,ab受安培力而减速;当两者速度相等时,都开始 做匀速运动。所以开始时cd的加速度最大,最终cd的速度最大。全过程 系统动能的损失都转化为电能,电能又转化为内能。由于ab、cd横截面 积之比为2∶1,所以电阻之比为1∶2,根据Q=I 2Rt∝R,所以cd上产生 的电热应该是回路中产生的全部电热的2/3。又根据已知得ab的初速度 为v1=I/m,因此有: ,解得。最后的共同速度为vm=2I/3m,系统动能 损失为ΔEK=I 2/ 6m,其中cd上产生电热Q=I 2/ 9m
B
L1 L2
例3:如图所示,U形导线框固定在水平面上,右端放有质量为m的 金属棒ab,ab与导轨间的动摩擦因数为μ,它们围成的矩形边长分别 为L1、L2,回路的总电阻为R。从t=0时刻起,在竖直向上方向加一个随 时间均匀变化的匀强磁场B=kt,(k>0)那么在t为多大时,金属棒开始 移动?
解:由= kL1L2可知,回路中感应电动势是恒定的,电流大小也是 恒定的,但由于安培力F=BIL∝B=kt∝t,所以安培力将随时间而增大。 当安培力增大到等于最大静摩擦力时,ab将开始向左移动。这时有:
⑤ S= t ⑥(4分)由④⑤⑥ 得 S=(
)
(2分) 例10.(19分)如图所示,足够长的绝缘光滑斜面AC与水平面间的夹角是 α(sinα=0.6),放在图示的匀强磁场和匀强电场中,电场强度为 E=4.0v/m,方向水平向右,磁感应强度B=4.0T,方向垂直于纸面向里,电 量q=5.0×10-2C,质量m=0.40Kg的带负电小球,从斜面顶端A由静止开 始下滑,求小球能够沿斜面下滑的最大距离。(取g=10m/s2)
B
ad bc
h d l 1 2 3 4 v0 v0 v
例7:如图所示,水平的平行虚线间距为d=50cm,其间有B=1.0T的 匀强磁场。一个正方形线圈边长为l=10cm,线圈质量m=100g,电阻 为R=0.020Ω。开始时,线圈的下边缘到磁场上边缘的距离为h=80cm。 将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时的速度相等。 取g=10m/s2,求:⑴线圈进入磁场过程中产生的电热Q。⑵线圈下边缘 穿越磁场过程中的最小速度v。⑶线圈下边缘穿越磁场过程中加速度的 最小值a。
——当长为L的导线,以其一端为轴,在垂直匀强磁场B的平面内, 以角速度匀速转动时,其两端感应电动势为。
公式三:——面积为S的纸圈,共匝,在匀强磁场B中,以角速度匀 速转坳,其转轴与磁场方向垂直,则当线圈平面与磁场方向平行时,线 圈两端有最大有感应电动势。
如图所示,设线框长为L,宽为d,以转到图示位置时,边垂直磁场 方向向纸外运动,切割磁感线,速度为(圆运动半径为宽边d的一半) 产生感应电动势 ,端电势高于端电势。
公式一般用于导体各部分切割磁感线的速度相同, 对有些导体各部 分切割磁感线的速度不相同的情况, 如何求感应电动势?
如图1所示, 一长为l的导体杆AC绕A点在纸面内以角速度匀速转动, 转 动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B, 求AC产生的 感应电动势, 显然, AC各部分切割磁感线的速度不相等, , 且AC上各点 的线速度大小与半径成正比, 所以AC切割的速度可用其平均切割速, 故。
边垂直磁场方向切割磁感线向纸里运动,同理产生感应电动热势。 端电势高于端电势。
边,边不切割,不产生感应电动势,.两端等电势,则输出端M.N 电动势为。
如果线圈匝,则,M端电势高,N端电势低。 参照俯示图,这位置由于线圈长边是垂直切割磁感线,所以有感应 电动势最大值,如从图示位置转过一个角度,则圆运动线速度,在垂直 磁场方向的分量应为,则此时线圈的产生感应电动势的瞬时值即作最大 值.即作最大值方向的投影,(是线圈平面与磁场方向的夹角)。 当线圈平面垂直磁场方向时,线速度方向与磁场方向平行,不切割 磁感线,感应电动势为零。 ●总结:计算感应电动势公式:
解:设a下落到O点时速度为 ,与b碰撞后速度为
,b速度为
。 a从到O机械能守恒,有
①(4分) a、b碰撞时动量守恒,有m
=m
+m
②(4分) a进入电磁叠加场后做直线运动,受力平衡,则有 qE Bq
=mg ③(4分) 由得 ①②③得
=
④(2分) 碰撞后b做平抛运动,设从O到C时间为t 则 R=
公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两 种情况:பைடு நூலகம்
1)回路与磁场垂直的面积S不变, 磁感应强度发生变化, 由, 此时, 此式中的叫磁感应强度的变化率, 若是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。
2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则, 线 圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。
解:(1)开始一段时间,力F大于安培力,所以金属杆做加速度减小的 变加速运动,随速度的增大安培力也增大,当安培力大小等于F时,金 属杆将做匀速直线运动,由二力平衡得,
F=
=BIL (4分) 得 I=
①(1分) 方向由b到R到a (2分) (2)金属杆切割磁感线,产生感应电动势E=BL
②(4分) 由闭合电路欧姆定律得:
为B的匀强磁场边缘,线圈与磁感线垂直。求:将线圈以向右的速度v匀 速拉出磁场的过程中,⑴拉力的大小F; ⑵拉力的功率P; ⑶拉力做的 功W; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。
解:这是一道基本练习题,要注意计算中所用的边长是L1还是L2 , 还应该思考一下这些物理量与速度v之间有什么关系。
第3讲 法拉第电磁感应定律及其应用
一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的
磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中 (是B与S的夹角)看,磁通量的变化可由面积的变化引起;可由磁感应 强度B的变化引起;可由B与S的夹角的变化引起;也可由B、S、中的两 个量的变化,或三个量的同时变化引起。
解:⑴由于线圈完全处于磁场中时不产生电热,所以线圈进入磁场 过程中产生的电热Q就是线圈从图中2位置到4位置产生的电热,而2、4 位置动能相同,由能量守恒Q=mgd=0.50J
⑵3位置时线圈速度一定最小,而3到4线圈是自由落体运动因此有 v02-v2=2g(d-l),得v=2m/s ⑶2到3是减速过程,因此安培力 减小,由F-mg=ma 知加速度减小,到3位置时加速度最小,a=4.1m/s2
解:(19分)小球沿斜面下滑时受重力mg、电场力Eq、洛伦兹力f和斜 面支持力N,(2分)
如图所示。小球沿斜面向下做匀加速直线运动,随速度的增加,洛伦 兹力增大,直到支持力N等于零时,为小球沿斜面下滑的临界情况,有 (3分)
解得v=10m/s (2分) 小球由静止开始下滑的距离为S,根据动能定律得
解:开始的四分之一周期内,oa、ob中的感应电动势方向相同,大
小应相加;第二个四分之一周期内穿过线圈的磁通量不变,因此感应电 动势为零;第三个四分之一周期内感应电动势与第一个四分之一周期内 大小相同而方向相反;第四个四分之一周期内感应电动势又为零。感应 电动势的最大值为Em=BR2ω,周期为T=2π/ω,图象如右。
T 2T
E
t
o
Em
a
b
d
c
例5:如图所示,矩形线圈abcd质量为m,宽为d,在竖直平面内由
静止自由下落。其下方有如图方向的匀强磁场,磁场上、下边界水平,
宽度也为d,线圈ab边刚进入磁场就开始做匀速运动,那么在线圈穿越
磁场的全过程,产生了多少电热?
解:ab刚进入磁场就做匀速运动,说明安培力与重力刚好平衡,在
y o x ω
B
a b
例4:如图所示,xoy坐标系y轴左侧和右侧分别有垂直于纸面向 外、向里的匀强磁场,磁感应强度均为B,一个围成四分之一圆形的导 体环oab,其圆心在原点o,半径为R,开始时在第一象限。从t=0起绕o 点以角速度ω逆时针匀速转动。试画出环内感应电动势E随时间t而变的 函数图象(以顺时针电动势为正)。
例8.(16分)如图所示,两条足够长的互相平行的光滑金属导轨(电阻 可忽略)位于水平面内,距离为L,在导轨的ab端接有电阻R和电流 表,一质量为m、电阻为r、长为L的金属杆垂直放置在导轨上,杆右侧 是竖直向上的匀强磁场,磁感应强度为B。现用一水平并垂直于杆的力 F拉杆,求当电流表示数稳定是多少、方向如何和此时杆的速度.
解:释放瞬间ab只受重力,开始向下加速运动。随着速度的增大, 感应电动势E、感应电流I、安培力F都随之增大,加速度随之减小。当F 增大到F=mg时,加速度变为零,这时ab达到最大速度。
由,可得 这道题也是一个典型的习题。要注意该过程中的功能关系:重 力做功的过程是重力势能向动能和电能转化的过程;安培力做功的过程