伺服驱动系统的原理与种类
伺服电机的分类
伺服电机是自动控制系统和计算装置中广泛应用的一种执行元件,很多第一次接触到这个产品的朋友肯定一头雾水,不知道它到底是什么。
下面小编就给大家详细介绍一下到底伺服电机是什么东西以及它的分类。
伺服电动机(或称执行电动机)是自动控制系统和计算装置中广泛应用的一种执行元件。
其作用为把接受的电信号转换为电动机转轴的角位移或角速度。
按电流种类的不同,伺服电动机可分为直流和交流两大类。
一、交流伺服电动机结构和原理交流伺服电动机的定子绕组和单相异步电动机相似,它的定子上装有两个在空间相差90°电角度的绕组,即励磁绕组和控制绕组。
运行时励磁绕组始终加上一定的交流励磁电压,控制绕组上则加大小或相位随信号变化的控制电压。
转子的结构形式笼型转子和空心杯型转子两种。
笼型转子的结构与一般笼型异步电动机的转子相同,但转子做的细长,转子导体用高电阻率的材料作成。
其目的是为了减小转子的转动惯量,增加启动转矩对输入信号的快速反应和克服自转现象。
空心杯形转子交流伺服电动机的定子分为外定子和内定子两部分。
外定子的结构与笼型交流伺服电动机的定子相同,铁心槽内放有两相绕组。
空心杯形转子由导电的非磁性材料(如铝)做成薄壁筒形,放在内、外定子之间。
杯子底部固定于转轴上,杯臂薄而轻,厚度一般在0.2—0.8mm,因而转动惯量小,动作快且灵敏。
交流伺服电动机的工作原理和单相异步电动机相似,LL是有固定电压励磁的励磁绕组,LK是有伺服放大器供电的控制绕组,两相绕组在空间相差90°电角度。
如果IL与Ik 的相位差为90°,而两相绕组的磁动势幅值又相等,这种状态称为对称状态。
与单相异步电动机一样,这时在气隙中产生的合成磁场为一旋转磁场,其转速称为同步转速。
旋转磁场与转子导体相对切割,在转子中产生感应电流。
转子电流与旋转磁场相互作用产生转矩,使转子旋转。
如果改变加在控制绕组上的电流的大小或相位差,就破坏了对称状态,使旋转磁场减弱,电动机的转速下降。
伺服机构工作原理
伺服机构工作原理
伺服机构是一种常见的控制系统,用于产生精确的运动。
它通常由电机、传感器、控制器和机械装置组成。
伺服机构的工作原理如下:
1. 传感器:伺服机构中的传感器被用来检测或测量系统输出的一些重要物理量,例如位置、速度或力量。
传感器可以是光电传感器、编码器、位移传感器等。
2. 控制器:伺服机构的控制器会接收传感器的反馈信息,并与用户输入的期望值进行比较。
通过比较反馈信号和期望值,控制器会生成一个误差信号。
3. 电机:误差信号将通过控制器发送到驱动电机。
电机可以根据误差信号来调整输出的力矩、角度或速度。
4. 机械装置:电机的输出将传递到机械装置,这是伺服机构的工作把手。
机械装置可以是一个转动轴、一个滑块或其他执行器,根据需求进行相应的运动。
5. 反馈回路:伺服机构中关键的一点是反馈回路。
电机的运动将会影响位置或速度传感器的读数,并将信息反馈给控制器。
控制器将根据传感器反馈的信息来调整输出,以实现对期望值的精确控制。
通过不断地测量、计算和调整,伺服机构能够实现准确的位置
或速度控制。
这使得伺服机构在各种应用中广泛使用,包括工业自动化、机器人、CNC机床、印刷设备等。
伺服的工作原理
伺服的工作原理
伺服的工作原理是通过传感器检测并测量系统的状态,然后将这些测量值与预设的目标值进行比较。
如果测量值与目标值存在偏差,控制器会发出控制信号,使电机根据反馈信号做出相应的调整,使系统恢复到目标值附近。
伺服系统通常由三个基本组件组成:控制器、执行器和反馈装置。
控制器是系统的核心,负责接收来自传感器的反馈信息,并将其与目标值进行比较,然后计算出控制信号。
执行器是控制信号的接收者,通常是电机或液压装置,它们将接收到的控制信号转化为机械运动。
反馈装置用于监测执行器的运动状态,并将其转化为反馈信号,反馈给控制器进行实时调整。
在伺服系统中,控制器的设计是至关重要的。
控制器通常采用比例积分微分(PID)控制器,通过对误差的比例、积分和微
分进行加权,来计算控制信号。
其工作原理是根据当前的误差状态和误差变化率来调整控制信号,使系统能够稳定地接近目标值。
伺服系统的关键在于反馈机制,它实现了系统的闭环控制。
反馈装置通过监测执行器的运动状态,将实际测量值反馈给控制器。
控制器根据反馈信号进行实时调整,以便使系统尽可能地接近目标值。
通过持续的反馈和调整,伺服系统能够响应外部干扰,并保持系统在变化之间稳定运行。
总而言之,伺服的工作原理是通过传感器检测系统的状态,并与预设的目标值进行比较,然后通过控制器计算控制信号,使
执行器根据反馈信号进行调整,以使系统接近目标值。
通过持续的反馈和调整,伺服系统能够实现闭环控制,稳定地运行并应对外部干扰。
伺服电机工作原理简介
伺服电机工作原理简介伺服电机是一种专用电动机,通常被用于需要高精度控制的机械系统中。
伺服电机的工作原理基于反馈控制系统,以确保电机能够迅速而准确地响应系统的指令。
在本文中,我们将介绍伺服电机的工作原理及其关键组成部分。
伺服电机的工作原理伺服电机的工作原理可以简单概括为输入控制信号,电机根据反馈信号调整输出,以达到精确的位置或速度控制。
具体来说,伺服电机主要由以下几个部分组成:控制系统控制系统是伺服电机的核心,负责接收指令信号并将其转换为适当的控制信号。
控制系统通常由微处理器和控制电路组成,利用反馈机制不断调整电机输出,确保系统达到期望状态。
电机伺服电机一般采用直流无刷电机(BLDC)或交流无刷电机(AC servo motor)作为动力源。
这些电机具有高效率、高精度和快速响应的特点,适用于需要精确控制的场合。
编码器编码器是一种测量旋转位置的装置,通常安装在电机轴上。
通过监测编码器的信号,控制系统可以实时了解电机的位置和速度,从而调整输出以实现精确控制。
传动系统传动系统将电机的转动运动转换为线性运动或旋转运动,通常采用齿轮、皮带或丝杠等装置。
传动系统的性能直接影响电机的定位精度和响应速度。
功率放大器功率放大器用于放大控制系统输出的信号,驱动电机正常运转。
功率放大器通常能够根据需要提供不同大小的电流和电压,以适应电机的工作要求。
结语伺服电机通过精密的控制和反馈机制,能够实现高精度的位置和速度控制,广泛应用于自动化设备、机器人、数控机床等领域。
通过理解伺服电机的工作原理,我们可以更好地设计和应用这种高性能的电动机,推动工业自动化和智能化的发展。
伺服驱动器的种类和特点
伺服驱动器的种类和特点伺服驱动器作为现代工业中广泛应用的控制系统之一,具有其独特的种类和特点。
在本文中,我们将介绍伺服驱动器的种类和各种驱动器的不同特点。
1. 直流伺服驱动器直流伺服驱动器是最早应用于伺服系统的一种驱动器,有着成熟的技术和广泛的应用。
它由电机、编码器、控制原理等构成。
直流伺服驱动器具有响应速度快、精度高、转矩平稳等特点,但其使用寿命短、易损件多、驱动器本身波动等问题也依然存在。
2. 交流伺服驱动器交流伺服驱动器是伺服驱动器的另一种类型,在应用中也十分广泛。
它由交流电机、编码器、控制原理等组成。
交流伺服驱动器具有控制精度高、结构简单、使用寿命长等特点。
而其缺点在于响应速度慢、抗干扰能力差等。
3. 基于步进电机的闭环伺服驱动器基于步进电机的闭环伺服驱动器,是在步进电机上进行改进后发展起来的一种伺服驱动器。
它将步进电机闭环反馈技术和伺服驱动器控制系统相结合,提高了步进电机的位置和速度控制精度,同时不需要专门的电机驱动器,构造简单,成本低,是一种比较重要的技术创新方向。
4. 串列伺服驱动器串列伺服驱动器是一种数字式的伺服驱动器,它具有响应速度快、定位精度高等特点。
该驱动器内部采用串列通信,可以通过上位机实现远程通信控制,广泛应用于机床、切割机、印刷机等设备中。
5. 多轴伺服驱动器多轴伺服驱动器是一种可以同时控制多个伺服驱动电机的设备。
多轴伺服驱动器一般由中央控制器、插补控制器、驱动板等构成,可以实现多个伺服电机的联动控制和同步运动。
在工业机器人、自动化生产线等领域中,多轴伺服驱动器被广泛使用,是未来智能制造的重要组成部分。
总之,伺服驱动器具有响应速度快、精度高、结构简单等明显特点,不同类型的伺服驱动器在控制精度、控制能力、适用范围等方面存在差异和特点。
在应用和选择时,需要根据具体需求进行选择和搭配,以便更好地发挥伺服驱动器在工业自动化和控制领域的作用。
交流伺服驱动器原理及调试资料
5. 低速大转矩,过载能力强 一般来说,伺服驱动器具有数分钟甚
至半小时内1.5倍以上的过载能力,在短时间 内可以过载4~6倍而不损坏。
6. 可靠性高 要求数控机床的进给驱动系统可靠性高、
工作稳定性好,具有较强的温度、湿度、振 动等环境适应能力和很强的抗干扰的能力。
对电机的要求
1、从最低速到最高速电机都能平稳运转,转矩波动要 小,尤其在低速如0.1r/min或更低速时,仍有平稳的 速度而无爬行现象。
④ 反馈值与给定值相比较,如果有偏 差通过电流环输出控制电流使用其 差值改为零
17
1.3.1 伺服放大器控制回路
伺服放大器三种控制方式
1 转矩控制: 通过外部模拟量的输入或直接的地址的赋值来设定电机 轴对外的输出转矩的大小,主要应用于需要严格控制转 矩的场合。 ——电流环控制
2 速度控制: 通过模拟量的输入或脉冲的频率对转动速度的控制。 ——速度环控制
3 位置控制: 伺服中最常用的控制,位置控制模式一般是通过外部输入 的脉冲的频率来确定转动速度的大小,通过脉冲的个数来 确定转动的角度,所以一般应用于定位装置 。 ——三环控制
思考:三环中哪个环的响应性最快?
18
2.2 伺服的作用
按照定位指令装置输出的脉冲串,对工件进行定位控制。
伺服电机锁定功能
2、电机应具有大的较长时间的过载能力,以满足低速 大转矩的要求。一般直流伺服电机要求在数分钟内 过载4~6倍而不损坏。
3、为了满足快速响应的要求,电机应有较小的转动惯 量和大的堵转转矩,并具有尽可能小的时间常数和 启动电压。
4、电机应能承受频繁启、制动和反转。
三、 伺服驱动器的电气控制原理
1.外部控制电路结构 2.内部电路结构
伺服工作原理
伺服工作原理
伺服工作原理是指通过运用反馈控制原理,使系统能够实时地根据所需输出值进行调整和校正,以达到精确控制输出的目的。
伺服系统主要包括信号调整器、执行器和反馈装置三个主要组成部分。
其中,信号调整器负责将输入信号进行放大、加工和调整,生成合适的控制信号。
执行器接收来自信号调整器的控制信号,并将其转化为相应的动作或力,以实现所需的运动或输出。
反馈装置监测执行器的输出,并将实际输出值反馈给信号调整器,用于校正和调整控制信号,以使输出更加准确。
在伺服系统中,最常见的反馈装置是编码器。
编码器通过测量旋转角度或线性位移的变化来获取系统的实际输出值,并将其转化为脉冲信号输出。
这些脉冲信号回传给信号调整器,用于比较和校正与期望输出值之间的差距,并生成修正后的控制信号。
当系统工作时,信号调整器将输入信号与反馈信号进行比较,并生成误差信号。
误差信号经过放大和滤波处理后,送入执行器,使其作出相应的调整。
执行器将调整后的输出力或运动传递到负载上,实现所需的运动或输出。
通过反复的比较和调整过程,伺服系统能够实现精确控制输出,并能够在外界干扰或负载变化的情况下自动校正。
伺服系统广泛应用于工业自动化、机器人技术、机械加工、医疗设备等领域,为各种精密控制提供强大支持。
《伺服驱动技术》课件
汇报人:
目录
添加目录标题
伺服驱动技术概述
伺服驱动系统的组 成
伺服驱动技术的原 理
伺服驱动技术的性 能指标
伺服驱动技术的应 用案例
添加章节标题
伺服驱动技术概述
伺服驱动技术是一种通过控制电机的转速、位置和转矩来精确控制机械运动的技术。
伺服驱动技术广泛应用于工业自动化、机器人、数控机床等领域。
航空航天: 用于控制 航天器的 姿态和轨 道
汽车电子: 用于控制 汽车的电 子系统, 如刹车、 转向等
19世纪末,直流伺服电机诞生
20世纪初,交流伺服电机出现
20世纪50年代,数字伺服技术开始发 展
20世纪70年代,交流伺服技术逐渐成 熟
20世纪80年代,交流伺服技术广泛应 用于工业自动化领域
21世纪初,伺服驱动技术向智能化、 网络化方向发展
汽车电子:用于汽车电子设备的控制,如电动助力转向系统、电子稳定系统等
伺服驱动技术的未 来发展
趋势:智能化、网络化、 集成化
挑战:技术瓶颈、成本压 力、市场竞争
发展趋势:高性能、高精 度、高可靠性
挑战:技术更新、人才短 缺、市场变化
提高响应速度:通过优化控制算法和硬件设计,提高伺服驱动系统的响应速度。 提高精度:通过采用高精度传感器和精密控制算法,提高伺服驱动系统的精度。 提高稳定性:通过优化控制算法和硬件设计,提高伺服驱动系统的稳定性。 提高智能化水平:通过采用人工智能技术,提高伺服驱动系统的智能化水平。
伺服控制器是伺服驱动系统的核心部件,负责接收控制信号并输出相应的控制电流。
伺服控制器的工作原理是通过接收来自上位机的控制信号,经过处理后输出相应的控制电流, 控制伺服电机的转速和转矩。
伺服驱动系统原理
伺服驱动系统原理
伺服驱动系统的工作原理主要包含以下几个步骤:
1. 输入信号处理:伺服驱动系统接收来自控制器的输入信号,这些信号通常是模拟或数字信号。
输入信号经过处理后将传递给驱动器。
2. 反馈信号采集:伺服驱动系统通过反馈装置采集伺服电机的位置或速度信息。
这些反馈信号将用于控制伺服电机的运动。
3. 误差计算:伺服驱动系统将输入信号和反馈信号进行比较,计算出误差。
误差是控制器用来调整驱动器输出信号的基础。
4. 功率驱动单元:功率驱动单元通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。
再通过三相正弦PWM电压型逆变器变频来驱动交流伺服电机。
这个过程可以简单的理解为AC-DC-AC的过程。
5. 控制方式:伺服驱动器一般都有三种控制方式:位置控制方式、转矩控制方式、速度控制方式。
总的来说,伺服驱动系统是一个非常复杂的系统,其工作原理涉及多个环节和步骤。
如需了解更多信息,建议查阅相关文献或咨询专业人士。
数控机床的进给伺服系统概述
• 当步进电机励磁绕组相数大于3时,多相通电多数 能提高输出转矩。
• 所以功率较大的步进电机多数采用多于三相的励磁 绕组,且多相通电。
3、启动转矩Mq
AB C Mq
e
当电机所带负载ML<Mq时,电机可不失步的启动。
2、最高启动频率和最高工作频率
最高启动频率fg: 步进电机由静止突然启动,并不失步地进 入稳速运行,所允许的启动频率的最高值。 最高启动频率fg与步进电机的惯性负载J有 关。
故电动机的转速n为:
n f (r/s) 60 f (r/min) f ——控制脉冲的频率
mzk
mzk
SB-58-1型五定子轴向分相反应式步进电机。
• 定子和转子都分为5段,呈轴向分布;有16个 齿均匀分布在圆周上,
• 齿距=360º/16=22.5º;各相定子彼此径向错开 1/5个齿的齿距;
如按5相5拍通电,则步距角为:
4)电动机定子绕组每改变一次通电方式——称为一拍 5)每输入一个脉冲信号,转子转过的角度——步距角αº • 上述通电方式称为:三相单三拍。(三相三拍) • 单——每次通电时,只有一相绕组通电; • 双——每次通电时,有两相绕组通电; • 三拍——经过三次切换绕组的通电状态为一个循环; • 除此之外的通电方式还有: • 三相双三拍: AB—BC—CA—AB • 三相单双六拍: A—AB—B—BC—C—CA—A
第三节 数控机床的检测装置
1、检测装置的作用
• 检测装置是数控机床闭环伺服系统的重要组成部分 • 其作用是:检测位移和速度,发送反馈信号,构成
(1) 直线进给系统 已知:进给系统的脉冲当量δmm;步进电机的
步距角αº;滚珠丝杠的导程t mm;
求: 齿轮传动比 i。
伺服电机原理
伺服电机原理
伺服电机是一种可以根据外部控制信号精确控制旋转角度和速度的电机。
它在
自动控制系统中得到广泛应用,常见于工业自动化、机器人、医疗设备等领域。
本文将介绍伺服电机的工作原理及其应用。
工作原理
伺服电机的工作原理基于反馈闭环控制系统。
其基本组成包括伺服电机本身、
编码器、控制器和电源。
控制器接收外部输入的控制信号,通过比较控制信号和编码器反馈信号,生成误差信号,并根据误差信号控制伺服电机的转速和位置。
具体工作流程如下: 1. 控制器接收控制信号,并将其转换为电压或电流信号;2. 伺服电机根据控制信号转动,同时编码器实时监测电机角度,并将当前角度信息反馈给控制器; 3. 控制器比较编码器反馈信号与控制信号的差异,计算误差信号;
4. 控制器根据误差信号调整输出信号,控制伺服电机的转速和位置,使误差信号趋于零。
应用领域
伺服电机广泛应用于以下领域: 1. 工业自动化:用于控制机械臂、印刷机、包装机等,实现精确的位置控制; 2. 机器人:作为机器人关节驱动电机,提供精确
的轴向运动; 3. 医疗设备:在影像设备、手术机器人等医疗设备中,提供精准的
位置控制; 4. 航空航天:用于飞行器控制、卫星定位等领域,要求高精度和可靠性。
综上所述,伺服电机通过反馈闭环控制系统实现精准的位置和速度控制,广泛
应用于工业、机器人、医疗等领域,为自动控制系统提供了重要的驱动功能。
伺服驱动器工作原理
伺服驱动器工作原理
伺服驱动器是一种控制装置,它通过控制电机的运动,实现对机械设备的精准控制。
其工作原理主要包括位置控制、速度控制和力控制三个方面。
首先,我们来看一下位置控制。
伺服驱动器通过接收控制信号,控制电机的转动,从而实现对设备位置的精准控制。
在位置控制中,伺服驱动器会接收来自控制器的位置指令,然后将电机转动到相应的位置。
在实际应用中,通常会使用编码器等装置来反馈电机的实际位置,以便及时调整控制信号,实现精准的位置控制。
其次,是速度控制。
伺服驱动器可以根据控制信号,精准地控制电机的转速。
在速度控制中,伺服驱动器会接收来自控制器的速度指令,然后调节电机的转速,使其达到指定的速度。
通过不断地调整控制信号,伺服驱动器可以实现对电机速度的精准控制,从而满足不同工况下的要求。
最后,是力控制。
伺服驱动器可以根据控制信号,精准地控制电机的输出力。
在力控制中,伺服驱动器会接收来自控制器的力指令,然后调节电机的输出力,使其达到指定的力值。
通过不断地调整控制信号,伺服驱动器可以实现对电机输出力的精准控制,从而满足不同工况下的要求。
总的来说,伺服驱动器通过对电机的位置、速度和力进行精准控制,实现对设备运动的精准控制。
它在自动化设备、机器人、数控机床等领域有着广泛的应用,为工业生产提供了强大的支持。
希望通过本文的介绍,能够使大家对伺服驱动器的工作原理有更加深入的了解。
伺服的结构和原理
伺服的结构和原理伺服的结构是怎样的?一个最简易的伺服控制单元,就是一个伺服电机加伺服控制器,今天就来解析下伺服电机与伺服控制器。
右手螺旋法则(安培定则)——通电生磁安培定则,也叫右手螺旋定则,是表示电流和电流激发磁场的磁感线方向间关系的定则。
通电直导线中的安培定则:用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向;通电螺线管中的安培定则:用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端是通电螺线管的N极。
弗来明左手法则——磁生力确定载流导线在外磁场中受力方向的定则。
又称电动机定则。
左手平展,大拇指与其余4指垂直,手心冲着N级,4指为电流方向,大拇指为载流导线在外磁场中受力方向。
DC伺服马达结构伺服控制单元SERVO语源自拉丁语,原意为“奴隶”的意思,指经由闭环控制方式达到一个机械系统的位置,扭矩,速度或加速度的控制,是自动控制系统中的执行单元,是把上位控制器的电信号转换成电动机轴上的角位移或角速度输出。
1.控制器:动作指令信号的输出装置。
2.驱动器:接收控制指令,并驱动马达的装置。
3.伺服马达:驱动控制对象、并检出状态的装置。
伺服马达的种类伺服马达的种类,大致可分成以下三种:1.同步型:采用永磁式同步马达,停电时发电效应,因此刹车容易,但因制程材料上的问题,马达容量受限制。
(回转子:永久磁铁;固定子:线圈)2.感应型:感应形马达与泛用马达构造相似,构造坚固、高速时转矩表现良好,但马达较易发热,容量(7.5KW 以上)大多为此形式。
(回转子、固定子皆为线圈)3.直流型:直流伺服马达,有碳刷运转磨耗所产生粉尘的问题,于无尘要求的场所就不宜使用,以小容量为主。
(回转子:线圈;固定子:永久磁铁;整流子:磁刷)SM同步形伺服马达■特长优点:1.免维护。
2.耐环境性佳。
3.转矩特性佳,定转矩。
4.停电时可发电剎车。
5.尺寸小、重量轻。
6.高效率。
■缺点:1.AMP较DC形构造复杂。
伺服电机的工作原理
伺服电机的工作原理引言概述:伺服电机是一种能够精准控制位置、速度和加速度的电机,广泛应用于工业自动化、机器人技术、航空航天等领域。
了解伺服电机的工作原理对于掌握其应用和维护至关重要。
一、伺服电机的基本结构1.1 电机部分:伺服电机通常由电机、编码器、控制器和传感器等部分组成。
1.2 编码器:编码器用于反馈电机的位置信息,实现闭环控制。
1.3 控制器:控制器接收编码器反馈的位置信息,并根据设定的目标位置控制电机的转动。
二、伺服电机的工作原理2.1 闭环控制:伺服电机采用闭环控制系统,通过不断比较实际位置和目标位置的差异,调整电机的转速和转向,实现精准控制。
2.2 PID控制:伺服电机控制器通常采用PID控制算法,即比例、积分、微分控制,通过调节这三个参数,实现对电机的精确控制。
2.3 反馈系统:编码器等反馈系统可以实时监测电机的位置信息,将实际位置反馈给控制器,从而实现闭环控制。
三、伺服电机的应用领域3.1 工业自动化:伺服电机广泛应用于自动化生产线上,用于控制机械臂、输送带等设备的运动。
3.2 机器人技术:伺服电机是机器人关节驱动的重要组成部分,可以实现机器人的精准运动和操作。
3.3 航空航天:伺服电机在航空航天领域用于控制飞行器的姿态和航向,保证飞行器的稳定性和精准性。
四、伺服电机的优势4.1 精准控制:伺服电机可以实现高精度的位置控制,适用于对运动精度要求较高的场合。
4.2 高效能:伺服电机具有高效能的特点,能够在短时间内实现快速响应和高速转动。
4.3 稳定性:由于采用闭环控制系统,伺服电机具有良好的稳定性和抗干扰能力,适用于复杂环境下的应用。
五、伺服电机的发展趋势5.1 高性能化:伺服电机将不断追求更高的性能指标,如更高的转速、更高的精度等。
5.2 智能化:伺服电机将逐渐智能化,具备自学习、自适应等功能,更好地适应各种复杂环境。
5.3 网络化:伺服电机将与网络技术结合,实现远程监控、故障诊断等功能,提高设备的可靠性和维护性。
伺服系统的工作原理
伺服系统的工作原理伺服系统是一种能够精确控制运动位置、速度和加速度的系统,它在工业自动化、机器人、数控机床等领域得到了广泛的应用。
伺服系统的工作原理主要包括传感器、控制器和执行器三个部分。
首先,传感器是伺服系统的感知器官,它可以实时地感知运动位置、速度和加速度等参数,并将这些参数反馈给控制器。
常用的传感器包括编码器、光栅尺、霍尔传感器等,它们能够将机械运动转换成电信号,从而实现对运动状态的实时监测。
其次,控制器是伺服系统的大脑,它根据传感器反馈的信息,通过内部的控制算法计算出控制指令,并将指令发送给执行器。
控制器通常采用微处理器或者数字信号处理器,它能够实时地对传感器反馈的信息进行处理,从而保证系统对运动状态的精准控制。
最后,执行器是伺服系统的执行器官,它根据控制器发送的指令,驱动负载实现精确的运动控制。
常见的执行器包括伺服电机、液压缸、气动马达等,它们能够根据控制器发送的脉冲信号,精准地控制负载的位置和速度。
总的来说,伺服系统的工作原理可以简单概括为,传感器感知运动状态,控制器计算控制指令,执行器驱动负载实现精确的运动控制。
这种闭环控制系统能够实现对运动状态的高精度控制,从而满足工业自动化和机器人等领域对运动精度的要求。
在实际应用中,伺服系统的工作原理可以根据具体的控制要求进行调整和优化,例如采用不同的传感器、控制算法和执行器等,以适应不同的工程需求。
因此,了解伺服系统的工作原理对于工程师和技术人员来说至关重要,它能够帮助他们更好地设计和应用伺服系统,从而提高生产效率和产品质量。
综上所述,伺服系统的工作原理是一个涉及传感器、控制器和执行器的闭环控制系统,它能够实现对运动状态的高精度控制。
通过对伺服系统工作原理的深入了解,我们能够更好地应用和优化伺服系统,从而推动工业自动化和智能制造的发展。
伺服驱动器工作原理
伺服驱动器工作原理
伺服驱动器是一种用来控制伺服电机运动的装置,它通过对电机施加电压和电流来实现精确的位置控制和速度控制。
其工作原理主要包括控制系统、电机和反馈系统三个部分。
首先,控制系统是伺服驱动器的核心部分,它接收外部指令并对电机进行精确的控制。
控制系统通常由控制器和执行器组成,控制器负责接收指令并生成控制信号,而执行器则将控制信号转化为电压和电流输出到电机。
控制系统可以根据外部指令来调整电机的转速、位置和加速度,从而实现精确的运动控制。
其次,电机是伺服驱动器的驱动部分,它负责将电能转化为机械能,驱动机械设备进行运动。
伺服电机通常采用无刷直流电机,它具有结构简单、响应速度快和控制精度高等优点。
电机的转动速度和位置可以通过控制系统的调节来实现精确控制,从而满足不同运动需求。
最后,反馈系统是伺服驱动器的重要组成部分,它可以实时监测电机的运动状态并将监测结果反馈给控制系统。
反馈系统通常采用编码器或位置传感器来实现,它可以精确地测量电机的位置、速
度和加速度等参数,并将这些信息传输给控制系统。
控制系统可以根据反馈系统提供的信息来调整电机的控制信号,从而实现精确的运动控制。
总的来说,伺服驱动器通过控制系统、电机和反馈系统三个部分的协同工作,可以实现精确的位置控制和速度控制。
它具有响应速度快、控制精度高和适应性强等优点,广泛应用于各种需要精密运动控制的领域,如机械加工、自动化设备和机器人等。
希望通过本文的介绍,读者对伺服驱动器的工作原理有了更深入的了解。
伺服系统组成、概述与控制原理(难得好文)
伺服系统组成、概述与控制原理(难得好⽂)伺服系统既可以是开环控制⽅式,也可以是闭环控制⽅式。
⼀、伺服系统简述伺服系统(servomechanism)指经由闭环控制⽅式达到对⼀个机械系统的位置、速度和加速度的控制。
⼀个伺服系统的构成包括被控对象、执⾏器和控制器(负载、伺服电动机和功率放⼤器、控制器和反馈装置)。
1. 执⾏器的功能在于提供被控对象的动⼒,其构成主要包括伺服电动机和功率放⼤器,伺服电动机包括反馈装置如光电编码器、旋转编码器或光栅等(位置传感器)。
2. 控制器的功能在于提供整个伺服系统的闭环控制如转矩控制、速度控制、位置控制等,伺服驱动器通常包括控制器和功率放⼤器。
3. 反馈装置除了位置传感器,可能还需要电压、电流和速度传感器。
下图为⼀般⼯业⽤伺服系统的组成框图,其中红⾊为伺服驱动器组成部分,黄⾊为伺服电机组成部分。
“伺服”——词源于希腊语“奴⾪”的意思。
⼈们想把“伺服机构”当成⼀个得⼼应⼿的驯服⼯具,服从控制信号的要求⽽动作:在讯号来到之前,转⼦静⽌不动;讯号来到之后,转⼦⽴即转动;当讯号消失,转⼦能即时⾃⾏停转。
由于它的“伺服”性能,因此⽽得名——伺服系统。
⼆、常⽤参数1、伺服电机铭牌参数1. 法兰尺⼨2. 电机极对数3. 电机额定输出功率4. 电源电压规格:单相/三相5. 电机惯量:分为⼤、中、⼩惯量,指的是转⼦本⾝的惯量,从响应⾓度来讲,电机的转⼦惯量应⼩为好;从负载⾓度来看,电机的转⾃惯量越⼤越好6. 电机出轴类型:键槽、扁平轴、光轴、减速机适配…7. 电机动⼒线定义:U: RED V:BLACK W: WHITE8. 额定转速9. 编码器线数:2500/1250/1000/17B/20B法兰是轴与轴之间相互连接的零件,⽤于管端之间的连接。
2、伺服驱动器铭牌参数1. 额定输出功率2. 电源电压规格3. 编码器线数3、伺服系统的性能指标1. 检测误差:包括给定位置传感器和反馈位置传感器的误差,传感器本⾝固有,⽆法克服;2. 系统误差:系统类型决定了系统误差。
伺服驱动系统设计方案及对策
伺服驱动系统设计方案伺服电机的原理:伺服的基本概念是准确、精确、快速定位。
与普通电机一样,交流伺服电机也由定子和转子构成。
定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。
伺服电机部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度{线数)。
伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。
交流伺服电机的工作原理和单相感应电动机无本质上的差异。
但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓"自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。
而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。
交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。
它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。
因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。
图3 伺服电动机的转矩特性2、运行围较宽如图3所示,较差率S在0到1的围伺服电动机都能稳定运转。
3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。
当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)如图4所示,与普通的单相异步电动机的转矩特性(图中T′-S曲线)不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机电一体化系统设计基础课程教学辅导
第四章:伺服驱动系统的原理与种类
一、教学建议
●通过文字教材掌握伺服驱动的基本原理,了解机电一体化伺服驱动系统的种类及其
特性。
●流媒体课件第15讲介绍了机电一体化系统伺服驱动的基本原理、种类及其特性;
●在学习的过程中,如果有学习的心得和体会,请在课程论坛上和大家分享;如果有
什么疑惑,也可以在课程论坛寻找帮助。
二、教学要求
1.掌握伺服驱动的基本原理
一般来说,伺服系统组成框图如图1所示。
图1 伺服系统组成框图
(1)控制器:伺服系统中控制器的主要任务是根据输入信号和反馈信号决定控制策略,控制器通常由电子线路或计算机组成。
(2)功率放大器:伺服系统中功率放大器的作用是将信号进行放大,并用来驱动执行机构完成某种操作,功率放大装置主要由各种电力电子器件组成。
(3)执行机构:执行机构主要由伺服电动机或液压伺服机构和机械传动装置等组成。
(4)检测装置:检测装置的任务是测量被控制量,实现反馈控制。
无论采用何种控制方案,系统的控制精度总是低于检测装置的精度,因此要求检测装置精度高、线性度好、可靠性高、响应快。
2.了解机电一体化伺服驱动系统的种类及其特性
(1)根据使用能量的不同,可以分为电气式、液压式和气压式等几种类型,特性如表1所示。
表1 伺服驱动系统的特点及优缺点
种类特点优点缺点
电
气
式
可使用普通电源;信号与动力
的传送方向相同;有交流和直
流之别,须注意电压之大小
操作简便;编程容易;能实现定
位伺服;响应快、易与CPU接
口;体积小,动力较大;无污染
瞬时输出功率大,但过载能力差,由于某
种原因而卡住时,会引起烧毁事故,易受
外部噪声影响
气
压
式
空气压力源的压力为(5~7)
×105Pa;要求操作人员技术
熟练
气源方便、成本低;无泄漏污染;
速度快、操作比较简单
功率小,体积大,动作不够平稳;不易小
型化;远距离传输困难;工作噪声大、难
于伺服
液
压
式
要求操作人员技术熟练;液压
源的压力为(20~80)×105Pa
输出功率大,速度快,动作平
稳,可实现定位伺服
设备难于小型化;液压源或液压油要求(杂
质、温度、测量、质量)严格;易泄漏且
有污染
例1:气压式伺服驱动系统常用在定位精度较高的场合使用。
()
说明:气压驱动虽可得到较大的驱动力、行程和速度,但由于空气粘性差,具有可压缩性,不能在定位精度较高的场合使用。
故括号内应填入“×”。
(2)伺服驱动系统按控制原理的不同还可以分为开环、全闭环和半闭环等伺服系统。
①开环伺服系统
如图2所示,若伺服驱动系统中没有检测反馈装置则称为开环伺服系统。
开环伺服系统的精度较低,一般可达到0.01m左右,且速度也有一定的限制,但其结构简单、成本低、调整和维修都比较方便,另外由于被控量不以任何形式反馈到输入端,所以其工作稳定、可靠,因此在一些精度、速度要求不很高的场合,如线切割机、办公自动化设备中得到了广泛应用。
图2 开环伺服系统
②全闭环伺服系统
如图3所示,全闭环伺服系统是由安装在工作台上的位置检测装置,将工作台的直线位移转换成电信号,并在比较环节与指令脉冲相比较,将所得的偏差值经过放大,由伺服电机驱动工作台向偏差减小的方向移动,直到偏差值等于零为止,定位精度可以达到亚微米量,是实现高精度位置控制的一种理想的控制方案。
但由于全部的机械传动链都被包含在位置闭环之中,机械传动链的惯量、间隙、摩擦、刚性等非线性因素都会给伺服系统造成影响,从而使系统的控制和调试变得异常复杂,制造成本高。
因此,全闭环伺服系统主要用于高精密和大型的机电一体化设备。
图3 全闭环伺服系统
例2:闭环控制的驱动装置中,丝杠螺母机构位于闭环之外,所以它的(D )。
A.回程误差不影响输出精度,但传动误差影响输出精度
B.传动误差不影响输出精度,但回程误差影响输出精度
C.回程误差和传动误差都不会影响输出精度
D.回程误差和传动误差都会影响输出精度
说明:丝杠螺母机构位于闭环之后,其误差的高频分量和低频分量都会影响输出精度,因此要尽量消除其传动间隙和传动误差。
故括号内应填入“D”。
③半闭环伺服系统
半闭环伺服系统中工作台的位置通过电机上的传感器或是安装在丝杆轴端的编码器间接获得,它与全闭环伺服系统的区别在于检测元件位于系统传动链的中间,故称为半闭环伺
服系统。
图4所示。
由于部分传动链在系统闭环之外,故其定位精度比全闭环的稍差。
但由于测量角位移比测量线位移容易,并可在传动链的任何转动部位进行角位移的测量和反馈,所以结构比较简单,调整、维护也比较方便。
由于将惯性质量很大的工作台排除在闭环之外,系统调试比较容易、稳定性好,具有较高的性价比,被广泛应用于各种机电一体化设备。
图4 半闭环伺服系统。