中考数学综合题之1《与绝对值有关的计算》
初中数学《绝对值化简》讲义及练习
内容 基本要求略高要求较高要求绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ ②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b=(0)b ≠; (4)222||||a a a ==;(5)a b a b a b -≤+≤+,对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立; 对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立.板块一:绝对值代数意义及化简【例1】 (2级)⑴ 下列各组判断中,正确的是 ( )中考要求例题精讲绝 对 值 化 简A .若a b =,则一定有a b =B .若a b >,则一定有a b > C. 若a b >,则一定有a b > D .若a b =,则一定有()22a b =-⑵ 如果2a >2b ,则 ( ) A .a b > B .a >b C .a b < D a <b⑶ 下列式子中正确的是 ( ) A .a a >- B .a a <- C .a a ≤- D .a a ≥-⑷ 对于1m -,下列结论正确的是 ( ) A .1||m m -≥ B .1||m m -≤ C .1||1m m --≥ D .1||1m m --≤ ⑸ (2002年江苏省竞赛题)若220x x -+-=,求x 的取值范围.【解析】 ⑴ 选择D .⑵ 选择B .⑶ 我们可以分类讨论,也可以用特殊值法代入检验,对于绝对值的题目我们一般需要代正数、负数、0,3种数帮助找到准确答案.易得答案为D .⑷ 我们可以用特殊值法代入检验,正数、负数、0,3种数帮助找到准确答案C . ⑸ ()22x x -=--,所以20x -≤,即2x ≤.【巩固】 (2级)绝对值等于5的整数有 个,绝对值小于5的整数有 个 【解析】 2;9个【巩固】 (2级)绝对值小于31⋅的整数有哪些?它们的和为多少? 【解析】 绝对值小于31⋅的整数有0,1±,2±,3±,和为0.【巩固】 (2级)有理数a 与b 满足a b >,则下面哪个答案正确 ( ) A .a b > B .a b = C .a b < D .无法确定 【解析】 选择D .【例2】 (2级)已知:⑴52a b ==,,且a b <;⑵()2120a b ++-=,分别求a b ,的值 【解析】 因为55a a ==±,因为22b b ==±,又因为a b <,所以22a b =-=±,即52a b =-=,或52a b =-=-,⑵由非负性可知12a b =-=,【例3】 (2级)已知2332x x -=-,求x 的取值范围【解析】 因为23x -的绝对值等于它的相反数,所以230x -≤,即32x ≤【巩固】 (4级)若a b >且a b <,则下列说法正确的是( )A .a 一定是正数B .a 一定是负数C .b 一定是正数D .b 一定是负数 【解析】 由分析可知a b ,中的较小数b 一定是负数,故选D【例4】 (6级)(2010人大附中练习题)求出所有满足条件1a b ab -+=的非负整数对()a b ,【解析】 根据题意a b -和ab 两个代数式的值只能在0与1中取,用逐一列举的方法,求得满足条件的非负整数对有三对()()()011011,,,,,【巩固】 (6级)(2005年江苏省数学文化节基础闯关试题)非零整数m n ,满足50m n +-=,所有这样的整数组()m n ,共有 【解析】 16【例5】 (4级)(人大附单元测试)如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.【解析】 先判断每个绝对值符号内部的正负,而后化简原式()(1)()(1)a b b a c c =-++-+---112a b b a c c =--+-+--+=-【巩固】 (6级)已知00x z xy y z x <<>>>,,,那么x z y z x y +++--= 【解析】 由00xy x z ><<,可得0y z <<,又因为y z x >>,所以y x z <<,原式0x z y z x y =+---+=【例6】 (10级)(第4届希望杯2试)abcde 是一个五位自然数,其中a 、b 、c 、d 、e 为阿拉伯数码,且a b c d <<<,则a b b c c d d e -+-+-+-的最大值是 . 【解析】 当a b c d e <<<≤时,a b b c c d d e e a -+-+-+-=-,当9e =,1a =时取得最大值8;当a b c d <<<,且a e >时,2a b b c c d d e d a e -+-+-+-=--,当9d =,1a =,0e =时取得最大值17.所以a b b c c d d e -+-+-+-的最大值是17.【例7】 (8级)(河南省竞赛试题)已知2020y x b x x b =-+-+--,其中02020b b x <<,≤≤,那么y的最小值为【解析】 ()()20202040y x b x x b x b x b x =-+--+---=--++=-⎡⎤⎡⎤⎣⎦⎣⎦,当20x =,y 的最小值为20【巩固】 (10级)(华罗庚金杯赛前培训题)a 、b 、c 分别是一个三位数的百、十、个位上的数字,且a b c ≤≤,则a b b c c a -+-+-可能取得的最大值是多少?【解析】 由a b c ≤≤,得2()a b b c c a b a c b c a c a -+-+-=-+-+-=-,要想结果尽可能大,取9c =,1a =即可,最大值为16.【例8】 (8级)(希望杯邀请赛试题)设a b c ,,为整数,且1a b c a -+-=,求c a a b b c -+-+-的值 【解析】 因为a b c ,,为整数,且1a b c a -+-=故a b -与c a -一个为0,一个为1,从而()()1b c b a a c -=-+-=,原式2=【巩固】 (6级)(北京市迎春杯竞赛试题)已知123a b c ===,,,且a b c >>,那么a b c +-= 【解析】 2或0【例9】 (6级)(1)(第10届希望杯2试)已知1999x =,则2245942237x x x x x -+-++++= .(2)(第12届希望杯2试)满足2()()a b b a a b ab -+--=(0ab ≠)有理数a 、b ,一定不满足的关系是( )A . 0ab <B . 0ab >C . 0a b +>D . 0a b +< (3)(第7届希望杯2试)已知有理数a 、b 的和a b +及差a b -在数轴上如图所示,化简227a b a b +---.a-ba+b【解析】 (1)容易判断出,当1999x =时,24590x x -+>,2220x x ++>,所以 224594223710819982x x x x x x -+-++++=-+=-这道题目体现了一种重要的“先估算+后化简+再代入求值”的思想.(2)为研究问题首先要先将题干中条件的绝对值符号通过讨论去掉, 若a b ≥时,222()()()()0a b b a a b a b a b ab -+--=---=≠, 若a b <时,2222()()()()2()a b b a a b a b b a a b ab -+--=-+-=-=,从平方的非负性我们知道0ab ≥,且0ab ≠,所以0ab >,则答案A 一定不满足. (3)由图可知01a b <-<,1a b +<-,两式相加可得:20a <,0a <进而可判断出0b <,此时20a b +<,70b -<, 所以227a b a b +---(2)2()(7)7a b a b =-+--+-=-.【巩固】 (8级)(第9届希望杯1试)若1998m =-,则22119992299920m m m m +--+++= .【解析】211999(11)999199819879990m m m m +-=+-=⨯->, 222999(22)999199819769990m m m m ++=+-=⨯+>,故22(11999)(22999)2020000m m m m +--+++=.【补充】(8级)若0.239x =-,求131********x x x x x x -+-++-------的值.【解析】 法1:∵0.239x =-,则原式(1)(3)(1997)(2)(1996)x x x x x x =-------+++++- 135199721996x x x x x x x =-+-+-+--+++-++-1(32)(54)(19971996)=+-+-++- 111999=+++=法2:由x a b <≤,可得x b x a b a ---=-,则原式(1)(32)(19971996)x x x x x x =--+---++---111999=+++=点评:解法二的这种思维方法叫做构造法.这种方法对于显示题目中的关系,简化解题步骤有着重 要作用.【例10】 (10级)设2020A x b x x b =-+----,其中020b x <≤≤,试证明A 必有最小值 【解析】 因为020b x <≤≤,所以0200200x b x x b ----<≥,≤,,进而可以得到: 2220A x b x x x =--=--≥≥,所以A 的最小值为20-【例11】 (8级)若24513a a a +-+-的值是一个定值,求a 的取值范围.【解析】 要想使24513a a a +-+-的值是一个定值,就必须使得450a -≥,且130a -≤,原式245(13)3a a a =+---=,即1435a ≤≤时,原式的值永远为3.【巩固】 (8级)若1232008x x x x -+-+-++-的值为常数,试求x 的取值范围. 【解析】 要使式子的值为常数,x 得相消完,当10041005x ≤≤时,满足题意.【例12】 (2级)数,a b 在数轴上对应的点如右图所示,试化简a b b a b a a ++-+--【解析】 ()()()2a b b a b a a a b b a b a b ++-+--=-++-+--=.【巩固】 (2级)实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-【解析】 由题意可知:0000a c b a b a c <->+<-<,,,,所以原式2c a =-【巩固】 (2级)若a b <-且0ab>,化简a b a b ab -+++.【解析】 若a b <-且0ab>,0,0a b <<,0,0a b ab +<>2a b a b ab a b a b ab ab a -+++=-+--+=-【例13】 (8级)(北大附中2005-2006学年度第一学期期中考试)设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-.【解析】 0a a +=,a a =-,0a ≤;ab ab =,0ab ≥;0c c -=,c c =,0c ≥所以可以得到0a <,0b <,0c >;()()()b a b c b a c b a b c b a c b -+--+-=-++----=.【例14】 (6级)如果010m <<并且10m x ≤≤,化简1010x m x x m -+-+--.【解析】 1010101020x m x x m x m x m x x -+-+--=-+-++-=-.【巩固】 (2级)化简:⑴3x -; ⑵12x x +++【解析】 ⑴原式()()3333x x x x ⎧-<⎪=⎨-⎪⎩≥;⑵原式()()()232121231x x x x x --<-⎧⎪=-<-⎨⎪+-⎩≤≥【巩固】 (6级)若a b <,求15b a a b -+---的值. 【解析】 15154b a a b b a a b -+---=-++--=-.【巩固】 (8级)(第7届希望杯2试)若0a <,0ab <,那么15b a a b -+---等于 .【解析】 0a <,0ab <,可得:0b >,所以0b a ->,0a b -<,15154b a a b b a a b -+---=-++--=-.【巩固】 (2级)已知15x <≤,化简15x x -+-【解析】 因为15x <≤,所以1050x x --<≤,,原式154x x =-+-=【例15】 (8级)已知3x <-,化简321x +-+.【解析】 当3x <-时,3213213333x x x x x x +-+=+++=++=--=-=-.【巩固】 (8级)(第16届希望杯培训试题)已知112x x ++-=,化简421x -+-. 【解析】 由112x x ++-=的几何意义,我们容易判断出11x -≤≤.所以421x -+-421434311x x x x x =-+-=--=-+=+=+.【例16】 (8级)若0x <,化简23x x x x---.【解析】 223333x x x x xx x xx x----===----+.【巩固】 (8级)(四中)已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++--. 【解析】 ∵a a =-,∴0a ≤,又∵0b <,∴240a b +<,∴24(24)2(2)a b a b a b +=-+=-+,∴22242(2)2(2)(2)2a ba b a b a b a b+-+-==+++又∵20a b +<,∴4442(2)2a b a b a b-=-=+-++ 又∵230a -<,∴2222143(23)242424323b a a b a b a b b a -=-=-==++-++++-- ∴原式24132222a b a b a b a b=-++=++++ 点评:详细的过程要先判断被绝对值的式子x ,再去绝对值的符号.、【例17】 (8级)(第14届希望杯邀请赛试题)已知a b c d ,,,是有理数,916a b c d --≤,≤,且25a b c d --+=,求b a d c ---的值【解析】 因916a b c d --≤,≤,故91625a b c d -+-+=≤,又因为 ()()2525a b c d a b d c a b d c =--+=-+--+-≤≤,所以916a b c d -=-=,,故原式7=-板块二:关于a a的探讨应用【例18】 (6级)已知a 是非零有理数,求2323a a a a a a++的值.【解析】 若0a >,那么23231113a a a a a a ++=++=;若0a <,那么23231111a a a a a a++=-+-=-.【例19】 (10级)(2006年第二届“华罗庚杯”香港中学竞赛试题)已知a b c abc x abcabc=+++,且a b c ,,都不等于0,求x 的所有可能值 【解析】 4或0或4-【巩固】 (10级)(北京市迎春杯竞赛试题)已知a b c ,,是非零整数,且0a b c ++=,求a b c abca b c abc+++的值【解析】 因为a b c ,,是非零有理数,且0a b c ++=,所以a b c ,,中必有一正二负,不妨设000a b c ><<,,,则原式()()11110a b c abca b c abc=+++=+-+-+=--【巩固】 (2级)若0a >,则_____aa =;若0a <,则_____a a=. 【解析】 1;1-.重要结论一定要记得.【巩固】 (6级)当3m ≠-时,化简33m m ++【解析】 3m ≠-,30m +≠,当3m >-,即30m +>时,33m m +=+,所以313m m +=+; 当3m <-,即30m +<时,3(3)m m +=-+,所以313m m +=-+.【例20】 (8级)(2009年全国初中数学竞赛黄冈市选拔赛试题)若01a <<,21b -<<-,则1212a b a ba b a b-++-+-++的值是( ) A .0 B .1- C .3- D .4-【解析】 ⑴ C .特殊值法:取0.5a =, 1.5b =-代入计算即可.【巩固】 (2级)下列可能正确的是( )A .1a b a b +=B .2a b ca b c++=C .3c d a b a b c d +++= D .4a b c d a b c d a b c d abcd+++++++= 【解析】 选D .排除法比较好或特殊值法1,1,1,1-.【巩固】 (6级)如果20a b +=,则12a ab b-+-等于( ) A .2 B .3 C .4 D .5【解析】 B【例21】 (8级)如果000a b c a b c a b c +->-+>-++>,,,则200220022002a b c a b c ⎛⎫⎛⎫⎛⎫-+ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值等于( )A .1B .1-C .0D .3【解析】 易知200220022002111a b c a b c ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,,,所以原式1=,故选择A【例22】 (8级)已知0abc ≠,求ab ac bcab ac bc++的值. 【解析】 ∵0abc ≠,∴a 、b 、c 三个数都不为零.若a 、b 、c 三个数都是正数,则ab 、ac 、bc 也都是正数,故原式值为3. 若a 、b 、c 中两正、一负,则ab 、ac 、bc 中一正、两负,故原式值为1-. 若a 、b 、c 中一正、两负,则ab 、ac 、bc 中一正、两负,故原式值为1-. 若 a 、b 、c 中三负,则ab 、ac 、bc 中三正,故原式值为3.【巩固】 (6级)若a ,b ,c 均不为零,求a b ca b c ++.【解析】 若a ,b ,c ,全为正数,则原式3=;若a ,b ,c ,两正一负,则原式1=;若a ,b ,c ,一正两负,则原式1=-;若a ,b ,c ,全为负数,则原式3=-.【例23】 (6级)(第13届希望杯1试)如果20a b +=,求12a ab b-+-的值. 【解析】 由20a b +=得2b a =-,进而有1222a a a a b a a a ===⋅--⋅,122a a ab a a==-⋅- 若0a >,则111212322a a b b -+-=-+--=, 若0a <,则111212322a ab b -+-=--+-=.【巩固】 (6级)若a ,b ,c 均不为零,且0a b c ++=,求a b cabc++. 【解析】 根据条件可得a ,b ,c 有1个负数或2个负数,所以所求式子的值为1或1-【例24】 (8级)a ,b ,c 为非零有理数,且0a b c ++=,则a b b c c aa b b c c a ++的值等于多少? 【解析】 由0a b c ++=可知a ,b ,c 里存在两正一负或者一正两负;a b b c c a b c aa b c a b b c c a a b b c c a++=⋅+⋅+⋅ 若两正一负,那么1111b c aa b c a b b c c a⋅+⋅+⋅=--=-; 若一正两负,那么1111b c aa b c a b b c c a ⋅+⋅+⋅=--=-. 综上所得1a b b c c a a bb cc a++=-.【巩固】 (10级)(海口市竞赛题)三个数a ,b ,c 的积为负数,和为正数,且ab ac bc a b c x a b c ab ac bc=+++++, 求321ax bx cx +++的值.【解析】 a ,b ,c 中必为一负两正,不妨设0a <,则0,0b c >>; 1111110ab ac bca b c x a b c ab ac bc=+++++=-++--+=,所以原式=1.【巩固】 (8级)(第13届希望杯培训试题)如果0a b c +->,0a b c -+>,0a b c -++>,求200220032004()()()a b ca b c-+的值. 【解析】 由0a b c +->,0a b c -+>,0a b c -++>,两两相加可得:0a >,0b >,0c >,所以原式结果为1.若将此题变形为:非零有理数a 、b 、c ,求1b =等于多少?从总体出发:2008()1aa =,所以原式1111=-+=.【例25】 (8级)(“祖冲之杯”初中数学邀请赛试题)设实数a ,b ,c 满足0a b c ++=,及0abc >,若||||||a b c x a b c =++,111111()()()y a b c b c a c a b =+++++,那么代数式23x y xy ++的值为______. 【解析】 由0a b c ++=及0abc >,知实数a ,b ,c 中必有两个负数,一个正数,从而有1x =-.又111111()()()y a b c b c a c a b =+++++=3a b c a b c---++=-,则231692x y xy ++=--+=.【例26】 (8级)有理数a b c ,,均不为零,且0a b c ++=,设a b c x b ca ca b=+++++,则代数式20042007x x -+的值为多少? 【解析】 由0a b c ++=易知a b c ,,中必有一正两负或两正一负,不妨设000a b c ><<,,或000a b c <>>,,所以1a b c x a b a c a b =--=+++或者1a b c x b c a c a b=-++=-+++,所以1x =,所以原式2004=【巩固】 (8级)有理数a b c ,,均不为零,且0a b c ++=,设a b c x b ca ca b=+++++,则代数式19992000x x -+的值为多少?【解析】 由0a b c ++=易知a b c ,,中必有一正两负或两正一负,不妨设000a b c ><<,,或000a b c <>>,,所以1a b c x a b a c a b =--=+++或者1a b cx b c a c a b=-++=-+++,所以当1x =时,原式1902= 当1x =-时,原式2098=【巩固】 (8级)已知a 、b 、c 互不相等,求()()()()()()()()()()()()a b b c b c c a c a a b a b b c b c c a c a a b ------++------的值.【解析】 由题意可得()()()0a b b c c a ---≠且()()()0a b b c c a -+-+-=,把a b -,b c -,c a -当成整体分类讨论:① 两正一负,原式值为1-;② 两负一正,原式值为1-.【例27】 (8级)(第18届希望杯2试)若有理数m 、n 、p 满足1m n p m n p ++=,求23mnp mnp 的值. 【解析】 由1m n p m n p++=可得:有理数m 、n 、p 中两正一负,所以0mnp <,所以1mnpmnp=-, 222333mnp mnp mnp mnp =⋅=-.【巩固】 (6级)已知有理数a b c ,,满足1a b c a b c ++=,则abcabc=( ) A .1 B .1- C .0 D .不能确定【解析】 提示:其中两个字母为正数,一个为负数,即0abc <【巩固】 (8级)有理数a ,b ,c ,d 满足1abcd abcd =-,求a b c da b c d+++的值.【解析】由1abcd abcd=-知0abcd <,所以a ,b ,c ,d 里含有1个负数或3个负数:若含有1个负数,则2a b c d a b c d+++=;若含有3个负数,则2a b c d a b c d +++=-.【例28】 (6级)已知0ab ≠,求a bab+的值 【解析】 ⑴若a b ,异号,则0a ba b += ⑵若a b ,都是正数,则2a ba b+= ⑶若a b ,都是负数,则2a bab+=-【巩固】 (6级)已知0ab ≠,求a b a b--的值.【解析】 分类讨论:当0a >,0b >时,110a b a b --=-=. 当0a >,0b <时,1(1)2a b a b --=--=. 当0a <,0b >时,112a b ab--=--=-.当0a <,0b <时,1(1)0a b ab--=---=.综上所述,a b a b --的值为2-,0,2.【例29】 (6级)若a b c ,,均为非零的有理数,求a b ca b c++的值 【解析】 ⑴当a b c ,,都是正数时,原式3a b ca b c=++= ⑵当a b c ,,都是负数时,原式3=- ⑶当a b c ,,有两个正数一个负数时,原式1=- ⑷当a b c ,,有两个负数一个正数时,原式1=-【巩固】 (6级)(第16届希望杯培训试题)若0abc <,求a b ca b c+-的值. 【解析】 由0abc <可得,a 、b 、c 中有3个负数或1个负数,当a 、b 、c 中有3个负数时,原式11(1)1=----=-;当a 、b 中有1个是负数时,原式1111=-+-=-; 当c 是负数时,原式11(1)3=+--=.板块三:零点分段讨论法(中考高端,可选讲)【例30】 (4级)(2005年云南省中考试题)阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:·⑴当1x <-时,原式()()1221x x x =-+--=-+ ⑵当12x -<≤时,原式()123x x =+--= ⑶当2x ≥时,原式1221x x x =++-=-综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥通过阅读上面的文字,请你解决下列的问题: ⑴分别求出2x +和4x -的零点值 ⑵化简代数式24x x ++-【解析】 ⑴分别令20x +=和40x -=,分别求得2x =-和4x =,所以2x +和4x -的零点值分别为2x =-和4x =⑵当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当24x -<≤时,原式 ()246x x =+--=;当4x ≥时,原式2422x x x =++-=-所以综上讨论,原式()()()222624224x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥【例31】 (6级)求12m m m +-+-的值.【解析】 先找零点,0m =,10m -=,20m -=,解得0m =,1,2.依这三个零点将数轴分为四段:0m <,01m ≤<,12m ≤<,2m ≥. 当0m <时,原式()()1233m m m m =-----=-+;当01m ≤<时,原式()()123m m m m =----=-+; 当12m ≤<时,原式()()121m m m m =+---=+; 当2m ≥时,原式()()1233m m m m +-+-=-.【例32】 (4级)化简:212x x ---【解析】 由题意可知:零点为102x x ==,当12x <时,原式1x =--当122x <≤时,原式33x =- 当2x ≥时,原式1x =+【巩固】 (4级)(2005年淮安市中考题)化简523x x ++-. 【解析】 先找零点.50x +=,5x =- ; 32302x x -==,,零点可以将数轴分成三段. 当32x ≥,50x +>,230x -≥,52332x x x ++-=+;当352x -<≤,50x +≥,230x -<,5238x x x ++-=-; 当5x <-,50x +<,230x -<,52332x x x ++-=--.【巩固】 (6级)(北京市中考模拟题)化简:121x x --++.【解析】 先找零点.10x -=,1x =.10x +=,1x =-.120x --=,12x -=,12x -=或12x -=-,可得3x =或者1x =-;综上所得零点有1,-1,3 ,依次零点可以将数轴分成四段.⑴ 3x ≥,10x ->,120x --≥,10x +>,12122x x x --++=-; ⑵ 13x <≤,10x -≥,120x --<,10x +>,1214x x --++=; ⑶ 11x -<≤,10x -<,120x --<,10x +≥,12122x x x --++=+; ⑷ 1x <-,10x -<,120x --<,10x +<,12122x x x --++=--.【例33】 (6级)(选讲)(北京市中考题)已知2x ≤,求32x x --+的最大值与最小值. 【解析】 法1:根据几何意义可以得到,当2x ≤-时,取最大值为5;当2x =时,取最小值为3-.法2:找到零点3、2-,结合2x ≤可以分为以下两段进行分析:当22x -≤≤时,323212x x x x x --+=---=-,有最值3-和5; 当2x <-时,32325x x x x --+=-++=;综上可得最小值为3-,最大值为5.【巩固】 (8级)(第10届希望杯2试)已知04a ≤≤,那么23a a -+-的最大值等于 . 【解析】 (法1):我们可以利用零点,将a 的范围分为3段,分类讨论(先将此分类讨论的方法,而后讲几何意义的方法,让学生体会几何方法的优越性)(1)当02a ≤≤时,2352a a a -+-=-,当0a =时达到最大值5; (2)当23a <≤时,231a a -+-=(3)当34a <≤时,2325a a a -+-=-,当4a =时,达到最大值3 综合可知,在04a ≤≤上,23a a -+-的最大值为5(法2):我们可以利用零点,将a 的范围分为3段,利用绝对值得几何意义分类讨论,很 容易发现答案:当0a =时达到最大值5.【巩固】 (6级)如果122y x x x =+-+-,且12x -≤≤,求y 的最大值和最小值 【解析】 当10x -<≤时,有12223y x x x x =+-+-=+,所以13y <≤;当02x ≤≤时,有12232y x x x x =+-+-=-,所以13y -≤≤ 综上所述,y 的最大值为3,最小值为1-【巩固】 (6级)(2001年大同市中考题)已知759x -≤≤,求x 取何值时13x x --+的最大值与最小值. 【解析】 法1:13x x --+表示x 到点1和3-的距离差,画出数轴我们会发现当,79x =时两者的距离差最小为329-,即()min 32139x x --+=-;当53x -≤≤-时,两者的距离差最大为4,即max (13)4x x --+=.法2:分类讨论:先找零点,根据范围分段,当53x -≤<-时,134x x --+=;当739x -≤≤时,1322x x x --+=--,当79x =有最小值329-;当3x =-有最大值4.综上所得,当53x --≤≤时,最大值为4;当79x =时,最小值为329-.练习 1. (2级)若ab ab <,则下列结论正确的是 ( ) A. 00a b <<, B. 00a b ><, C. 00a b <>, D. 0ab < 【解析】 答案BC 不完善,选择D .练习 2. (2级)(人大附期中考试)如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c++--+的值.【解析】 原式()()()0a b a c b c =-++-++=练习 3. (6级)已知0,0,x z xy y z x <<>>>,求x z y z x y +++--的值. 【解析】 由0,0x z xy <<>可得:0y z <<,又y z x >>,可得:y x z <<; 原式0x z y z x y =+---+=.练习 4. (8级)(第13届希望杯培训试题)若200122002x =,则|||1||2||3||4||5|x x x x x x +-+-+-+-+-= . 【解析】 因为200122002x =,所以23x <<,原式(1)(2)(3)(4)(5)9x x x x x x =+-+-------=.练习 5. (6级)(2006年七台河市中考题)设2020y x b x x b =-+-+--,其中020,20b b x <<≤≤,求y 的最小值.【解析】 2020(20)(20)40y x b x x b x b x x b x =-+-+--=------=-,则20x =时,y 有最小值为20.练习 6. (4级)若0a <,化简a a --.课后练习【解析】 22a a a a a a --=+==-.练习 7. (6级)若0a <,试化简233a a a a--.【解析】2323553443a a a a a a a a a a-+===-----.练习 8. (6级)若245134x x x +-+-+的值恒为常数,则x 应满足怎样的条件?此常数的值为多少? 【解析】 要使245134x x x +-+-+的值恒为常数,那么须使450x ->,130x -<,即1435x <<,原式2451342453147x x x x x x =+-+-+=+-+-+=.练习 9. (8级)(第6届希望杯2试)a 、b 、c 的大小关系如图所示,求a b b c c a ab aca b b c c a ab ac-----++----的值.【解析】 从图中可知a b c <<且0a <,0b <,0c >,所以0a b -<,0b c -<,0c a ->,0ab >,0ac <, 所以0ab ac ->,原式(1)(1)112=---++=.练习 10. (8级)若0a b c ++=,0abc >,则b c c a a ba b c+++++= . ∵0a b c ++=,0abc >,∴a 、b 、c 中一正二负,∴1b c c a a b a b ca b c a b c+++---++=++=. 练习 11. (6级)求15y x x =--+的最大值和最小值.【解析】 法1:根据几何意义可以得答案;法2:找到零点5-,1,可以分为以下三段进行讨论: 当5x ≤-时,15156y x x x x =--+=-++=;当51x -<<时,151524y x x x x x =--+=---=--; 当1x ≥时,15156y x x x x =--+=---=-; 综上所得最小值为6-,最大值为6.练习 12. (6级)(第2届希望杯2试)如果12x <<,求代数式2121x x xx x x ---+--的值.【解析】 当12x <<时,0x >,10x ->,20x -<,原式21111121x x xx x x--=++=-++=--.。
北京市丰台区2020年中考数学综合练习(一) (解析版)
北京市丰台区2020年中考数学综合练习(一)一.选择题(共8小题)1.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.2.2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数将不少于16000000次.将16000000科学记数法表示应为()A.16×106B.1.6×107C.0.16×108D.1.6×1083.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0D.﹣a>b4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是()A.50°B.60°C.70°D.80°5.若一个多边形的每个内角均为120°,则该多边形是()A.四边形B.五边形C.六边形D.七边形6.如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.7.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:弹簧总长L(cm)1617181920重物重量x(kg)0.5 1.0 1.5 2.0 2.5当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是()A.22.5B.25C.27.5D.308.为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图.如图,y轴上动点M的纵坐标y m表示学生的期中考试成绩,直线x=10上动点N的纵坐标y n表示学生的期末考试成绩,线段MN与直线x=6的交点为P,则点P的纵坐标y p就是这名学生的学期总评成绩.有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%.结合这张算图进行判断,其中正确的说法是()A.①③B.②③C.②D.③二.填空题(共8小题)9.若在实数范围内有意义,则x的取值范围为.10.有一个质地均匀的正方体,六个面上分别标有1~6这六个整数,投掷这个正方体一次,则向上一面的数字是偶数的概率为.11.能说明命题“若a>b,则ac>bc”是假命题的一个c值是.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是.13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y 尺,可列方程组为.14.如图,在▱ABCD中,点E在DA的延长线上,且AE=AD,连接CE交BD于点F,则的值是.15.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单价(元/张)2030407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为元.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D 是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为.三.解答题(共8小题)17.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=,∴∠PEA=,∴PE∥BC.()(填推理依据).18.计算:()﹣1﹣6tan30°﹣(﹣1)0+.19.解不等式组:.20.关于x的一元二次方程x2+(m﹣3)x﹣3m=0.(1)求证:方程总有两个实数根;(2)若方程的两个根都是整数,请写出一个满足条件的m的值,并求此时方程的根.21.如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,ED=6,求BG的长.22.如图,AB与⊙O相切于点A,P为OB上一点,且BP=BA,连接AP并延长交⊙O于点C,连接OC.(1)求证:OC⊥OB;(2)若⊙O的半径为4,AB=3,求AP的长.23.在平面直角坐标系xOy中,直线y=kx(k≠0)与双曲线y=(x>0)交于点A(2,n).(1)求n及k的值;(2)点B是y轴正半轴上的一点,且△OAB是等腰三角形,请直接写出所有符合条件的点B的坐标.24.某年级共有400学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息.a.不同交通方式学生人数分布统计图如图1所示:b.采用公共交通方式单程所花费时间(分)的频数分布直方图如图2所示(数据分成6组:10≤x<20,20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x≤70):c.采用公共交通方式单程所花费时间在30≤x<40这一组的是:30 30 31 31 32 33 33 34 35 35 36 37 38 39根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)采用公共交通方式单程所花费时间的中位数为分;(3)请你估计该年级采用公共交通方式上学共有人,其中单程不少于60分钟的有人.25.在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD 和线段EF都没有公共点,请直接写出m的取值范围.26.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.27.在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点为“等距点”,如图中的P、Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1)①在点E(0,3)、F(3,﹣3)、G(2,﹣5)中,点A的“等距点”是E、F;②若点B在直线y=x+6上,且A、B两点为“等距点”,则点B的坐标为(﹣3,3);(2)直线l:y=kx﹣3(k>0)与x轴交于点C,与y轴交于点D.①若T1(﹣1,t1)、T2(4,t2)是直线l上的两点,且T1、T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出r的取值范围.参考答案与试题解析一.选择题(共8小题)1.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项正确;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:A.2.2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数将不少于16000000次.将16000000科学记数法表示应为()A.16×106B.1.6×107C.0.16×108D.1.6×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将16000000用科学记数法表示为:1.6×107.故选:B.3.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是()A.50°B.60°C.70°D.80°【分析】利用平行线的性质解决问题即可.【解答】解:∵a∥b,∴∠1=∠3=80°,由翻折不变性可知:∠2=∠4=(180°﹣80°)=50°,故选:A.5.若一个多边形的每个内角均为120°,则该多边形是()A.四边形B.五边形C.六边形D.七边形【分析】首先可求得每个外角为60°,然后根据外角和为360°即可求得多边形的边数.【解答】解:180°﹣120°=60°,360°÷60°=6.故选:C.6.如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•=,由a2+3a﹣2=0,得到a2+3a=2,则原式=,故选:B.7.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:弹簧总长L(cm)1617181920重物重量x(kg)0.5 1.0 1.5 2.0 2.5当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是()A.22.5B.25C.27.5D.30【分析】根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=5时,代入函数解析式求值即可.【解答】解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,将(0.5,16)、(1.0,17)代入,得:,解得:,∴L与x之间的函数关系式为:L=2x+15;当x=5时,L=2×5+15=25(cm)故重物为5kg时弹簧总长L是25cm,故选:B.8.为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图.如图,y轴上动点M的纵坐标y m表示学生的期中考试成绩,直线x=10上动点N的纵坐标y n表示学生的期末考试成绩,线段MN与直线x=6的交点为P,则点P的纵坐标y p就是这名学生的学期总评成绩.有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%.结合这张算图进行判断,其中正确的说法是()A.①③B.②③C.②D.③【分析】根据题意在坐标系中画出对应的图象即可.【解答】解:如图所示:①中,与x=6的交点大于75,故错误②中,乙与x=6的交点大于甲与x=6的交点,所以期末总评成绩乙大于甲,正确③中,由图象可知,期末总评成绩占60%,故错误故选:C.二.填空题(共8小题)9.若在实数范围内有意义,则x的取值范围为x≥2.【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.10.有一个质地均匀的正方体,六个面上分别标有1~6这六个整数,投掷这个正方体一次,则向上一面的数字是偶数的概率为.【分析】由质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的有3种情况,∴投掷这个骰子一次,则向上一面的数字是偶数的概率为:=.故答案为:.11.能说明命题“若a>b,则ac>bc”是假命题的一个c值是0(答案不唯一).【分析】举出一个能使得ac=bc或ac<bc的一个c的值即可.【解答】解:若a>b,当c=0时ac=bc=0,故答案为:0(答案不唯一).12.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是60°.【分析】根据垂径定理求出=,求出、、的度数,即可求出答案.【解答】解:∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵=,∴==,即、、的度数是=120°,∴∠ACD=°=60°,故答案为:60°.13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y 尺,可列方程组为.【分析】用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长4.5尺得:y﹣x =4.5;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:;组成方程组即可.【解答】解:根据题意得:;故答案为:.14.如图,在▱ABCD中,点E在DA的延长线上,且AE=AD,连接CE交BD于点F,则的值是.【分析】由△EDF∽△CBF,可得=,由此即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC.AD=BC,设AD=3a,则AE=a,∵DE∥BC,∴△EDF∽△CBF,∴===故答案为.15.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单价(元/张)2030407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为80元.【分析】分5种方案计算费用比较即可.【解答】解:连续6天不限次数乘坐地铁有5种方案方案①:买一日票6张,费用20×6=120(元)方案②:买二日票3张:30×3=90(元)方案③:买三日票2张:40×2=80(元)方案④:买一日票1张,五日票1张:20+70=90(元)方案⑤:买七日票1张:90元故方案③费用最低:40×2=80(元)故答案为80.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D 是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为4.【分析】连接CD.根据直角三角形斜边中线的性质求出CD=A′B′=2,利用三角形的三边关系即可解决问题.【解答】解:连接CD,在Rt△ABC中,∵∠ACB=90°,BC=2,∠ABC=60°,∴∠A=30°,∴AB=A′B′=2BC=4,∵DB′=DA′,∴CD=A′B′=2,∴BD≤CD+CB=4,∴BD的最大值为4,故答案为4.三.解答题(共8小题)17.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=∠PEA,∴∠PEA=∠CAD,∴PE∥BC.(内错角相等两直线平行)(填推理依据).【分析】(1)根据要求作图即可;(2)根据等腰三角形的性质和平行线的判定及角平分线的定义求解可得.【解答】解:(1)如图所示:直线PE即为所求.(2)证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=∠PEA,∴∠PEA=∠CAD,∴PE∥BC.(内错角相等两直线平行).故答案为:∠PEA,∠CAD,内错角相等两直线平行.18.计算:()﹣1﹣6tan30°﹣(﹣1)0+.【分析】原式利用零指数幂、负整式指数幂法则,特殊角的三角函数值计算即可求出值.【解答】解:原式=2﹣6×﹣1+2=1.19.解不等式组:.【分析】分别求得各不等式的解集,然后求得公共部分即可.【解答】解:由①得x≤2;由②得x>﹣1;故不等式组的解集为﹣1<x≤2.20.关于x的一元二次方程x2+(m﹣3)x﹣3m=0.(1)求证:方程总有两个实数根;(2)若方程的两个根都是整数,请写出一个满足条件的m的值,并求此时方程的根.【分析】(1)先求出判别式△的值,再根据“△”的意义证明即可;(2)根据求根公式得出x1=3,x2=﹣m,即可求出m的值和方程的根.【解答】(1)证明:△=(m﹣3)2﹣4×1×(﹣3m),=m2﹣6m+9+12m,=(m+3)2,无论m取任何实数,(m+3)2≥0,即△≥0,∴原方程总有两个实数根.(2)解:∵△=(m+3)2,由求根公式,得,,原方程的根为:x1=3,x2=﹣m,∵方程的两个根都是整数,∴取m=1,方程的两根为x1=3,x2=﹣1.21.如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,ED=6,求BG的长.【分析】(1)由角平分线的性质和垂直平分线的性质可证∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,由菱形的判定可证结论;(2)过点D作DH⊥BC,由菱形的性质可得DE=DG=6,DG∥EC,由直角三角形的性质可得BH=DH=3,HG=DH=3,即可求BG的长.【解答】解:(1)∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC∴∠EDC=∠DCG=∠ACD=∠GDC∴CE∥DG,DE∥GC∴四边形DECG是平行四边形,且DE=EC∴四边形DGCE是菱形;(2)如图,过点D作DH⊥BC,∵四边形DGCE是菱形,∴DE=DG=6,DG∥EC∴∠ACB=∠DGB=30°,且DH⊥BC∴DH=3,HG=DH=3∵∠B=45°,DH⊥BC∴∠B=∠BDH=45°∴BH=DH=3∴BG=BH+HG=3+322.如图,AB与⊙O相切于点A,P为OB上一点,且BP=BA,连接AP并延长交⊙O于点C,连接OC.(1)求证:OC⊥OB;(2)若⊙O的半径为4,AB=3,求AP的长.【分析】(1)由等腰三角形的性质可得∠BAP=∠BP A,可证∠BAP+∠P AO=90°,∠C+∠CPO=90°,结论得证;(2)作BD⊥AP于点D,先求出OB,OP的长,再求出CP长,根据△BPD∽△CPO,得出比例线段,求PD的长,则AP可求.【解答】(1)证明:∵AB=BP,∴∠BAP=∠BP A,∵AB与⊙O相切于点A,∴OA⊥BA,∴∠BAO=90°,即∠BAP+∠P AO=90°,∵OA=OC,∴∠P AO=∠C,∵∠BP A=∠CPO,∴∠C+∠CPO=90°,∴∠COP=90°,即CO⊥BO;(2)解:如图,作BD⊥AP于点D,在Rt△ABO中,AB=3,OA=4,则BO=5,OP=2,在Rt△CPO中,PO=2,CO=4,则CP=2,∵BA=BP,∴AD=PD,由(1)知∠COP=90°,∵∠BDP=90°,∠BPD=∠CPO,∴△BPD∽△CPO,∴,即,∴PD=,∴AP=2PD=.23.在平面直角坐标系xOy中,直线y=kx(k≠0)与双曲线y=(x>0)交于点A(2,n).(1)求n及k的值;(2)点B是y轴正半轴上的一点,且△OAB是等腰三角形,请直接写出所有符合条件的点B的坐标.【分析】(1)由点A的横坐标利用反比例函数图象上点的坐标特征可求出n值,进而可得出点A的坐标,由点A的坐标利用待定系数法可求出k值;(2)分AB=AO,OA=OB,BO=BA三种情况考虑:①当AB=AO时,利用等腰三角形的性质可求出CB1的长度,结合点C的坐标可得出点B1的坐标;②当OA=OB时,由点A的坐标利用勾股定理可求出OA的长度,利用等腰三角形的性质可得出OB2的长度,进而可得出点B2的坐标;③当BO=BA时,设OB3=m,则CB3=4﹣m,AB3=m,在Rt△ACB3中利用勾股定理可得出关于m的方程,解之即可得出点B3的坐标.综上,此题得解.【解答】解:(1)∵点A(2,n)在双曲线y=上,∴n==4,∴点A的坐标为(2,4).将A(2,4)代入y=kx,得:4=2k,解得:k=2.(2)分三种情况考虑,过点A作AC⊥y轴于点C,如图所示.①当AB=AO时,CO=CB1=4,∴点B1的坐标为(0,8);②当OA=OB时,∵点A的坐标为(2,4),∴OC=4,AC=2,∴OA==2,∴OB2=2,∴点B2的坐标为(0,2);③当BO=BA时,设OB3=m,则CB3=4﹣m,AB3=m,在Rt△ACB3中,AB32=CB32+AC2,即m2=(4﹣m)2+22,解得:m=,∴点B3的坐标为(0,).综上所述:点B的坐标为(0,8),(0,2),(0,).24.某年级共有400学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息.a.不同交通方式学生人数分布统计图如图1所示:b.采用公共交通方式单程所花费时间(分)的频数分布直方图如图2所示(数据分成6组:10≤x<20,20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x≤70):c.采用公共交通方式单程所花费时间在30≤x<40这一组的是:30 30 31 31 32 33 33 34 35 35 36 37 38 39根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)采用公共交通方式单程所花费时间的中位数为31分;(3)请你估计该年级采用公共交通方式上学共有200人,其中单程不少于60分钟的有8人.【分析】(1)用被抽查总人数乘以乘公共交通对应的百分比可得其人数,再减去其它分组的人数求出40≤x<50的人数,从而补全图形;(2)根据中位数的概念计算可得;(3)利用样本估计总体思想计算可得.【解答】解:(1)∵选择公共交通的人数为100×50%=50(人),∴40≤x<50的人数为50﹣(5+17+14+4+2)=8(人),补全直方图如下:(2)采用公共交通方式单程所花费时间共50个数据,其中位数是第25、26个数据的平均数,所以采用公共交通方式单程所花费时间的中位数是=31(分),故答案为:31;(3)估计该年级采用公共交通方式上学共有400×50%=200(人),其中单程不少于60分钟的有200×=8(人),故答案为:200、8.25.在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD 和线段EF都没有公共点,请直接写出m的取值范围.【考点】H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点.【专题】535:二次函数图象及其性质.【分析】(1)利用配方法得y═m(x﹣3)2+1,由此即可得出顶点坐标;(2)根据抛物线的对称轴以及AB=4,即可得到A、B两点的坐标,代入抛物线即可求出m的值;(3)结合图象即可得出当抛物线与线段CD和线段EF都没有公共点时m的取值范围.【解答】解:(1)∵y=mx2﹣6mx+9m+1=m(x﹣3)2+1,∴抛物线的顶点坐标为(3,1);(2)∵对称轴为直线x=3,且AB=4,∴A(1,0),B(5,0),将点A的坐标代入抛物线,可得:m=﹣;(3)如图:①当m>0时满足,解得:m>;②当m<时满足0,解得:m<﹣1;]综上,m<﹣1或m>.26.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=∠ADC=45°;(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△P AP'是等腰直角三角形,可得结论;(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.【解答】解:(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDP=∠FDC'+∠EDC'=∠ADC=45°;(2)结论:BP+DP=AP,理由是:如图,作AP'⊥AP交PD的延长线于P',∴∠P AP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'=AP;(3)如图,过C'作C'G⊥AC于G,则S△AC'C=AC•C'G,Rt△ABC中,AB=BC=,∴AC==2,即AC为定值,当C'G最大值,△AC'C的面积最大,连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,∵CD=C'D=,OD=AC=1,∴C'G=﹣1,∴S△AC'C=AC•C'G==﹣1.27.在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点为“等距点”,如图中的P、Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1)①在点E(0,3)、F(3,﹣3)、G(2,﹣5)中,点A的“等距点”是E、F;②若点B在直线y=x+6上,且A、B两点为“等距点”,则点B的坐标为(﹣3,3);(2)直线l:y=kx﹣3(k>0)与x轴交于点C,与y轴交于点D.①若T1(﹣1,t1)、T2(4,t2)是直线l上的两点,且T1、T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出r的取值范围.【考点】MR:圆的综合题.【专题】21:阅读型;23:新定义.【分析】(1)①找到x、y轴距离最大为3的点即可;②先分析出直线上的点到x、y轴距离中有3的点,再根据“等距点”概念进行选择即可;(2)先求出C、D点坐标以及CD长度,分析出N点到坐标轴距离中最小距离为,从而确定r的最小值,根据CD长度确定r的最大值.【解答】解:(1)①∵点A(﹣3,1)到x、y轴的距离中最大值为3,∴与A点是“等距点”的点是E、F.②点B在直线y=x+6上,当点B坐标中到x、y轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A符合“等距点”的是(﹣3,3).故答案为①E、F;②(﹣3,3);(2)∵T1(﹣1,t1)、T2(4,t2)是直线l上的两点,∴t1=﹣k﹣3,t=4k﹣3.∵k>0,∴|﹣k﹣3|=k+3>3,4k﹣3>﹣3.依据“等距点”定义可得:当﹣3<4k﹣3<4时,k+3=4,解得k=1;当4k﹣3≥4时,k+3=4k﹣3,解得k=2.综上所述,k的值为1或2.②∵k=1,∴y=x﹣3与坐标轴交点C(0,﹣3)、D(3,0),线段CD=3.N点在CD上,则N点到x、y轴的距离最大值中最小数为,若半径为r的⊙O上存在一点M与N是“等距点”,则r最小值为,r的最大值为CD长度3.所以r的取值范围为≤r≤3.故答案为E、F;(﹣3,3)。
中考综合模拟考试 数学试卷 附答案解析
(1)求抛物线的解析式;
(2)点C为第一象限抛物线上一动点.设点C的横坐标为m,△ABC的面积为S.当m为何值时,S的值最大,并求S的最大值;
(3)在(2)的结论下,若点M在y轴上,△ACM为直角三角形,请直接写出点M的坐标.
9.在函数 中,自变量x的取值范围是______.
【答案】x≥4
【解析】
【分析】
根据被开方数为非负数及分母不能为0列不等式组求解可得.
【详解】解:根据题意,知 ,
解得:x≥4,
故答案为x≥4.
【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
A. B. C. D.
【答案】B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】47.24亿=4724 000 000=4.724×109.
10.若 ,则 的值是________.
【答案】3
【解析】
【分析】
原式变形后,将m−n的值代入计算即可求出值.
【详解】解:∵ ,
2022年人教版中考二模考试《数学试卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.7-的绝对值为( )A. 7B. 17C.17- D. 7-2.下列计算正确的是()A. a+a2=a3B. a6b÷a2=a3bC. (a﹣b)2=a2﹣b2D. (﹣ab3)2=a2b63.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A. 甲的数学成绩高于班级平均分,且成绩比较稳定B. 乙的数学成绩在班级平均分附近波动,且比丙好C. 丙的数学成绩低于班级平均分,但成绩逐次提高D. 就甲、乙、丙三个人而言,乙数学成绩最不稳4.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为3,∠C=140°,则弧BD的长为( )A. 23π B.43π C. π D. 2π5.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有【】A. 1个B. 2个C. 3个D. 4个6.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次”移位”.如:小宇在编号为3的顶点时,他应走3个边长,即从3→4→5→1为第一次”移位”,这时他到达编号为1的顶点;然后从1→2为第二次”移位”.若小宇从编号为2的顶点开始,第20次”移位”后,他所处顶点的编号是( )A. 1B. 2C. 3D. 4二.填空题7.若代数式111x +-在实数范围内有意义,则实数x 的取值范围为____. 8.已知a 、b 是一元二次方程x 2+2x ﹣4=0的两个根,则a+b ﹣ab =_____. 9.当直线()223y k x k =-+-经过第二、三、四象限时,则的取值范围是_____.10.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l 甲、l 乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶 千米.11.如图,P 是抛物线y =x 2﹣x ﹣4在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,则四边形OAPB 周长的最大值为_____.12.如图,反比例函数y =k x(x >0)的图象与直线AB 交于点A (2,3),直线AB 与x 轴交于点B (4,0),过点B 作x 轴的垂线BC ,交反比例函数的图象于点C ,在平面内存在点D ,使得以A ,B ,C ,D 四点为顶点的四边形为平行四边形,则点D 的坐标是______.三.解答题13.计算:|1﹣3|+20200﹣27﹣(14)﹣1;14.如图,在Rt△ABC中,∠ACB=90°,分别以AC、BC为底边,向△ABC外部作等腰△ADC和△CEB,点M 为AB中点,连接MD、ME分别与AC、BC交于点F和点G.求证四边形MFCG是矩形.15.解不等式组:()x-23x-22x-15x1-132⎧≥⎪⎨+<⎪⎩,并将解集在数轴上表示.16.如图,在四边形ABDC中,AB=AC,BD=DC,BE∥DC,请仅用无刻度的直尺按下列要求画图.(1)在图1中,画一个以AB为边的直角三角形;(2)在图2中,画一个菱形,要求其中一边在BE上.17.一只不透明的袋子中装有4个球,其中两个红球,一个黄球、一个白球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,恰好是红球的概率为.(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.18.如图,一次函数y =k 1x +3的图象与坐标轴相交于点A (﹣2,0)和点B ,与反比例函数y =2k x(x >0)相交于点C (2,m ).(1)填空:k 1= ,k 2= ;(2)若点P 是反比例函数图象上的一点,连接CP 并延长,交x 轴正半轴于点D ,若PD :CP =1:2时,求△COP 的面积.19.为响应”学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有”戒毒宣传”、”文明交通岗”、”关爱老人”、”义务植树”、”社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?20.小亮将笔记本电脑水平放置在桌子上,显示屏OA 与底板OB 所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架BCO '后,电脑转到B O′A′位置(如图3),侧面示意图为图4.已知OA=OB=28cm ,O′C ⊥OB 于点C ,O′C=14cm.(2 1.414≈3 1.732≈5 2.236≈)(1)求∠CBO '的度数.(2)显示屏的顶部A'比原来升高了多少cm?(结果精确到0.1cm)(3)如图4,垫入散热架后,要使显示屏O′A′与水平线的夹角仍保持120°,则显示屏O′A′应绕点O'按顺时针方向旋转多少度?(不写过程,只写结果.........)21.如图,AB是⊙O的直径,C,D在⊙O上两点,连接AD,CD.(1)如图1,点P是AC延长线上一点,∠APB=∠ADC,求证:BP与⊙O相切;(2)如图2,点G在CD上,OF⊥AC于点F,连接AG并延长交⊙O于点H,若CD为⊙O的直径,当∠CGB =∠HGB,BG=2OF=6时,求⊙O半径的长.22.某店因为经营不善欠下38000元的无息贷款的债务,想转行经营服装专卖店又缺少资金.”中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的某品牌服装的进价为每件40元,该品牌服装日的售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)当销售价为多少元时,该店的日销售利润最大;(3)该店每天支付工资和其它费用共250元,该店能否在一年内还清所有债务.23.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.24.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形(1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°,求证:四边形ABCD等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD∠ACB(填”>”“<”或”=”);④若将两条相等的邻边叫做等补四边形的”等边”,等边所夹的角叫做”等边角”,它所对的角叫做”等边补角”连接它们顶点的对角线叫做”等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD与等边垂直,求CD的长.答案与解析一.选择题1.7-的绝对值为( )A. 7B. 17C.17- D. 7-【答案】A【解析】试题分析:7-的绝对值等于7,故选A.考点:绝对值.2.下列计算正确的是()A. a+a2=a3B. a6b÷a2=a3bC. (a﹣b)2=a2﹣b2D. (﹣ab3)2=a2b6【答案】D【解析】【分析】根据同底数幂积的乘方、幂的乘方、除法法则和完全平方差公式进行计算.【详解】A选项:a和a2不能直接相加,故是错误的;B选项:a6b÷a2=a6-2b= a2b,故是错误的;C选项:(a﹣b)2=a2-2ab+b2,故是错误的;D选项:(﹣ab3)2=a2b6,计算正确,故是正确的.故选D.【点睛】主要考查了完全平方差公式和同底数幂积的乘方、幂的乘方、除法法则,正确记忆公式和运算法则是解题关键.3.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A. 甲的数学成绩高于班级平均分,且成绩比较稳定B. 乙的数学成绩在班级平均分附近波动,且比丙好C. 丙的数学成绩低于班级平均分,但成绩逐次提高D. 就甲、乙、丙三个人而言,乙的数学成绩最不稳【答案】D【解析】分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选D.【点睛】本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.4.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为3,∠C=140°,则弧BD的长为( )A. 23π B.43π C. π D. 2π【答案】B【解析】【分析】连接OB、OC,根据圆内接四边形的性质求出∠A的度数,根据圆周角定理求出∠BOD的度数,利用弧长公式计算即可.【详解】解:连接OB、OC,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴∠A=180°﹣∠C=40°,由圆周角定理得,∠BOD=2∠A=80°,∴弧BD的长=803180π⋅⨯=43π,故选:B.【点睛】本题考查的是圆内接四边形的性质、圆周角定理以及弧长的计算,掌握圆内接四边形的对角互补、弧长公式是解题的关键.5.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有【】A. 1个B. 2个C. 3个D. 4个【答案】A【解析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可:①∵2>0,∴图象的开口向上,故本说法错误;②图象的对称轴为直线x=3,故本说法错误;③其图象顶点坐标为(3,1),故本说法错误;④当x<3时,y随x的增大而减小,故本说法正确.综上所述,说法正确的有④共1个.故选A.6.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次”移位”.如:小宇在编号为3的顶点时,他应走3个边长,即从3→4→5→1为第一次”移位”,这时他到达编号为1的顶点;然后从1→2为第二次”移位”.若小宇从编号为2的顶点开始,第20次”移位”后,他所处顶点的编号是( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据”移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.【详解】解:根据题意,小宇从编号为2的顶点开始,第1次移位到点4,第2次移位到达点3,第3次移位到达点1,第4次移位到达点2,…,依此类推,4次移位后回到出发点,20÷4=5.所以第20次移位为第5个循环组的第4次移位,到达点2.故选:B.【点睛】本题对图形变化规律的考查,根据”移位”的定义,找出每4次移位为一个循环组进行循环是解题的关键.二.填空题7.若代数式111x+-在实数范围内有意义,则实数x的取值范围为____.【答案】x≠1【解析】【分析】根据分式有意义的条件解答即可.【详解】∵111x+-在实数范围内有意义,∴x-1≠0,解得:x≠1.故答案为x≠1【点睛】本题考查分式有意义的条件,要使分式有意义,分母不为0.8.已知a、b是一元二次方程x2+2x﹣4=0的两个根,则a+b﹣ab=_____.【答案】2【解析】【分析】根据一元二次方程的根与系数的关系求得a+b、ab的值,然后将其代入所求的代数式并求值.【详解】解:∵a ,b 是一元二次方程x 2+2x ﹣4=0的两个根,∴由韦达定理,得a+b =﹣2,ab =﹣4,∴a+b ﹣ab =﹣2+4=2.故答案为:2.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系:若方程的两根分别为x 1,x 2,则x 1+x 2=−b a ,x 1•x 2=c a. 9.当直线()223y k x k =-+-经过第二、三、四象限时,则的取值范围是_____. 【答案】13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,与对函数图象的影响是解题的关键. 10.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l 甲、l 乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶 千米.【答案】35. 【解析】【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果:【详解】∵甲每分钟行驶12÷30=25(千米),乙每分钟行驶12÷12=1(千米),∴每分钟乙比甲多行驶1-23=55(千米)则每分钟乙比甲多行驶35千米故答案为3 511.如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为_____.【答案】10【解析】【分析】设P(x,x2﹣x﹣4)根据矩形的周长公式得到C=﹣2(x﹣1)2+10.根据二次函数的性质来求最值即可.【详解】解:设P(x,x2﹣x﹣4),四边形OAPB周长=2PA+2OA=﹣2(x2﹣x﹣4)+2x=﹣2x2+4x+8=﹣2(x﹣1)2+10,当x=1时,四边形OAPB周长有最大值,最大值为10.故答案为10.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.12.如图,反比例函数y=kx(x>0)的图象与直线AB交于点A(2,3),直线AB与x轴交于点B(4,0),过点B作x轴的垂线BC,交反比例函数的图象于点C,在平面内存在点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,则点D的坐标是______.【答案】(2,32)或(2,92)或(6,-32)【解析】【分析】先将A点的坐标代入反比例函数求得k的值,然后将x=4代入反比例函数解析式求得相应的y的值,即得点C的坐标;然后结合图象分类讨论以A、B、C、D为顶点的平行四边形,如图所示,找出满足题意的D 的坐标即可.【详解】解:把点A(2,3)代入y=kx(x>0)得:k=xy=6,故该反比例函数解析式为:y=6x.∵点B(4,0),BC⊥x轴,∴把x=4代入反比例函数y=6x,得y=32.则C(4,32 ).①如图,当四边形ACBD为平行四边形时,AD∥BC且AD=BC.∵A(2,3)、B(4,0)、C(4,32 ),∴点D的横坐标为2,y A-y D=y C-y B,故y D=32.所以D(2,32 ).②如图,当四边形ABCD′为平行四边形时,AD′∥CB且AD′=CB.∵A(2,3)、B(4,0)、C(4,32 ),∴点D的横坐标为2,y D′-y A=y C-y B,故y D′=92.所以D′(2,92 ).③如图,当四边形ABD″C为平行四边形时,AC=BD″且AC∥BD″.∵A(2,3)、B(4,0)、C(4,32 ),∴x D″-x B=x C-x A即x D″-4=4-2,故x D″=6.y D″-y B=y C-y A即y D″-0=32-3,故y D″=-32.所以D″(6,-32 ).综上所述,符合条件的点D的坐标是:(2,32)或(2,92)或(6,-32).故答案为(2,32)或(2,92)或(6,-32).【点睛】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答本题时,采用了”数形结合”和”分类讨论”的数学思想.三.解答题13.计算:|1﹣3|+20200﹣27﹣(14)﹣1;【答案】﹣23﹣4【解析】【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及二次根式性质计算即可求出值.【详解】解:原式=3﹣1+1﹣33﹣4=﹣23﹣4.【点睛】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.14.如图,在Rt△ABC中,∠ACB=90°,分别以AC、BC为底边,向△ABC外部作等腰△ADC和△CEB,点M 为AB中点,连接MD、ME分别与AC、BC交于点F和点G.求证四边形MFCG是矩形.【答案】详见解析【解析】【分析】根据Rt△ABC,得出点M在线段AC的垂直平分线上.然后在等腰△ADC中,AC为底边,得到MD垂直平分A C.即可解答【详解】证明:连接CM,∵Rt△ABC中,∠ACB=90°,MAB中点,∴CM=AM=BM =12A B.∴点M在线段AC的垂直平分线上.∵在等腰△ADC中,AC为底边,∴AD=C D.∴点D在线段AC的垂直平分线上.∴MD垂直平分A C.∴∠MFC=90°.同理:∠MGC=90°.∴四边形MFCG是矩形.【点睛】此题考查了直角三角形的性质,等腰三角形的性质和矩形的判定,解题关键在于利用好特殊三角形的性质15.解不等式组:()x-23x-22x-15x1-132⎧≥⎪⎨+<⎪⎩,并将解集在数轴上表示.【答案】﹣1<x≤2【解析】【分析】根据解一元一次不等式组的步骤,大小小大中间找,可得答案.【详解】()x-23x-22x-15x1-132⎧≥⎪⎨+<⎪⎩①②由①得,x≤2,由②得,x>-1,所以,不等式组的解集为:-1<x≤2,在数轴上表示为:【点睛】本题考查的是解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键.16.如图,在四边形ABDC中,AB=AC,BD=DC,BE∥DC,请仅用无刻度的直尺按下列要求画图.(1)在图1中,画一个以AB为边的直角三角形;(2)在图2中,画一个菱形,要求其中一边在BE上.【答案】(1)见解析;(2)见解析【解析】【分析】(1)在图1中,画一个以AB为边的直角三角形即可;(2)在图2中,画一个菱形,要求其中一边在BE上即可.【详解】解:(1)如图,Rt△AOB即为所求;(2)如图,菱形BFCD即为所求.【点睛】本题考查了作图−复杂作图、菱形的判定,解决本题的关键是掌握菱形的判定方法.17.一只不透明的袋子中装有4个球,其中两个红球,一个黄球、一个白球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,恰好是红球的概率为.(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.【答案】(1)12;(2)14. 【解析】【分析】(1)直接利用概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:(1)搅匀后从中任意摸出1个球,恰好是红球的概率为24 12. (2)设红球为红1和红2,列表如下:由上表知共有16种等可能出现的结果,其中两次摸到都是红球的有4种结果,所以两次都是红球的概率为14. 【点睛】考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.18.如图,一次函数y =k 1x +3的图象与坐标轴相交于点A (﹣2,0)和点B ,与反比例函数y =2k x(x >0)相交于点C (2,m ).(1)填空:k 1= ,k 2= ;(2)若点P 是反比例函数图象上的一点,连接CP 并延长,交x 轴正半轴于点D ,若PD :CP =1:2时,求△COP 的面积.【答案】(1)32,12;(2)S △COP =16. 【解析】【分析】(1)先根据点A 求出k 1,再根据一次函数解析式求出m 值,利用待定系数法求反比例函数的解析式;(2)先根据三角形相似求得P 点的坐标,然后利用三角形的面积差求解.S △COP =S △COD -S △POD .【详解】(1)∵一次函数y =k 1x +3的图象与坐标轴相交于点A (﹣2,0),∴﹣2k 1+3=0,解得k 1=32, ∴一次函数为:y 1=32x +3, ∵一次函数y 1=32x +3的图象经过点C (2,m ). ∴m =32×2+3=6, ∴C 点坐标为(2,6), ∵反比例函数y =2k x (x >0)经过点C , ∴k 2=2×6=12, 故答案为32,12. (2)作CE ⊥OD 于E ,PF ⊥OD 于F ,∴CE ∥PF ,∴△PFD ∽△CED , ∴PF CE =PD CD, ∵PD :CP =1:2,C 点坐标为(2,6),∴PD :CD =1:3,CE =6, ∴PF 6=13, ∴PF =2,∴P 点的纵坐标为2,把y =2代入y 2=12x 求得x =6, ∴P (6,2),设直线CD 的解析式为y =ax +b ,把C (2,6),P (6,2)代入得2662a b a b +=⎧⎨+=⎩,解得18ab=-⎧⎨=⎩,∴直线CD的解析式为y=﹣x+8,令y=0,则x=8,∴D(8,0),∴OD=14,∴S△COP=S△COD﹣S△POD=12×8×6﹣1822⨯⨯=16.【点睛】主要考查了反比例函数与一次函数的交点.熟练掌握用待定系数法确定函数的解析式是解题的关键.19.为响应”学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有”戒毒宣传”、”文明交通岗”、”关爱老人”、”义务植树”、”社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?【答案】(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.【解析】分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.详解:(1)被随机抽取的学生共有14÷28%=50(人); (2)活动数为3项的学生所对应的扇形圆心角=1050×360°=72°, 活动数为5项学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有12+650×2000=720(人). 点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.20.小亮将笔记本电脑水平放置在桌子上,显示屏OA 与底板OB 所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架BCO '后,电脑转到B O′A′位置(如图3),侧面示意图为图4.已知OA=OB=28cm ,O′C ⊥OB 于点C ,O′C=14cm.(参考数据:2 1.414≈,3 1.732≈,5 2.236≈)(1)求∠CBO '的度数.(2)显示屏的顶部A '比原来升高了多少cm?(结果精确到0.1cm)(3)如图4,垫入散热架后,要使显示屏O′A′与水平线的夹角仍保持120°,则显示屏O′A′应绕点O '按顺时针方向旋转多少度?(不写过程,只写结果.........)【答案】(1)30°(2)17.8(3)30°【解析】分析:(1)通过解直角三角形即可得到结果;(2)求出现在的高度与原来的高度,相减即可.(3)显示屏O A ''应绕点O ′按顺时针方向旋转30°.详解:(1)∵28O C BC OA OB cm '⊥==,,∴141sin 282O C O C CBO O B OB ''∠'====', ∴30CBO ∠'=;(2)现在的高度:()281442,ACAO O C cm '=''+'=+= 原来的高度:sin6014324.25,AO cm ⋅︒=≈4224.2517.8.cm -≈∴显示屏的顶部A′比原来升高了17.8cm ;(3)显示屏O ′A ′应绕点O ′按顺时针方向旋转30,理由:∵显示屏O ′A 与水平线的夹角仍保持120,∴显示屏O ′A ′应绕点O ′按顺时针方向旋转30.点睛:主要考查解直角三角形,涉及了旋转的性质,正确的运用三角函数是解题的关键.21.如图,AB 是⊙O 的直径,C ,D 在⊙O 上两点,连接AD ,CD .(1)如图1,点P 是AC 延长线上一点,∠APB =∠ADC ,求证:BP 与⊙O 相切;(2)如图2,点G 在CD 上,OF ⊥AC 于点F ,连接AG 并延长交⊙O 于点H ,若CD 为⊙O 的直径,当∠CGB=∠HGB ,BG =2OF =6时,求⊙O 半径的长.【答案】(1)见解析;(2)6【解析】【分析】(1)如图1,连接BC,根据圆周角定理得到∠ACB=90°,得到∠ABC=∠P,求得∠ABP=90°,于是得到结论;(2)如图2中,连接BC,BH,作BM⊥CD于M,AN⊥CD于N.想办法证明OM=ON=GN,MG=DN,设OM=ON=a,构建方程求出a即可解决问题.【详解】解:(1)如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠ABC=∠D,∠D=∠P,∴∠ABC=∠P,∴∠P+∠PAB=90°,∴∠ABP=90°,∴BP与⊙O相切;(2)如图2,连接BC,BH,作BM⊥CD于M,AN⊥CD于N.∵CD,AB是直径,∴OA=OD=OC=OB,∵∠AOD=∠BOC,∴△AOD≌△BOC(SAS),∴AD=BC=2OF=6,∵OA=OB,∠AON=∠BOM,∠ANO=∠BMO=90°,∴△AON≌△BOM(AAS),∴OM=ON,AN=BM,设OM=ON=a,∵∠CGB=∠HGB,∴∠OGH=2∠CGB,∵∠BOG=∠OCB+∠OBC=2∠GCB,∠GCB=∠BGC,∴∠BOG=∠OGH,∴∠AOG=∠AGO,∴AO=AG,∵AN⊥OG,∴ON=NG=a,∵BG=AD,BM=AN,∠AND=∠BMG=90°,∴Rt△BMG≌Rt△AND(HL),∴MG=DN=3a,OD=OA=OB=OC=4a,∴BM=22OB OM=15a,在Rt△CBM中,∵BC2=BM2+CM2,∴36=15a2+9a2,∵a>0,∴a=62,∴MG=CM=3a=362,∴DG=2a=6,∴CD=2×362+6=46,∴⊙O半径的长为26.【点睛】本题考查了切线的判定和性质,圆周角定理,全等三角形的判定和性质,角平分线的性质定理,勾股定理,等腰三角形的频道合作,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数,构建方程解决问题,属于中考压轴题.22.某店因为经营不善欠下38000元的无息贷款的债务,想转行经营服装专卖店又缺少资金.”中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的某品牌服装的进价为每件40元,该品牌服装日的售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.(1)求日销售量y (件)与销售价x (元/件)之间的函数关系式;(2)当销售价为多少元时,该店的日销售利润最大;(3)该店每天支付工资和其它费用共250元,该店能否在一年内还清所有债务.【答案】(1)2140(4058)82(5871)x x y x x -+<⎧=⎨-+⎩;(2)当销售价为55元时,该店的日销售利润最大,最大利润为450元;(3)该店能在一年内还清所有债务.【解析】【分析】(1)利用待定系数法,即可求得日销售量y (件)与销售价x (元/件)之间的函数关系式(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润w (元)与销售价x (元/件)之间的函数关系式,再依据函数的增减性求得最大利润.(3)根据(2)中的最大利润,可求得除去其他支出的利润,即可判断能否在一年内还清所有债务【详解】(1)由图象可得:当40≤x <58时,设y =k 1x +b 1,把(40,60),(58,24)代入得111160402458k b k b =+⎧⎨=+⎩,解得:112140k b =-⎧⎨=⎩, ∴y =﹣2x +140(40≤x <58)当58≤x ≤71时,设y =k 2x +b 2,把(58,24),(71,11)代入得22222458k b 1171k b =+⎧⎨=+⎩,解得:22182k b =-⎧⎨=⎩, ∴y =﹣x +82(58≤x ≤71)故日销售量y (件)与销售价x (元/件)之间的函数关系为:2140(4058)82(5871)x x y x x -+<⎧=⎨-+⎩; (2)由(1)得利润w =(40)(2140)(4058)(40)(82)(5871)x x x x x x --+<⎧⎨--+⎩整理得w=2222202800(4058) 1223280(5871) x x xx x x⎧-++<⎨-+-⎩故当40≤x<58时,w=﹣2(x﹣55)2+450∵﹣2<0,∴当x=55时,有最大值450元当58≤x≤71时,w=﹣(x﹣61)2+441∵﹣1<0,∴当x=61时,有最大值441元综上可得当销售价为55元时,该店的日销售利润最大,最大利润为450元(3)由(2)可知每天最大利润为450元,则有450﹣250=200元一年的利润为:200×365=73000元所有债务为:30000+38000=68000元∵73000>68000,∴该店能在一年内还清所有债务.【点睛】此题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.23.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.【答案】(1)详见解析;(2)9332π-;(3)当PE+PF取最小值时,BP的长为3.【解析】【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=33,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE-S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为33,然后计算出OP和OB得到此时PB的长.【详解】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)∵点F是AO的中点,∴AO=2OF=6,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE3=3。
中考综合模拟测试《数学卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.计算:(-3)×(- 13)=()A. -1B. 1C. -9D. 92.如图,下面几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是( )A. B. C. D.3.计算(-2x2y)3的结果是( )A. -8x6y3B. 6x6y3C. -8x5y3D. -6x5y34.如图,AB∥CD.若∠1=40°,∠2=65°,则∠CAD=()A. 50°B. 65°C. 75°D. 85°5.设点A(-3,a),B(b,12)在同一个正比例函数图象上,则ab的值为()A.23- B.32- C. -6 D.326.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,△ABC的高AD与角平分线CF交于点E,则DE AF的值为()A. 35B. 34C. 12D. 237.已知两个一次函数y=3x+b 1和y=-3x+b 2若b 1<b 2<0,则它们图象的交点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图, 在三边互不相等的△ABC 中, D ,E ,F 分别是AB ,AC ,BC 边的中点.连接DE ,过点C 作CM ∥AB 交DE 的延长线于点M ,连接CD 、EF 交于点N ,则图中全等三角形共有( )A. 3对B. 4对C. 5对D. 6对9.如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D .若点P 是⊙O 上异于点A ,B 的任意一点,则∠APB=( )A. 30°或60°B. 60°或150°C. 30°或150°D. 60°或120° 10.将抛物线M :y=- 13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M'.若抛物线M'与x 轴交于A 、B 两点,M'的顶点记为C ,则∠ACB=( ) A 45°B. 60°C. 90°D. 120° 二.填空题(共4小题)11.不等式-2x+1>-5的最大整数解是________.12.如图,五边形ABCDE 的对角线共有 ________条.13.如图,在x 轴上方,平行于x 轴的直线与反比例函数y =1k x和y =2k x 的图象分别交于A 、B 两点,连接OA 、OB ,若△AOB 的面积为6,则k 1﹣k 2=_____.14.如图,在正方形ABCD 中,AB=4,E 是BC 边中点, F 是CD 边上的一点, 且DF=1.若M 、N 分别是线段AD 、AE 上的动点,则MN+MF 的最小值为________ .三.解答题(共11小题)15.计算:2(3)|25|20-+--.16.化简:(22739a a a +--﹣43a a ++)÷33a a +-. 17.如图,已知锐角△ABC ,点D 是AB 边上的一定点,请用尺规在AC 边上求作一点E ,使△ADE 与△ABC 相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)18.2016年4月23日是我国第一个”全民阅读日”某校开展了”建设书香校园,捐赠有益图书”活动.我们在参加活动的所有班级中,随机抽取了一个班,已知这个班是八年级5班,全班共50名学生.现将该班捐赠图书情况的统计结果,绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)求八年级5班平均每人捐赠了多少本书?(3)若该校八年级共有800名学生,请你估算这个年级学生共可捐赠多少本书?19.如图,菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连结BE,CF.求证:BE=CF.20.某市为了创建绿色生态城市,在城东建了”东州湖”景区,小明和小亮想测量”东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算”东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,2≈1.414.)21.上周六上午点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离 (千米)与他们路途所用的时间(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶分钟时,距姥姥家还有千米,问小颖一家当天几点到达姥姥家?22.孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:”如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答.小芳认为6的可能性最大,小超认为7的可能性最大.你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)23.如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°(2)求线段AD的长.24.如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.25.问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.答案与解析一.选择题(共10小题)1.计算:(-3)×(- 13)=()A. -1B. 1C. -9D. 9 【答案】B【解析】【分析】根据两数相乘,同号得正,把绝对值相乘,再进行计算.【详解】解:1313⎛⎫-⨯-=⎪⎝⎭.故答案为:B.【点睛】此题主要考查了有理数的乘法,要熟练掌握,解答此题的关键是要明确有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是( )A. B. C. D.【答案】D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看上下都是正方形,故选:D.【点睛】本题主要考查左视图,掌握三视图是解题的关键.3.计算(-2x2y)3的结果是( )A. -8x6y3B. 6x6y3C. -8x5y3D. -6x5y3【答案】A【解析】【分析】根据幂的乘方与积的乘方运算法则进行运算即可.【详解】(-2x2y)3=-8x6y3.故选A.4.如图,AB∥CD.若∠1=40°,∠2=65°,则∠CAD=()A. 50°B. 65°C. 75°D. 85°【答案】C【解析】【分析】根据对顶角性质可知∠BAD=∠1=40°,然后利用平行线性质可得∠CAB=115°,据此进一步计算求解即可. 【详解】∵∠BAD与∠1是对顶角,∴∠BAD=∠1=40°,∵AB∥CD,∴∠2+∠CAB=180°,∴∠CAB=180°−∠2=115°,∴∠CAD=∠CAB−∠BAD=75°,故选:C.【点睛】本题主要考查了平行线性质以及对顶角性质,熟练掌握相关概念是解题关键.5.设点A(-3,a),B(b,12)在同一个正比例函数的图象上,则ab的值为()A.23- B.32- C. -6 D.32【答案】B【解析】【分析】设正比例函数的解析式为y=kx,将两点在分别代入函数解析式,就可表示出a,b,然后代入求出ab的值.【详解】设正比例函数的解析式为y=kx(k≠0)∴a=-3k,bk=1 2∴b=1 2k∴13322 ab kk=-⋅=-.故答案为:B.【点睛】此题考查了一次函数图象上点的坐标特征,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.6.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,△ABC的高AD与角平分线CF交于点E,则DE AF的值为()A 35B.34C.12D.23【答案】A【解析】【分析】利用勾股定理求出BC的长,再根据直角三角形的两个面积公式就可求出AD的长,利用勾股定理求出DC 的长,然后利用角平分线的定义,可得到tan∠ACF=tan∠ECD,然后利用锐角三角函数的定义,就可求出DE与AF的比值.【详解】解:在△ABC中2222201525BC AB AC+=+=∵AD是高∴1122AD BC AB AC⋅=⋅∴25AD=20×15解之:AD=12.在Rt△ADC中,222215129 DC AC AD--=∵CF平分∠ACB,∴∠ACF=∠ECD∴tan ∠ACF=tan ∠ECD ∴AF DE AC DC =即159AF DE = ∴35DE AF =. 故答案为:A .【点睛】本题主要考查三角函数的应用,解题的关键是掌握勾股定理、三角函数的定义得到式子求解. 7.已知两个一次函数y=3x+b 1和y=-3x+b 2若b 1<b 2<0,则它们图象的交点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】将两函数联立方程组,解方程组求出两函数的交点坐标,再根据b 1<b 2<0 ,就可得到b 2-b 1>0,b 2+b 1<0,就可确定出交点的横纵坐标的符号,从而可判断出两函数图像的交点所在的象限. 【详解】解:1233y x b y x b =+⎧⎨=-+⎩解之:212162b b x b b y -⎧=⎪⎪⎨+⎪=⎪⎩∵ b 1<b 2<0∴b 2-b 1>0,b 2+b 1<0∴x >0,y <0∴它们图像的交点在第四象限.故答案为:D .【点睛】本题主要考查两直线相交或平行的问题及象限内点的坐标特点,掌握根据直线解析式求得交点坐标且各象限内点的坐标特点是解题的关键.8.如图, 在三边互不相等△ABC 中, D ,E ,F 分别是AB ,AC ,BC 边的中点.连接DE ,过点C 作CM ∥AB 交DE 的延长线于点M ,连接CD 、EF 交于点N ,则图中全等三角形共有( )A. 3对B. 4对C. 5对D. 6对【答案】C【解析】【分析】 利用已知条件可证得DE ,EF 都是△ABC 的中位线,同时可证得AE=EC ,CF=12BC ,利用三角形中位线定理可得到DE=12BC ,DE ∥BC ,EF ∥AB ,从而可以推出∠EDC=∠FCN ,DE=CF ,再利用AAS 证明△DEN ≌△CFN ,然后利用有两组对边平行的四边形是平行四边形,可证得四边形EFCM 是平行四边形,再利用平行四边形的性质可以推出△EMC ≌△CFE ,△ADE ≌△CME ,△ADE ≌△CEF, △BCD ≌△MDC .【详解】证明:∵D ,E ,F 分别是AB ,AC ,BC 边的中点.∴CF=12BC ,DE 是△ABC 的中位线,EF 是△ABC 的中位线,AE=EC ∴DE=12BC ,DE ∥BC ,EF ∥AB , ∴∠EDC=∠FCN ,DE=CF在△DEN 和△CFN 中DNE CNF EDC FCN DE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DEN ≌△CFN (AAS );∵EF ∥AB ,CM ∥AB∴EF ∥CM ,DE ∥BC∴四边形EFCM 是平行四边形,∴EM=CF=DE ,EF=CM,在△EMC 和△CFE 中,EM CF EF CM CE EC =⎧⎪=⎨⎪=⎩∴△EMC ≌△CFE (SSS );在△ADE 和△CME 中,AE EC AED CEM DE ME =⎧⎪∠=∠⎨⎪=⎩∴△ADE≌△CME(SAS);∴△ADE≌△CEF,∴DE∥BC又BD∥CM∥EF∴四边形DBCM是平行四边形,∴△BCD≌△MDC∴图中的全等三角形一共有5对.故答案为:C.【点睛】本题考查的是三角形中位线定理、全等三角形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.9.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D.若点P是⊙O上异于点A,B的任意一点,则∠APB=()A. 30°或60°B. 60°或150°C. 30°或150°D. 60°或120°【答案】D【解析】【分析】利用垂径定理及已知可得到∠OAD=30°,再求出∠AOB的度数,再分情况讨论:当点P在优弧AB上时,利用圆周角定理就可取出∠P的度数;当点P在劣弧上时,利用圆内接四边形的对角互补,就可求出∠AP1B 的度数.【详解】连接OA,OB,∵ 弦AB 垂直平分半径OC∴OD=12OA , ∴∠OAD=30°,∵OA=OB∴∠OAB=∠OBA=30°,∴∠AOB=180°-∠OAB-∠OBA=180°-30°-30°=120°;当点P 在优弧AB 上时∠APB=12∠AOB=12×120°=60°; 当点P 在劣弧上时,∠APB+∠AP 1B=180°∴∠AP 1B=180°-60°=120°.∴∠APB=120°或60°.故答案为:D .【点睛】此题考查了垂径定理,以及圆周角定理,熟练掌握垂径定理是解本题的关键.10.将抛物线M :y=- 13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M'.若抛物线M'与x 轴交于A 、B 两点,M'的顶点记为C ,则∠ACB=( ) A. 45°B. 60°C. 90°D. 120° 【答案】C【解析】【分析】利用二次函数的平移规律:上加下减,左加右减,可求出抛物线M'的函数解析式,由此可得到点C 的坐标,再由y=0求出抛物线M'与x 轴的两个交点A ,B 的坐标,然后利用勾股定理求出AC 2、BC 2、AB 2,由此可以推出AC 2+BC 2=AB 2,利用勾股定理的逆定理,可求出∠ACB 的度数.【详解】∵y=-13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M', ∴抛物线M'的解析式为y=21(2)33x -++ ∵ 若抛物线M'与x 轴交于A 、B 两点,M'的顶点记为C ,∴点C (-2,3)当y=0时21(2)303x -++=解之:x 1=1,x 2=-5∴点A(1,0),点B(-5,0)∴AB2=|-5-1|2=36AC2=32+32=18,BC2=32+32=18∴AC2+BC2=AB2∴∠ACB=90°.故答案为:C.【点睛】本题考查抛物线与x轴的交点、二次函数与几何变换、勾股定理的逆定理等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.二.填空题(共4小题)11.不等式-2x+1>-5的最大整数解是________.【答案】2【解析】【分析】先求出不等式的解集,再求出不等式的最大整数解.【详解】解-2x+1>-5-2x>-6x<3,∴这个不等式的最大整数解为2.故答案为:2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.如图,五边形ABCDE的对角线共有________条.【答案】5【解析】【分析】根据n边形的对角线的总数量为(3)2n n,再将n=5代入计算可求出结果.【详解】五边形的对角线的条数为:(53)552-⨯=. 故答案为:5. 【点睛】此题考查了多边形的对角线,掌握多边形的对角线公式是解题的关键.13.如图,在x 轴上方,平行于x 轴的直线与反比例函数y =1k x和y =2k x 的图象分别交于A 、B 两点,连接OA 、OB ,若△AOB 的面积为6,则k 1﹣k 2=_____.【答案】-12. 【解析】【分析】根据AB ∥x 轴,设1211k k x k A x B x k x(,),(,),得到21k x AB x k -=,根据△AOB 的面积为6,列方程即可得到结论.【详解】∵AB ∥x 轴,∴设1211k k x k A x B x k x(,),(,) ∴21k x AB x k -=, ∵△AOB 的面积为6,∴(2111•62k x k x k x-()=, ∴k 1﹣k 2=﹣12,故答案为:﹣12.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数k y x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|;在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2y k ,且保持不变. 14.如图,在正方形ABCD 中,AB=4,E 是BC 边的中点, F 是CD 边上的一点, 且DF=1.若M 、N 分别是线段AD 、AE 上的动点,则MN+MF 的最小值为________ .【答案】955【解析】【分析】作点F 关于AD 的对称点G ,过点G 作GN ⊥AE 于点N ,交AD 于点M ,可证得MG=MF ,△MDG ≌△MDF ,DF=DG=1 ,可推出MN+MF=NG ,根据垂线段最短,可知此时MN+MF 的最小值就是NG 的长;利用正方形的性质,可求出BE 的长,同时可以推出∠B=∠ANM=∠FDM ,∠AMN=∠BAE=∠FMD ,再利用有两组对应角相等的三角形相似,可证得△ABE ∽△MNA ∽△FMD ,然后利用相似三角形的性质及勾股定理就可求出MN ,MG 的长,由此看求出NG 的长.【详解】作点F 关于AD 的对称点G ,过点G 作GN ⊥AE 于点N ,交AD 于点M ,∴MG=MF ,△MDG ≌△MDF ,DF=DG=1∴∠GMD=∠DMF∴MN+MF=MN+MG=NG根据垂线段最短,可知此时MN+MF 的最小值就是NG 的长.∵正方形BCD ,点E 是BC 的中点∴BE=12BC=12AB=2∴∠B=∠ANM=∠FDM=90°,∠BAE+∠MAN=90°,∵∠AMN+∠MAN=90°,∴∠AMN=∠BAE ,∵∠AMN=∠DMG∴∠AMN=∠BAE=∠FMD∴△ABE ∽△MNA ∽△FMD ∴AB MD BE DF =即421MD = 解之:MD=2,∴AM=AD-MD=4-2=2 ∴2AB MN BE AN== 设AN=x ,则MN=2x∴AN 2+MN 2=AM 2,∴x 2+4x 2=4解之:∴在Rt △MDG 中,=∴NG=MN+MG==. 【点睛】本题考查了轴对称−最短距离问题,相似三角形的判定和性质,正确的确定M ,N 的位置是解题的关键.三.解答题(共11小题)15.计算:2(3)|2|-+-【答案】7【解析】【分析】先计算乘方,化简绝对值,计算算术平方根,再进行实数的加减混合运算即可解答.【详解】解:原式=9+5-2-25=7-5【点睛】本题考查实数的混合运算,解题关键是熟练掌握绝对值的化简和算术平方根的意义.16.化简:(22739a a a +--﹣43a a ++)÷33a a +-. 【答案】269(3)a a ++ 【解析】【分析】根据分式的运算法则,先去括号,然后除一个数等于乘这个数的倒数即可.【详解】解:原式=(273(3)(3)a a a a +-+-﹣43a a ++)÷33a a +-. =2273(3)a a a +-+﹣2(4)(3)(3)a a a +-+ =269(3)a a ++ 【点睛】本题考查分式的除法,需要注意,在去括号时,括号中的每一项都要除后面的除数17.如图,已知锐角△ABC ,点D 是AB 边上的一定点,请用尺规在AC 边上求作一点E ,使△ADE 与△ABC 相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)【答案】详见解析【解析】【分析】以DA 为边、点D 为顶点在△ABC 内部作一个角等于∠B ,角的另一边与AC 的交点即为所求作的点.【详解】如图,点E 即为所求作的点.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.18.2016年4月23日是我国第一个”全民阅读日”某校开展了”建设书香校园,捐赠有益图书”活动.我们在参加活动的所有班级中,随机抽取了一个班,已知这个班是八年级5班,全班共50名学生.现将该班捐赠图书情况的统计结果,绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)求八年级5班平均每人捐赠了多少本书?(3)若该校八年级共有800名学生,请你估算这个年级学生共可捐赠多少本书?【答案】(1)见解析;(2)6本书;(3)4800本书【解析】【分析】(1)观察两统计图可知全班捐赠图书的总数=其它书的数量÷其它书的数量所占的百分比,列式计算;再利用全班捐赠图书的总数×捐赠工具类书的数量所占的百分比,就可求出捐赠工具类书的数量,就可补全条形统计图;然后利用部分的数量÷总数,就可求出文学类和科普类所占的百分比,从而可以补全扇形统计图中的数据;(2)用全班捐赠图书的总数除以八年级5班的人数,列式计算;(3)用800×平均每一个人的捐赠图书的数量,列式计算.【详解】(1)解:全班捐赠图书的总数为24÷8%=300(本),则捐赠工具类书有300×20%=60(本),文学类百分比为120300×100%=40%,科普类百分比为96300×100%=32%,完成统计图如下:八年级5班全班同学捐赠图书情况统计图(2)解:八年级5班平均每人捐赠了30050=6本书;(3)解:∵800×6=4800,估算这个年级学生共可捐赠4800本书.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确它们各自的含义,利用数形结合的思想解答.19.如图,菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连结BE,CF.求证:BE=CF.【答案】证明见解析【解析】【分析】由菱形的性质得出AD∥BC,AB=BC,得出∠A=∠CBF,证明△ABE≌△BCF(SAS),即可得出BE=CF.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠A=∠CBF.在△ABE和△BCF中,∵AE=BF,∠A=∠CBF,AB=BC,∴△ABE≌△BCF(SAS),∴BE=CF.点睛:本题考查了菱形的性质、平行线的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.20.某市为了创建绿色生态城市,在城东建了”东州湖”景区,小明和小亮想测量”东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算”东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,2≈1.414.)【答案】1057米.【解析】分析】先根据题意得出△BCD是等腰直角三角形,故可得出CD=BD,再由锐角三角函数的定义得出AD的长,进而可得出结论.【详解】∵∠BCD=45°,CD⊥AB,∴△BCD是等腰直角三角形,∴CD=BD.∵BC=350米,∴CD=BD=350×2=2≈175×1.414=247.45米,∴AD=CD•tan73°≈247.45×3.2709≈809.38米,∴AB=AD+BD=809.38+247.45≈1057(米).答:”东州湖”东西两端之间AB的长为1057米.【点睛】本题是锐角三角函数在实际问题中的考查,在解决此类题型的时候,我们首先需要抽象出数学模型,然后构造出直角三角形,最后利用三角函数解决.21.上周六上午点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离 (千米)与他们路途所用的时间(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶分钟时,距姥姥家还有千米,问小颖一家当天几点到达姥姥家?【答案】详见解析【解析】试题分析:由图象知AB过(0,320)和((2,120)两点,故可设AB所在直线解析式为y=kx+b,代入即可求出a,b 的值,从而确定函数关系式;(2)先求出CD所在直线解析式,令y=0,则可求出x的值,从而可知小颖一家当天几点到达姥姥家.试题解析:(1)由图象知:A(0,320),B(2,120)设AB所在直线解析式为y=kx+b,把A、B坐标代入得:320 2120 bk b=⎧⎨+=⎩解得:320 {100 bk==-故AB所在直线解析式为y=-100x+320; (2)由图象知:CD过点(2.5,120)和(3,80)设CD所在直线解析式为y=mx+n,则有2.5120 {380m nm n+=+=解得:80320 mn=-⎧⎨=⎩故CD所在直线解析式为y=-80x+320令y=0时,-80x+320=0,解得x=4所以:8+4=12故小颖一家当天12点到达姥姥家.22.孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:”如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答.小芳认为6的可能性最大,小超认为7的可能性最大.你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)【答案】小超的回答正确,图表见解析【解析】【分析】根据题意列表,再根据表中的数据可求出所有等可能的结果数及点数之和等于6和点数之和等于7的情况数,然后分别求出点数之和等于6与点数之和等于7的概率,由此可作出判断.【详解】列表如下共有36种等可能的结果数,其中点数之和等于6占5种,点数之和等于7的占6种,∴点数之和为6的概率为536,点数之和为7的概率为61366故小超的回答正确.【点睛】本题考查了利用列表法或树状图求概率的方法:先利用列表法或树状图展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的概念计算出这个事件的概率=mn.23.如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°(2)求线段AD的长.【答案】(1)证明见解析;(2)325.【解析】【分析】(1)由弦切角等于同弧所对的圆周角得:∠C=∠ABD,再根据直角三角形两锐角互余得出结论;(2)作弦心距,由勾股定理得:OE=3,再证明△OEB∽△BDA,列比例式可以求AD的长.【详解】:(1)∵BD为⊙O的切线,∴∠C=∠ABD,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠C+∠BAD=90°,(2)连接OB,过O作OE⊥AB于E,∴AE=BE=12AB=4,由勾股定理得:OE22OB BE-2254-3,∵BD为⊙O的切线,∴OB⊥BD,∴∠OBD=90°,∵∠ADB=90°,∴AD∥OB,∴∠DAB=∠ABO,∵∠D=∠OEB=90°,∴△OEB∽△BDA,∴BE OB AD AB=,∴458 AD=,∴AD=325;则线段AD的长为325.【点睛】本题考查了切线的性质和垂径定理、以及三角形的外接圆,是常考题型,熟练掌握切线的性质和垂径定理:圆的切线垂直于经过切点的半径.24.如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1) B(-1.2);(2) y=57x?66x-;(3)见解析.【解析】【分析】(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.【详解】(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∵△AOB 为等腰三角形,∴AO=BO ,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD ,△ACO 和△ODB 中AOC OBD ACO ODB AO BO ===∠∠⎧⎪∠∠⎨⎪⎩∴△ACO ≌△ODB (AAS ),∵A (2,1),∴OD=AC=1,BD=OC=2,∴B (-1,2);(2)∵抛物线过O 点,∴可设抛物线解析式为y=ax 2+bx ,把A 、B 两点坐标代入可得4212a b a b +⎧⎨-⎩==,解得5676a b ⎧⎪⎪⎨⎪-⎪⎩==, ∴经过A 、B 、O 原点的抛物线解析式为y=56x 2-76x ; (3)∵四边形ABOP ,∴可知点P 在线段OA 的下方,过P 作PE ∥y 轴交AO 于点E ,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=12,∴直线AO解析式为y=12x,设P点坐标为(t,56t2-76t),则E(t,12t),∴PE=12t-(56t2-76t)=-56t2+53t=-56(t-1)2+56,∴S△AOP=12PE×2=PE═-56(t-1)2+56,由A(2,1)可求得5∴S△AOB=12AO•BO=52,∴S四边形ABOP=S△AOB+S△AOP=-56(t-1)2+56+52=()2510163t--+,∵-56<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-13 ),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-13 ).【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.【答案】(1)12;(2)9;(3)能实现;170(米).【解析】【分析】(1)当AD⊥BC时,△ABC的面积最大.(2)由题意矩形邻边之和为6,设矩形的一边为m,另一边为6﹣m,可得S=m(6﹣m)=﹣(m﹣3)2+9,利用二次函数的性质解决问题即可.(3)由题意,AC=100,∠ADC=60°,即点D在优弧ADC上运动,当点D运动到优弧ADC的中点时,四边形鱼塘面积和周长达到最大值,此时△ACD为等边三角形,计算出△ADC的面积和AD的长即可得出这个四边形鱼塘面积和周长的最大值.【详解】(1)如图①中,∵BC=6,AD=4,∴当AD⊥BC时,△ABC的面积最大,最大值=12×6×4=12.故答案为12.(2)∵矩形的周长为12,∴邻边之和为6,设矩形的一边为m,另一边为6﹣m,∴S=m(6﹣m)=﹣(m﹣3)2+9,∵﹣1<0,∴m=3时,S有最大值,最大值为9.(3)如图③中,∵AC=50米,AB=40米,BC=30米,∴AC2=AB2+BC2∴∠ABC=90°,作△AOC,使得∠AOC=120°,OA=OC,以O为圆心,OA长为半径画⊙O,∵∠ADC=60°,∴点D在优弧ADC上运动,当点D是优弧ADC的中点时,四边形ABCD面积取得最大值,设D′是优弧ADC上任意一点,连接AD′,CD′,延长CD′到F,使得D′F=D′A,连接AF,则∠AFC=30°=12∠ADC,∴点F在D为圆心DA为半径的圆上,∴DF=DA,∵DF+DC≥CF,∴DA+DC≥D′A+D′C,∴DA+DC+AC≥D′A+D′C+AC,∴此时四边形ADCB的周长最大,最大值=40+30+50+50=170(米).答:这个四边形鱼塘周长的最大值为170(米).【点睛】本题主要是最大值的考查,求最大值,常用方法为:(1)利用平方为非负的性质求解;(2)利用三角形两边之和大于第三边求解,在求解过程中,关键在与将要求解的线段集中到一个三角形中。
中考数学综合题集锦(完善版15页)
近三年中考数学综合题集锦一、知识网络梳理数学综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以数学综合题的形式出现.解数学综合题一般可分为认真审题、理解题意,探求解题思路,正确解答三个步骤.解数学综合题必须要有科学的分析问题的方法.数学思想是解数学综合题的灵魂,要善于总结解数学综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程的思想等,要结合实际问题加以领会与掌握,这是学习解综合题的关键.题型1方程型综合题这类题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.题型2函数型综合题函数型综合题主要有:几何与函数相结合型、坐标与几何方程与函数相结合型综合问题,历来是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象及性质、方程的有关理论的综合.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力和较好的区分度,因此是各地中考的热点题型,压轴题的主要来源,并且长盛不衰,年年有新花样.题型3几何型综合题几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常用相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧的长度的计算,角、角的三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系.(2)注意推理和计算相结合,力求解题过程的规范化.(3)注意掌握常规的证题思路,常规的辅助线添法.(4)注意灵活地运用数学的思想和方法.解决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行分析、推理,从而达到解决问题的目的.二、知识运用举例例1(安徽省六安市)已知关x 的一元二次方程 230x x m +-=有实数根. (1)求m 的取值范围(2)若两实数根分别为1x 和2x ,且221211x x +=求m 的值.分析与解答 本题目主要综合考查一元二次方程根的判别式、根与系数的关系的应用以及代数式的恒等变形等.(1)由题意,△≥0,即94m +≥0.解得94m ≥-.(2)由根与系数的关系,得12123,x x x x m +=-=-.∴222121212()292x x x x x x m +=+-=+.∴921m +=.∴1m =.例2(北京市)已知关于x 的方程2(2)20a x ax a +-+=有两个不相等的实数根1x 和2x ,并且抛物线2(21)25y x a x a =-++-与x 轴的两个交点分别位于点(2,0)的两旁.(1) 求实数a 的取值范围.(2)当12x x +=时,求a 的值.分析与解答 本例以一元二次方程为背影,综合考查一元二次方程桶的判别式、桶与系数关系、分式方程的解法以及二次函数的有性质等.(1)一方面,关于x 的方程2(2)20a x ax a +-+=有两个不相等的实数根,∴△=2(2)4(2)020a a a a --+>+≠且.解之,得0a <≠且a -2.另一方面,抛物线2(21)25y x a x a =-++-与x 轴的两个交点分别位于点(2,0)的两旁,且开口向上,∴当2x =时0y <,即42(21)250a a -++-<,解得32a <-.综合以上两面,a 的取值范围是302a -<< (2)∵1x 、2x 是关于x 的方程2(2)20a x ax a +-+=的两个不相等的实数根,∴12122,22a a x x x x a a +==++.∵302a -<<,∴20a +>,∴1202a x x a =<+.∵128x x +=,∴22112228x x x x ++=,即∴22112228x x x x -+=,∴21212()48x x x x +-=.∴224()822a a a a -=++,解得124,1a a =--.经检验,124,1a a =--都是方程224()822a a a a -=++的根.∵342a =-<-舍去,∴1a =-. 说明 运用一元二次方程根的差别式时,要注意二次项系数不为零,运用一元二次方程根与系数的关系时,要注意根存在的前提,即要保证△≥0.CA例3(重庆市) 如图2-4-18,090B ∠=,O 是AB 上的一点,以O 为圆心,OB 为半径的圆与AB 交于点E ,与AC 切于点D .若AD =AB 、AE 的长是关于x 的方程280x x k -+=的两个实数根.(1)求⊙O 的半径.(2)求CD 的长.分析与解答 本题是一道方程与几何相结合的造型题,综合考查了切割线定理、根与系数的关系、一元二次方程的解法、勾股定理知识.(1)∵AD 是⊙O 的切线,∴2AD AE AB =⋅.又AD =12AE AB =g .∵AE 、AB 的长是方程280x x k -+=的两个实数根,∴AE AB k =g ,∴12k =,把12k =代入方程280x x k -+=,解得122,6x x ==.∴AE =2,AB =6.∴⊙O 的半径为1()22AB AE -= (2)∵CB ⊥AB ,AB 经过圆心O ,∴CB 切⊙O 于点B ,∴CD =CB .在Rt △ABC 中,设CD x =,由勾股定理得222AB BC AC +=,∴2226(2)x x +=,解得x =∴CD =例4.(2007四川绵阳)已知x 1,x 2 是关于x 的方程(x -2)(x -m )=(p -2)(p -m )的两个实数根. (1)求x 1,x 2 的值;(2)若x 1,x 2 是某直角三角形的两直角边的长,问当实数m ,p 满足什么条件时,此直角三角形的面积最大?并求出其最大值.解:(1) 原方程变为:x 2-(m + 2)x + 2m = p 2-(m + 2)p + 2m ,∴ x 2-p 2-(m + 2)x +(m + 2)p = 0, (x -p )(x + p )-(m + 2)(x -p )= 0, 即 (x -p )(x + p -m -2)= 0, ∴ x 1 = p , x 2 = m + 2-p . (2)∵ 直角三角形的面积为)2(212121p m p x x -+==p m p )2(21212++- =)]4)2(()22()2([21222+-+++--m m p m p=8)2()22(2122+++--m m p ,∴ 当22+=m p 且m >-2时,以x 1,x 2为两直角边长的直角三角形的面积最大,最大面积为8)2(2+m 或221p .例5.(07茂名市)已知函数22y x x c =++的图象与x 轴的两交点的横坐标分别是12x x ,,且222122x x c c +=-,求c 及1x ,2x 的值.解:令0y =,即220x x c ++=,当方程有两个不相等的实数根时,该函数的图象与x 轴有两个交点.此时2240c ->即1c <.由已知12122x x x x c +=-⎧⎨=⎩ ,∵ 222122x x c c +=-,∴ ()22121222x x x x c c +-=-,∴()22222c c c --=- ,∴ 24c =, ∴122,2c c =-=(舍去).当2c =-时,2220x x +-=,解得1211x x =-=- 综上:2c =-,1211x x =-+=-例6(天津市) 已知关于x 的一元二次方程x c bx x =++2有两个实数根21,x x ,且满足01>x ,112>-x x .(1)试证明0>c ; (2)证明)2(22c b b +>;(3)对于二次函数c bx x y ++=2,若自变量取值为0x ,其对应的函数值为0y ,则当100x x <<时,试比较0y 与1x 的大小.解:(1)将已知的一元二次方程化为一般形式 即0)1(2=+-+c x b x ∵ 21,x x 是该方程的两个实数根 ∴ )1(21--=+b x x ,c x x =⋅21相关链接 :若12x x ,是一元二次方程20ax bx c ++=(0)a ≠的两根,则1212b cx x x x a a+=-=,.而01,0121>+>>x x x ∴ 0>c (2)212122124)()(x x x x x x -+=-1424)1(22+--=--=c b b c b∵ 112>-x x ∴ 1)(212>-x x 于是11422>+--c b b ,即0422>--c b b ∴ )2(22c b b +>(3)当100x x <<时,有10x y >∵ c bx x y ++=0200,1121x c bx x =++ ∴ )(12102010c bx x c bx x x y ++-++=-))((1010b x x x x ++-=∵ 100x x << ∴ 010<-x x又∵ 112>-x x ∴ 112+>x x ,12121+>+x x x ∵ )1(21--=+b x x ∴ 12)1(1+>--x b于是021<+b x ∵ 100x x << ∴ 010<++b x x 由于010<-x x ,010<++b x x∴ 0))((1010>++-b x x x x ,即010>-x y ∴ 当100x x <<时,有10x y >例7(贵阳市)如图2-4-20,二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)求D 点的坐标.(2)求一次函数的解析式.(3)根据图象写出使一次函数值大于二次函数的值的x 的取值范围.分析与解答 (1)由图2-4-20可得C (0,3).∵抛物线是轴对称图形,且抛物线与x 轴的两个交点为A (-3,0)、B (1,0), ∴抛物线的对称轴为1x =-,D 点的坐标为(-2,3).(2)设一次函数的解析式为y kx b =+,将点D (-2,3)、B (1,0)代入解析式,可得230k b k b -+=⎧⎨+=⎩,解得1,1k b =-=. ∴一次函数的解析式为1y x =-+.(3)当21x x <->或时,一次函数的值大于二次函数的值. 说明:本例是一道纯函数知识的综合题,主要考查了二次函的对称性、对称点坐标的求法、一次函数解析式的求法以及数形结合思想的运用等.例8(吉林省) 如图2-4-21,二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C (0,5)、D (1,8)在抛物线上,M 为抛物线的顶点.(1)求抛物线的解析式.(2)求△MCB 的面积.分析与解答 第(1)问,已知抛物线上三个点的坐标,利用待定系数法可求出其解析式.第(20问,△MCB 不是一个特殊三角形,我们可利用面积分割的方法转化成特殊的面积求解.(1)设抛物线的解析式为2y ax bx c =++,根据题意,得058a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解之,得145a b c =-⎧⎪=⎨⎪=⎩.∴所求抛物线的解析式为245y x x =-++.(2)∵C 点的坐标为(0,5).∴OC =5.令0y =,则2450x x -++=,解得121,5x x =-=.∴B 点坐标为(5,0).∴OB =5.∵2245(2)9y xx x =-++=--+,∴顶点M 坐标为(2,9).过点M 用MN ⊥AB 于点N ,则ON =2,MN =9.∴11(59)9(52)551522MCBBNM OBC OCMN S S S S ∆∆∆=+-=+⨯⨯--⨯⨯=梯形 说明:以面积为纽带,以函数图象为背景,结合常见的平面几何图形而产生的函数图象与图形面积相结合型综合题是中考命题的热点.解决这类问题的关键是把相关线段的长与恰当的点的坐标联系起来,必要时要会灵活将待求图形的面积进行分割,转化为特殊几何图形的面积求解.例9(湖南省娄底市)已知抛物线2(4)24y x m x m =-+-++与x 轴交于1(,0)A x 、2(,0)B x ,与y 轴交于点C ,且1x 、2x 满足条件1212,20x x x x <+=(1)求抛物线的解析式; (2)能否找到直线y kx b =+与抛物线交于P 、Q 两点,使y 轴恰好平分△CPQ 的面积?求出k 、b 所满足的条件.分析与解答 (1)∵△=22(4)4(24)320m m m -++=+>,∴对一切实数m ,抛物线与x 轴恒有两个交点,由根与系数的关系得124x x m +=-…①,12(24)x x m =-+…②.由已知有1220x x +=…③.③-①,得2124,228.x m x x m =-=-=-由②得(28)(4)m m m --=-+.化简,得29140m m -+=.解得12112,7.2,4,2m m m x ====-=当时,满足12x x <.当27m =时,126,3x x ==-,不满足12x x <,∴抛物线的解析式为228y x x =--+.(2)如图2-4-22,设存在直线y kx b =+与抛物线交于点P 、Q ,使y 轴平分△CPQ 的面积,设点P 的横坐标为Q x ,直线与y 轴交于点E .∵1122PCE QCE P Q S S CE x CE x ∆∆==∙∙=∙∙,∴P Q x x =,由y 轴平分△CPQ 的面积得点P 、Q 在y 轴的两侧,即P Q x x =-,∴0P Q x x +=,由228y kx by x x =+⎧⎨=--+⎩得2(2)80x k x b +++-=.又∵P x 、Q x 是方程2(2)80x k x b +++-=的两根,∴(2)0P Q x x k +=-+=,∴2k =-.又直线与抛物线有两个交点,∴当28k b =-<且时,直线y kx b =+与抛物线的交点P 、Q ,使y 轴能平分△CPQ 的面积.故2(8)y x b b =-+<.说明 本题是一道方程与函数、几何相结合的综合题,这类题主要是以函数为主线.解题时要注意运用数形结合思想,将图象信息与方程的代信息相互转化.例如:二次函数与x 轴有交点.可转化为一元二次旗号有实数根,并且其交点的横坐标就是相应一元二次方程的解.点在函数图象上,点的坐标就满足该函数解析式等.例10(桂林市) 已知:如图2-4-23,抛物线2y ax bx c =++经过原点(0,0)和A (-1,5). (1)求抛物线的解析式.(2)设抛物线与x 轴的另一个交点为C .以OC 为直径作⊙M ,如果过抛物线上一点P 作⊙M 的切线PD ,切点为D ,且与y 轴的正半轴交于点为E ,连结MD .已知点E 的坐标为(0,m ),求四边形EOMD 的面积.(用含m 的代数式表示)(3)延长DM 交⊙M 于点N ,连结ON 、OD ,当点P 在(2)的条件下运动到什么位置时,能使得DON EOMD S S ∆=四边形?请求出此时点P 的坐标.分析与解答 (1)∵抛物线过O (0,0)、A (1,-3)、B (-1,5)三点,∴⎧⎪⎨⎪⎩c=0a+b+c=-3a-b+c=5,解得140a b c =⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为24y x x =-.(2)抛物线24y x x =-与x 轴的另一个交点坐标为C (4,0),连结EM .∴⊙M 的半径是2,即OM =DM =2.∵ED 、EO 都是的切线,∴EO =ED .∴△EOM ≌△EDM .∴12222OME EOMD S S OM OE m ∆==⨯=四边形(3)设D 点的坐标为(0x ,0y ),则0012222OME EOMD S S OM y y ∆==⨯⨯=四边形.当DON EOMD S S ∆=四边形时,即022m y =,0m y =,故ED ∥x 轴,又∵ED 为切线,∴D 点的坐标为(2,3),∵点P 在直线ED 上,故设点P 的坐标为(x ,2),又P 在抛物线上,∴224x x =-.∴1222x x ==(22)P +或(22)P 为所求例11(上海市)如图9,在直角坐标平面内,函数my x=(0x >,m 是常数)的图象经过(14)A ,,()B a b ,,其中1a >.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)若ABD △的面积为4,求点B 的坐标; (2)求证:DC AB ∥; (3)当AD BC =时,求直线AB 的函数解析式.(1) 解:函数(0my x x =>,m 是常数)图象经过(14)A ,,4m ∴=.设BD AC ,交于点E ,据题意,可得B 点的坐标为4a a ⎛⎫ ⎪⎝⎭,,D 点的坐标为40a ⎛⎫⎪⎝⎭,,E 点的坐标为41a ⎛⎫⎪⎝⎭,,1a >,DB a ∴=,44AE a=-. 由ABD △的面积为4,即14442a a ⎛⎫-= ⎪⎝⎭, 得3a =,∴点B 的坐标为433⎛⎫ ⎪⎝⎭,.(2)证明:据题意,点C 的坐标为(10),,1DE =,1a >,易得4EC a=,1BE a =-, 图9111BE a a DE -∴==-,4414AEa a CEa-==-.BE AEDE CE ∴=. DC AB ∴∥.(3)解:DC AB ∥,∴当AD BC =时,有两种情况: ①当AD BC ∥时,四边形ADCB 是平行四边形,由(2)得,1BE AEa DE CE==-,11a ∴-=,得2a =.∴点B 的坐标是(2,2).设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得422k b k b=+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+.②当AD 与BC 所在直线不平行时,四边形ADCB 是等腰梯形,则BD AC =,4a ∴=,∴点B 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+.综上所述,所求直线AB 的函数解析式是26y x =-+或5y x =-+.例12.(资阳)如图10,已知抛物线P :y =ax 2+bx +c (a ≠0) 与x 轴交于A 、B 两点(点A 在x 轴的正半轴上),与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下:(1) 求A 、B 、C 三点的坐标;(2) 若点D 的坐标为(m ,0),矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围;(3) 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM =k ·DF ,若点M 不在抛物线P 上,求k 的取值范围.若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2)、(3)小题换为下列问题解答(已知条件及第(1)小题与上相同,完全正确解答只能得到5分):(2) 若点D 的坐标为(1,0),求矩形DEFG 的面积. 解:⑴ 解法一:设2(0)y ax bx c a =++?,任取x ,y 的三组值代入,求出解析式2142y x x =+-, 令y =0,求出124,2x x =-=;令x =0,得y =-4, ∴ A 、B 、C 三点的坐标分别是A (2,0),B (-4,0),C (0,-4) .解法二:由抛物线P 过点(1,-52),(-3,52-)可知,抛物线P 的对称轴方程为x =-1,又∵ 抛物线P 过(2,0)、(-2,-4),则由抛物线的对称性可知, 点A 、B 、C 的坐标分别为 A (2,0),B (-4,0),C (0,-4) .⑵ 由题意,AD DGAO OC=,而AO =2,OC =4,AD =2-m ,故DG =4-2m , 又 BE EF BO OC =,EF =DG ,得BE =4-2m ,∴ DE =3m , ∴S DEFG =DG ·DE =(4-2m ) 3m =12m -6m 2 (0<m <2) .⑶ ∵S DEFG =12m -6m 2 (0<m <2),∴m =1时,矩形的面积最大,且最大面积是6 . 当矩形面积最大时,其顶点为D (1,0),G (1,-2),F (-2,-2),E (-2,0),设直线DF 的解析式为y =kx +b ,易知,k =23,b =-23,∴2233y x =-,又可求得抛物线P 的解析式为:214y x x =+-,令22x -=2142x x +-,可求出x. 设射线DF 与抛物线P 相交于点N ,则N 的横,过N 作x 轴的垂线交x 轴于H ,有FN HE DF DE ==233--, 点M 不在抛物线P 上,即点M 不与N 重合时,此时k 的取值范围是 k k >0.若选择另一问题:⑵ ∵AD DG AO OC =,而AD =1,AO =2,OC =4,则DG =2, 又∵FG CP AB OC =, 而AB =6,CP =2,OC =4,则FG =3, ∴S DEFG =DG ·FG =6.例13.(北京市)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; (2)如图,在ABC △中,点D E ,分别在AB AC ,上, 设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠. 请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形 是等对边四边形;(3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.解:(1)回答正确的给1分(如平行四边形、等腰梯形等). (2)答:与A ∠相等的角是BOD ∠(或COE ∠). 四边形DBCE 是等对边四边形.(3)答:此时存在等对边四边形,是四边形DBCE .证法一:如图1,作CG BE ⊥于G 点,作BF CD ⊥交CD 延长线于F 点. 因为12DCB EBC A ∠=∠=∠,BC 为公共边, 所以BCF CBG △≌△.所以BF CG =.因为BDF ABE EBC DCB ∠=∠+∠+∠,BEC ABE A ∠=∠+∠,所以BDF BEC ∠=∠.可证BDF CEG △≌△.所以BD CE =.所以四边形DBCE 是等边四边形.证法二:如图2,以C 为顶点作FCB DBC ∠=∠,CF 交BE 于F 点. 因为12DCB EBC A ∠=∠=∠,BC 为公共边, 所以BDC CFB △≌△.所以BD CF =,BDC CFB ∠=∠.所以ADC CFE ∠=∠.因为ADC DCB EBC ABE ∠=∠+∠+∠,FEC A ABE ∠=∠+∠, 所以ADC FEC ∠=∠. 所以FEC CFE ∠=∠. 所以CF CE =. 所以BD CE =.所以四边形DBCE 是等边四边形.说明:当AB AC =时,BD CE =仍成立.只有此证法,只给1分.例14.(宁波市)四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如BOADECBOAD ECF 图2 B OA D ECF 图1 G图l,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形AB CD的准等距点.(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).解:(1)如图2,点P即为所画点.(答案不唯一.点P不能画在AC中点)(2)如图3,点P即为所作点.(答案不唯一)(3)连结DB,在△DCF与△BCE中,∠DCF=∠BCE,∠CDF=∠CBE,∠CF=CE.∴△DCF≌△BCE(AAS),∴CD=CB,∴∠CDB=∠CBD.∴∠PDB=∠PBD,∴PD=PB,∵PA≠PC∴点P是四边形ABCD的准等距点.(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.例15.(南充市) 如图,点M (4,0),以点M 为圆心、2为半径的圆与x 轴交于点A 、B .已知抛物线216y x bx c =++过点A 和B ,与y 轴交于点C . (1)求点C 的坐标,并画出抛物线的大致图象. (2)点Q (8,m )在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ +PB 的最小值.(3)CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式.解:(1)由已知,得 A (2,0),B (6,0), ∵ 抛物线216y x bx c =++过点A 和B ,则 221220,61660,6b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解得4,32.b c ⎧=-⎪⎨⎪=⎩ 则抛物线的解析式为 214263y x x =-+. 故 C (0,2).(说明:抛物线的大致图象要过点A 、B 、C ,其开口方向、顶点和对称轴相对准确)(2)如图①,抛物线对称轴l 是 x =4. ∵ Q (8,m )抛物线上,∴ m =2.过点Q 作QK ⊥x 轴于点K ,则K (8,0),QK =2,AK =6, ∴ AQ =又∵ B (6,0)与A (2,0)关于对称轴l 对称, ∴ PQ +PB 的最小值=AQ =.(3)如图②,连结EM和CM.由已知,得EM=OC=2.CE是⊙M的切线,∴∠DEM=90º,则∠DEM=∠DOC.又∵∠ODC=∠EDM.故△DEM≌△DOC.∴OD=DE,CD=MD.又在△ODE和△MDC中,∠ODE=∠MDC,∠DOE=∠DEO=∠DCM=∠DMC.则OE∥CM.设CM所在直线的解析式为y=kx+b,CM过点C(0,2),M(4,0),∴40,2,k bb+=⎧⎨=⎩解得1,22,kb⎧=-⎪⎨⎪=⎩直线CM的解析式为122y x=-+.又∵直线OE过原点O,且OE∥CM,则OE的解析式为y=12-x.。
中考数学专题-实数的有关概念与计算-(解析版)
实数的有关概念与计算姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·安徽中考真题)9-的绝对值是()A.9B.9-C.19D.19-【答案】A【分析】利用绝对值的定义直接得出结果即可【详解】解:9-的绝对值是:9故选:A【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点2.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∵调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∵调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∵调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∵调价后的价格为1.25x×0.75=0.9375x元,∵0.90x<0.9025x<0.91x<0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.3.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是( ) A .4-B .4-C .0D . 2.8-【答案】A【分析】根据正数比负数大,正数比0大,负数比0小,两个负数中,绝对值大的反而小解答即可.【详解】解:∵∵﹣4∵=4,4>3>2.8,∵﹣4<﹣3<﹣2.8<0<∵﹣4∵,∵比﹣3小的数为﹣4,故选:A .【点睛】本题考查有理数大小比较,熟知有理数的比较大小的法则是解答的关键.4.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( ) A .2-B .2C .1D .1- 【答案】D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∵m 和2m +互为相反数,∵m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键. 5.(2021·四川凉山彝族自治州·中考真题)下列数轴表示正确的是( )A .B .C .D . 【答案】D【分析】数轴的三要素:原点、正方向、单位长度,据此判断.【详解】解:A 、不符合数轴右边的数总比左边的数大的特点,故表示错误;B 、不符合数轴右边的数总比左边的数大的特点,故表示错误;C 、没有原点,故表示错误;D 、符合数轴的定定义,故表示正确;故选D .【点睛】本题考查了数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴,注意数轴的三要素缺一不可.6.(2021·四川泸州市·中考真题)2021的相反数是( )A .2021-B .2021C .12021- D .12021【答案】A【分析】直接利用相反数的定义得出答案.【详解】解:2021的相反数是:-2021.故选:A .【点睛】此题主要考查了相反数,正确掌握相关定义是解题关键.7.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作( ).A .5元B .5-元C .3-元D .7元【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B .【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解. 8.(2021·浙江中考真题)实数2-的绝对值是( )A .2-B .2C .12 D .12-【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B .【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.9.(2021·江苏连云港市·中考真题)3-相反数是( )A .13B .3-C .13-D .3【答案】D【分析】根据相反数的意义,只有符号不同的两个数称为相反数.【详解】解:3-的相反数是3.故选:D .【点睛】本题考查了相反数的意义.只有符号不同的两个数为相反数,0的相反数是0.10.(2021·甘肃武威市·中考真题)中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为( ) A .8510⨯B .9510⨯C .10510⨯D .85010⨯【答案】B【分析】结合科学计数法的表示方法即可求解.【详解】解:50亿即5000000000,故用科学计数法表示为9510⨯,故答案是:B .【点睛】本题考察科学计数法的表示方法,难度不大,属于基础题。
初中数学《几何意义及经典试题》讲义及练习
内容 基本要求略高要求较高要求绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题板块一:绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值.零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例1】 (2级)m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.⑴ x 的几何意义是数轴上表示 的点与 之间的距离;x 0x -(>,=,<); ⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ; ⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则 x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则 x = .⑸ 当1x =-时,则22x x -++= .【解析】 ⑴ x ,原点;=;⑵1;⑶x ,3,2或4;⑷x ,2-,0或4-;⑸4.【例2】 (4级)已知m 是实数,求12m m m +-+-的最小值【解析】 根据绝对值的几何意义,这个问题可以转化为在数轴上找一点m ,使点m 到点0,点1和点2的距离之和最小,显然当1m =时,原式的最小值为2【例3】 (4级)已知m 是实数,求2468m m m m -+-+-+-的最小值【解析】 根据绝对值的几何意义,这个问题可以转化为在数轴上找一点m ,使m 到点2,点4,点6和点8的距离和最小,显然当点m 在点4和点6之间(包括点4和点6)时,原式的值最小为8【例4】 (6级)设123...n a a a a ,,,是常数(n 是大于1的整数),且123...n a a a a <<<<,m 是任意实数,试探例题精讲中考要求几何意义及经典试题索求123...n m a m a m a m a -+-+-++-的最小值的一般方法【解析】 根据题意,结合数轴,不难得到:⑴当n 为奇数时,即当21n k =+(k 为正整数)时,点m 应取在点1k a +处,原式的值最小,最小值为()()()211222...k k k k a a a a a a ++-+-++-⑵当n 为偶数2k (k 是正整数)时,m 应取点k a 和点1k a +之间的任意位置,原式的值最小,最小值为()()()212121...k k k k a a a a a a -+-+-++-【例5】 (8级)122009x x x -+-++-的最小值为 .【解析】 当1005x =时,122009x x x -+-++-取到最小值:122009x x x -+-++-100511005210052009=-+-++-1004100310110031004=++++++++(10041)10041009020=+⨯=点评:若1221n a a a +<<<,当1n x a +=时,1221n x a x a x a +-+-++-取得最小值.若122n a a a <<<,当x 满足1n n a x a +≤≤时,122n x a x a x a -+-++-取得最小值.【巩固】 (8级)试求123...2005x x x x -+-+-++-的值【解析】 联想到绝对值的几何意义:n x x -即表示数轴上数x 的对应点与数n x 的对应点的距离,把这些绝对值转化为同一数轴上若干条线段之和来研究,发现12x x -+-,当12x ≤≤时,它有最小值1,对于123x x x -+-+-,当2x =时,最小值为2,…猜想当1003x =时,原式有最小值 最小值为123...2005x x x x =-+-+-++-100311003210033...10032005=-+-+-++- 100210011000...21012...1002=++++++++++()10021002122⨯+=⨯1005006=【巩固】 (6级)(2000年郑州市中考题)设a b c <<,求当x 取何值时x a x b x c -+-+-的最小值. 【解析】 x a x b x c -+-+-实际表示x 到a b c ,,三点的距离和,画图可知当x b =时,原式有最小值为c a -.【巩固】 (6级)(2009年全国初中数学联赛四川初赛试卷)若1x 、2x 、3x 、4x 、5x 、6x 是6个不同的正整数,取值于1,2,3,4,5,6,记122334455661||||||||||S x x x x x x x x x x x x =-+-+-+-+-+-,则S 的最小值是 . 【解析】 利用此题我们充分展示一下数形结合的优越性:利用绝对值的几何意义122334455661||||||||||x x x x x x x x x x x x -+-+-+-+-+-在数轴上表示出来,从1x 开始又回到1x ,我们可以看成是一个圈,故最小值为10,如下图所示,即使重叠路程最少.【例6】 (6级)(选讲)正数a 使得关于x 的代数式162x x x a ++-+-的最小值是8,那么a 的值为 . 【解析】 如果6a ≤,那么当x a =时,16216(1)(6)7x x x a a a a a ++-+-=++-=++-=,小于8与已知条件矛盾.所以6a >,那么算式162x x x a ++-+-的几何意义是点x 到1-、6、a 、a 的4个距离之和,当6x a ≤≤时取最小值,因此令6x =可得7268a +-=,解得132a =.【巩固】 (6级)(第七届“走进美妙的数学花园”)182324x x a x x -+-+-+-的最小值为12,则a 的取值范围是 . 【解析】 最小值一定能在零点处取到,而零点处代数式值为142a +、5a +、12、19a +,故12是这四个数中最小的,即14212a +≥且512a +≥且1912a +≥,所以7a ≥.【例7】 (6级)(第18届希望杯培训试题)已知代数式374x x -+-=,则下列三条线段一定能构成三角形的是( ).A . 1,x ,5B . 2,x ,5C . 3,x ,5D . 3,x ,4【解析】 根据374x x -+-=可得37x ≤≤,所以选择C .【巩固】 (6级)⑴是否存在有理数x ,使132x x ++-=?⑵是否存在整数x ,使433414x x x x -+-++++=?如果存在,求出所有整数x ,如果不存在,请说明理由 【解析】 ⑴不存在⑵3210x x x x =±=±=±=,,,【巩固】 (6级)(第17届希望杯培训试题)不等式127x x ++-<的整数解有 个.【解析】 可分类讨论来做,也可以利用绝对值的几何意义来解,127x x ++-<的整数解表示数轴上到1-和2的距离之和小于7的点集合,利用数轴容易找到满足条件的整数有2-、1-、0、1、2、3共六个.【例8】 (8级)一共有多少个整数x 适合不等式20009999x x -+≤.【解析】 零点为2000和0,可将数轴分成几段去考虑:(1)当2000x ≥时,原不等式变形为:20009999x x -+≤,进而得:5999.5x ≤,即20005999.5x ≤≤,共有4000个整数适合;(2)当02000x <<时,原不等式变形为:20009999x x -+≤,而20009999<恒成立, 所以又有2000个整数适合.(3)当0x <时,原不等式变形为2000()9999x x -+-≤,3999.5x ≥-,即3999.50x -<<,共有3999个整数适合.综上所得共有9999个整数适合不等式20009999x x -+≤.【例9】 (8级)已知11x y ≤,≤,设1124M x y y x =++++--,求M 的最大值和最小值 【解析】 由已知首先讨论绝对值符号内的代数式的符号因为1x ≤,所以11x -≤≤,所以012x +≤≤,同理可得012y +≤≤因为1y ≤,所以11y -≤≤,所以222y -≤≤⑴因为1x ≤,所以11x -≤≤,所以11x --≤≤,所以14414x -----≤≤ 即543x ----≤≤⑵⑴与⑵同向相加得7241y x ----≤≤ 化简M 的表达式:26M x y =-+ 求M 的取值范围:因为11y -≤≤,所以222x -≤≤ 因为11y -≤≤,所以11y --≤≤所以323x y --≤≤ 所以3269x y -+≤≤ 当11x y ==-,时,M 最大值为9 当11x y =-=,时,M 最小值为3【例10】 (8级)(第12届希望杯试题)彼此不等的有理数a b c ,,在数轴上的对应点分别为A ,B ,C ,如果a b b c a c -+-=-,那么A ,B ,C 的位置关系是_____.【解析】 由绝对值的几何意义知, a b -表示点A 与点B 之间的距离;b c -表示点B 与点C 之间的距离;表示点A 与点C 之间的距离;当点B 位于点A 与点C 之间(包括A ,C 两点)时,a b b c -+-取得最小值,为a c -.由题设知,a ,b ,c 相等,以A ,B ,C 不重合,故点B 位于点A 与点C 之间(包括A ,C 两点).【巩固】 (4级)有理数a 、b 、c 、d 各自对应着数轴上X 、Y 、Z 、R 四个点,且(1)b d -比a b -,a c -、a d -、b c -、c d -都大; (2)d a a c d c -+-=-;(3)c 是a 、b 、c 、d 中第二大的数.则点X 、Y 、Z 、R 从左到右依次是 【解析】 R 、X 、Z 、Y .【巩固】 (6级)(第14届希望杯1试)如右图所示,若a 的绝对值是b 的绝对值的3倍,则数轴的原点在点.(填“A ”“B ”“C ”或“D ”)【解析】 因为a 的绝对值是b 的绝对值的3倍,且a b <,当0a b <<时,由3a b =,得原点的坐标在点D 处; 当0a b <<时,由3a b =,得原点的坐标在点C 处; 当0a b <<时,由3a b =,满足条件的点不存在; 综上,知坐标原点在C 或D .【巩固】 (6级)(05年北京市中学生数学竞赛)(第15届希望杯培训试题)如果1a b -=,1b c +=,2a c +=,求2a b c ++的值.【解析】 (法1):可以去掉绝对值,分类讨论,但非常麻烦,我们仍可采用数形结合的方法,从绝对值的几何意义出发.根据1a b -=,()1b c b c +=--=,()2a c a c +=--=,我们可以得到a 、b 、c -三点在数轴上从左到右依次是c -、b 、a 或a 、b 、c -,我们会发现在这两种情况下,()a c --,()b c --同号,所以2()()()()3a b c a c b c a c b c a c b c ++=--+--=--+--=+++=. (法2):我们发现112a b b c a b b c a c +=-++=-++=+= 所以a b -、b c +同号,所以有11a b b c -=-⎧⎨+=-⎩(两式相加可得2a c +=-)或11a b b c -=⎧⎨+=⎩(两式相加可得2a c +=), 综合上述两种情况,我们可以得到23a b c a c b c ++=+++=.【巩固】 (8级)(15希望杯1试)(北京市数学竞赛)已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d += . 【解析】 法1:四个非负整数和为2,a d +只可能为0、1或2. 讨论:① 当0a =,0b =,1c =,0d =,满足条件,0a d +=; ② 当1a =,0b =,0c =,0d =,满足条件,1a d +=;③ 若2a d +=,即0a d +≠且0a b +=,0b c +=,0c d +=,∴0a b +=,0b c +=,0c d +=,故()()()0000a b b c c d a d =-+=+-+++=+,这与0a d +≠矛盾.所以,0a b +=或1.法2:我们希望利用绝对值的几何意义出发解答问题,所以需要对题干进行适当变形 ()()()()2a b c b c d a d --+--+--+--=,那么题目相当于:(渗入换元思想)已知a 、c 、m 、n 都是整数,且2a m c m c n a n -+-+-+-=,则a n -= . 因为a 、c 、m 、n 都是整数,所以a n -可能为2、1、0 (以下过程教师均须借助数轴讲解)若2a n -=,那么a m -、c m -、c n -均为0,但2a n -=,a m -、c m -为0, 得c n -为2,矛盾,所以2a n -≠;若1a n -=,当a 、m 相同,c 、n 相同时,2a m c m c n a n -+-+-+-=成立; 若0a n -=,当a 、c 、n 相同时,2a m c m c n a n -+-+-+-=成立; 所以a d +=0或1.【例11】 (8级)(2006年山东竞赛试题)在数轴上把坐标为123...2006,,,,的点称为标点,一只青蛙从点1出发,经过2006次跳动,且回到出发点,那么该青蛙所跳过的全部路径的最大长度是多少?请说明理由【解析】 设青蛙依次到达的点为12320061...x x x x x ,,,,,,整个跳过的路径长度为 12233420061...S x x x x x x x x =-+-+-++-()()2210041005...20062123..100321003+++-++++=⨯≤故青蛙跳过的路径的最大长度为221003⨯【例12】 (6级)如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?【解析】 因为村庄G 是AF 的中点,所以村庄G 到城市的距离为12千米,即村庄G 在村庄B C 、之间,7 个村庄依次排列为A B G C D E F 、、、、、、.设活动中心到城市的距离为x 千米,各村到活动中心的距离之和为y 千米,则:4101215171920y x x x x x x x =-+-+-+-+-+-+-因为4101215171920<<<<<<,所以当15x =时y 有最小值,所以活动中心应当建在C 处.【巩固】 (6级)如图所示为一个工厂区的地图,一条公路(粗线)通过这个地区,7个工厂1A ,2A ,…,7A 分布在公路的两侧,由一些小路(细线)与公路相连.现在要在公路上设一个长途汽车站,车站到各工厂(沿公路、小路走)的距离总和越小越好,那么这个车站设在什么地方最好?如果在P 点又建立了一个工厂,并且沿着图上的虚线修了一条小路,那么这时车站设在什么地方好?FEDCBPA 7A 6A 5A 4A 3A 2A 1【解析】 每一条小路都是工厂到车站的必经之路,和其他工厂无关.但在公路上,有些路段将是一些工厂重复经过的,应使重复路线越短越好.要使各工厂到车站的距离之和最小,只要各工厂经小路进入公路的入口处(B C D E F 、、、、)到车站的距离之和最小即可,各路段的弯曲程度是无关紧要的,因此可以把公路看成一条直线,这就和题例题6类似了!即车站设在D 点最好.若在P 处再建一个工厂,则车站建在D 处、E 处或它们之间的任何地方都是最佳的.【例13】 (6级)(山东省烟台中考)先阅读下面的材料,然后回答问题:在一条直线上有依次排列的()1n n >台机床在工作,我们要设置一个零件供应站P ,使这n 台机床到供应站P 的距离总和最小,要解决这个问题,先“退”到比较简单的情形:如图甲,如果直线上有2台机床时,很明显设在1A 和2A 之间的任何地方都行,因为甲和乙所走的距离之和等于1A 到2A 的距离。
七年级数学绝对值专项练习题集
绝对值综合练习题一1、有理数的绝对值一定是( )A 、正数B 、整数C 、正数或零D 、自然数2、绝对值等于它本身的数有( )A 、0个B 、1个C 、2个D 、无数个3、下列说法正确的是( )A 、—|a|一定是负数B 只有两个数相等时它们的绝对值才相等C 、若|a|=|b|,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数4、比较21、31、41的大小,结果正确的是( ) A 、21<31<41 B 、21<41<31 C 、41<21<31 D 、31<21<41 5、若有理数在数轴上的对应点如下图所示,则下列结论中正确的是( )A 、a>|b|B 、a<bC 、|a|>|b|D 、|a|<|b|6、判断。
(1)若|a|=|b|,则a=b 。
(2)若a 为任意有理数,则|a|=a 。
(3)如果甲数的绝对值大于乙数的绝对值,那么甲数一定大于乙数( )(4)|31_|和31_互为相反数。
( ) 7、相反数等于-5的数是______,绝对值等于5的数是________。
8、-4的倒数的相反数是______。
9、绝对值小于∏的整数有________。
10、若|-x|=2,则x=____;若|x -3|=0,则x=______;若|x -3|=1,则x=_______。
11、实数a 、b 在数轴上位置如图所示,则|a|、|b|的大小关系是_______。
12、比较下列各组有理数的大小。
(1)-0.6○-60 (2)-3.8○-3.9(3)0○|-2| (4)43-○54- 13、已知|a|+|b|=9,且|a|=2,求b 的值。
14、已知|a|=3,|b|=2,|c|=1,且a<b<c ,求a 、b 、c 的值。
一、选择题1、 如果m>0, n<0, m<|n|,那么m ,n ,-m , -n 的大小关系( )A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m2、绝对值等于其相反数的数一定是…………………( )A .负数B .正数C .负数或零D .正数或零3、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有…………………………………………( )A .0个B .1个C .2个D .3个4、如果,则的取值范围是 ………………………( )A .>OB .≥OC .≤OD .<O5、绝对值不大于11.1的整数有………………………………( )A .11个B .12个C .22个D .23个6、绝对值最小的有理数的倒数是( )A 、1B 、-1C 、0D 、不存在7、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个8、下列各数中,互为相反数的是( )A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和32 9、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数10、│a │= -a,a 一定是( )A 、正数B 、负数C 、非正数D 、非负数11、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
北京四中中考数学专练总复习 绝对值(提高)知识讲解
【学习目标】1.掌握一个数的绝对值的求法和性质;2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小;4. 理解并会熟练运用绝对值的非负性进行解题.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法: 两个数比较大小,按数的性质符号分类,情况如下: 两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号正数大于负数 -数为0 正数与0:正数大于0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2) 比较绝对值的大小:(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立. 若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【典型例题】类型一、绝对值的概念1.计算:(1)145-- (2)|-4|+|3|+|0| (3)-|+(-8)| 【答案与解析】运用绝对值意义先求出各个绝对值再计算结果.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(1)111444555⎡⎤⎛⎫--=---=-⎪⎢⎥⎝⎭⎣⎦,(2)|-4|+|3|+|0|=4+3+0=7,(3)-|+(-8)|=-[-(-8)]=-8.【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解,一种是利用绝对值的代数意义求解,后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的代数意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.2.如果|x|=6,|y|=4,且x<y.试求x、y的值.【思路点拨】6和-6的绝对值都等于6,4和-4的绝对值都等于4,所以要注意分类讨论.【答案与解析】因为|x|=6,所以x=6或x=-6;因为|y|=4,所以y=4或y=-4;由于x<y,故x只能是-6,因此x=-6,y=±4.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法但要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.此外,此题x=-6,y=±4,就是x=-6,y=4或x=-6,y=-4.举一反三:【变式1】 (1)如果|x|=6,|y|=4,且x>y,则x、y的值各是多少?【答案】x=6,y=±4【变式2】如果数轴上的点A到原点的距离是6,则点A表示的数为.如果|x-2|=1,那么x=;如果|x|>3,那么x的范围是.【答案】6或-6;1或3;x>3或x<-3【变式3】已知| a |=3,| b |=4,若a,b同号,则| a +b |=_________;若a,b异号,则| a+b |=________.据此讨论| a+b |与| a | + | b |的大小关系.【答案】7,1;若a,b同号或至少有一个为零,则|a+b|=|a|+|b|;若a,b异号,则|a+b|<|a|+|b|,由此可得:|a+b|≤|a|+|b| .类型二、比大小3.比较下列每组数的大小:(1)-(-5)与-|-5|;(2)-(+3)与0;(3)45-与34--;(4)π-与| 3.14|--.【思路点拨】先化简符号,去掉绝对值号再分清是“正数与零、负数与零、正数与负数、两个正数还是两个负数”,然后比较.【答案与解析】 (1)化简得:-(-5)=5,-|-5|=-5.因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3.因为负数小于零,所以-(+3)<0.(3)化简得:3344--=-.这是两个负数比较大小,因为44165520-==,33154420-==,且16152020>.所以4354-<--. (4)化简得:-|-3.14|=-3.14,这是两个负数比较大小,因为 |-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:【高清课堂:绝对值比大小 例(简单举例)】【变式1】比大小:(1) -0.3 31-(2)⎪⎭⎫ ⎝⎛--91 101--. 【答案】>;>【高清课堂:绝对值比大小 典型例题2(最后两个)】【变式2】比大小:(1) 1.38-______-1.384;(2) -π___-3.14.【答案】>;<【变式3】若m >0,n <0,且|m|>|n|,用“>”把m ,-m ,n ,-n 连接起来.【答案】解法一:∵ m >0,n <0,∴ m 为正数,-m 为负数,n 为负数,-n 为正数.又∵ 正数大于一切负数,且|m|>|n|,∴ m >-n >n >-m .解法二:因为m >0,n <0且|m|>|n|,把m ,n ,-m ,-n 表示在数轴上,如图所示.∵ 数轴上的数右边的数总比左边的数大,∴ m >-n >n >-m .类型三、含有字母的绝对值的化简4. 把下列各式去掉绝对值的符号.(1)|a-4|(a ≥4);(2)|5-b|(b >5).【答案与解析】(1)∵ a ≥4,∴a-4≥0,∴ |a-4|=a-4.(2)∵ b >5,∴ 5-b <0,∴ |5-b|=-(5-b)=b-5.【总结升华】由字母的取值范围来判断绝对值里面的符号情况,再根据绝对值的意义去掉绝对值的符号.举一反三:【变式1】已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:【答案】由图所示,可得. ∴ 30a c ->,,, ∵ . ∴ 原式. 【变式2】求的最小值. 【答案】法一:当2x <-时,则23(2)[(3)]23215x x x x x x x ++-=-++--=---+=-+≥ 当时,则23(2)[(3)]235x x x x x x ++-=++--=+-+= 当时,则23(2)(3)23215x x x x x x x ++-=++-=++-=-≥ 综上:当时,取得最小值为:5.法二:借助数轴分类讨论: ①; ②; ③.的几何意义为对应的点到-2对应点的距离与对应点到3对应点的距离和.由图明显看出时取最小值. 所以,时,取最小值5类型四、绝对值非负性的应用5. 已知a 、b 为有理数,且满足:12,则a =_______,b =________.【答案与解析】由,,,可得∴【总结升华】由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.举一反三:【变式1】已知,则x的取值范围是________.【答案】;提示:将看成整体,即,则,故,.【变式2】已知b为正整数,且a、b满足,求的值.【答案】由题意得∴所以,2ba类型五、绝对值的实际应用6.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案与解析】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【总结升华】绝对值越小,越接近标准.举一反三:【变式】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】:小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)小虫得到的芝麻数为54×2=108(粒)答:小虫一共可以得到108粒芝麻.。
人教版中考全真模拟测试《数学试卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.计算1|2|2--+的结果是() A. 112-B. 0C. 112D. 1222.自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为() A 58.5810⨯B. 60.85810⨯C. 58.5810-⨯D. 385810⨯3.下列几何体中,俯视图...为三角形的是( ) A. B. C. D.4.在下列图形中,既是轴对称图形,又是中心对称图形的是() A. 等边三角形B. 直角三角形C. 正五边形D. 矩形5. 下列事件是必然事件的是( ).A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分一组D. 打开电视,正在播放动画片 6.下列运算中正确的是() A. 623a a a ÷=B. 23a a a ⋅=C. 2222a a -=D. ()22436a a -=7.已知一个多边形的内角和等于900º,则这个多边形是( ) A. 五边形B. 六边形C. 七边形D. 八边形8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A 0a b +>B. 0a c +>C. 0b c +>D. 0ac <9.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程( ) A.7512x x+=+ B.2175x x++= C.7512x x-=+ D.275x x+= 10.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是()A. a b m n <<<B. m n a b <<<C. a m n b <<<D. m a b n <<<二、填空题11.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .12.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表: 投中次数 3 5 6 7 8 人数 13222则这些队员投中次数众数为___________.13.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点,AB AC ⊥,若8AC =,120BOC ∠=︒,则BD 的长是__________.14.如图在圆内接四边形ABCD 中,::3:5:6A ABC BCD ∠∠∠=,分别延长AB ,DC 交于点,则P ∠的大小为__________.15.如图,已知等边三角形ABC 的顶点,A B 分别在反比例函数1y x=图像的两个分支上,点在反比例函数()0ky k x=≠的图像上,当ABC ∆的面积最小时,的值__________.三.解答题16.解不等式组127111x x -≤⎧⎪⎨+<⎪⎩,并将解集在数轴上表示出来.17.如图,在菱形ABCD 中,点、分别在AB 、CD 上,且AE CF =.求证:DAF DCE ∠=∠.18.先化简,再求值:11221x x x x ⎛⎫÷-+ ⎪++⎝⎭,其中2x =.19.如图,ABC ∆中,是AB 边上一点.(1)在边AC 上求作一点,使得AE ADAC AB=.(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)条件下,若ABC ∆的面积是ADE ∆面积的9倍,且6BC =,求DE 的长.20.如图,矩形ABCD 中,2BC =,AB m =,将矩形ABCD 绕点顺时针旋转90︒,点,,A B C 分别落在点,,处.(1)直接填空:当1m =时,点所经过的路径的长为___________; (2)若点,,在同一直线上,求tan ABA '∠的值.21.某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每盒150元,每台新机最多可配买24盒;若非同时配买,则每盒需220元. 公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如表: 消耗墨盒数 22 23 24 25 打印机台数 1441(1)以这十台打印机消耗墨盒数为样本,估计”一年该款打印机正常工作5年消耗的墨盒数不大于24”的概率;(2)试以这10台打印机5年消耗的墨盒数的平均数作为决策依据,说明购买10台该款打印机时,每台应统一配买23盒墨还是24盒墨更合算?22.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.(1)当12x ≥时,求与之间的函数关系式;(2)当1215x ≤≤时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值. 23.如图,已知ABC ∆,以AC 为直径的O 交边AB 于点,BC 与O 相切.(1)若45ABC ∠=︒,求证:AE BE =;(2)点是O 上一点,点,D E 两点在AC 的异侧.若2EAC ACD ∠=∠,6AE =,CD =求O 半径的长.24.抛物线2(0)y ax bx c a =++≠与轴交于,A B 两点,与轴交于点.已知点()1,0A -,点()0,P p -. (1)当2a p =时,求点的坐标;(2)直线y x m =-+与抛物线交于,P N 两点,抛物线的对称轴为直线1x = ①求,所满足的数量关系式; ②当OP=OA 时,求线段PN 的长度.答案与解析一.选择题1.计算1|2|2--+的结果是() A. 112- B. 0C. 112D. 122【答案】D 【解析】 【分析】先化简绝对值和负整数指数幂,然后再计算. 【详解】解:111|2|2=2+=222--+ 故选:D .【点睛】本题考查负整数指数幂的的计算,掌握计算法则正确计算是解题关键.2.自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为() A. 58.5810⨯ B. 60.85810⨯C. 58.5810-⨯D. 385810⨯【答案】A 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于858000有6位,所以可以确定n=6-1=5. 【详解】解:858000=8.58×105. 故选:A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键. 3.下列几何体中,俯视图...为三角形的是( ) A. B. C. D.【答案】C 【解析】【分析】依次观察四个选项,A中圆锥从正上看,是其在地面投影;B中,长方体从上面看,看到的是上表面;C中,三棱柱从正上看,看到的是上表面;D中四棱锥从正上看,是其在地面投影;据此得出俯视图并进行判断.【解答】A、圆锥俯视图是带圆心的圆,故本选项错误;B、长方体的俯视图均为矩形,故本选项错误;C、三棱柱的俯视图是三角形,故本选项正确;D、四棱锥的俯视图是四边形,故本选项错误;故选C.【点评】本题应用了几何体三视图的知识,从上面向下看,想象出平面投影是解答重点;4.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 等边三角形B. 直角三角形C. 正五边形D. 矩形【答案】D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得.【详解】解:A.等边三角形轴对称图形,不是中心对称图形,不符合题意;B.直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C.正五边形是轴对称图形,不是中心对称图形,不符合题意;D.矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D.【点睛】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.5. 下列事件是必然事件的是( ).A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分在一组D. 打开电视,正在播放动画片【答案】C【解析】A.点数之和不一定是6;B.还可能是背面朝上;C.是必然事件;D.不一定,也可能会是其它节目. 故选C.6.下列运算中正确的是() A. 623a a a ÷= B. 23a a a ⋅=C. 2222a a -=D. ()22436a a -=【答案】B 【解析】 【分析】根据同底数幂的除法,同底数幂的乘法,合并同类项,幂的乘方法则进行计算,逐个判断即可. 【详解】解:A. 624a a a ÷=,故此选项不符合题意; B. 23a a a ⋅=,正确;C. 2222a a a -=,故此选项不符合题意;D. ()22439a a -=,故此选项不符合题意;故选:B .【点睛】本题考查同底数幂的除法,同底数幂的乘法,合并同类项,幂的乘方,掌握运算法则正确计算是解题关键.7.已知一个多边形的内角和等于900º,则这个多边形是( ) A. 五边形 B. 六边形C. 七边形D. 八边形【答案】C 【解析】试题分析:多边形的内角和公式为(n -2)×180°,根据题意可得:(n -2)×180°=900°,解得:n=7. 考点:多边形的内角和定理.8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A. 0a b +>B. 0a c +>C. 0b c +>D. 0ac <【解析】 【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】解:a b =,原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=, 故选项A 错误, 故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.9.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程( ) A.7512x x+=+ B.2175x x++= C.7512x x-=+ D.275x x+= 【答案】B 【解析】 【分析】根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的27x +和5x,进而得出等式. 【详解】设甲乙经过x 日相逢,可列方程:2175x x++=. 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两人所走路程所占百分比解题关键. 10.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是()A. a b m n <<<B. m n a b <<<C. a m n b <<<D. m a b n <<<【答案】D 【解析】利用a是关于x的一元二次方程(x-m)(x-n)+1=0的根得到(a-m)(a-n)=-1<0,进而判断出m<a<n,同理判断出m<b<n,即可得出结论.【详解】解:∵a是关于x的一元二次方程(x-m)(x-n)+1=0的根,∴(a-m)(a-n)+1=0,∴(a-m)(a-n)=-1<0,∵m<n,∴m<a<n,同理:m<b<n,∵a<b,∴m<a<b<n.故选:D.【点睛】此题主要考查了一元二次方程的解的定义,不等式的性质,判断出(a-m)(a-n)<0是解本题的关键.二、填空题11.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .【答案】110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°12.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数 3 5 6 7 8人数 1 3 2 2 2则这些队员投中次数的众数为___________.【答案】5【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中5是出现次数最多的,故众数是5;故答案为:5.【点睛】本题考查了众数的定义,能够熟记众数的定义是解答本题的关键,难度不大.13.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点,AB AC ⊥,若8AC =,120BOC ∠=︒,则BD 的长是__________.【答案】16【解析】【分析】由平行四边形的性质得出BO=DO ,AO=CO=12AC=4,由含30°角直角三角形的性质得出OB ,即可得出结果.【详解】解:∵▱ABCD 的对角线AC 与BD 相交于点O ,∴BO=DO ,AO=CO=12AC=4, ∵∠BOC=120°,∴∠AOB=180°-∠BOC=180°-120°=60°,∵AB ⊥AC ,∴∠BAO=90°,∠ABO=30°,∴OB=2AO=2×4=8, ∴BD=2OB=2×8=16, 故答案为:16.【点睛】本题考查了平行四边形的性质、平角、含30°角的直角三角形的性质等知识;熟练掌握平行四边形的性质是解题的关键.14.如图在圆内接四边形ABCD 中,::3:5:6A ABC BCD ∠∠∠=,分别延长AB ,DC 交于点,则P ∠的大小为__________.【答案】40°【解析】【分析】设∠A=3k ,∠ABC=5k ,∠BCD=6k ,根据圆内接四边形的性质得到k=20°,求得∠A=60°,∠ABC=5k=100°,∠D=80°,根据三角形的内角和即可得到结论.【详解】解:∵∠A :∠ABC :∠BCD=3:5:6,设∠A=3k ,∠ABC=5k ,∠BCD=6k ,∵∠A+∠BCD=180°,∴3k+6k=180°,∴k=20°,∴∠A=60°,∠ABC=5k=100°,∴∠D=80°,∴∠P=180°-∠A-∠D=40°,故答案为:40°.【点睛】本题考查了圆内接四边形的性质,三角形的内角和,熟练掌握圆内接四边形的性质是解题的关键. 15.如图,已知等边三角形ABC 的顶点,A B 分别在反比例函数1y x=图像的两个分支上,点在反比例函数()0k y k x=≠的图像上,当ABC ∆的面积最小时,的值__________.【答案】-3【解析】【分析】当等边三角形ABC 的边长最小时,△ABC 的面积最小,点A ,B 分别在反比例函数y=1x图象的两个分支上,则当A 、B 在直线y=x 上时最短,即此时△ABC 的面积最小,根据反比例函数图象的对称性可得OA=OB ,设OA=x ,则AC=2x ,x ,根据等边三角形三线合一可证明△AOE ∽△OCF ,根据相似三角形面积比等于相似比的平方可得结论.【详解】解:根据题意当A 、B 在直线y=x 上时,△ABC 的面积最小,函数y=1x图象关于原点对称, ∴OA=OB ,连接OC ,过A 作AE ⊥y 轴于E ,过C 作CF ⊥y 轴于F ,∵△ABC 等边三角形,∴AO ⊥OC ,∴∠AOC=90°,∠ACO=30°,∴∠AOE+∠COF=90°,设OA=x ,则AC=2x ,,∵AE ⊥y 轴,CF ⊥y 轴,∴∠AEO=∠OFC=∠AOE+∠OAE=90°,∴∠COF=∠OAE ,∴△AOE ∽△OCF ,∴221()3AOE OCF S OA S OC ===, ∵顶点A 在函数y=1x 图象的分支上, ∴S △AOE =12, ∴S △OCF =32, ∵点C 在反比例函数y=k x (k≠0)图象上, ∴k=-3,故答案为-3.【点睛】本题考查了综合运用反比例函数图象上点的坐标特征,反比例函数图象关于原点对称,相似三角形的判定与性质及等边三角形等知识点,难度不大,属于中档题.三.解答题16.解不等式组127111x x -≤⎧⎪⎨+<⎪⎩,并将解集在数轴上表示出来. 【答案】31x -≤<,数轴见解析.【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:127112x x -≤⎧⎪⎨+<⎪⎩①② 解不等式①,得3x ≥-解不等式②,得1x <不等式组的解集在数轴上表示为:∴不等式组的解集为:31x -≤<.【点睛】本题考查的是解一元一次不等式组,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.17.如图,在菱形ABCD 中,点、分别在AB 、CD 上,且AE CF =.求证:DAF DCE ∠=∠.【答案】证明见解析【解析】【分析】根据菱形的性质得出AD=CD,进而利用全等三角形的判定和性质解答即可.【详解】解:∵四边ABCD是菱形,∴AD=CD,∵AE=CF,∴AD-AE=CD-CF,即DE=DF,∵∠D=∠D,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE.【点睛】此题考查菱形的性质,关键是根据全等三角形的判定和性质解答.18.先化简,再求值:11221xxx x⎛⎫÷-+⎪++⎝⎭,其中2x=.【答案】12x;2.【解析】【分析】分式的混合运算,先做括号里面的,然后再做除法进行化简,然后将x的值代入计算即可.【详解】解:11221 xxx x⎛⎫÷-+⎪++⎝⎭=(1)(1)1 2211 x x xx x x+-⎡⎤÷+⎢⎥+++⎣⎦=211() 2211 x xx x x-÷++++=212(1)x x x x ++ =12x当2x =时,原式=12=422. 【点睛】本题考查分式的混合运算及二次根式的化简,掌握运算法则正确计算是解题关键.19.如图,ABC ∆中,是AB 边上一点.(1)在边AC 上求作一点,使得AE AD AC AB=.(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的条件下,若ABC ∆的面积是ADE ∆面积的9倍,且6BC =,求DE 的长.【答案】(1)作图见解析;(2)2【解析】【分析】(1)在AB 的右侧作∠ADE=∠B ,则DE ∥BC ,故AE AD AC AB=; (2)依据∠A=∠A ,∠ADE=∠B ,即可得到△ADE ∽△ABC ,再根据相似三角形的性质,即可得出DE 的长.【详解】解:(1)如图,点E 就是所求作的点.(2)∵∠A=∠A ,∠ADE=∠B ,∴△ADE ∽△ABC ,∴2()ADEABC S DE S BC = ,即21()69DE =. 解得:DE=2.【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.如图,矩形ABCD 中,2BC =,AB m =,将矩形ABCD 绕点顺时针旋转90︒,点,,A B C 分别落在点,,处.(1)直接填空:当1m =时,点所经过的路径的长为___________;(2)若点,,在同一直线上,求tan ABA '∠的值.【答案】(15π;(251-. 【解析】【分析】(1)由题意可知点B 经过的路径是以点D 为圆心,以BD 的长为半径,圆心角为90°的弧长,然后用勾股定理求得BD 的长,再利用弧长公式求解即可;(2)由AB=m ,根据平行线的性质列出比例式求出m 的值,根据正切的定义求出tan ∠BA′C ,根据∠ABA′=∠BA′C 解答即可.【详解】解:(1)由题意可知,点B 经过的路径是以点D 为圆心,以BD 的长为半径,圆心角为90°的弧长, ∴连接'BD B D ,,当m=1时,AB=1,在矩形ABCD 中,AD=BC=2∴在Rt △ABD 中,225BD AB AD =+= ∴此时点所经过的路径的长为9055=1802ππ 5π. (2)由题意AB=m ,则CD=m ,A′C=m+2,∵AD∥BC,∴'''C D A DBC A C=,即222mm=+,解得,151m=,251m=-(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C=51'2512BCA C==-+,∴tan∠51 -,【点睛】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.21.某印刷厂打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每盒150元,每台新机最多可配买24盒;若非同时配买,则每盒需220元.公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如表:消耗墨盒数22 23 24 25打印机台数 1 4 4 1(1)以这十台打印机消耗墨盒数为样本,估计”一年该款打印机正常工作5年消耗的墨盒数不大于24”的概率;(2)试以这10台打印机5年消耗的墨盒数的平均数作为决策依据,说明购买10台该款打印机时,每台应统一配买23盒墨还是24盒墨更合算?【答案】(1)910;(2)每台应统一配23盒墨更合算【解析】【分析】(1)直接利用概率公式求解即可;(2)分别求出购买23盒墨,24盒墨的费用即可判断.【详解】解:(1)因为10台打印机正常工作五年消耗的墨盒数不大24的台数为1+4+4=9,所以10台打印机正常工作五年消耗的墨盒数不大24的频率为910, 故可估计10台打印机正常工作五年消耗的墨盒数不大24的概率为910;(2)每台应统一配23盒墨更合算,理由如下:10台打印机五年消耗的墨盒数的平均数为:110414212323.510x ⨯+⨯+⨯+⨯=+= (盒), 若每台统一配买盒墨,则这台打印机所需费用为:23×150×10+(23.5-23)×220×10=35600(元); 若每台统一配买盒墨,则这台打印机所需费用为:24×150×10=36000(元). 因35600<36000,所以每台应统一配23盒墨更合算.【点睛】本题考查利用频率估计概率,加权平均数,列表法等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.22.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.(1)当12x ≥时,求与之间的函数关系式;(2)当1215x ≤≤时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.【答案】(1)y=-10x 2+320x-2200;(2)销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【解析】【分析】(1)根据总利润=单件利润×销售量列出函数解析式即可;(2)把y=-10x 2+320x-2200化为y=-10(x-16)2+360,根据二次函数的性质即可得到结论.【详解】解:(1)y=(x-10)[100-10(x-12)=(x-10)(100-10x+120)=-10x 2+320x-2200;(2)y=-10x 2+320x-2200=-10(x-16)2+360,∴12≤x≤15时,∵a=-10<0,对称轴为直线x=16,∴抛物线开口向下,在对称轴左侧,y 随x 的增大而增大,∴当x=15时,y 取最大值为350元,答:销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【点睛】本题考查的是二次函数的应用、掌握二次函数的性质是解题的关键.23.如图,已知ABC ∆,以AC 为直径的O 交边AB 于点,BC 与O 相切.(1)若45ABC ∠=︒,求证:AE BE =;(2)点是O 上一点,点,D E 两点在AC 的异侧.若2EAC ACD ∠=∠,6AE =,45CD =求O 半径的长.【答案】(1)证明见解析;(2)5【解析】【分析】(1)连接CE ,依据题意和圆周角定理求得△ABC 是等腰直角三角形,然后根据圆周角定理和等腰三角形三线合一的性质求解即可;(2)连接DO 并延长,交CE 于点M ,交O 于点G ,利用三角形外角的性质求得2=EAC ACD AOD ∠=∠∠,从而判定DG ∥AE ,得到90DMC AEC ∠=∠=,从而根据垂径定理可得EM=CM ,根据三角形中位线定理可求132OM AE ==,然后设圆的半径为x ,根据勾股定理列方程求解即可. 【详解】解:连接CE∵BC 与O 相切∴∠ACB=90°∵45ABC ∠=︒∴45ABC CAB ∠=∠=︒∴CA=CB又∵以AC 为直径的O 交边AB 于点,∴∠CEA=90° ∴根据等腰三角形三线合一的性质可知,CE 是底边AB 的中线∴AE=BE(2)连接DO 并延长,交CE 于点M ,交O 于点G 由(1)可知,∠CEA=90°∵2=EAC ACD AOD ∠=∠∠∴DG ∥AE∴90DMC AEC ∠=∠=∴EM=CM∴在△AEC 中,132OM AE == 设圆的半径为x ,在Rt △OMC 中,2223CM x =-在Rt △DMC 中,222(45)(3)CM x =-+∴22223(45)(3)x x -=-+,解得5x =或8x =-(负值舍去)∴O 半径的长为5.【点睛】本题考查切线的性质,圆周角定理,垂径定理的应用,题目难度不大,但有一定的综合性,正确添加辅助线利用勾股定理列方程求解圆的半径是解题关键.24.抛物线2(0)y ax bx c a =++≠与轴交于,A B 两点,与轴交于点.已知点()1,0A -,点()0,P p -.(1)当2a p =时,求点的坐标;(2)直线y x m =-+与抛物线交于,P N 两点,抛物线的对称轴为直线1x =①求,所满足的数量关系式;②当OP=OA 时,求线段PN 的长度.【答案】(1)(12,0);(2)①3p a =;②. 【解析】【分析】(1)利用待定系数法,将()1,0A -,点()0,P p -,2a p =代入函数解析式,求得b p =,从而求得函数解析式及对称轴,然后根据数轴上的对称性求得点B 的坐标;(2)①由抛物线的对称轴求得12b a-=,求得2b a =-,然后将点()1,0A -,点()0,P p -代入函数解析式求得p 与a 的数量关系;②由OP=OA 时,分情况讨论当P (0,1)或(0,-1),求得p 的值,从而确定二次函数和一次函数解析式,然后求其交点坐标,利用勾股定理求PN 的长度. 【详解】解:(1)将点()1,0A -,点()0,P p -代入函数解析式,得0a b c c p -+=⎧⎨=-⎩当2a p =时,可得20p b p --=,解得:b p =∴此时抛物线解析式为:22y px px p =+-,抛物线对称轴为1224p x p =-=-⨯ 设B 点坐标为(x ,0) ,则此时1124x -+=-,解得:12x = ∴B 点坐标为(12,0) (2)①将点()1,0A -,点()0,P p -代入函数解析式,得0a b c c p -+=⎧⎨=-⎩有题意可知:12b a-=,则2b a =- ∴(2)0a a p ---=,解得3p a =②当OP=OA 时,P (0,1)或(0,-1)当P (0,1)时,-p=1,即p=-1,则3=-1a ,解得13a =- ∴此时抛物线解析式为:212133y x x =-++ 又∵直线y x m =-+与抛物线交于P N ,两点∴一次函数解析式为:1y x =-+ 由此2121331y x x y x ⎧=-++⎪⎨⎪=-+⎩,解得01x y =⎧⎨=⎩或5-4x y =⎧⎨=⎩ ∴此时P (0,1)),N (5,-4)∴=当P (0,-1)时,-p=-1,即p=1,则3=1a ,解得13a = ∴此时抛物线解析式为:212133y x x =-- 又∵直线y x m =-+与抛物线交于P N ,两点 ∴一次函数解析式为:1y x =-- 由此2121331y x x y x ⎧=--⎪⎨⎪=--⎩,解得01x y =⎧⎨=-⎩或10x y ⎧⎨⎩=-= ∴此时P (0,-1)),N (-1,0)∴=∴综上所述,PN的长度为.【点睛】本题考查二次函数与一次函数的综合,掌握函数的图像性质,利用数形结合思想解题是关键.。
2019全国中考数学试题分类汇编--有理数-绝对值 教师版
001(2019•河南)的绝对值是()A.B.C.2 D.﹣2【思路点拨】根据一个负数的绝对值是它的相反数进行解答即可.本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.【详细解答】解:||,故选:B.002(2019•山西)﹣3的绝对值是()A.﹣3 B.3 C.D.【思路点拨】根据绝对值的定义,﹣3的绝对值是指在数轴上表示﹣3的点到原点的距离,即可得到正确答案.本题考查的是绝对值的定义,抓住定义及相关知识点即可解决问题.【详细解答】解:|﹣3|=3.故﹣3的绝对值是3.故选:B.003(2019•新疆)﹣2的绝对值是()A.2 B.﹣2 C.±2 D.【思路点拨】直接利用绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.【详细解答】解:﹣2的绝对值是:2.故选:A.004(2019•广州)|﹣6|=()A.﹣6 B.6 C.D.【思路点拨】根据负数的绝对值等于它的相反数解答.本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【详细解答】解:﹣6的绝对值是|﹣6|=6.故选:B.005(2019•深圳)的绝对值是()A.﹣5 B.C.5 D.【思路点拨】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题考查了绝对值的定义,解题的关键是掌握绝对值的性质.【详细解答】解:根据负数的绝对值是它的相反数,得||,故选:B.006(2019•广东)﹣2的绝对值是()A.2 B.﹣2 C.D.±2【思路点拨】根据负数的绝对值是它的相反数,即可解答.本题考查了绝对值,解决本题的关键是明确负数的绝对值是它的相反数.【详细解答】解:|﹣2|=2,故选:A.007(2019•桂林)计算:|﹣2019|=2019 .【思路点拨】根据绝对值解答即可.此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.【详细解答】解:|﹣2019|=2019,故答案为:2019.008(2019•贺州)﹣2的绝对值是()A.﹣2 B.2 C.D.【思路点拨】根据绝对值的定义,可直接得出﹣2的绝对值.本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键.【详细解答】解:|﹣2|=2,故选:B.009(2019•大连)﹣2的绝对值是()A.2 B.C.D.﹣2【思路点拨】根据绝对值是实数轴上的点到原点的距离,可得答案.本题考查了绝对值,正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值等于0.【详细解答】解:﹣2的绝对值是2.故选:A.010(2019•辽阳)﹣8的绝对值是()A.8 B.C.﹣8 D.【思路点拨】根据绝对值是实数轴上的点到原点的距离,可得答案.本题考查了绝对值,正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值等于0.【详细解答】解:﹣8的绝对值是8.故选:A.011(2019浙江宁波)﹣2的绝对值为()A.B.2 C.D.﹣2【思路点拨】根据绝对值的意义求出即可.本题考查了对绝对值的意义的应用,能理解绝对值的意义是解此题的关键.【详细解答】解:﹣2的绝对值为2,故选:B.012(2019•绍兴)﹣5的绝对值是()A.5 B.﹣5 C.D.【思路点拨】根据绝对值的性质求解.此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【详细解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选:A.013(2019•鄂州)﹣2019的绝对值是()A.2019 B.﹣2019 C.D.【思路点拨】直接利用绝对值的定义进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.【详细解答】解:﹣2019的绝对值是:2019.故选:A.014(2019•黄冈)﹣3的绝对值是()A.﹣3 B.C.3 D.±3【思路点拨】利用绝对值的定义求解即可.本题主要考查了绝对值,解题的关键是熟记绝对值的定义.【详细解答】解:﹣3的绝对值是3.故选:C.015(2019•黄石)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3 B.﹣0.5 C.D.【思路点拨】根据绝对值的性质以及正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小判断即可.此题主要考查了实数大小比较的方法以及绝对值的性质,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.【详细解答】解:∵|﹣3|=3,|﹣0.5|=0.5,||,||且0.53,∴所给的几个数中,绝对值最大的数是﹣3.故选:A.016(2019•随州)﹣3的绝对值为()A.3 B.﹣3 C.±3 D.9【思路点拨】根据负数的绝对值等于它的相反数解答.本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【详细解答】解:﹣3的绝对值为3,即|﹣3|=3.故选:A.017(2019•襄阳)计算|﹣3|的结果是()A.3 B.C.﹣3 D.±3【思路点拨】根据绝对值的性质进行计算.本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【详细解答】解:|﹣3|=3.故选:A.018(2019•衡阳)的绝对值是()A.B.C.D.【思路点拨】根据负数的绝对值是它的相反数,即可解答.本题考查了相反数,解决本题的关键是熟记负数的绝对值是它的相反数.【详细解答】解:||,故选:B.019(2019•岳阳)﹣2019的绝对值是()A.2019 B.﹣2019 C.D.【思路点拨】直接利用绝对值的定义进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.【详细解答】解:﹣2019的绝对值是:2019.故选:A.020(2019•淮安)﹣3的绝对值是()A.B.﹣3 C.D.3【思路点拨】利用绝对值的定义求解即可.本题主要考查了绝对值,解题的关键是熟记绝对值的定义.【详细解答】解:﹣3的绝对值是3.故选:D.021(2019•连云港)﹣2的绝对值是()A.﹣2 B.C.2 D.【思路点拨】根据负数的绝对值等于它的相反数求解绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【详细解答】解:因为|﹣2|=2,故选:C.022(2019•重庆)5的绝对值是()A.5 B.﹣5 C.D.【思路点拨】根据绝对值的意义:数轴上一个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【详细解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A.023(2019•临沂)|﹣2019|=()A.2019 B.﹣2019 C.D.【思路点拨】利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.【详细解答】解:|﹣2019|=2019.故选:A.024(2019•达州)﹣2019的绝对值是()A.2019 B.﹣2019 C.D.【思路点拨】直接利用绝对值的定义进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.【详细解答】解:﹣2019的绝对值是:2019.故选:A.025(2019•广安)﹣2019的绝对值是()A.﹣2019 B.2019 C.D.【思路点拨】直接利用绝对值的定义进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.【详细解答】解:﹣2019的绝对值是:2019.故选:B.026(2019•乐山)﹣3的绝对值是()A.3 B.﹣3 C.D.【思路点拨】根据一个负数的绝对值等于它的相反数得出.考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【详细解答】解:|﹣3|=﹣(﹣3)=3.故选:A.027(2019•泸州)﹣8的绝对值是()A.8 B.﹣8 C.D.【思路点拨】根据一个负数的绝对值是它的相反数即可求解.本题考查了绝对值的意义,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.【详细解答】解:﹣8的绝对值是8.故选:A.028(2019•遂宁)﹣||的值为()A.B.C.±D.2【思路点拨】根据实数的绝对值的意义解答即可.此题主要考查绝对值和二次根式,掌握实数的绝对值的意义是解题的关键.【详细解答】解:﹣||.故选:B.。
2022年中考综合模拟考试《数学试卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.给出四个实数﹣2,0,0.5,2,其中无理数是( )A. ﹣2B. 0C. 0.5D. 22. 如图,桌面上有一个一次性纸杯,它的正视图应是( )A. B. C. D.3.我国倡导的”一带一路”建设将促进我国与世界一些国家的互利合作,根据规划”一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A. 4.4×108B. 4.40×108C. 4.4×109D. 4.4×10104.一名射击爱好者7次射击的中靶环数如下(单位:环):7,10,9,8,7,9,9,这7个数据的中位数是( )A. 7环B. 8环C. 9环D. 10环5.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A. 17B.37C.47D.576.要使分式21xx+-有意义,则x的取值应满足( )A. x≠﹣2B. x≠1C. x=﹣2D. x=17.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,﹣1),点B的对应点为B′(4,0),则点B的坐标为()A. (9,﹣1)B. (﹣1,0)C. (3,﹣1)D. (﹣1,2)8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是()A.8374x yy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=⎩C.8374y xx y-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩9.如图,AB⊥x轴,B为垂足,双曲线kyx=(x>0)与△AOB两条边OA,AB分别相交于C,D两点,OC=CA,△ACD的面积为3,则k等于( )A. 2B. 3C. 4D. 610.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC、BC为直径作半圆,其中M,N 分别是AC、BC为直径作半圆弧的中点,AC,BC的中点分别是P,Q.若MP+NQ=7,AC+BC=26,则AB的长是( )A. 17B. 18C. 19D. 20二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:m2-6m+9= .12. 已知扇形的弧长为8π,圆心角为60°,则它的半径为______.13.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为________.14.不等式组13242xx+>⎧⎨-≤⎩的解集为_____.15.如图,直线y=﹣33x+6与x轴、y轴分别交于A,B两点,C是OB中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为_____.16.小林家的洗手台面上有一瓶洗手液(如图1),当手按住顶部A下压时(如图2),洗手液瞬间从喷口B流出,已知瓶子上部分的CE和FD的圆心分别为D,C,下部分的视图是矩形CGHD,GH=10cm,GC=8cm,点E到台面GH的距离为14cm,点B距台面GH的距离为16cm,且B,D,H三点共线.如果从喷口B流出的洗手液路线呈抛物线形,且该路线所在的抛物线经过C.E两点,接洗手液时,当手心O距DH的水平距离为2cm时,手心O距水平台面GH的高度为_____cm.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:16+(π﹣3)0﹣|﹣3|;(2)化简:(x+2)2﹣x(x﹣3).18.如图,在△ABC中,AD是BC边上中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=2,CF=4时,求AC的长.19.某校组织七年级学生参加冬令营活动,本次冬令营活动分为甲、乙、丙三组进行.如图,条形统计图和扇形统计图反映了学生参加冬令营活动的报名情况,请你根据图中的信息回答下列问题:(1)七年级报名参加本次活动的总人数为 ,扇形统计图中,表示甲组部分的扇形的圆心角是 度;(2)补全条形统计图;(3)根据实际需要,将从甲组抽调部分学生到丙组,使丙组人数是甲组人数的3倍,则应从甲组抽调多少名学生到丙组?20.如图,A ,B ,C 是方格纸中的格点,请按要求作图.(1)在图1中画出一个以A ,B ,C ,D 为顶点的格点平行四边形.(2)在图2中画出一个格点P ,使得∠BPC =12∠BAC .21.如图,在平面直角坐标系中,二次函数()230y axbx a =++≠的图像经过点()1,0A -,点()3,0B ,与轴交于点,(1)求、的值:(2)若点为直线BC上一点,点到直线、两点的距离相等,将该抛物线向左(或向右)平移,得到一条新抛物线,并且新抛物线经过点,求新抛物线的顶点坐标.22.如图,四边形ABCD内接于⊙O,AB是直径,C为BD的中点,延长AD,BC交于P,连结AC.(1)求证:AB=AP;(2)当AB=10,DP=2时,求线段CP的长.23.九二班计划购买A、B两种相册共42册作为毕业礼品,已知A种相册的单价比B种的多10元,买4册A 种相册与买5册B种相册的费用相同.(1)求A、B两种相册的单价分别是多少元?(2)由于学生对两类相册喜好不同,经调查得知:购买的A种相册的数量要少于B种相册数量的34,但又不少于B种相册数量的25,如果设买A种相册x册.①有多少种不同购买方案?②商店为了促销,决定对A 种相册每册让利a 元销售(12≤a ≤18),B 种相册每册让利b 元销售,最后班委会同学在付款时发现:购买所需的总费用与购买的方案无关,当总费用最少时,求此时a 的值. 24.如图Rt ABC △中,ABC 90︒∠=,P 是斜边AC 上一个动点,以即为直径作O 交BC 于点D ,与AC 的另一个交点E ,连接DE .(1)当DP EP =时,①若130BD ︒=,求C ∠的度数;②求证AB AP =;(2)当15AB =,20BC =时,①是含存在点P ,使得BDE 是等腰三角形,若存在求出所有符合条件的CP 的长;②以D 为端点过P 作射线DH ,作点O 关于DE 的对称点Q 恰好落在CPH ∠内,则CP 的取值范围为________.(直接写出结果)答案与解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.给出四个实数﹣2,0,0.5,2,其中无理数是( )A. ﹣2B. 0C. 0.5D. 2【答案】D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:﹣2,0是整数,属于有理数;0.5是有限小数,属于有理数;2是无理数.故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2. 如图,桌面上有一个一次性纸杯,它的正视图应是( )A. B. C. D.【答案】D【解析】【分析】根据主视图是从正面看到的图形,可得答案.【详解】从正面看是一个上底在下的梯形.故选D.考点:简单几何体的三视图.3.我国倡导的”一带一路”建设将促进我国与世界一些国家的互利合作,根据规划”一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A. 4.4×108B. 4.40×108C. 4.4×109D. 4.4×1010【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:4 400 000 000=4.4×109,故选C.4.一名射击爱好者7次射击的中靶环数如下(单位:环):7,10,9,8,7,9,9,这7个数据的中位数是( )A. 7环B. 8环C. 9环D. 10环【答案】C【解析】【分析】根据中位数的定义,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】这组数据按照从小到大的顺序排列为:7,7,8,9,9,9,10,一共7个数,则中位数为9.故选:C.【点评】本题考查了中位数的知识,熟练掌握个数为奇数和偶数时中位数的求法是解题关键.5.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A. 17B.37C.47D.57【答案】B【解析】分析:先求出球的所有个数,再根据概率公式解答即可.详解:∵袋子中装有4个红球和3个黑球,∴共有7个球,其中4个红球,∴从口袋中任意摸出一个球,摸到黑球的概率是3 7 .故选B.点睛:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.6.要使分式21xx+-有意义,则x的取值应满足( )A. x≠﹣2B. x≠1C. x=﹣2D. x=1【答案】B【解析】分析】根据分式有意义,分母不为0列出不等式,解不等式即可.【详解】解:由题意得,x﹣1≠0,解得,x≠1,故选:B.【点睛】本题主要考查的是分式有意义的条件,掌握分式有意义,分母不为0是解题的关键.7.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,﹣1),点B的对应点为B′(4,0),则点B的坐标为()A. (9,﹣1)B. (﹣1,0)C. (3,﹣1)D. (﹣1,2)【答案】D【解析】解:横坐标从-2到3,说明是向右移动了3-(-2)=5,纵坐标从1到-1,说明是向下移动了1-(-1)=2,求原来点的坐标,则为让新坐标的横坐标都减5,纵坐标都加2.则点B的坐标为(-1,2).故选D.8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是()A.8374x yy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=⎩C.8374y xx y-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩【答案】A 【解析】【分析】设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组,进而得到答案.【详解】解:设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组为:8374x y y x -=⎧⎨-=⎩, 故选:A ;【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.9.如图,AB ⊥x 轴,B 为垂足,双曲线k y x=(x >0)与△AOB 的两条边OA ,AB 分别相交于C ,D 两点,OC =CA ,△ACD 的面积为3,则k 等于( )A. 2B. 3C. 4D. 6【答案】C【解析】 连接OD ,过点C 作CE ⊥x 轴,∵OC=CA ,∴OE:OB=1:2;设△OBD 面积为x ,根据反比例函数k 的意义得到三角形OCE 面积为x ,∵△COE ∽△AOB ,∴三角形COE 与三角形BOA 面积之比为1:4,∵△ACD 的面积为3,∴△OCD 的面积为3,∴三角形BOA面积为6+x,即三角形BOA的面积为6+x=4x,解得x=2,∴12|k|=2,∵k>0,∴k=4,故选:C.10.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC、BC为直径作半圆,其中M,N 分别是AC、BC为直径作半圆弧的中点,AC,BC的中点分别是P,Q.若MP+NQ=7,AC+BC=26,则AB的长是( )A. 17B. 18C. 19D. 20【答案】C【解析】【分析】连接OP,OQ,根据M,N分别是AC、BC为直径作半圆弧的中点,AC,BC的中点分别是P,Q.得到OP⊥AC,OQ⊥BC,从而得到H、I是AC、BC的中点,利用中位线定理得到OH+OI=12(AC+BC)=13和PH+QI=6,从而利用AB=OP+OQ=OH+OI+PH+QI求解.【详解】连接OP,OQ,分别交AC,BC于H,I,∵M,N分别是AC、BC为直径作半圆弧的中点,AC,BC的中点分别是P,Q,∴OP⊥AC,OQ⊥BC,由对称性可知:H,P,M三点共线,I,Q,N三点共线,∴H、I是AC、BC的中点,∴OH +OI =12(AC +BC )=13, ∵MH +NI =12AC +12BC =13,MP +NQ =7, ∴PH +QI =13﹣7=6,∴AB =OP +OQ =OH +OI +PH +QI =13+6=19,故选C .【点睛】本题考查了中位线定理的应用,解题的关键是正确作出辅助线,题目中还考查了垂径定理和轴对称的知识,有难度.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:m 2-6m+9= .【答案】()2m 3-【解析】直接应用完全平方公式即可:()22m 6m 9m 3-+=-.12. 已知扇形的弧长为8π,圆心角为60°,则它的半径为______.【答案】24【解析】【分析】 根据弧长公式:180n r l π=直接解答即可. 【详解】解:设半径为r , 8π=60180r π, 解得:r=24,故答案为:24.【点睛】此题考查根据弧长和圆心角求扇形的半径,掌握弧长公式是解决此题的关键.13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为________.【答案】3【解析】【分析】首先根据这组数据的总和等于各个数据之和,或等于这组数据的平均数乘以这组数据的个数,列出方程,得出x 的值,再根据众数的概念,这组数据中出现次数最多的是3,从而得出答案.【详解】解: 1+3+2+7+x+2+3=3×7解得:x=3,这组数据中出现次数最多的是3,故该组数据的众数为3.故答案为3.点睛: 本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.不等式组13242xx+>⎧⎨-≤⎩的解集为_____.【答案】2<x≤3.【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:13242xx+>⎧⎨-≤⎩①②,由①得:x>2,由②得:x≤3,则不等式组的解集为2<x≤3.故答案为:2<x≤3.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.15.如图,直线y =﹣33x+6与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为_____.932【解析】【分析】通过求出点A、B、C的坐标,得到菱形的边长为3,则DE=3=DC,利用CD2=m2+(﹣3m+6﹣3)2=9,解得:m=2,即可求解.【详解】∵y=+6,∴当x=0,y=6,当y=0,则x=故点A、B的坐标分别为:(0)、(0,6),则点C(0,3),故菱形的边长为3,则DE=3=DC,设点D(m,+6),则点E(m,x+6﹣3),则CD2=m2++6﹣3)2=9,解得:m故点E,32 ),S△OAE=12×OA×y E=12×32,故答案为:2.【点睛】本题考查的是一次函数图象上点的特征,涉及到菱形的性质、三角形面积的计算、勾股定理的运用,综合强较强,难度适宜.16.小林家的洗手台面上有一瓶洗手液(如图1),当手按住顶部A下压时(如图2),洗手液瞬间从喷口B流出,已知瓶子上部分的CE和FD的圆心分别为D,C,下部分的视图是矩形CGHD,GH=10cm,GC=8cm,点E到台面GH的距离为14cm,点B距台面GH的距离为16cm,且B,D,H三点共线.如果从喷口B流出的洗手液路线呈抛物线形,且该路线所在的抛物线经过C.E两点,接洗手液时,当手心O距DH的水平距离为2cm时,手心O距水平台面GH的高度为_____cm.【答案】11.【解析】分析】根据题意得出各点坐标,利用待定系数法求抛物线解析式进而求解.【详解】如图:由题意可知:CD=DE=10cm,根据题意,得C(﹣5,8),E(﹣3,14),B(5,16).设抛物线解析式为y=ax2+bx+c,因为抛物线经过C、E、B三点,∴9314 2558 25516a b ca b ca b c-+=⎧⎪-+=⎨⎪++=⎩,解得11a40451518bc⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,所以抛物线解析式为y=-1140x2+45x+1518.当x=7时,y=11,∴Q(7,11),所以手心O距水平台面GH的高度为11cm.故答案为11.【点睛】本题考查了二次函数的应用,解决本题的关键是明确待定系数法求二次函数的解析式及准确进行计算.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:16+(π﹣3)0﹣|﹣3|;(2)化简:(x+2)2﹣x(x﹣3).【答案】(1)2;(2)7x+4.【解析】【分析】(1)原式利用算术平方根定义,零指数幂法则,以及绝对值的代数意义计算即可求出值;(2)原式利用完全平方公式及单项式乘多项式法则计算,去括号合并即可得到结果.【详解】(1)原式=4+1-3=2;(2)原式=x2+4x+4-x2+3x=7x+4.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.18.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=2,CF=4时,求AC的长.【答案】(1)证明见解析;(2)6.【解析】【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=4,求得AB=AE+BE=6,于是得到结论.【详解】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDF中,B FCDBED F BD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=4,∴AB=AE+BE=2+4=6,∵AD⊥BC,BD=CD,∴AC=AB=6.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知平行线的性质及全等三角形的判定定理.19.某校组织七年级学生参加冬令营活动,本次冬令营活动分为甲、乙、丙三组进行.如图,条形统计图和扇形统计图反映了学生参加冬令营活动的报名情况,请你根据图中的信息回答下列问题:(1)七年级报名参加本次活动的总人数为,扇形统计图中,表示甲组部分的扇形的圆心角是度;(2)补全条形统计图;(3)根据实际需要,将从甲组抽调部分学生到丙组,使丙组人数是甲组人数的3倍,则应从甲组抽调多少名学生到丙组?【答案】(1)60,108;(2)见解析;(3)6名【解析】【分析】(1)用丙的人数除以丙的百分比即可得出总人数,先求出甲的百分比,用甲的百分比乘以360°即可得出甲组部分的扇形的圆心角的度数;(2)用总人数减去甲组和丙组的人数求出乙组的人数,再补全条形图,即可得出答案;(3)设甲组抽调x名学生到丙组,再根据”抽调后丙组人数是甲组人数的3倍”列出方程,解方程即可得出答案.【详解】解:(1)七年级报名参加本次活动的总人数为:30÷50%=60, 甲组部分的扇形的圆心角是:(1-50%-20%)×360°=108°;(2)乙组的人数60-30-18=12(3)设应从甲组调x 名学生到丙组可得方程:3(18)30x x -=+解得6x =答:应从甲组调6名学生到丙组.【点睛】本题考查的是统计图和一元一次方程,解题关键是理清条形图和扇形图之间的关系.20.如图,A ,B ,C 是方格纸中格点,请按要求作图.(1)在图1中画出一个以A ,B ,C ,D 为顶点的格点平行四边形.(2)在图2中画出一个格点P ,使得∠BPC =12∠BAC .【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)根据平行四边形的定义,画出图形即可(答案不唯一).(2)利用辅助圆结合圆周角定理画出图形即可(答案不唯一).【详解】(1)如图1中,平行四边形ABCD ,平行四边形ADBC 即为所求.(2)如图2中,点P 即为所求.【点睛】本题考查作图﹣应用与设计,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.如图,在平面直角坐标系中,二次函数()230y axbx a =++≠图像经过点()1,0A -,点()3,0B ,与轴交于点,(1)求、的值:(2)若点为直线BC 上一点,点到直线、两点的距离相等,将该抛物线向左(或向右)平移,得到一条新抛物线,并且新抛物线经过点,求新抛物线的顶点坐标.【答案】(1)1a =-,2b =;(2)平移后函数的顶点为()14或()14+【解析】【分析】(1)将点A(-1,0)和点B(3,0)代入得到a ,b 的方程组,求出方程组的解得到a ,b 的值;(2)先求出P 点的坐标,令2y =得11x =21x =-个单位,即可求得新抛物线的顶点坐标.【详解】(1)∵抛物线()230y ax bx a =++≠的图像经过点()1,0A -,点()3,0B ,∴030933a b a b =-+⎧⎨=++⎩, 解这个方程组得:12a b =-⎧⎨=⎩, ∴1a =-,2b =(2)∵点到直线、两点的距离相等,∴点P 在抛物线的对称轴上,设直线BC 的解析式为y=kx+b ,经过()3,0B ,C(0,3),∴y=-x+3,又∵点为直线BC 上一点,()1,2P令2y =得11x =+21x =个单位原函数顶点为()1,4∴平移后函数的顶点为()14-或()14+【点睛】此题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.22.如图,四边形ABCD内接于⊙O,AB是直径,C为BD的中点,延长AD,BC交于P,连结AC.(1)求证:AB=AP;(2)当AB=10,DP=2时,求线段CP的长.【答案】(1)详见解析;(2)PC10【解析】【分析】(1)利用等角对等边证明即可.(2)利用勾股定理分别求出BD,PB,再利用等腰三角形的性质即可解决问题.【详解】解:(1)证明:∵C为BD的中点,∴∠BAC=∠CAP,∵AB是直径,∴∠ACB=∠ACP=90°,∵∠ABC+∠BAC=90°,∠P+∠CAP=90°,∴∠ABC=∠P,∴AB=AP.(2)解:如图,连接BD.∵AB是直径,∴∠ADB=∠BDP=90°,∵AB=AP=10,DP=2,∴AD=10﹣2=8,∴BD2222--=,1086AB AD∴PB2222+=+=,62210BD PD∵AB=AP,AC⊥BP,∴BC=PC=12PB=10,∴PC=10.【点睛】主要考查了圆周角定理,垂径定理,圆内接四边形的性质等知识点,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.九二班计划购买A、B两种相册共42册作为毕业礼品,已知A种相册的单价比B种的多10元,买4册A 种相册与买5册B种相册的费用相同.(1)求A、B两种相册的单价分别是多少元?(2)由于学生对两类相册喜好不同,经调查得知:购买的A种相册的数量要少于B种相册数量的34,但又不少于B种相册数量的25,如果设买A种相册x册.①有多少种不同的购买方案?②商店为了促销,决定对A种相册每册让利a元销售(12≤a≤18),B种相册每册让利b元销售,最后班委会同学在付款时发现:购买所需的总费用与购买的方案无关,当总费用最少时,求此时a的值.【答案】(1)A种相册的单价为50元,B种相册的单价为40元;(2)①x可取12、13、14、15、16、17,共6种不同的购买方案;②18.【解析】【分析】(1)设A种相册的单价为m元,B种相册的单价为n元,根据”A种相册的单价比B种的多10元,买4册A 种相册与买5册B种相册的费用相同”,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)①根据”购买的A种相册的数量要少于B种相册数量的34,但又不少于B种相册数量的25“,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出x的可能值,进而可得出购买方案的种数;②设购买总费用为w元,根据总价=单价×数量,即可得出w关于x的函数关系式,由购买所需的总费用与购买的方案无关可得出b =a ﹣10,进而可得出w 关于a 的函数关系式,再利用一次函数的性质,即可解决最值问题.【详解】解:(1)设A 种相册的单价为m 元,B 种相册的单价为n 元,依题意,得:1045m n m n -=⎧⎨=⎩, 解得:5040m n =⎧⎨=⎩. 答:A 种相册的单价为50元,B 种相册的单价为40元.(2)①根据购买的A 种相册的数量要少于B 种相册数量的34,但又不少于B 种相册数量的25得: 3(42)42(42)5x x x x ⎧<-⎪⎪⎨⎪≥-⎪⎩ , 解得:12≤x <18.又∵x 为正整数,∴x 可取12、13、14、15、16、17,共6种不同的购买方案.②设购买总费用为w 元,依题意得:w =(50﹣a )x +(40﹣b )(42﹣x )=(10﹣a +b )x +42(40﹣b ).∵购买所需的总费用与购买的方案无关,则w 的值与x 无关,∴10﹣a +b =0,∴b =a ﹣10,∴w =42(40-b)=42[40-(a-10)]=﹣42a +2100.∵﹣42<0,∴w 随a 的增大而减小.又∵12≤a ≤18,∴当a =18时,w 取得最小值.答:当总费用最少时,a 的值为18.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①根据各数量之间的关系,正确列出一元一次不等式组;②根据各数量之间的关系,找出w 关于x 的函数关系式.24.如图Rt ABC △中,ABC 90︒∠=,P 是斜边AC 上一个动点,以即为直径作O 交BC 于点D ,与AC 另一个交点E ,连接DE .(1)当DP EP =时,①若130BD ︒=,求C ∠的度数;②求证AB AP =;(2)当15AB =,20BC =时,①是含存在点P ,使得BDE 是等腰三角形,若存在求出所有符合条件的CP 的长;②以D 为端点过P 作射线DH ,作点O 关于DE 的对称点Q 恰好落在CPH ∠内,则CP 的取值范围为________.(直接写出结果)【答案】(1)①40°;②详见解析;(2)①7,10,12.5;②712.5CP <<【解析】【分析】(1)①由BP 是直径可得90BEC ︒∠=,根据130BD ︒=得 50DP ︒=并可得DP EP =, 100DE ︒=,50CBE ︒∠=,根据三角形的内角和定理得40C ︒∠=;②由DP EP =,得到12∠=∠,根据1APB C ∠=∠+∠,2ABP ABE ∠=∠+∠,C ABE ∠=∠,得到,APB ABP ∠=∠由等角对等边得AP AB =;(2)①分三种情况:(一)当BD BE =时,(二)当BD ED =时,(三)当DE BE =时,分别进行讨论求解即可;②分三种情况讨论:(一)当Q 点在P 点上时;(二)当Q 点在PC 上时(三)当Q 点在PH 上时,分别讨论,求出CP 的值即可.【详解】24.解(1)①连结BE ,∵BP 是直径∴90BEC ︒∠=∵130BD ︒=,∴50DP ︒=∵DP EP =,∴100DE ︒=∴50CBE ︒∠=∴40C ︒∠=②∵DP EP =,∴12∠=∠1APB C ∠=∠+∠,2ABP ABE ∠=∠+∠又∵C ABE ∠=∠∴APB ABP ∠=∠∴AP AB =(2)①由15AB =,20BC =,可以求得25AC =,12BE =,∴8CD =,16CE =,∵CBP CED ∠=∠,C C ∠=∠∴CBP CED当BDE 是等腰三角形时,有三种情况:(一)BD BE =,(二)BD ED =,(三)DE BE =(一)当BD BE =时,12BD BE ==∴8CD =, ∴CP CB CD CE = ∴58104CB CD C C P E ==⨯=⨯ (二)当BD ED =时,可知点D 是Rt CBE 斜边的中线,∴10CD =,∴CP CB CD CE= ∴5251012.542CB CD CE CP ==⨯=⨯= (三)当DE BE =时,作EH BC ⊥,则H 是BD 中点, 可以求得33655BH BE =⨯=,∴725BD = ∴285CD =,∴574CP CD =⨯= ②(一)当O 点的对称点Q 在P 点上时,B ,O ,Q 三点共线,如图示∴BP DE ⊥,且BP 平分DE ,由等腰三角形的性质可知∴BD BE =由(1)可知CP=7;(二)当O 点的对称点Q 不在P 点上,而在PC 上时,此情况Q 点并不在CPH ∠上(三)当O 点的对称点Q 不在P 点上,而在PH 上时,B ,O ,Q 三点不共线,如图示∵OK KQ =,KQ DE ⊥,且OD OE =∴四边形DOEQ 是菱形,∴DEP DEO ∠=∠∵DEP DBO ∠=∠∴DEO DBO ∠=∠又∵OE ,OD ,OB 均为外接圆的半径,∴DBO BDO ∠=∠,DEO ODE ∠=∠∴BDO ODE ∠=∠∴BDO EDO ∠≅∠∴BD ED =∴由(1)可知,12.5CP =∴712.5CP <<【点睛】此题是圆的综合题,主要考查了等腰三角形的性质,相似三角形的判定和性质,能分情况讨论各种情况,是解本题的关键.。
中考数学复习---《有理数之绝对值》知识点总结与专项练习题(含答案)
中考数学复习---《有理数之绝对值》知识点总结与专项练习题(含答案) 知识点总结1. 圆锥的母线与高:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高。
2. 圆锥的侧面展开图:圆锥的侧面展开图是一个扇形。
扇形的半径等于原来圆锥的母线长,扇形的弧长等于原来圆锥的底面圆的周长。
3. 圆锥的侧面积计算:lr r l S ππ=⋅⋅=221侧(l 是圆锥的母线长,r 是圆锥底面圆半径) 4. 圆锥的全面积:2r lr S ππ+=全(l 是圆锥的母线长,r 是圆锥底面圆半径)5. 圆锥的体积:高底面积圆锥⨯⨯=31V6. 圆锥的母线长,高,底面圆半径的关系:构成勾股定理。
练习题1、(2022•东营)用一张半圆形铁皮,围成一个底面半径为4cm 的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为( )A .4cmB .8cmC .12cmD .16cm【分析】求得半圆形铁皮的半径即可求得围成的圆锥的母线长.【解答】解:设半圆形铁皮的半径为rcm ,根据题意得:πr=2π×4,解得:r=8,所以围成的圆锥的母线长为8cm,故选:B.2、(2022•济宁)已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是()A.96πcm2B.48πcm2C.33πcm2D.24πcm2【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式进行计算.【解答】解:∵底面圆的直径为6cm,∴底面圆的半径为3cm,∴圆锥的侧面积=×8×2π×3=24πcm2.故选:D.3、.(2022•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是()A.90°B.100°C.120°D.150°【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,设圆心角的度数是n度.则=2π,解得:n=120.故选:C.4、(2022•柳州)如图,圆锥底面圆的半径AB=4,母线长AC=12,则这个圆锥的侧面积为()A.16πB.24πC.48πD.96π【分析】先求出弧AA′的长,再根据扇形面积的计算公式进行计算即可.【解答】解:弧AA′的长,就是圆锥的底面周长,即2π×4=8π,所以扇形的面积为×8π×12=48π,即圆锥的侧面积为48π,故选:C.5、(2022•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是()A.圆柱的底面积为4πm2B.圆柱的侧面积为10πm2C.圆锥的母线AB长为2.25mD.圆锥的侧面积为5πm2【分析】利用圆的面积公式对A选项进行判断;利用圆柱的侧面积=底面圆的周长×高可对B选项进行判断;根据勾股定理可对C选项进行判断;由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式可对D选项进行判断.【解答】解:∵底面圆半径DE=2m,∴圆柱的底面积为4πm2,所以A选项不符合题意;∵圆柱的高CD=2.5m,∴圆柱的侧面积=2π×2×2.5=10π(m2),所以B选项不符合题意;∵底面圆半径DE=2m,即BC=2m,圆锥的高AC=1.5m,∴圆锥的母线长AB==2.5(m),所以C选项符合题意;∴圆锥的侧面积=×2π×2×2.5=5π(m2),所以D选项不符合题意.故选:C.6、(2022•大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是()A.60πB.65πC.90πD.120π【分析】先利用勾股定理求出圆锥侧面展开图扇形的半径,利用侧面展开图与底面圆的关系求出侧面展开图的弧长,再利用扇形面积公式即可求出圆锥侧面展开图的面积.【解答】解:圆锥侧面展开图扇形的半径为:=13,其弧长为:2×π×5=10π,∴圆锥侧面展开图的面积为:=65π.故选:B.7、(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为()A.10cm B.20cm C.5cm D.24cm【分析】根据弧长公式列方程求解即可.【解答】解:设母线的长为R,由题意得,πR=2π×12,解得R=24,∴母线的长为24cm,故选:D.8、(2022•无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为()A.12πB.15πC.20πD.24π【分析】运用公式s=πlr(其中勾股定理求解得到的母线长l为5)求解.【解答】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB===5,由已知得,母线长l=5,半径r为4,∴圆锥的侧面积是s=πlr=5×4×π=20π.故选:C.6、(2022•西藏)已知Rt△ABC的两直角边AC=8,BC=6,将Rt△ABC绕AC所在的直线旋转一周形成的立体图形的侧面积为(结果保留π).【分析】利用勾股定理求得母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:由勾股定理得AB=10,∵BC=6,∴圆锥的底面周长=12π,旋转体的侧面积=×12π×10=60π,故答案为:60π.7、(2022•郴州)如图,圆锥的母线长AB=12cm,底面圆的直径BC=10cm,则该圆锥的侧面积等于cm2.(结果用含π的式子表示)【分析】由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则根据扇形的面积公式可计算出该圆锥的侧面积.【解答】解:根据题意该圆锥的侧面积=×10π×12=60π(cm2).故答案为:60π.8、(2022•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是.【分析】根据题意可知,圆锥的底面圆的周长=扇形的弧长,即可列出相应的方程,然后求解即可.【解答】解:设这种圆锥的侧面展开图的圆心角度数是n°,2π×10=,解得n=120,即这种圆锥的侧面展开图的圆心角度数是120°,故答案为:120°.。
中考数学 专题01 实数的有关概念及运算(原卷版)
归纳 4:科学记数法与近似数 基础知识归纳:根据科学记数法的定义,科学记数法的表示形式为 a×10n,其中 1≤|a|<10,n 为整数, 表示时关键要正确确定 a 的值以及 n 的值. 基本方法归纳:利用科学记数法表示一个数,在确定 n 的值时,看该数是大于或等于 1 还是小于 1.当该 数大于或等于 1 时,n 为它的整数位数减 1;当该数小于 1 时,-n 为它第一个有效数字前 0 的个数(含小
中考数学复习资料
的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是 ( )A.B.Fra bibliotek C.D.
3.(2019 内蒙古通辽市,第 1 题,3 分) 1 的相反数是( ) 2019
A.2019 B. 1 C.﹣2019 D. 1
( )
A.5×106 B.107 C.5×107 D.108 14.(2019 重庆 A,第 8 题,4 分)按如图所示的运算程序,能使输出 y 值为 1 的是( )
A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1
归纳 5:实数的混合运算 基础知识归纳:实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运 算.同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算 中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行 基本方法归纳:实数的混合运算经常涉及到零指数幂、负整数指数幂、特殊角的三角函数值、绝对值的化 简、二次根式等内容,要熟练掌握这些知识. 注意问题归纳:实数的混合运算经常以选择、填空和解答的形式出现,是中考是热点,也是比较容易出错 的地方,在解答此类问题时要注意基本性质和运算的顺序.
初一绝对值化简练习题
初一绝对值化简练习题初一数学上册学习资料第三讲绝对值绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。
绝对值的定义及性质绝对值简单的绝对值方程化简绝对值式,分类讨论绝对值几何意义的使用绝对值的定义:绝对值的性质:绝对值的非负性,可以用下式表示|a|=若|a|=a,则;若|a|=-a,则;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,若|a|=|b|,则|ab|= ;|ab|= ;|a|2= = ;|a+b||a|+|b| |a-b|||a|-|b|| |a|+|b||a+b| |a|+|b||a-b|[例1]绝对值大于2.1而小于4.2的整数有多少个?若ab A.a<0,b<0B.a>0,b<0C.a<0,b>0D.ab <0下列各组判断中,正确的是A.若|a|=b,则一定有a=b B.若|a|>|b|,则一定有a>bC. 若|a|>b,则一定有|a|>|b|D.若|a|=b,则一定有a2=设a,b是有理数,则|a+b|+9有最小值还是最大值?其值是多少?[巩固] 绝对值小于3.1的整数有哪些?它们的和为多少?[巩固] 有理数a与b满足|a|>|b|,则下面哪个答案正确A.a>bB.a=bC.a [巩固] 若|x-3|=3-x,则x的取值范围是____________[巩固] 若a>b,且|a| A.a<0B.a>0 C.b<0 D.b >0[巩固] 设a,b是有理数,则-8-|a-b|是有最大值还是最小值?其值是多少?[例2]若3|x-2|+|y+3|=0,则若|x+3|+2=0,求2+2=0,则;若|x-a|+2=0,则;若|x-a|+|x-b|=0,则;已知x是有理数,且|x|=|-4|,那么x=____已知x是有理数,且-|x|=-|2|,那么x=____已知x是有理数,且-|-x|=-|2|,那么x=____如果x,y表示有理数,且x,y满足条件|x|=5,|y|=2,|x-y|=y-x,那么x+y的值是多少?巩固|x|=4,|y|=6,求代数式|x+y|的值3解方程:|x?5|?5?0 |4x+8|=1 |3x+2|=-1y的值是多少? x?4n)的值 y?x已知|x-1|=2,|y|=3,且x与y互为相反数,求13x2?xy?4y的值若已知a与b互为相反数,且|a-b|=4,求a?ab?b a2?ab?1的值已知a=-1|2a?4b2,b=-13,求|2?4|a?2b|?2|4b?3?|2a?3||的值若|a|=b,求|a+b|的值化简:|a-b|化简:|3.14-π| |8-x|有理数a,b,c在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b| C B 0 A已知a,b,c在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|数a,b在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||若a b?0,化简|a|-|b|+|a+b|+|ab|若-2≤a≤0,化简|a+2|+|a-2|已知x0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值如果0 已知x 若a ||3a|?a|若abc≠0,则abc|a|?|b|?|c|的所有可能值有理数a,b,c,d,满足|abcd||a||b||c||d|abcd??1,求a?b?c?d的值化简|x+5|+|2x-3|化简:|2x-1|求|m|+|m-1+|m-2|的值1、什么叫绝对值?在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.例如+5的绝对值等于5,记作|+5|=5;-3的绝对值等于3,记作|-3|=3.拓展:︱x-2︱表示的是点x到点2的距离。
2022年中考模拟检测《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、单选题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.16-的倒数是( )A.6 B.﹣6 C.16D.16-2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.地球上陆地的面积约为150 000 000km2.把”150 000 000”用科学记数法表示为() A.1.5×108B.1.5×107C.1.5×109D.1.5×1064.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )A.B.C.D.5.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是()A.8,9 B.8,8 C.8,10 D.9,86.下列计算中正确的是( ) A .a 2+a 3=2a 5B .a 4÷a =a 4C .a 2·a 4=a 8D .(-a 2)3=-a 67.已知关于x 的不等式组2323(2)5x a x x >-⎧⎨≥-+⎩仅有三个整数解,则a 的取值范围是( ).A .12≤a <1 B .12≤a≤1 C .12<a≤1 D .a <18.如图,ABC 内接于O ,EF 为O 直径,点是BC 弧的中点,若40B ∠=︒,60C ∠=°,则AFE∠的度数( )A .10︒B .20︒C .30D .40︒9.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m+n=( ) A .﹣5B .9C .5D .710.甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙出发沿同一路线行走.设甲乙两人相距 (米),甲行走的时间为 (分),关于的函数函数图像的一部分如图所示,下列说法:①甲行走的速度是30米/分; ②乙出发12.5分钟后追上甲; ③甲比乙晚到图书馆20分钟;④甲行走30.5分钟或38分钟时,甲、乙两人相距360米; 其中正确的个数是( ) A .1个B .2个C .3个D .4个11.如图,在平行四边形ABCD 中,AC 、BD 相交于点,点是OA 的中点,连接BE 并延长交AD 于点,4AEF S =△,则下列结论:①2FD AF =;②36BCE S =△;③12ABE S =△;④AEF ACD ∽△△,其中一定正确的是( )A .①②③④B .①②C .②③④D .①②③12.已知:二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论中:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1的实数);④(a +c )2<b 2;⑤a >1,其中正确的项是( )A .①⑤B .①②⑤C .②⑤D .①③④二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中的横线上. 13.计算11x x x+-的结果为___________. 14.不等式x 3x 12--+>的解集是___________.15.布袋中装有3个红球和n 个白球,它们除颜色外其它都相同,如果从布袋里随机摸出一个球,所摸到的球恰好是红球的概率是13,那么布袋中白球有___________个. 16.如图,在⊙中,半径OA 垂直于弦BC ,点在圆上且30ADC ∠=,则AOB ∠的度数为___________.17.如图,在Rt ABC ∆中,90ABC ∠=,3AB =,4BC = ,Rt MPN ∆,90MPN ∠=,点在AC 上,PM 交AB 于点,PN 交BC 于点,当2PE PF =时,AP =___________.18.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是___________.三、解答题:本大题共7小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤. 19.(9分)计算:(1)02181(3)()|25|2π---+-+-.(2)解方程组:34225x y y x +=⎧⎨-=-⎩20.(10分)某校为了解本校八年级学生数学学习情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A 、B 、C 、D ,并将统计结果绘制成两幅不完整的统计图,请根据图中的信息解答下列问题(1)补全条形统计图(2)等级为D 等的所在扇形的圆心角是 度(3)如果八年级共有学生1800名,请你估算我校学生中数学学习A 等和B 等共多少人?21.(11分)现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:运往地、车型 甲地(元/辆)乙地(元/辆)大货车 720 800 小货车500650(1)求这两种货车各用多少辆;(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.22.(12分)如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,两线相交于F 点.(1)若∠BAC=60°,∠C=70°,求∠AFB 的大小;(2)若D 是BC 的中点,∠ABE=30°,求证:△ABC 是等边三角形.23.(12分)已知:如图,为了躲避台风,一轮船一直由西向东航行,上午点,在处测得小岛的方向是北偏东75,以每小时海里的速度继续向东航行,中午点到达处,并测得小岛的方向是北偏东60,若小岛周围25海里内有暗礁,问该轮船是否能一直向东航行?24.(12分)如图,ABC ∆内接于O ,点在OC 的延长线上,30, 30B CAD ︒︒∠=∠=.(1)求证;AC CD =;(2)若,5OD AB BC ⊥=,求AD 的长.25.(12分)如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.答案与解析三、单选题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.16-的倒数是( )A.6 B.﹣6 C.16D.16-【答案】B【分析】根据两个数乘积是1的数互为倒数的定义,即可求解. 【解析】求一个数的倒数即用1除以这个数.∴16-的倒数为1÷(16-)=-6.故选B.2.下列四个图案中,不是轴对称图案的是()A.B.C.D.【答案】C【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解析】A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.地球上陆地的面积约为150 000 000km2.把”150 000 000”用科学记数法表示为() A.1.5×108B.1.5×107C.1.5×109D.1.5×106【答案】A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解析】150 000 000=1.5×108,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )A.B.C.D.【答案】B【解析】主视图是从正面看得到的视图,从正面看上面圆锥看见的是:三角形,下面两个正方体看见的是两个正方形.故选B.5.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是()A.8,9 B.8,8 C.8,10 D.9,8【答案】B【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的那个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解析】由条形统计图知8环的人数最多,所以众数为8环,由于共有11个数据,所以中位数为第6个数据,即中位数为8环,【点睛】本题主要考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个,则找中间两个数的平均数. 6.下列计算中正确的是( ) A .a 2+a 3=2a 5 B .a 4÷a =a 4C .a 2·a 4=a 8D .(-a 2)3=-a 6【答案】D【解析】A 、不是同类项,不能合并,故错误;B 、a 4÷a=a 3, 故错误; C 、a 2×a 4=a 2+4=a 6, 故错误; D 、(—a 2)3=—a 6,正确 故选D7.已知关于x 的不等式组2323(2)5x a x x >-⎧⎨≥-+⎩仅有三个整数解,则a 的取值范围是( ).A .12≤a <1 B .12≤a≤1 C .12<a≤1 D .a <1【答案】A【分析】根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案. 【解析】由2x >3(x-2)+5,解得:x≤1, 由关于x 的不等式组()232325x a x x >-⎧⎨≥-+⎩仅有三个整数:解得-2≤2a -3<-1, 解得12≤a <1, 故选A .【点睛】本题考查了一元一次不等式组,利用不等式的解得出关于a 的不等式是解题关键. 8.如图,ABC 内接于O ,EF 为O 直径,点是BC 弧的中点,若40B ∠=︒,60C ∠=°,则AFE∠的度数( )A .10︒B .20︒C .30D .40︒【分析】设AB与EF交于点D,首先利用三角形内角和定理求出∠BAC=80°,然后根据等弧所对的圆周角相等可得,∠BAF=40°,再由垂径定理易得EF⊥BC,进而得到∠BDF=50°,最后利用三角形外角性质即可求出∠AFE的度数.【解析】如图,设AB与EF交于点D,∵∠B=40°,∠C=60°∴∠BAC=180°-40°-60°=80°∵EF为直径,F为BC的中点∴EF⊥BC,∠BAF=12∠BAC=40°∴∠BDF=90°-∠B=90°-40°=50°∵∠BDF为△ADF的外角∴∠BDF=∠BAF+∠AFE∴∠AFE=∠BDF-∠BAF=50°-40°=10°故选A.【点睛】本题考查了圆中的角度计算,熟练掌握等弧所对的圆周角相等,利用垂径定理得到EF⊥BC是解题的关键.9.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=()A.﹣5 B.9 C.5 D.7【答案】C【分析】根据根与系数的关系可知m+n=-2,又知m是方程的根,所以可得m2+2m-7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案.【解析】∵设m、n是一元二次方程x2+2x−7=0的两个根,∴m+n=−2,∵m是原方程的根,∴m2+2m−7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7−2=5,故答案为5.【点睛】本题考查根与系数的关系,解题的关键是熟练应用韦达定理.10.甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙出发沿同一路线行走.设甲乙两人相距(米),甲行走的时间为(分),关于的函数函数图像的一部分如图所示,下列说法:①甲行走的速度是30米/分;②乙出发12.5分钟后追上甲;③甲比乙晚到图书馆20分钟;④甲行走30.5分钟或38分钟时,甲、乙两人相距360米;其中正确的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】①甲行走的速度:150÷5=30(米/分);故正确;②由图象知,第12.5分钟时乙追上甲,甲出发5分钟后,乙出发沿同一路线行走,所以乙出发7.5分钟后追上甲,故不正确;③由图象知,第12.5分钟时乙追上甲,所以乙出发7.5分钟后追上甲,此时甲走了375米,故乙的速度为375÷7.5=50米/分,当t=35时,甲行走的路程为:30×35=1050(米),乙行走的路程为:(35-5)×50=1500(米),∴当t=35时,乙已经到达图书馆,甲距图书馆的路程还有(1500-1050)=450米,∴甲到达图书馆还需时间;450÷30=15(分),所以甲比乙晚到图书馆20分钟不正确;④当乙追上甲时点的坐标为(12.5,0),当12.5≤t≤35时,设解析式为:s=kt+b,把(35,450),(12.5,0)代入可得:12.5k+b=0,35k+b=450,解得:k=20,b=-250,∴s=20t-250,当35<t≤50时,由于甲比乙晚到图书馆15分钟,所以函数图象过点(50,0),补全函数图象如图,设解析式为s=k1x+b1,把(50,0),(35,450)代入得:50k1+b1=0,35k1+b1=450,解得:k1=-30,b1=1500,∴s=-30t+1500,∵甲、乙两人相距360米,即s=360,解得:t=30.5,t1=38,∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.故正确,故选 B.11.如图,在平行四边形ABCD 中,AC 、BD 相交于点,点是OA 的中点,连接BE 并延长交AD 于点,4AEF S =△,则下列结论:①2FD AF =;②36BCE S =△;③12ABE S =△;④AEF ACD ∽△△,其中一定正确的是( )A .①②③④B .①②C .②③④D .①②③【答案】D【分析】①根据平行四边形的性质可得出CE =3AE ,由AF ∥BC 可得出△AEF ∽△CEB ,根据相似三角形的性质可得出BC =3AF ,进而可得出DF =2AF ,结论①正确;②根据相似三角形的性质结合S △AEF =4,即可求出S △BCE =9S △AEF =36,结论②正确;③由△ABE 和△CBE 等高且BE =3AE ,即可得出S △BCE =3S △ABE ,进而可得出S △ABE =12,结论③正确;④假设△AEF ∽△ACD ,根据相似三角形的性质可得出∠AEF =∠ACD ,进而可得出BF ∥CD ,根据平行四边形的性质可得出AB ∥CD ,由AB 、BF 不共线可得出假设不成立,即AEF 和△ACD 不相似,结论④错误.综上即可得出结论.【解析】①∵四边形ABCD 为平行四边形, ∴OA OC =,AD BC ∥,AD BC =. ∵点是OA 的中点,∴3CE AE =. ∵AF BC ,∴AEF CEB △∽△,∴3BC CEFA AE==,∴3BC AF =, ∴2DF AF =,结论①正确;②∵AEF CEB △∽△,3CE AE =,∴23BCEFAES S =△△,∴936BCE AEF S S ==△△,结论②正确;③∵ABE △和CBE △等高,且3BE AE =,∴3BCE ABE S S =△△, ∴12ABE S =△,结论③正确;④假设AEF ACD ∽△△,则AEF ACD ∠=∠, ∴EF CD ∥,即BFCD .∵AB CD ∥,∴BF 和AB 共线. ∵点为OA 的中点,即BE 与AB 不共线,∴假设不成立,即AEF 和ACD 不相似,结论④错误. 综上所述:正确的结论有①②③. 故选:D .【点睛】本题考查了相似三角形的判定与性质以及平行四边形的性质,逐一分析四条结论的正误是解题的关键.12.已知:二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论中:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1的实数);④(a +c )2<b 2;⑤a >1,其中正确的项是( )A .①⑤B .①②⑤C .②⑤D .①③④【答案】A【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【解析】①∵抛物线的开口向上,∴a >0, ∵与y 轴的交点为在y 轴的负半轴上,∴c <0, ∵对称轴为x=-2ba>0,∴a 、b 异号,即b <0,又∵c <0,∴abc >0,故本选项正确; ②∵对称轴为x=-2b a >0,a >0,-2b a<1,∴-b <2a ,∴2a+b >0;故本选项错误; ③当x=1时,y 1=a+b+c;当x=m 时,y 2=m(am+b)+c ,当m >1,y 2>y 1;当m <1,y 2<y 1,所以不能确定; 故本选项错误;④当x=1时,a+b+c=0;当x=-1时,a-b+c >0;∴(a+b+c)(a-b+c)=0,即(a+c)2-b 2=0,∴(a+c)2=b 2,故本选项错误; ⑤当x=-1时,a-b+c=2;当x=1时,a+b+c=0, ∴a+c=1,∴a=1+(-c)>1,即a >1;故本选项正确; 综上所述,正确的是①⑤. 故选A .四、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中的横线上. 13.计算11x x x+-的结果为___________. 【答案】1【分析】根据分式的加减法法则计算即可得答案. 【解析】11x x x+-=11x x +-=1. 故答案为:1【点睛】本题考查分式的加减,同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减;熟练掌握运算法则是解题关键. 14.不等式x 3x 12--+>的解集是___________.【答案】x 0<【解析】解:x <-1时,-x+3-x-1>2,∴x <0,-1≤x≤3时,-x+3-x-1>2,x<0;x >3时,x-3-x-1>6,不成立. 故答案是:x<0【点睛】考查绝对值不等式的解法,考查学生的计算能力,比较基础.15.布袋中装有3个红球和n 个白球,它们除颜色外其它都相同,如果从布袋里随机摸出一个球,所摸到的球恰好是红球的概率是13,那么布袋中白球有___________个. 【答案】6.【分析】根据概率的概念建立等量关系:1133n ,解方程即可. 【解析】∵布袋中有n 个白球,∴1133n ,解得:n =6,则布袋中白球有6个; 故答案为:6.【点睛】本题考查了概率的概念:所有等可能的结果有n 个,其中某事件占m 个,则这个事件的概率m P n=. 16.如图,在⊙中,半径OA 垂直于弦BC ,点在圆上且30ADC ∠=,则AOB ∠的度数为___________.【答案】60【分析】利用圆周角与圆心角的关系即可求解. 【解析】OA BC ⊥,AB AC ∴=,2AOB ADC ∴∠=∠,30ADC ∠=,60AOB ∴∠=,故答案为60.【点睛】此题考查圆周角与圆心角,解题关键在于求出2AOB ADC ∠=∠17.如图,在Rt ABC ∆中,90ABC ∠=,3AB =,4BC = ,Rt MPN ∆,90MPN ∠=,点在AC 上,PM 交AB 于点,PN 交BC 于点,当2PE PF =时,AP =___________.【答案】3【分析】如图作PQ ⊥AB 于Q ,PR ⊥BC 于R .由△QPE ∽△RPF ,推出PQ PR =PEPF=2,可得PQ =2PR =2BQ ,由PQ ∥BC ,可得AQ :QP :AP =AB :BC :AC =3:4:5,设PQ =4x ,则AQ =3x ,AP =5x ,BQ =2x ,可得2x +3x =3,求出x 即可解决问题.【解析】如图,作PQ ⊥AB 于Q ,PR ⊥BC 于R .∵∠PQB =∠QBR =∠BRP =90°,∴四边形PQBR 是矩形, ∴∠QPR =90°=∠MPN ,∴∠QPE =∠RPF , ∴△QPE ∽△RPF ,∴PQ PR =PEPF=2,∴PQ =2PR =2BQ . ∵PQ ∥BC ,∴AQ :QP :AP =AB :BC :AC =3:4:5, 设PQ =4x ,则AQ =3x ,AP =5x ,BQ =2x ,∴2x +3x =3,∴x =35,∴AP =5x =3. 故答案为:3.【点睛】本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.18.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是___________.【答案】3x <-或1x >.【分析】由2ax mx c n ++>可变形为2ax c mx n +>-+,即比较抛物线2y ax c =+与直线y mx n =-+之间关系,而直线PQ :y mx n =-+与直线AB :y mx n =+关于与y 轴对称,由此可知抛物线2y ax c =+与直线y mx n =-+交于()1,P p ,()3,Q q -两点,再观察两函数图象的上下位置关系,即可得出结论.【解析】∵抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,∴m n p -+=,3m n q +=,∴抛物线2y ax c =+与直线y mx n =-+交于()1,P p ,()3,Q q -两点, 观察函数图象可知:当3x <-或1x >时,直线y mx n =-+在抛物线2y ax bx c =++的下方,∴不等式2ax mx c n ++>的解集为3x <-或1x >. 故答案为3x <-或1x >.【点睛】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.三、解答题:本大题共7小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤. 19.(9分)计算:2181(3)()|252π---+-+.(2)解方程组:34225x y y x +=⎧⎨-=-⎩【答案】521x y =⎧⎨=-⎩.【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(2)方程组整理后,利用代入消元法求出解即可. 【解析】(1)原式=9﹣52=5(2)方程组整理得:34225x y y x +=⎧⎨=-⎩①②把②代入①得:3x+8x ﹣20=2,解得:x =2,把x=2代入②得:y=﹣1,则方程组的解为:21 xy=⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)某校为了解本校八年级学生数学学习情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图,请根据图中的信息解答下列问题(1)补全条形统计图(2)等级为D等的所在扇形的圆心角是度(3)如果八年级共有学生1800名,请你估算我校学生中数学学习A等和B等共多少人?【答案】(1)补全条形统计图如,见解析;(2)28.8;(3)八年级1800名共有学生,请你估算我校学生中数学学习A等和B等共1224人.【分析】(1)从统计图中可以得到A组的有14人,占调查人数的28%,可求出调查人数,B组占40%,可求出B组人数,即可补全条形统计图,(2)用360°乘以D组所占的百分比,即可求出度数,(3)样本估计总体,样本中A组、B组共占(28%+40%)总人数为50人,即可求出A、B两组的人数.【解析】(1)14÷28%=50人,50×40%=20人,补全条形统计图如图所示:(2)360°×450=28.8°,故答案为:28.8;(3)1800×(28%+40%)=1224人,答:八年级1800名共有学生,请你估算我校学生中数学学习A等和B等共1224人.【点睛】考查条形统计图、扇形统计图的意义和制作方法,从两个统计图中获取数量和数量关系式解决问题的关键.21.(11分)现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:(1)求这两种货车各用多少辆;(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【答案】(1)大货车用8辆,小货车用10辆;(2)w=70a+11550(0≤a≤8且为整数);(3)使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11900元.【分析】(1)设大货车用x辆,小货车用(18–x)辆,根据大、小两种货车共18辆,运输228吨物资,列方程组求解;(2)设前往甲地的大货车为a辆,则前往乙地的大货车为(8−a)辆,前往甲地的小货车为(9−a)辆,前往乙地的小货车为[10−(9−a)]辆,根据表格所给运费,求出w与a的函数关系式;(3)结合已知条件,求a的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解析】(1)设大货车用x辆,则小货车用(18–x)辆,根据题意得16x+10(18–x)=228,解得x=8,∴18–x=18–8=10.答:大货车用8辆,小货车用10辆;(2)w=720a+800(8–a)+500(9–a)+650[10–(9–a)]=70a+11550,∴w=70a+11550(0≤a≤8且为整数);(3)由16a+10(9–a)≥120,解得a≥5.又∵0≤a≤8,∴5≤a≤8且为整数.∵w=70a+11550,且70>0,所以w随a的增大而增大,∴当a=5时,w最小,最小值为70×5+11550=11900(元).答:使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11900元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往甲地的大货车数a的关系.22.(12分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,两线相交于F点.(1)若∠BAC=60°,∠C=70°,求∠AFB的大小;(2)若D是BC的中点,∠ABE=30°,求证:△ABC是等边三角形.【答案】(1)115°;(2)证明见解析【分析】(1)根据∠ABF=∠FBD+∠BDF,想办法求出∠FBD,∠BDF即可;(2)只要证明AB=AC,∠ABC=60°即可;【解析】(1)∵∠BAC=60°,∠C=70°,∴∠ABC=180°﹣60°﹣70°=50°,∵BE平分∠ABC,∴∠FBD=12∠ABC=25°,∵AD⊥BC,∴∠BDF=90°,∴∠AFB=∠FBD+∠BDF=115°.(2)证明:∵∠ABE=30°,BE平分∠ABC,∴∠ABC=60°,∵BD=DC,AD⊥BC,∴AB=AC,∴△ABC是等边三角形.【点睛】本题考查等边三角形的判定、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(12分)已知:如图,为了躲避台风,一轮船一直由西向东航行,上午点,在处测得小岛的方向是北偏东75,以每小时海里的速度继续向东航行,中午点到达处,并测得小岛的方向是北偏东60,若小岛周围25海里内有暗礁,问该轮船是否能一直向东航行【答案】继续向东航行则有触礁的危险,不能一直向东航行.【分析】先作出辅助线构造出直角三角形,求出BP ,进而得出PD ,最后和25进行判断即可.【解析】过P 作PD ⊥AB 于点D .∵∠PBD =90°﹣60°=30°,且∠PBD =∠P AB +∠APB ,∠P AB =90﹣75=15°,∴∠P AB =∠APB ,∴BP =AB =15×2=30(海里).在直角△BPD 中,∵∠PBD =∠P AB +∠APB =30°,∴PD =12BP =15海里<25海里, 故若继续向东航行则有触礁的危险,不能一直向东航行.【点睛】本题是解直角三角形﹣﹣方向角问题,主要考查了直角三角形的性质,解答本题的关键是构造出直角三角形,用锐角三角函数是解决此类题目的关键.24.(12分)如图,ABC ∆内接于O ,点在OC 的延长线上,30, 30B CAD ︒︒∠=∠=.(1)求证;AC CD =;(2)若,5OD AB BC ⊥=,求AD 的长.【答案】(1)见详解;(2)53【分析】(1)连接OA ,由圆周角定理得∠AOC=60°,则△OAC 为等边三角形,则OA ⊥AD ,得到∠D=30°,即可得到结论成立;(2)由⊥OD AB ,得到∠BAC=30°,则CD=AC=BC=5,然后得到半径OA=OC=5,根据勾股定理,即可求出AD 的长度.【解析】(1)如图,连接OA ,∵30B ∠=︒,∴60AOC ∠=︒,∴△AOC 是等边三角形,∴OA=OC=AC ,∠OAC=60°,∵ 30CAD ∠=︒,∴∠OAD=90°,∴∠D=30°,∴ CAD D ∠=∠,∴AC CD =;(2)∵⊥OD AB ,∴∠BAD+∠D=90°,∴∠BAD=60°,∵ 30CAD ∠=︒,∴∠BAC=30°=∠B ,∴AC=BC=CD=5,∴OA=OC=AC=5,∴OD=10,在Rt △OAD 中,由勾股定理,得2210553AD =-=.【点睛】本题考查了圆周角定理,等边三角形的判定和性质,勾股定理,等角对等边,余角的性质,解题的关键是熟练掌握所学的知识正确得到边的关系和角的关系.25.(12分)如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3)点(3,23)Q -或113113,22⎛⎫-+- ⎪ ⎪⎝⎭. 【分析】(1)函数的表达式为:y=a(x+1)(x-3),将点D 坐标代入上式,即可求解;(2)()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解.【解析】(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得:直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,32BC =,10AC =,过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:22AH =, 则sin 5AH ACB AC ∠==,则tan 2ACB ∠=, 则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:3x =±舍去负值),故点3,23)Q -②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:1132x -+=,故点1122Q ⎛-+- ⎝⎭;综上,点Q -或⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
1.1.2 2020中考数学复习:《实数的倒数相反数绝对值》近8年全国中考题类大全(含答案)
实数的倒数、相反数与绝对值一、选择题1. (2017 山东省菏泽市) (13)-2的相反数是().A.9 B.-9 C.19 D.192. (2018 福建省龙岩市)在实数|﹣3|,﹣2,0,π中,最小的数是()A .|﹣3| B.﹣2 C.0 D.π3. (2018 广西柳州市)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣204. (2018 贵州省贵阳市)如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45. (2018 山东省青岛市)如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.6. (2018 山东省潍坊市) (3.00分)|1﹣|=()A.1﹣ B.﹣1 C.1+ D.﹣1﹣17. (2018 山东省淄博市) (4.00分)计算的结果是()A.0 B.1 C.﹣1 D.8. (2018 四川省眉山市) (3分)绝对值为1的实数共有()A.0个B.1个C.2个D.4个9. (2019 北京市)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A 向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3B.-2C.-1D.110. (2019 甘肃省天水市) (4分)已知|a|=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣311. (2019 湖南省郴州市)(3分)如图,数轴上表示﹣2的相反数的点是()A.M B.N C.P D.Q12. (2019 吉林省长春市) (3分)如图,数轴上表示﹣2的点A到原点的距离是()23A .﹣2B .2C .﹣D .13. (2019 山东省潍坊市) (3分)2019的倒数的相反数是( )A .﹣2019B .﹣C .D .201914. (2019 四川省南充市) 如果16=a ,那么a 的值为( )A.6B.61C.-6D.61-15. (2019 重庆市綦江县) (4分)5的绝对值是( )A .5B .﹣5C .D .﹣16. (2019 四川省遂宁市) (4分)﹣|﹣|的值为( )A .B .﹣C .±D .217. (2019 广西玉林市) (3分)9的倒数是( )A .19 B .19- C .9 D .9-18. (2019 辽宁省大连市) (3分)2-的绝对值是( )A .2B .12 C .12- D .2-19. (2019 四川省攀枝花市) (3分)在0,1-,2,3-这四个数中,绝对值最小的数是( )A.0 B.1-C.2 D.3-二、填空题20. (2018 江苏省南京市) 写出一个数,使这个数的绝对值等于它的相反数:.21. (2019 湖南省常德市) (3分)数轴上表示﹣3的点到原点的距离是.22. (2019 湖南省邵阳市) (3分)的相反数是.23. (2019 山东省德州市) (4分)|3|3-=-,则x的取值范围是.x x24. (2019 四川省成都市) (4分)若m+1与﹣2互为相反数,则m的值为.25. (2019 四川省攀枝花市) (4分)|3|-的相反数是.4参考答案一、选择题)-2=9,因为9的相反数是-9,所1. B.思路分析根据负整数指数的法则可知(13)-2的相反数是-9.以(13点评本题考查了实数运算,学生计算中容易将指数位置的负号当做幂的性质符号进行计算。
2022年人教版中考一模考试《数学试题》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1. 2020的绝对值等于( )A. 2020B. -2020C. 12020D. 12020- 2. 如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 平分线与∠BCD 的平分线交于点P ,则∠P=( )A. 90°-12αB. 90°+ 12αC. 2αD. 360°-α3. 在下列几何体中,从正面看到的平面图形为三角形的是( )A. B. C. D. 4. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.5. 下列式子中计算结果与2()m -相同的是( )A. 12()m -B. 24m m -⨯C. 24m m ÷D. 24m m --÷ 6. 地球的表面积约为510000000km 2,将510000000用科学记数法表示为( )A. 0.51×109B. 5.1×108C. 5.1×109D. 51×1077. 某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A. 将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B. 全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C. 这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D. 这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩8. 将抛物线y=x 2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为( )A. y=(x+1)2+3B. y=(x ﹣1)2+3C. y=(x ﹣1)2﹣3D. y=(x+1)2﹣39. 九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )A. B. C. D.10. 下列命题中真命题是( )A. 若a 2=b 2,则a=bB. 4的平方根是±2C. 两个锐角之和一定是钝角D. 相等两个角是对顶角11. 如图,给出线段,,作等腰ABC ∆,使AB AC a ==,BC 边上高AD h =.嘉嘉的作法是:①作线段AD h =;②作线段AD 的垂线MN ;③以点为圆心,为半径作弧,与MN 分别交于点,;④连接AB ,AC ,ABC ∆为所求作的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是( )A ① B. ② C. ③ D. ④12. 阅读理解:解方程x 2﹣|x|﹣2=0解:(1)当x≥0时,原方程可以化为x 2﹣x ﹣2=0,解得x 1=2,x 2=﹣1<0(不合题意,舍去);(2)当x <0时,原方程可以化为x 2+x ﹣2=0,解得x 1=﹣2,x 2=1>0(舍去).∴原方程的解为x 1=2,x 2=﹣2.那么方程x 2﹣|x ﹣1|﹣1=0的解为( )A. 1x =0,2x =1B. 1x =﹣2,2x =1C. 1x =1,2x =﹣2D. 1x =1,2x =2二.填空题13. 若分式232x x -+无意义,则的值为__________. 14. 因式分解:-2x 2+12x -18=______.15. 在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 16. 100个数之和为2001,把第一个数减1,第二个数加2,第三个数减3,…,第一百个数加100,则所得新数之和为_______.17. 如图,在平面直角坐标系中,已知C(1,2),△ABC 与△DEF 位似,原点O 是位似中心,要使△DEF 面积是△ABC 面积的5倍,则点F 的坐标为_____.18. 如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的项点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为3时,阴影部分的面积为____.三.解答题19. 计算:0(13)+|12|﹣2cos45°+114-⎛⎫ ⎪⎝⎭. 20. 先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =. 21. 如图,在平面直角坐标系xOy 中,函数y =﹣x+5的图象与函数y =k x(k <0)的图象相交于点A ,并与x 轴交于点C ,S △AOC =15.点D 是线段AC 上一点,CD :AC =2:3.(1)求k 的值;(2)根据图象,直接写出当x <0时不等式k x >﹣x+5的解集; (3)求△AOD 的面积.22. 如图,已知90A E ∠=∠=︒,A C F E 、、、在一条直线上,,AF EC BC DF ==.求证:(1)Rt Rt ABC EDF △≌△;(2)四边形BCDF 是平行四边形.23. 为了传承中华民族优秀传统文化,我市某中学举行”汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.(2)在图2扇形统计图中,m 的值为_____,表示”D 等级”的扇形的圆心角为_____度;(3)组委会决定从本次比赛获得A 等级的学生中,选出2名去参加全市中学生”汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.24. 为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行”远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.25. 如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC=12,求FC的长.26. 如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.答案与解析一.选择题1. 2020的绝对值等于()A. 2020B. -2020C.12020D.12020-【答案】A【解析】【分析】根据绝对值的定义直接进行计算即可.【详解】根据绝对值的概念可知:|2020|=2020.故选:A.【点睛】本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2. 如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=( )A. 90°-12α B. 90°+12α C.2αD. 360°-α【答案】C【解析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=12(360°﹣α)=180°﹣12α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣12α)=12α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.3. 在下列几何体中,从正面看到的平面图形为三角形的是()A. B. C. D.【答案】B【解析】【分析】主视图是从物体前面看所得到的图形,由此进行判断即可.【详解】A选项:圆柱的主视图是长方形,故本选项不合题意;B选项:圆锥的主视图是三角形,故本选项符合题意;C选项:正方体的主视图是正方形,故本选项不合题意;D选项:三棱柱的主视图是长方形,故本选项不合题意;故选:D.【点睛】考查了简单几何体的主视图,解题关键是掌握主视图的定义,即从正面看得到的图形.4. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,也是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5. 下列式子中计算结果与2()m -相同的是( )A. 12()m -B. 24m m -⨯C. 24m m ÷D. 24m m --÷【答案】D【解析】【分析】先计算原数,再根据幂的运算性质逐项判断即可.【详解】解:22()m m -=,A 、122()m m --=,与原数不相等,本选项不符合题意;B 、242m m m --⨯=,与原数不相等,本选项不符合题意;C 、242m m m -÷=,与原数不相等,本选项不符合题意;D 、()24242m m m m -----÷==,与原数相等,本选项符合题意.故选D.【点睛】本题考查了幂的运算性质,属于常考题型,熟练掌握幂的运算性质是关键.6. 地球的表面积约为510000000km 2,将510000000用科学记数法表示为( )A. 0.51×109B. 5.1×108C. 5.1×109D. 51×107 【答案】B【解析】【详解】试题分析:510 000 000=5.1×108.故选B . 考点:科学记数法—表示较大的数.7. 某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A. 将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B. 全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C. 这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D. 这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩【答案】B【解析】【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.8. 将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为( )A. y=(x+1)2+3B. y=(x﹣1)2+3C. y=(x﹣1)2﹣3D. y=(x+1)2﹣3【答案】D【解析】【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】抛物线y=x2的顶点坐标为(0,0),向下平移3个单位,再向左平移1个单位后的图象的顶点坐标为(-1,-3),所以,所得图象的解析式为y=(x+1)2﹣3,故选D.【点睛】本题主要考查的是函数图象的平移,根据平移规律”左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.9. 九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )A. B. C. D. 【答案】C【解析】【分析】根据第一小组人数占总人数的百分比即可计算其角度.【详解】由题意可得,总人数为12+20+13+5+10=60,第一小组对应的圆心角度数是:12360=72 60⨯︒︒,故选C.考点:1.扇形统计图;2.条形统计图.10. 下列命题中真命题( )A. 若a2=b2,则a=bB. 4的平方根是±2C. 两个锐角之和一定是钝角D. 相等的两个角是对顶角【答案】B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.11. 如图,给出线段,,作等腰ABC ∆,使AB AC a ==,BC 边上的高AD h =.嘉嘉的作法是:①作线段AD h =;②作线段AD 的垂线MN ;③以点为圆心,为半径作弧,与MN 分别交于点,;④连接AB ,AC ,ABC ∆为所求作的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是( )A. ①B. ②C. ③D. ④【答案】B【解析】【分析】 利用基本作图(过已知直线上一点作直线的垂线)可判断②错误.【详解】有错误的一步是②,应该为过D 点作MN ⊥AD .故选B .【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12. 阅读理解:解方程x 2﹣|x|﹣2=0解:(1)当x≥0时,原方程可以化为x 2﹣x ﹣2=0,解得x 1=2,x 2=﹣1<0(不合题意,舍去);(2)当x <0时,原方程可以化为x 2+x ﹣2=0,解得x 1=﹣2,x 2=1>0(舍去).∴原方程的解为x 1=2,x 2=﹣2.那么方程x 2﹣|x ﹣1|﹣1=0的解为( )A. 1x =0,2x =1B. 1x =﹣2,2x =1 C 1x =1,2x =﹣2D. 1x =1,2x =2【答案】B【解析】【分析】分两种情况把含绝对值的方程化为一元二次方程,进而即可求解.【详解】当x≥1时,方程为x 2﹣x+1﹣1=0,∴x 1=0(舍去),x 2=1;当x <1时,方程为x 2+x ﹣1﹣1=0,∴x 1=﹣2,x 2=1(舍去),∴方程的解是:x 1=﹣2,x 2=1.故选:B.【点睛】本题主要考查含绝对值的方程,掌握求绝对值法则以及解一元二次方程的步骤,是解题的关键.二.填空题13. 若分式232xx-+无意义,则的值为__________.【答案】-2【解析】【分析】根据分式无意义的条件为:分母为0即可求出x的值.【详解】∵分式232xx-+无意义∴20x+=解得2x=-故答案为:-2.【点睛】本题主要考查分式无意义的条件,掌握分式无意义的条件是分母为0是解题的关键.14. 因式分解:-2x2+12x-18=______.【答案】-2(x-3)2.【解析】【分析】先提取公因式,再根据完全平方公式分解即可.【详解】解:-2x2+12x-18=-2(x2-6x+9)=-2(x-3)2,故答案为-2(x-3)2.【点睛】本题考查了分解因式,能灵活运用因式分解的方法分解因式是解此题的关键.15. 在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n=_____.【答案】8 【解析】【分析】根据白球的概率公式44n+=13列出方程求解即可.【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)=44n+=13.解得:n=8,故答案为8.【点睛】此题主要考查了概率公式应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.16. 100个数之和为2001,把第一个数减1,第二个数加2,第三个数减3,…,第一百个数加100,则所得新数之和为_______.【答案】2051【解析】【分析】根据题意,列出有理数的加减法算式,进而即可求解.【详解】∵﹣1+2﹣3+4﹣5+6﹣…﹣99+100=50,∴2001+(﹣1+2﹣3+4﹣5+6﹣…﹣99+100)=2051,故答案为:2051.【点睛】本题主要考查有理数的加减法,掌握有理数的加减混合运算法则,是解题的关键.17. 如图,在平面直角坐标系中,已知C(1,2),△ABC与△DEF位似,原点O是位似中心,要使△DEF 的面积是△ABC面积的5倍,则点F的坐标为_____.【答案】510)【解析】【分析】根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则△DEF的边长是△ABC5,∴点F的坐标为(1×5,2×5),即(5,10),故答案为(5,10).【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18. 如图,在扇形AOB中,∠AOB=90°,正方形CDEF的项点C是弧AB的中点,点D在OB上,点E 在OB的延长线上,当正方形CDEF的边长为3时,阴影部分的面积为____.【答案】99 42π-【解析】【分析】连接OC,可得∠COD=45°,利用阴影部分的面积=扇形BOC的面积﹣∆ODC的面积,即可求解.【详解】连接OC,∵在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=2CD=32,∴阴影部分的面积=扇形BOC的面积﹣∆ODC的面积,即:245(32)360π⨯﹣1332⨯⨯=94π﹣92.故答案为:9942π-.【点睛】本题主要考查求阴影部分的面积,掌握扇形的面积公式,是解题的关键.三.解答题19. 计算:0(1+|1|﹣2cos45°+114-⎛⎫ ⎪⎝⎭. 【答案】4.【解析】【分析】先求零指数幂,负整数指数幂,绝对值以及特殊角的三角函数,再算加减法,即可求解.【详解】原式=﹣1﹣2×2+4 =4.【点睛】本题主要考查实数的混合运算,掌握零指数幂,负整数指数幂,绝对值以及特殊角的三角函数的运算法则,是解题的关键.20. 先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中1x =..【解析】分析】根据分式的运算法则进行化简,再代入求解.【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.21. 如图,在平面直角坐标系xOy 中,函数y =﹣x+5的图象与函数y =k x (k <0)的图象相交于点A ,并与x 轴交于点C ,S △AOC =15.点D 是线段AC 上一点,CD :AC =2:3.(1)求k 的值;(2)根据图象,直接写出当x <0时不等式k x>﹣x+5的解集; (3)求△AOD 的面积.【答案】(1)k=﹣6;(2)﹣1<x<0;(3)5.【解析】【分析】(1)过A作AM⊥x轴于M,先求出点C的坐标,再根据S△AOC=15,求出点A的坐标,进而即可得到k的值;(2)由函数的图象,可知:反比例函数图象在一次函数图象上方部分所对应的x的范围,即为不等式kx>﹣x+5的解集;(3)由△AOD与△AOC的高相等,CD:AC=2:3,进而求解.【详解】(1)对于y=﹣x+5,当y=0时,x=5,即OC=5,C点的坐标是(5,0),过A作AM⊥x轴于M,∵S△AOC=15,∴15AM2⨯⨯=15,解得:AM=6,∴A点的纵坐标是6,把y=6代入y=﹣x+5得:x=﹣1,即A点的坐标是(﹣1,6),把A点的坐标代入y=kx得:k=﹣6;(2)由函数图象可知:当﹣1<x<0时,kx>﹣x+5,∴当x<0时不等式kx>﹣x+5的解集是:﹣1<x<0;(3)∵CD:AC=2:3,S△AOC=15,∴△AOD的面积=13S△AOC=1153⨯=5.【点睛】本题主要考查反比例函数与一次函数的综合,掌握一次函数与反比例函数的图象和性质,是解题的关键.22. 如图,已知90A E ∠=∠=︒,A C F E 、、、在一条直线上,,AF EC BC DF ==.求证:(1)Rt Rt ABC EDF △≌△;(2)四边形BCDF 是平行四边形.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)由题意由”HL ”可判定Rt △ABC ≌Rt △EDF(2)根据一组对边平行且相等的四边形是平行四边形,可证四边形BCDF 是平行四边形.【详解】证明:(1)∵AF=EC∴AC=EF又∵BC=DF ,∴Rt △ABC ≌Rt △EDF(2)∵Rt △ABC ≌Rt △EDF∴BC=DF ,∠ACB=∠DFE∴∠BCF=∠DFC∴BC ∥DF ,BC=DF∴四边形BCDF 是平行四边形【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,关键是灵活运用性质和判定解决问题.23. 为了传承中华民族优秀传统文化,我市某中学举行”汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.(2)在图2扇形统计图中,m的值为_____,表示”D等级”的扇形的圆心角为_____度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生”汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.【答案】(1)参赛学生共20人;补图见解析;(2)40;72;(3)23.【解析】【分析】(1)由”A等级的人数÷A等级的百分比=参赛学生人数”,即可求得参赛人数,再求出B等级人数,补全条形统计图,即可;(2)由C等级人数÷参赛学生人数,即可得到m的值,由360°×D等级的百分比,即可得到”D等级”的扇形的圆心角;(3)根据题意,列出表格,得到所有等可能的结果,再根据概率公式,即可求解.【详解】(1)根据题意得:3÷15%=20(人),∴参赛学生共20人,B等级人数有:20﹣(3+8+4)=5(人),补全条形图如下:(2)C等级的百分比为:820×100%=40%,即:m=40,表示”D等级”的扇形的圆心角为:360°×420=72°,故答案为:40,72;(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,∴P(恰好是一名男生和一名女生)=46=23.【点睛】本题主要考查条形统计图、扇形统计图以及等可能事件的概率,掌握条形统计图、扇形统计图的特征以及列举法求概率,是解题的关键.24. 为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行”远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.【答案】平路有443千米,坡路有53千米【解析】【分析】设去时平路为xkm,上山的坡路为ykm,根据去的时候共用3h,返回时共用4h,列方程组即可.【详解】解:设平路有x千米,坡路有y千米.由题意可知3 634 45x yx y⎧+=⎪⎪⎨⎪+=⎪⎩解得44353 xy⎧=⎪⎪⎨⎪=⎪⎩答:平路有443千米,坡路有53千米【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出合适的等量关系,列方程组.25. 如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC=12,求FC的长.【答案】(1)证明见解析;(2)FC=203.【解析】【分析】(1)连接EB,可得BE⊥AC,∠ABE=∠CBE,再证∆ABE≅∆CBE,即可得到结论;(2)易得∠FAC=∠ABE,从而得AEBE=12,设AE=x,则BE=2x,可得AC=5BE=5,作CH⊥AF于点H,易证Rt△ACH∽Rt△BAE,可得HC=4,AH=8,由HC∥AB,得FCFB=HCAB,进而即可求解.【详解】(1)连接EB,∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵点E为AD弧的中点,∴∠ABE=∠CBE,在∆ABE与∆CBE中,∵=90{AEB CEBBE BEABE CBE∠∠=︒=∠∠=,∴∆ABE≅∆CBE(ASA),∴BA=BC;(2)∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=tan∠FAC=12,∵Rt△ABE中,tan∠ABE=AEBE=12,∴设AE=x,则BE=2x,∴AB=10,解得:x=∴∆ABE≅∆CBE,∴AC=2AE=BE=作CH⊥AF于点H,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAE,∴HCAE=AHBE=ACAB10,∴HC=4,AH=8,∵HC∥AB,∴FCFB=HCAB,即FCFC10+=25,解得:FC=203.【点睛】本题主要考查圆的基本性质,锐角三角函数以及相似三角形的综合,掌握圆周角定理的推论,锐角三角函数的定义以及相似三角形的判定和性质定理,是解题的关键.26. 如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.【答案】(1)y=﹣x2﹣x+2; (2)(0,2)或(﹣1,2)或117-+,﹣2)或117--,﹣2);(3)1.【解析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设M点坐标为(m,n),根据S△AOM=2S△BOC列出关于m的方程,解方程求出m的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+2,再设N点坐标为(x,x+2),则D点坐标为(x,-x2-x+2),然后用含x的代数式表示ND,根据二次函数的性质即可求出线段ND长度的最大值.解:(1)A(﹣2,0),C(0,2)代入抛物线的解析式y=﹣x2+mx+n,得4202m nn--+=⎧⎨=⎩,解得12mn=-⎧⎨=⎩,∴抛物线的解析式为y =﹣x 2﹣x +2.(2)由(1)知,该抛物线的解析式为y =﹣x 2﹣x +2,则易得B (1,0),设M (m ,n )然后依据S △AOM =2S △BOC 列方程可得:12•AO ×|n |=2×12×OB ×OC , ∴12×2×|﹣m 2﹣m +2|=2, ∴m 2+m =0或m 2+m ﹣4=0,解得m =0或﹣1或12-±,∴符合条件的点M 的坐标为:(0,2)或(﹣1,2)或(12-,﹣2)或(12--,﹣2). (3)设直线AC 的解析式为y =kx +b ,将A (﹣2,0),C (0,2)代入得到202k b b -+=⎧⎨=⎩,解得12k b =⎧⎨=⎩, ∴直线AC 的解析式为y =x +2,设N (x ,x +2)(﹣2≤x ≤0),则D (x ,﹣x 2﹣x +2),ND =(﹣x 2﹣x +2)﹣(x +2)=﹣x 2﹣2x =﹣(x +1)2+1,∵﹣1<0,∴x =﹣1时,ND 有最大值1.∴ND 的最大值为1.点睛:本题考查二次函数的图象和性质.根据二次函数的性质并结合已知条件及图象进行分析是解题的关键.。