数列的概念教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的概念与简单表示法(第一课时)

教学目标:1、理解数列的概念,了解通项公式的意义和分类

2、能由通项公式求出数列的各项。反之能求出数列的前几项

3、培养学生分析问题的能力及探索规律的能力

教学重点:理解数列的概念,认识数列是反映自然规律的基本数学模型

教学难点:认识数列是一种特殊函数;发现数列的规律,找出数列可能的通项公式。 教学过程:

一、引入新课

有人说,大自然是懂数学的,不知你注意过没有,树木的分叉、花瓣的数量、植物种子的排列等等,都遵循着某种数学规律,大家能想到它们涉及了那些数学规律吗?通过本课时的学习,这些问题都会得到解决。

二、新课

学生阅读课本、小组互动完成学案上第一、二部分

小组内推选同学回答问题

(一)、考考你 寻找规律,在空格出填写数字

1.1、21、31、( )、51、61、( )、8

1 2. 2、-4、( )、-8、10、( )14

3. ( )、22、32、42、52、( )、72

思考1:以上几组数有什么特征?

观察、讨论、分析归纳特点:上面的数字都是有规律的。从具体例子引出数列概念,激发学生的兴趣。

(二)、知识探究

1、根据上面几组数归纳出数列的概念

数列是一列数;数列中的数是按一定次序排列的。引领学生由感性认识上升到理性认识,进而明确数列的定义

思考2 数列1、2、3、4……与4、3、2、1……是同一数列吗?

不是,数列的有序性;

深化定义,加深对数列概念的理解。

试试看: 根据思考2归纳出数列的特点________

2、数列的项如何表示

数列的一般表示:n a a a ,,,21 ,表示法{}n a

练习:请大家举几个生活中数列的例子

3、数列的分类(课本28页观察)

①按项数分有穷数列和无穷数列

②按项的大小关系分递增数列、递减数列、常数列、摆动数列

4、常数列:各项均为常数的数列 为等差、等比数列进一步学习作铺垫

5、数列的通项公式

项数:1 2 3 4 5 …… n 1 2 3 4 5 …… n

项: 1 4 9 16 25…… (n 2

) 2 4 6 8 10…… (2n ) 仔细观察上面两个数列的项与它对应的项数,你能发现它们的关系吗?请写出项数与项之间

的一个关系式。

数列中的每一个数都对应着一个序号,反过来,每个序号也都对应着一个数。

引出数列通项公式的定义:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子表示,那么这个公式叫做这个数列的通项公式。

深化概念:分析通项公式的作用,根据通项公式写出数列。

在归纳通项公式过程中,培养学生分析问题的能力及探索规律的能力

6、数列与函数的关系

观察上面的数列2、4、6、8、10……的通项公式与函数y=2x 的图像你有什么发现? 该数列通项公式为a n =2n 它的图像是一个个孤立的点,并且这些点都在函数y=2x 的图像

上。

数列可以看作特殊的函数,序号是其自变量,项是序号所对应的函数值,数列的定义域是正整数集,或是正整数集的有限子集。

(三)、解题研究

学生上黑板完成课堂练习 规范书写,落实目标

1、根据下列数列的前几项写出数列的通项公式

分组讨论,回答问题

总结数列通项公式要先观察,再归纳,然后猜想,最后验证

(1)1、3、5、7…… 12-=n a n

(2)211⨯、321⨯、431⨯、541⨯…… )

1(1+=n n a n 数列为分数则分别讨论分子、分母的规律

(3)1、2、3、2、5……

n a n = (4)-1、1、-1、1、-1、1……

)1(-=n n a (5)0、2、0、2、0、2……

问题的转化 观察与-1、1、-1、1、-1、1……的关系 很容易能得到

1)1(+=-n n a 提出问题:0、1、0、1、0、1……的通项公式你能写出来么?

2、根据数列{

a n }的通项公式写出它的前3项,并求出a 10 (1) 1

+=n n a n 解:由题意可知 211111=+=

a 3

21222=+=a 431333=+=a 11101101010=+=a

(2)n n n a )1(-=

解:由题意可知

11)1(11-=⨯=-a 22)1(22=⨯=-a 33)1(33-=⨯=-a 1010)1(10

10=⨯=-a 强调规范书写过程。巩固概念,使学生对a n 与n 的关系有更深刻的认识。

3、画出下列数列的图像

(1)4、5、6、7、8、9……

(2)1、2、4、8、16……

通过图像进一步加深同学们对数列是一种特殊函数的理解。

三、课后作业

习题2.1 2,3,4题

四、小结

1、数列的定义

2、数列的分类

3、数列的通项公式

4、数列的实质—特殊的函数(离散函数)

五、板书设计

相关文档
最新文档