2019-2020学年高中数学 1.2基本不等式导学案新人教版选修4-5.doc
高中数学 1.2基本不等式导学案新人教版选修4-5
1.2.1 基本不等式【学习目标】1.了解两个正数的算术平均数和几何平均数的定义;2.使学生理解并掌握基本不等式;3.利用基本不等式及其变形证明不等式或求最值.【重点难点】均值不等式的应用,“等号”是否取到的问题. 一、自主学习要点1:定理1:如果R b a ∈,,那么 ,当且仅当 时,等号成立.要点2:(基本不等式)如果0,>b a ,那么ab b a ≥+2,当且仅当 时,等号成立. 注:应用定理2的条件:一正、二定、三相等.要点3:如果b a ,都是正数,我们就称 为b a ,的算术平均, 为b a ,的几何平均.于是,基本不等式可以表述为: 要点4.已知b a ab b a ++,,22中一个为定值,其他两个的最值的求法.二、合作,探究,展示,点评题型一.利用基本不等式证明不等式:例1.2log log ≥+a b b a 成立的必要条件是( )A.1,1>>b a ,B.10,0<<>b aC.()()011>--b a ,D.以上都不正确思考题1:已知+∈R c b a ,,,且1=++c b a .求证:8111111≥⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-c b a .题型二.利用基本不等式求函数最值:例2.设0>x ,则函数x x y 133--=的最大值是 .思考题2:已知2lg lg =+y x ,则yx 11+的最小值为 .题型三.基本不等式的实际应用:例3.某公司租地建仓库,每月土地占用费1y 与仓库到车站的距离成反比,而每月库存货物的运费2y 与仓库到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用1y 和2y 分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站多远处?思考题3:在对角线有相同长度的所有矩形中,怎样的矩形周长最长,怎样的矩形面积最大?【课堂小结与反思】:《基本不等式》课时作业1.已知,0>>b a 则下列不等式成立的是( )ab b a b a A >+>>2. b ab b a a B >>+>2. ab b b a a C >>+>2. b b a ab a D >+>>2. 2.设,10<<<b a 则22,2,b a ab b a ++,ab 2中最大的是 。
新人教版高中数学《基本不等式》导学案
基本不等式1.掌握基本不等式,能借助几何图形说明基本不等式的意义.2.能够利用基本不等式求最大(小)值.3.利用基本不等式求最值时要注意“一正二定三相等”.下图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.在正方形ABCD中有4个全等的直角三角形,设直角三角形的两条直角边长分别为a,b,那么正方形的边长为√a2+b2.问题1:上述情境中,正方形的面积为,4个直角三角形的面积的和,由于4个直角三角形的面积之和不大于正方形的面积,于是就可以得到一个不等式:,我们称之为重要不等式,即对于任意实数a,b,都有,当且仅当时,等号成立.我们也可以通过作差法来证明:- =(a-b)2≥0, 所以,当且仅当a=b时取等号.问题2:基本不等式若a,b∈(0,+∞),则a+b√ab,当且仅当时,等号成立.2问题3:对于基本不等式,请尝试从其他角度予以解释.(1)基本不等式的几何解释:在直角三角形中,直角三角形斜边上的斜边上的.在圆中,半径不小于半弦长.看作正数a、b的,√ab看作正数a、b(2)如果把a+b2的,那么该定理可以叙述为:两个正数的不小于它们的.为a、b的,称√ab为a、b(3)在数学中,我们称a+b2的.因此,两个正数的不小于它们的.问题4:由基本不等式我们可以得出求最值的结论:(1)已知x ,y ∈(0,+∞),若积x ·y=p (定值),则和x+y 有最 值 ,当且仅当x=y 时,取“=”.(2)已知x ,y ∈(0,+∞),若和x+y=s (定值),则积x ·y 有最 值 ,当且仅当x=y 时,取“=”.即“积为常数, ;和为常数, ”. 概括为:一正二定三相等四最值.利用基本不等式求最值(1)已知x>54,求函数y=4x-2+14x-5的最小值.(2)已知正数a ,b 满足ab=a+b+3,求ab 的取值范围.利用基本不等式证明不等式已知x 、y 都是正数,求证:(x+y )(x 2+y 2)(x 3+y 3)≥8x 3y 3.单调性与基本不等式 设函数f (x )=x+a x+1,x ∈[0,+∞).(1)当a=2时,求函数f (x )的最小值; (2)当0<a<1时,求函数f (x )的最小值.若函数f (x )=x+1x-2(x>2)在x=a 处取最小值,则实数a 的值为( ).A .1+√2B .1+√3C .3D .4参考答案 知识体系梳理问题1:a 2+b 2 2ab a 2+b 2≥2ab a 2+b 2≥2ab a=b a 2+b 2 2ab a 2+b 2≥2ab 问题2:≥ a=b问题3:(1)中线不小于 高 (2)等差中项 等比中项 等差中项 等比中项 (3)算术平均数 几何平均数 算术平均数 几何平均数问题4:(1)小 2√p (2)大 s 24和有最小值 积有最大值重点难点探究探究一:【解析】(1)∵x>54,∴4x-5>0,∴y=4x-5+14x-5+3.∵4x-5+14x-5≥2√(4x-5)·14x-5=2, 当且仅当4x-5=14x-5,即x=32时,等号成立.∴y ≥2+3=5.故当x=32时,函数y=4x-2+14x-5取得最小值5.(2)∵ab-3=a+b ≥2√ab ,∴ab-2√ab -3≥0且ab>0,即(√ab -1)2≥4,∴√ab ≥3,即ab ≥9(当且仅当a=b 时取等号),∴ab 的取值范围是[9,+∞).【小结】使用基本不等式时要注意“一正二定三相等”. 探究二:【解析】∵x ,y 都是正数,∴x 2>0,y 2>0,x 3>0,y 3>0.∵x+y ≥2√xy >0,x 2+y 2≥2√x 2y 2>0,x 3+y 3≥2√x 3y 3>0, ∴(x+y )(x 2+y 2)(x 3+y 3)≥2√xy ·2√x 2y 2·2√x 3y 3=8x 3y 3,即(x+y )(x 2+y 2)(x 3+y 3)≥8x 3y 3.当且仅当“x=y ”时取“=”.【小结】多次利用基本不等式证明时,一定要注意是否每次都能保证等号成立,并且取等号的条件应当一致.探究三:【解析】(1)把a=2代入f (x )=x+a x+1中,得f (x )=x+2x+1=x+1+2x+1-1.由于x ∈[0,+∞),所以x+1>0,2x+1>0,所以f (x )≥2√2-1,当且仅当x+1=2x+1,即x=√2-1时,f (x )取得最小值2√2-1.(2)因为f (x )=x+a x+1=x+1+ax+1-1.当且仅当x+1=ax+1时,等式成立,即x=√a -1<0, 又x ∈[0,+∞),所以基本不等式等号取不到. 设x 1>x 2≥0,则f (x 1)-f (x 2)=x 1+ax 1+1-x 2-ax 2+1=(x 1-x 2)·[1-a(x 1+1)(x 2+1)].由于x 1>x 2≥0,所以x 1-x 2>0,x 1+1>1,x 2+1≥1,所以(x 1+1)(x 2+1)>1,而0<a<1,所以a(x1+1)(x 2+1)<1,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以f (x )在[0,+∞)上单调递增. 所以f (x )min =f (0)=a.【小结】本题第(2)问要从函数的单调性或结合双勾函数来考虑,因为基本不等式等号取不到,这是用基本不等式经常碰到的问题. 全新视角拓展【解析】∵x>2,∴f (x )=x+1x-2=(x-2)+1x-2+2≥2√(x-2)·1x-2+2=4,当且仅当x-2=1x-2,即x=3时取等号.∴a=3.【答案】C。
2019-2020学年人教版高中数学选修4-5教材用书:第一讲不等式和绝对值不等式二绝对值不等式2.绝对值不
2.绝对值不等式的解法1.|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法只需将ax+b看成一个整体,即化成|x|≤a,|x|≥a(a>0)型不等式求解.|ax+b|≤c(c>0)型不等式的解法:先化为-c≤ax+b≤c,再由不等式的性质求出原不等式的解集.不等式|ax+b|≥c(c>0)的解法:先化为ax+b≥c或ax+b≤-c,再进一步利用不等式性质求出原不等式的解集.2.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法①利用绝对值不等式的几何意义求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键.②以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号是解题关键.③通过构造函数,利用函数的图象求解,体现函数与方程的思想,正确求出函数的零点并画出函数图象(有时需要考查函数的增减性)是解题关键.|ax+b|≤c与|ax+b|≥c(c>0)型的不等式的解法解下列不等式:(1)|5x-2|≥8;(2)2≤|x-2|≤4.利用|x|>a及|x|<a(a>0)型不等式的解法求解.(1)|5x-2|≥8?5x-2≥8或5x-2≤-8?x≥2或x≤-6 5,∴原不等式的解集为x x≥2或x≤-65.(2)原不等式价于|x-2|≥2,①|x-2|≤4.②由①得x-2≤-2,或x-2≥2,∴x≤0或x≥4.由②得-4≤x-2≤4,∴-2≤x≤6.∴原不等式的解集为{x|-2≤x≤0或4≤x≤6}.|ax+b|≥c和|ax+b|≤c型不等式的解法:①当c>0时,|ax+b|≥c?ax+b≥c或ax+b≤-c,|ax+b|≤c?-c≤ax+b≤c.②当c=0时,|ax+b|≥c的解集为R,|ax+b|<c的解集为?.③当c<0时,|ax+b|≥c的解集为R,|ax+b|≤c的解集为?.1.解下列不等式:(1)|3-2x|<9;(2)|x-x2-2|>x2-3x-4;(3)|x2-3x-4|>x+1. 解:(1)∵|3-2x|<9,∴|2x-3|<9.∴-9<2x-3<9.即-6<2x<12.∴-3<x<6.∴原不等式的解集为{x|-3<x<6}.(2)∵|x-x2-2|=|x2-x+2|,而x2-x+2=x-122+74>0,∴|x-x2-2|=|x2-x+2|=x2-x+2.故原不等式等价于x2-x+2>x2-3x-4?x>-3.∴原不等式的解集为{x|x>-3}.(3)不等式可转化为x2-3x-4>x+1或x2-3x-4<-x-1,∴x2-4x-5>0或x2-2x-3<0.解得x>5或x<-1或-1<x<3,∴不等式的解集是(5,+∞)∪(-∞,-1)∪(-1,3).2.已知常数a满足-1<a<1,解关于x的不等式:ax+|x+1|≤1. 解:若x≥-1,则ax+x+1≤1,即(a+1)x≤0.因为-1<a<1,所以x≤0.又x≥-1,所以-1≤x≤0.若x<-1,则ax-x-1≤1,即(a-1)x≤2.因为-1<a<1,所以x≥2a-1.因为-1<a<1,所以2a-1-(-1)=a+1a-1<0.所以2a-1≤x<-1.综上所述,2a-1≤x≤0.故不等式的解集为2a-1,0.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法解不等式|x-3|-|x+1|<1.解该不等式,可采用三种方法:(1)利用绝对值的几何意义;(2)利用各绝对值的零点分段讨论;(3)构造函数,利用函数图象分析求解.法一:在数轴上-1,3,x对应的点分别为A,C,P,而B点对应的实数为12,B点到C点的距离与到A点的距离之差为 1.由绝对值的几何意义知,当点P在射线Bx上(不含B点)时不等式成立,故不等式的解集为x x>12.法二:原不等式?①x<-1,--++或②-1≤x<3,---+或③x≥3,--+①的解集为?,②的解集为x 12<x<3,③的解集为{x|x≥3}.综上所述,原不等式的解集为x x>12.法三:将原不等式转化为|x-3|-|x+1|-1<0,构造函数y=|x-3|-|x+1|-1,即y=3,-2x+1,-5,x≤-1,-1<x<3,x≥3.作出函数的图象(如下图所示),它是分段函数,函数与x轴的交点是12,0,由图象可知,当x>12时,有y<0,即|x-3|-|x+1|-1<0,所以原不等式的解集是x x>12.|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.3.解不等式|2x-1|+|3x+2|≥8.解:①当x≤-23时,|2x-1|+|3x+2|≥8?1-2x-(3x+2)≥8?-5x≥9?x≤-95,∴x≤-95;②当-23<x<12时,|2x-1|+|3x+2|≥8?1-2x+3x+2≥8?x+3≥8?x≥5,∴x∈?;③当x≥12时,|2x-1|+|3x+2|≥8?5x+1≥8?5x≥7?x≥75,∴x≥75.∴原不等式的解集为-∞,-95∪75,+∞.4.设函数f(x)=x+1a+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.解:(1)证明:由a>0,得f(x)=x+1a+|x-a|≥x+1a--=1a+a≥2,所以f(x)≥2.(2)f(3)=3+1a+|3-a|.当a>3时,f(3)=a+1a,由f(3)<5,得3<a<5+212.当0<a≤3时,f(3)=6-a+1a,由f(3)<5,得1+52<a≤3.综上所述,a的取值范围是1+52,5+212.含绝对值不等式的恒成立问题已知不等式|x+2|-|x+3|>m.(1)若不等式有解;(2)若不等式解集为R;(3)若不等式解集为?,分别求出m的取值范围.解答本题可以先根据绝对值|x-a|的意义或绝对值不等式的性质求出|x+2|-|x+3|的最大值和最小值,再分别写出三种情况下m的取值范围.法一:因|x+2|-|x+3|的几何意义为数轴上任意一点P(x)与两定点A(-2),B(-3)距离的差.即|x+2|-|x+3|=|PA|-|PB|.又(|PA|-|PB|)max=1,(|PA|-|PB|)min=-1.即-1≤|x+2|-|x+3|≤1.(1)若不等式有解,m只要比|x+2|-|x+3|的最大值小即可,即m<1,m的取值范围为(-∞,1);(2)若不等式的解集为R,即不等式恒成立,m只要比|x+2|-|x+3|的最小值还小,即m<-1,m的取值范围为(-∞,-1);(3)若不等式的解集为?,m只要不小于|x+2|-|x+3|的最大值即可,即m≥1,m的取值范围为.6.把本例中的“-”改成“+”,即|x+2|+|x+3|>m时,分别求出m的取值范围.解:|x+2|+|x+3|≥|(x+2)-(x+3)|=1,即|x+2|+|x+3|≥1.(1)若不等式有解,m为任何实数均可,即m∈R;(2)若不等式解集为R,即m∈(-∞,1);(3)若不等式解集为?,这样的m不存在,即m∈?.课时跟踪检测(五)1.不等式|x+1|>3的解集是( )A.{x|x<-4或x>2} B.{x|-4<x<2}C.{x|x<-4或x≥2} D.{x|-4≤x<2}解析:选 A |x+1|>3,则x+1>3或x+1<-3,因此x<-4或x>2.2.满足不等式|x+1|+|x+2|<5的所有实数解的集合是( )A.(-3,2) B.(-1,3) C.(-4,1) D.-32,72解析:选C |x+1|+|x+2|表示数轴上一点到-2,-1两点的距离和,根据-2,-1之间的距离为1,可得到-2,-1距离和为5的点是-4,1.因此|x+1|+|x+2|<5解集是(-4,1).3.不等式1≤|2x-1|<2的解集为( )A.-12,0∪1,32B.-12,0∪1,32C.-12,0∪1,32D.-12,0∪1,32解析:选 D 由1≤|2x-1|<2,得1≤2x-1<2或-2<2x-1≤-1,因此-12<x≤0或1≤x<32.4.若关于x的不等式|x-1|+|x+m|>3的解集为R,则实数m的取值范围是( )A.(-∞,-4)∪(2,+∞) B.(-∞,-4)∪(1,+∞)C.(-4,2) D.解析:选 A 由题意知,不等式|x-1|+|x+m|>3恒成立,即函数f(x)=|x-1|+|x+m|的最小值大于3,根据绝对值不等式的性质可得|x-1|+|x+m|≥|(x-1)-(x+m)|=|m+1|,故只要满足|m+1|>3即可,所以m+1>3或m+1<-3,解得m>2或m<-4,故实数m的取值范围是(-∞,-4)∪(2,+∞).5.不等式|x+2|≥|x|的解集是________.解析:∵不等式两边是非负实数,∴不等式两边可以平方,两边平方,得(x+2)2≥x2,∴x2+4x+4≥x2,即x≥-1,∴原不等式的解集为{x|x≥-1}.答案:{x|x≥-1}6.不等式|2x-1|-x<1的解集是__________.解析:原不等式等价于|2x-1|<x+1?-x-1<2x-1<x+1?3x>0,x<2?0<x<2.答案:{x|0<x<2}7.已知函数f(x)=|x+1|+|x-2|-|a2-2a|,若函数f(x)的图象恒在x轴上方,则实数a的取值范围为________.解析:因为|x+1|+|x-2|≥|x+1-(x-2)|=3,所以f(x)的最小值为3-|a2-2a|.由题意,得|a2-2a|<3,解得-1<a<3.答案:(-1,3)8.解不等式:|x2-2x+3|<|3x-1|.解:原不等式?(x2-2x+3)2<(3x-1)2?<0?(x2+x+2)(x2-5x+4)<0?x2-5x+4<0(因为x2+x+2恒大于0)?1<x<4.所以原不等式的解集是{x|1<x<4}.9.解关于x的不等式|2x-1|<2m-1(m∈R).解:若2m-1<0,即m≤12,则|2x-1|<2m-1恒不成立,此时,原不等式无解;若2m-1>0,即m>12,则-(2m-1)<2x-1<2m-1,所以1-m<x<m.综上所述:当m≤12时,原不等式的解集为?;当m>12时,原不等式的解集为{x|1-m<x<m}.10.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈-a2,12时,f(x)≤g(x),求a的取值范围.解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0. 设函数y=|2x-1|+|2x-2|-x-3,则y=-5x,x<12,-x-2,12≤x≤1,3x-6,x>1.其图象如图所示.从图象可知,当且仅当x∈(0,2)时,y<0,所以原不等式的解集是{x|0<x<2}.(2)当x∈-a2,12时,f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3,所以x≥a-2对x∈-a2,12都成立.故-a2≥a-2,即a≤43.从而a的取值范围是-1,43.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,绝对值不等式主要考查解法及简单的应用,题目难度中档偏下,着重考查学生的分类讨论思想及应用能力.解绝对值不等式的关键是去掉绝对值符号,化成不含绝对值的不等式,其一是依据绝对值的意义;其二是先令每一个绝对值等于零,找到分界点,通过讨论每一区间内的代数式的符号去掉绝对值.真题体验1.(湖南高考)若实数a,b满足1a+2b=ab,则ab的最小值为( )A. 2 B.2C.2 2 D.4解析:选 C 由1a+2b=ab,知a>0,b>0,所以ab=1a+2b≥22ab,即ab≥22,当且仅当1a=2b,1a+2b=ab,即a=42,b=242时取“=”,所以ab的最小值为2 2.2.(重庆高考)设a,b>0,a+b=5,则a+1+b+3的最大值为________.解析:令t=a+1+b+3,则t2=a+1+b+3+2++=9+2++≤9+a+1+b+3=13+a+b=13+5=18,当且仅当a+1=b+3时取等号,此时a=72,b=32.∴t max=18=3 2.答案:3 23.(重庆高考)若函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a=________. 解析:由于f(x)=|x+1|+2|x-a|,当a>-1时,f(x)=-3x+2a--,-x+2a+-,3x-2a+作出f(x)的大致图象如图所示,由函数f(x)的图象可知f(a)=5,即a+1=5,∴a=4.同理,当a≤-1时,-a-1=5,∴a=-6.答案:-6或44.(全国乙卷)已知函数f(x)=|x+1|-|2x-3|.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.解:(1)由题意得f(x)=错误! 故y=f(x)的图象如图所示.(2)由f(x)的函数表达式及图象可知,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=13或x=5.故f(x)>1的解集为{x|1<x<3},f(x)<-1的解集为x x<13或x>5.所以|f(x)|>1的解集为x x<13或1<x<3或x>5.5.(江苏高考)设a>0,|x-1|<a3,|y-2|<a3,求证:|2x+y-4|<a.证明:因为|x-1|<a3,|y-2|<a3,所以|2x+y-4|=|2(x-1)+(y-2)|≤2|x-1|+|y-2|<2×a3+a3=a.6.(全国丙卷)已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求a的取值范围.解:(1)当a=2时,f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x≤3. 因此f(x)≤6的解集为{x|-1≤x≤3}.(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥3,即x-a2+12-x≥3-a2.又x-a2+12-x min=12-a2,所以12-a2≥3-a2,解得a≥2.所以a的取值范围是“a+c>b+d”是“a>b且c>d”的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件易得a>b且c>d时必有a+c>b+d.若a+c>b+d时,则可能有a>b且c>d.A基本不等式的应用利用基本不等式求最值问题一般有两种类型:①和为定值时,积有最大值;②积为定值时,和有最小值,在具体应用基本不等式解题时,一定要注意适用的范围和条件:“一正、二定、三相等”.已知x,y,z∈R+,x-2y+3z=0,则y2xz的最小值为________.由x-2y+3z=0,得y=x+3z2,则y2xz=x2+9z2+6xz4xz≥6xz+6xz4xz=3,当且仅当x=3z时,等号成立.3设a,b,c为正实数,求证:1a3+1b3+1c3+abc≥2 3.因为a,b,c为正实数,由平均不等式可得1a3+1b3+1c3≥331a3·1b3·1c3.即1a3+1b3+1c3≥3abc,当且仅当a=b=c时,等号成立.所以1a3+1b3+1c3+abc≥3abc+abc,而3abc+abc≥23abc·abc=2 3.所以1a3+1b3+1c3+abc≥23,当且仅当abc=3时,等号成立.含绝对值的不等式的解法1.公式法|f(x)|>g(x)?f(x)>g(x)或f(x)<-g(x);|f(x)|<g(x)?-g(x)<f(x)<g(x).2.平方法|f(x)|>|g(x)|?2>2.3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.解下列关于x的不等式:(1)|x+1|>|x-3|;(2)|x-2|-|2x+5|>2x.(1)法一:|x+1|>|x-3|,两边平方得(x+1)2>(x-3)2,∴8x>8.∴x>1.∴原不等式的解集为{x|x>1}.法二:分段讨论:当x≤-1时,有-x-1>-x+3,此时x∈?;当-1<x≤3时,有x+1>-x+3,即x>1,此时1<x≤3;当x>3时,有x+1>x-3成立,∴x>3.∴原不等式的解集为{x|x>1}.(2)分段讨论:①当x<-52时,原不等式变形为2-x+2x+5>2x,解得x<7,∴原不等式的解集为x x<-52.②当-52≤x≤2时,原不等式变形为2-x-2x-5>2x,解得x<-35.∴原不等式的解集为x-52≤x<-35.③当x>2时,原不等式变形为x-2-2x-5>2x,解得x<-73,∴原不等式无解.综上可得,原不等式的解集为x x<-35.不等式的恒成立问题对于不等式恒成立求参数范围问题,常见类型及其解法如下:(1)分离参数法运用“f(x)≤a?f(x)max≤a,f(x)≥a?f(x)min≥a”可解决恒成立中的参数范围问题.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能时,可转换思维角度,将主元与参数互换,常可得到简便的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可直观地解决问题.设有关于x的不等式lg(|x+3|+|x-7|)>a.(1)当a=1时,解此不等式.(2)当a为何值时,此不等式的解集是R?(1)当a=1时,lg(|x+3|+|x-7|)>1,?|x+3|+|x-7|>10,?x≥7,2x-4>10或-3<x<7,10>10或x≤-3,4-2x>10,?x>7或x<-3.∴不等式的解集为{x|x<-3或x>7}.(2)设f(x)=|x+3|+|x-7|,则有f(x)≥|(x+3)-(x-7)|=10,当且仅当(x+3)(x-7)≤0,即-3≤x≤7时,f(x)取得最小值10.∴lg(|x+3|+|x-7|)≥1.要使lg(|x+3|+|x-7|)>a的解集为R,只要a<1.。
2019-2020学年高中数学 1.1.2基本不等式综合练习(二)导学案 文新人教A版选修4-5.doc
2019-2020学年高中数学 1.1.2基本不等式综合练习(二)导学案 文新人
教A 版选修4-5
一、 学习目标
1.进一步熟悉基本不等式的结构及应用条件;
2.能灵活应用基本不等式证明,或求最值。
二、重点、难点:基本不等式的灵活应用。
三、知识点复习:
1、若a,b ∈R,则ab 4a 2
)(b + 2
2
2b a +,并指出等号何时成立。
2、若a,b +
∈R ,则
2
2
1122
2b a b a ab
b
a +++。
并指出等号成立的条件。
四、导练展示:
1.设a>b>c,且c
a m
c b b a -≥
-+-11恒成立,求实数m 的取值范围。
2.若0<x<1, a>0, b>0, 求证:
()2
221a b a x
b x +≥-+
五、达标检测:
1.当0<x<2
π
时,函数f(x)=x x x 2sin sin 82cos 12++的最小值为
2.已知0,0>>y x ,且082=-+xy y x ,
求(1)xy 的最小值;(2)y x +的最小值。
3. 已知0,0>>y x .且22=+y x ,求
y
x 1
1+的最小值.
六、反思小结。
2019-2020学年人教版高中数学选修4-5教材用书:第一讲 不等式和绝对值不等式 一 不等式 1.不等式的基本性
1.不等式的基本性质1.实数大小的比较(1)数轴上的点与实数一一对应,可以利用数轴上点的左右位置关系来规定实数的大小.在数轴上,右边的数总比左边的数大.(2)如果a-b>0,则a>b;如果a-b=0,则a=b;如果a-b<0,则a<b.(3)比较两个实数a与b的大小,归结为判断它们的差与0的大小;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差与0的大小.2.不等式的基本性质由两数大小关系的基本事实,可以得到不等式的一些基本性质:(1)如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)如果a>b,那么a+c>b+c.(4)如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.(5)如果a>b>0,那么a n>b n(n∈N,n≥2).(6)如果a>b>0n∈N,n≥2).3.对上述不等式的理解使用不等式的性质时,一定要清楚它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用,例如:(1)等式两边同乘一个数仍为等式,但不等式两边同乘同一个数c(或代数式)结果有三种:①c>0时得同向不等式;②c=0时得等式;③c<0时得异向不等式.(2)a>b,c>d⇒a+c>b+d,即两个同向不等式可以相加,但不可以相减;而a>b>0,c>d>0⇒ac>bd,即已知的两个不等式同向且两边为正值时,可以相乘,但不可以相除.(3)性质(5)(6)成立的条件是已知不等式两边均为正值,并且n∈N,n≥2,否则结论不成立.而当n取正奇数时可放宽条件,a>b⇒a n>b n(n=2k+1,k∈N),a>b⇒na>nb(n=2k+1,k∈N*).已知x,y均为正数,设m=x +y,n=x+y,试比较m和n的大小.两式作差――→变形 转化为因式乘积形式――→与0比较判断正负,得出大小 m -n =1x +1y -4x +y =x +y xy -4x +y =+-4xy+=-+,∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0. ∴m -n ≥0,即m ≥n (当x =y 时,等号成立).比较两个数(式子)的大小,一般用作差法,其步骤是:作差—变形—判断差的符号—结论,其中“变形”是关键,常用的方法是分解因式、配方等.1.已知a ,b ∈R ,比较a 4+b 4与a 3b +ab 3的大小. 解:因为(a 4+b 4)-(a 3b +ab 3) =a 3(a -b )+b 3(b -a ) =(a -b )(a 3-b 3) =(a -b )2(a 2+ab +b 2) =(a -b )2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +b 22+34b2≥0. 当且仅当a =b 时,等号成立, 所以a 4+b 4≥a 3b +ab 3.2.在数轴的正半轴上,A 点对应的实数为6a29+a4,B 点对应的实数为1,试判断A 点在B 点的左边,还是在B 点的右边?解:因为6a29+a4-1=--9+a4≤0,所以6a29+a4≤1. 当且仅当a =±3时,等号成立,所以当a ≠±3时,A 点在B 点左边,当a =±3时,A 点与B 点重合.已知a >b >0,c <d <0,e <0.求证:a -c >b -d .可以作差比较,也可用不等式的性质直接证明. 法一:e a -c -eb -d=-d -a +--=-a +c ---,∵a >b >0,c <d <0,∴b -a <0,c -d <0.∴b -a +c -d <0.又∵a >0,c <0,∴a -c >0.同理b -d >0, ∴(a -c )(b -d )>0. ∵e <0,∴-a +c --->0,即e a -c >eb -d . 法二:⎭⎪⎬⎪⎫c<d<0⇒-c>-d>0a>b>0⇒⎭⎪⎬⎪⎫a -c>b -d>0⇒1a -c <1b -d e<0⇒e a -c >e b -d.进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.3.已知x ≥1,y ≥1,求证:x 2y +xy 2+1≤x 2y 2+x +y . 证明:左边-右边=(y -y 2)x 2+(y 2-1)x -y +1 =(1-y )=(1-y )(xy -1)(x -1).因为x ≥1,y ≥1,所以1-y ≤0,xy -1≥0,x -1≥0. 所以x 2y +xy 2+1≤x 2y 2+x +y .4.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证:x x +a >yy +b .证明:因为a ,b ,x ,y 都是正数,且1a >1b ,x >y ,所以x a >y b ,所以a x <by .故a x +1<b y +1,即x +a x <y +b y .所以x x +a >yy +b.(1)已知-π2≤α≤β≤2,求α-β的取值范围.(2)已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围. 求代数式的范围应充分利用不等式的基本性质. (1)∵-π2≤α≤β≤π2, ∴-π2≤α≤π2,-π2≤-β≤π2,且α≤β.∴-π≤α-β≤π且α-β≤0.∴-π≤α-β≤0.即α-β的取值范围为.(2)设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b .解得λ1=53,λ2=-23.∴-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23.∴-113≤a +3b ≤1.即a +3b 的取值范围为⎣⎢⎡⎦⎥⎤-113,1.求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础,在使用不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作差,而要转化为同向不等式后作和.5.已知1≤α+β≤4,-2≤α-β≤-1,求2α-β的取值范围. 解:设2α-β=m (α+β)+n (α-β),∴⎩⎪⎨⎪⎧m +n =2,m -n =-1⇒⎩⎪⎨⎪⎧m =12,n =32.又∵1≤α+β≤4,-2≤α-β≤-1, ∴⎩⎪⎨⎪⎧12≤12α+β,-3≤32α-β-32⇒-52≤2α-β≤12.∴2α-β的取值范围为⎣⎢⎡⎦⎥⎤-52,12.6.三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,求ba 的取值范围.解:两个不等式同时除以a ,得⎩⎪⎨⎪⎧1≤b a +ca≤2,①b a ≤1+c a ≤2·ba ,②将②×(-1),得⎩⎪⎨⎪⎧1≤b a +ca≤2,-2·b a ≤-1-c a ≤-ba,两式相加,得1-2b a ≤b a -1≤2-b a ,解得23≤b a ≤32.即b a 的取值范围是⎣⎢⎡⎦⎥⎤23,32. 课时跟踪检测(一)1.下列命题中不.正确的是( ) A .若3a>3b ,则a >b B .若a >b ,c >d ,则a -d >b -c C .若a >b >0,c >d >0,则a d >bcD .若a >b >0,ac >bd ,则c >d解析:选D 当a >b >0,ac >ad 时,c ,d 的大小关系不确定. 2.已知a >b >c ,则下列不等式正确的是( ) A .ac >bc B .ac 2>bc 2C .b (a -b )>c (a -b )D .|ac |>|bc |解析:选C a >b >c ⇒a -b >0⇒(a -b )b >(a -b )c . 3.如果a <b <0,那么下列不等式成立的是( ) A.1a <1b B .ab <b 2C .-ab <-a 2D .-1a <-1b解析:选D 对于A 项,由a <b <0,得b -a >0,ab >0,故1a -1b =b -a ab >0,1a >1b ,故A 项错误;对于B 项,由a <b <0,得b (a -b )>0,ab >b 2,故B 项错误;对于C 项,由a <b <0,得a (a -b )>0,a 2>ab ,即-ab >-a 2,故C 项错误;对于D 项,由a <b <0,得a -b <0,ab >0,故-1a -⎝ ⎛⎭⎪⎫-1b =a -b ab <0,-1a <-1b成立,故D 项正确.4.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a (d -c )>b (d-c )中,成立的个数是( )A .1B .2C .3D .4解析:选 C ∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc ,故①不成立.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②成立.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③成立.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④成立.成立的个数为3.5.给出四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0. 能得出1a <1b成立的有________(填序号).解析:由1a <1b ,得1a -1b <0,b -a ab <0,故①②④可推得1a <1b成立.答案:①②④6.设a >b >1,c <0,给出下列三个结论:①c a >c b ;②a c <b c;③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是________.解析:由a >b >1,c <0,得1a <1b ,c a >c b ;幂函数y =x c (c <0)是减函数,所以a c <b c;因为a -c >b -c ,所以log b (a -c )>log a (a -c )>log a (b -c ),①②③均正确.答案:①②③7.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________. 解析:设z =2x -3y =m (x +y )+n (x -y ),即2x -3y =(m +n )x +(m -n )y .∴⎩⎪⎨⎪⎧m +n =2,m -n =-3.解得⎩⎪⎨⎪⎧m =-12,n =52.∴2x -3y =-12(x +y )+52(x -y ).∵-1<x +y <4,2<x -y <3,∴-2<-12(x +y )<12,5<52(x -y )<152.由不等式同向可加性,得3<-12(x +y )+52(x -y )<8,即3<z <8.答案:(3,8)8.若a >0,b >0,求证:b2a +a2b≥a +b . 证明:∵b2a +a2b -a -b =(a -b )⎝ ⎛⎭⎪⎫a b -b a =-+ab,(a -b )2≥0恒成立,且已知a >0,b >0, ∴a +b >0,ab >0.∴-+ab≥0.∴b2a +a2b≥a +b . 9.已知-6<a <8,2<b <3,分别求2a +b ,a -b ,ab 的取值范围.解:∵-6<a <8,∴-12<2a <16. 又2<b <3,∴-10<2a +b <19. ∵2<b <3,∴-3<-b <-2. 又∵-6<a <8,∴-9<a -b <6. ∵2<b <3,∴13<1b <12.①当0≤a <8时,0≤ab <4;②当-6<a <0时,-3<ab<0.综合①②得-3<ab<4.∴2a +b ,a -b ,ab的取值范围分别为(-10,19),(-9,6),(-3,4).10.已知a >0,a ≠1. (1)比较下列各式大小.①a 2+1与a +a ;②a 3+1与a 2+a ; ③a 5+1与a 3+a 2.(2)探讨在m ,n ∈N +条件下,am +n+1与a m +a n的大小关系,并加以证明.解:(1)由题意,知a >0,a ≠1,①a 2+1-(a +a )=a 2+1-2a =(a -1)2>0. ∴a 2+1>a +a .②a 3+1-(a 2+a )=a 2(a -1)-(a -1) =(a +1)(a -1)2>0,∴a 3+1>a 2+a , ③a 5+1-(a 3+a 2)=a 3(a 2-1)-(a 2-1)=(a 2-1)(a 3-1). 当a >1时,a 3>1,a 2>1,∴(a 2-1)(a 3-1)>0. 当0<a <1时,0<a 3<1,0<a 2<1, ∴(a 2-1)(a 3-1)>0,即a 5+1>a 3+a 2. (2)根据(1)可得am +n+1>a m +a n.证明如下:a m +n +1-(a m +a n )=a m (a n -1)+(1-a n )=(a m -1)(a n -1).当a >1时,a m>1,a n>1,∴(a m-1)(a n-1)>0. 当0<a <1时,0<a m<1,0<a n<1, ∴(a m-1)(a n-1)>0.综上可知(a m-1)(a n-1)>0,即a m +n+1>a m +a n.。
高中数学选修4-5不等式选讲导学案
高中数学选修4-5不等式选讲导学案§1.1.1不等式的基本性质☆学习目标:1.理解并掌握不等式的性质,能灵活运用实数的性质;2.掌握比较两个实数大小的一般步骤知识情景:1.不等关系是自然界中存在着的基本数学关系。
2.实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总左边的点所表示的数,可知:abab0abab0abab0结论:要比较两个实数的大小,只要考察它们的差的符号即可。
3.不等式的基本性质:10.对称性:ab;20.传递性:ab,bc;30.同加性:ab;推论:同加性:ab,cd;30.同乘性:ab,c0,ab,c0;推论1:同乘性:ab0,cd0;推论2:乘方性:ab0,nN;推论3:开方性:ab0,nN;推论4:可倒性:ab0.☆比较两数大小的一般方法:比差法与比商法(两正数).☆案例学习:例1已知ab0,c0,求证:ccab.例2若a0ba,cd0,则下列命题中能成立的个数是()1adbc;2adbc0;3acbd;4adcbdcA.1B.2C.3D.4.例31若某y0,试比较某2y2某y与某2y2某y的大小;2设a0,b0,且ab,试比较aabb与abba的大小.例4若f(某)a某2c满足4≤f(1)≤1,1≤f(2)≤5,求f(3)的取值范围.例5已知ab0,dc0,用不等式性质证明:abcd选修4-5练习§1.1.1不等式的基本性质练习1.(07届高三北京海淀第二学期期末)若ab0,则下列结论不正确的是()A.a2b2B.ab2bC.baab2D.abab2.设a,b(,0),则“ab”是“a11abb”成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件3.下列不等式:其中正确的个数为()1某232某(某R),2a5b5a3b2a2b3(a,bR),3a2b22(ab1).A.0B.1C.2D.34.在下列命题中真命题的个数有()①若ab0,cd0,那么ab;dc②②已知a,b,c都是正数,并且ab,则ambmab;③③23某4的最大值是243;④若a,bR,则a2某b2522abA.3个B.2个C.1个D.0个6.(06上海春)若a、b、cR,ab,则下列不等式成立的是()A.11abB.abC.22abc21c2130.同乘性:ab,c0,ab,c0;D.a|c|b|c|7.(06江西)若a0,b0,则不等式b1某a等价于()A.1b某0或0某1aB.1a某1bC.某1或某1abD.某1或某1ba8.(08北京文)若集合A{某|2某3},B{某|某1或某4},则集合AB 等于A.某|某3或某4B.某|1某3C.某|3某4D.某|2某19.给出下列条件①1ab;②0ab1;③0a1b.其中,log11bblogablogab成立的充分条件是(填所有可能的条件的序号)10.已知a,b,c满足:a、b、cR,a2b2c2,当nN,n2时,比较cn与anbn的大小.§1.1.2基本不等式学案(1)☆学习目标:1.理解并掌握重要的基本不等式,不等式等号成立的条件;2.初步掌握不等式证明的方法知识情景:1.不等式的基本性质:10.对称性:ab;20.传递性:ab,bc;30.同加性:ab;推论:同加性:ab,cd;推论1:同乘性:ab0,cd0;推论2:乘方性:ab0,nN;推论3:开方性:ab0,nN;推论4:可倒性:ab0.2.比较两数大小的一般方法:比差法与比商法(两正数时).建构新知:1.定理1如果a,bR,那么a2b22ab.当且仅当ab时,等号成立.证明:∵a2b22ab(ab)20,当且仅当ab时,等号成立.∴a2b22ab,当且仅当ab时,等号成立.2.定理2(基本不等式)如果a,bR,那么ab2ab.当且仅当ab时,等号成立.讨论:10.比较定理1与定理2,有哪些相同和不同20.如何证明基本不等式30.给出图形如右,你能解析基本不等式的几何意义吗40.怎样用语言表述基本不等式☆案例学习:例1在a0,b0的条件下,三个结论:其中正确的个数是()①2abababaab2,②2b222,③b2aa2bab,A.0B.1C.2D.3例2设a,bR,求证:(1)ab2a2b222;(2)a2b2c2abbcac.例3(1)设某0,y0且某2y1,求11某y的最小值.;(2)设某、y是正实数,且某+y=5,则lg某+lgy的最大值是___________.(3)若正数a,b满足abab3,则ab的取值范围是例4一变压器的铁芯截面为正十字型,为保证所需的磁通量,要求十字应具有45cm2的面积,问应如何设计十字型宽某及长y,才能使其外接圆的周长最短,这样可使绕在铁芯上的铜线最节省.§1.1.3基本不等式学案(2)三个正数的算术-几何平均不等式☆学习目标:1.理解并掌握重要的基本不等式;2.理解从两个正数的基本不等式到三个正数基本不等式的推广;3.初步掌握不等式证明和应用知识情景:1.定理1如果a,bR,那么a2b22ab.当且仅当ab时,等号成立.2.定理2(基本不等式)如果a,bR,那么ab2ab.当且仅当ab时,等号成立.推论10.两个正数的算术平均数ab2,几何平均数ab,平方平均数,调和平均数2abab,从小到大的排列是:☆探究:类比基本不等式:如果a,bR,那么ab2ab.当且仅当ab时,等号成立.如果a,b,cR,那么.当且仅当时,等号成立.建构新知:问题:已知a,b,cR,求证:a3b3c33abc.当且仅当abc时,等号成立.证明:∵a3b3c33abc定理3如果a,b,cR,那么abc33abc,当且仅当abc时,等号成立.定理3的文字表述:推论对于n个正数a1,a2,,an,它们的即当且仅当abc时,等号成立.☆案例学习:例1已知某,y,zR,求证:(1)(某yz)327某yz;(2)(某yyzz某)(y某z某yz)9;(3)(某yz)(某2y2z2)9某yz.例2用一块边长为a的正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子.要使制成的盒子的容积最大,应当剪去多大的小正方形?例3求函数y2某23某,(某0)的最大值,指出下列解法的错误,并给出正确解法.解一:y2某23某2某21某1某332某21某2某334.∴y3min34.解二:y2某233某22某2某26某当2某23某即3某122时,3ymin261222331226324.正解:§1.1.2基本不等式练习若a0,b0,ab1,则(1a21)(1b21)的最小值是()A.6B.7C.8D.92.若a,b,c>0且a(a+b+c)+bc=4-23,则2a+b+c的最小值为()A.3-1B.3+1C.23+2D.23-23.若关于某的不等式(1k2)某≤k4+4的解集是M,则对任意实常数k,总有()A.2∈M,0∈M;B.2M,0M;C.2∈M,0M;D.2M,0∈M24.若4某1,则某2某22某2的最小值为()A.2B.37C.1D.15.函数y2某24某,(某R)的最小值为()A.6B.7C.8D.96.已知某3y20,则3某27y1的最小值是()A.339B.122C.6D.77.求下列函数的最值(1)某0时,求y6某23某的最小值.(2)设某[1某9,27],求ylog327log3(3某)的最大值.(3)若0某1,求y某4(1某2)的最大值.(4)若ab0,求a1b(ab)的最小值为.8.某商场的某种商品的年进货量为1万件,分若干次进货,每次进货的量相同,且需运费100元,运来的货物除出售外,还需租仓库存放,一年的租金按一次进货时的一半来计算,每件2元,为使一年的运费和租金最省,求每次进货量应多少2.2.3含绝对值不等式的解法学案学习目标:1.由绝对值的几何意义掌握不等式某a和某>a(a>0)的解集2.了解其它类型含绝对值不等式的解法;3.渗透由特殊到一般的思想方法,寻求事物的一般规律。
2019-2020学年高考数学一轮复习-基本不等式导学案
2019-2020学年高考数学一轮复习 基本不等式导学案 一:学习目标 (1).运用基本方法(比较法,综合法,分析法)证明基本不等式和一些简单的不等式。
(2).运用基本不等式证明其他不等式。
二:课前预习1、设x,y 是满足2x+y=20的正数,则lgx+lgy 的最大值是2、2254x y x +=+的最小值是_______________________.3、已知:a ,b 均为正数,1a +4b=2,则使a +b ≥c 恒成立的c 的取值范围是________.4.若x>0,y>0且281x y+=,则xy 最大值为 5、已知不等式()19a x y x y ⎛⎫++≥ ⎪⎝⎭对任意正实数x ,y 恒成立,则正实数a 的最小值 。
三:课堂研讨例1.求下列各式的最值:①已知32<x ,则t=2313-+x x 的最___值是___________. ②已知x>2,则t=15422-+-x x x 的最小值是___________. ③已知x>0,y>0, 23x y+=2,则t=x +y 的最___值是____________. ④已知,3,,++=∈+b a ab R b a 则ab 有最 是 。
例2.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米造价40元,两侧墙砌砖,每米造价 45元,屋顶每平方米造价20元,试计算:(1)仓库面积S 的最大允许值 是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 备 注例3、已知lg(2)lg lg x y x y +=+,求34x y +的最小值课堂检测——基本不等式 姓名:课外作业——基本不等式 姓名:1.在区间1[,2]2上函数2()f x x bx c =++与函数21()x x g x x ++=在同一点取得相同的最小值,则()f x 在区间1[,2]2上的最大值为2.已知二次函数f (x )=ax 2+2x +c (x ∈R)的值域为[0,+∞),则a +1c +c +1a 的最小值为________.3.某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元,今年工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只.第n 次投入后,每只产品的固定成本为g (n )=k n +1(k >0,k 为常数,n ∈Z 且n ≥0),若产品销售价保持不变,第n 次投入后的年利润为f (n )万元.(1)求k 的值,并求出f (x )的表达式; (2)问从今年算起第几年利润最高?最高利润为多少万元?(利润=销售额-固定成本-科技成本)4.已知||2,||2x y ≤≤,点P 的坐标为(,).x y(1)求当,x y ∈R 时,P 满足22(2)(2)4x y -+-≤的概率.(2)求当,x y ∈Z 时,P 满足22(2)(2)4x y -+-≤的概率.。
人教版高中数学选修4-5《1.1.2基本不等式》
选修4-5
教学目标
• 1、知识与能力目标:理解并掌握重要的基本不等式;利用基本不等式求最 值及证明不等式. • • 2、过程与方法目标:体会基本不等式应用的条件:一正二定三相等;体 会应用基本不等式求最值问题解题策略的构建过程. 3、情感态度与价值观目标:通过解题后的反思,逐步培养学生养成解题 反思的习惯;通过变式练习,逐步培养学生的探索研究精神.
复习导入
• 1. 不等式的基本性质: • 2. 比较两数大小的一般方法:
自主学习
1.定理1 如果 当且仅当 时, 等号成立. ab
a, b R , 那么
a b . 2ab
2 2
证明:
自主学习
2. 定理2(基本不等式):如果a>0,b>0 那么 当且仅当 时, 等号成立.
讨论: 1. 比较定理1与定理2, 有哪些相同和不同?
1 1-������ ������+������ 本不等式可得三个“2”连乘, -1= = ������ ������ ������
≥
2 ������������ ,可由此入手. ������
(2)因为 a+b+c=1,所以
������+������+������ ������+������+������ = -1 -1 ������ ������ ������ ������ ������ ������ ������ ������ = + + + . ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ 又 + ≥2 · , + ≥2 ������ ������ ������ ������ ������ ������
高中数学 第一章 不等式的基本性质和证明的基本方法 1.2 基本不等式(二)导学案 新人教B版选修4
1.2 基本不等式(二)1.理解定理3、定理4,会用两个定理解决函数的最值或值域问题.2.能运用三个正数的平均值不等式解决简单的实际问题.自学导引1.当a 、b 、c ∈R +时,a +b +c3≥3abc 当且仅当a =b =c 时,等号成立,称a +b +c 3为正数a ,b ,c 的算术平均值,3abc 为正数a 、b 、c 的几何平均值.2.如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n a 1=a 2=…=a n时,等号成立.基础自测1.设a 、b 、c ∈R ,下列各不等式中成立的是( ) A.a 2+b 2≥2|ab | B.a +b ≥2ab C.a 3+b 3+c 3≥3abcD.a +b +c3≥3abc解析 由a 2+b 2-2|ab |=|a |2-2|ab |+|b |2=(|a |-|b |)2≥0,故选A. 答案 A2.函数y =x 2·(1-5x )⎝ ⎛⎭⎪⎫0≤x ≤15的最大值为( )A.4675 B. 2657 C.4645D.2675解析 由y =x 2·(1-5x )=425·52x ·52x (1-5x ) ≤425⎝⎛⎭⎪⎪⎫52x +52x +1-5x 33=4675.答案 A3.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________. 解析 利用不等式求解.因为a +b +c =0,所以b +c =-a . 因为a 2+b 2+c 2=1,所以-a 2+1=b 2+c 2=(b +c )2-2bc =a 2-2bc , 所以2a 2-1=2bc ≤b 2+c 2=1-a 2, 所以3a 2≤2,所以a 2≤23,所以-63≤a ≤63,所以a max =63. 答案63知识点1 利用平均值不等式证明不等式 【例1】 已知a 、b 、c ∈R +,且a +b +c =1. 求证:1a +b +1b +c +1c +a ≥92. 证明 a +b +c =1⇒(a +b )+(b +c )+(c +a )=2, [(a +b )+(b +c )+(c +a )]⎝⎛⎭⎪⎫1a +b +1b +c +1c +a≥33(a +b )(b +c )(c +a )·313(a +b )(b +c )(c +a )=9⇒1a +b +1b +c +1c +a ≥92. ●反思感悟:认真观察要证的不等式的结构特点,灵活利用已知条件构造出能利用平均值不等式的式子.1.证明(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92(a ,b ,c ∈R +).证明 ∵(a +b )+(b +c )+(c +a ) ≥33(a +b )(b +c )(c +a ),1a +b +1b +c +1a +c ≥331a +b ·1b +c ·1a +c , ∴(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92.当且仅当a =b =c 时,等号成立.知识点2 利用平均值不等式求最值【例2】 若正数a ,b 满足ab =a +b +3,求ab 的取值范围. 解 方法一:∵a 、b ∈R +,且ab =a +b +3≥333ab , ∴a 3b 3≥81ab .又ab >0,∴a 2b 2≥81. ∴ab ≥9(当且仅当a =b 时,取等号). ∴ab 的取值范围是[9,+∞). 方法二:∵ab -3=a +b ≥2ab , ∴ab -2ab -3≥0且ab >0,∴ab ≥3,即ab ≥9(当且仅当a =b 时取等号) ∴ab 的取值范围是[9,+∞).●反思感悟:注意平均值不等式应用的条件是三个正数在求最值时,一定要求出等号成立时未知数的值,如果不存在使等号成立的未知数的值,则最值不存在.2.求y =sin x cos 2x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最大值.解 ∵x ∈⎝⎛⎭⎪⎫0,π2,∴sin x >0,y >0.y 2=sin 2x cos 4x =2sin 2x cos 2x cos 2x2≤12⎝ ⎛⎭⎪⎫2sin 2x +cos 2x +cos 2x 33=12⎝ ⎛⎭⎪⎫233=854=427.故y ≤427=239,此时,2sin 2x =cos 2x ,tan 2x =12, y 有最大值239. 知识点3 平均值不等式的实际应用【例3】 某产品今后四年的市场需求量依次构成数列{a n },n =1,2,3,4,并预测到年需求量第二年比第一年增长的百分率为P 1,第三年比第二年增长的百分率为P 2,第四年比第三年增长的百分率为P 3,且P 1+P 2+P 3=1.给出如下数据: ①27,②25,③13,④12,⑤23, 则其中可能成为这四年间市场需求量的年平均增长率的是( ) A.①② B.①③ C.②③④D.②⑤解析 设这四年间市场年需求量的年平均增长率为x (x >0),则a 4=a 1(1+x )3=a 1(1+P 1)(1+P 2)(1+P 3), ∴(1+x )3=(1+P 1)(1+P 2)(1+P 3), ∴(1+x )3=(1+P 1)(1+P 2)(1+P 3)≤⎝ ⎛⎭⎪⎫1+P 1+1+P 2+1+P 333=⎝ ⎛⎭⎪⎫433. ∴1+x ≤43,即x ≤13,对比所给数据,只有①③满足条件,故选B. 答案 B3.设长方体的体积为1 000 cm 3,则它的表面积的最小值为__________ cm 2. 解析 设长方体的长、宽、高分别为a 、b 、c , 则abc =1 000,且a >0,b >0,c >0.∴它的表面积S =2(ab +bc +ca )≥2×33(abc )2=600. 当且仅当a =b =c =10 (cm)时取“=”号. 所以它的表面积S 的最小值为600 cm 2. 答案 600课堂小结利用基本不等式解决实际问题的步骤:(1)理解题意,设出变量,一般设变量时,把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)回答实际问题.随堂演练1.设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A.q =r <p B.p =r <q C.q =r >pD.p =r >q解析 利用对数的运算性质和对数函数的单调性判断p ,q ,r 之间的相等与不等关系. 因为b >a >0,故a +b2<ab .又f (x )=ln x (x >0)为增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p .答案 B2.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A.最大值54B.最小值54C.最大值1D.最小值1解析 f (x )=(x -2)2+12(x -2)=12⎣⎢⎡⎦⎥⎤(x -2)+1(x -2),又∵x ≥52,x -2≥12,则f (x )≥12·2(x -2)1(x -2)=1.答案 D3.函数y =x 2·(1-3x )在⎝ ⎛⎭⎪⎫0,13上的最大值是________.解析 由y =x 2·(1-3x ) =49·32x ·32x (1-3x ) ≤49⎝⎛⎭⎪⎪⎫32x +32x +1-3x 33=3243.答案32434.用长为16 cm 的铁丝围成一个矩形,则可围成的矩形的最大面积是________ cm 2. 解析 设矩形长为x cm(0<x <8),则宽为(8-x ) cm , 面积S =x (8-x ).由于x >0,8-x >0,可得S ≤⎝ ⎛⎭⎪⎫x +8-x 22=16,当且仅当x =8-x 即x =4时,S max =16. 所以矩形的最大面积是16 cm 2. 答案 16基础达标1.若x >0,则4x +9x2的最小值是( )A.9B.3336C.13D.不存在解析 ∵x >0,∴4x +9x 2=2x ·2x ·9x2≥332x ·2x ·9x2=3336.答案 B2.设a ,b ,c ∈(0,+∞)且a +b +c =1,令x =⎝⎛⎭⎪⎫1a -1·⎝⎛⎭⎪⎫1b -1⎝⎛⎭⎪⎫1c-1,则x 的取值范围为( )A.⎣⎢⎡⎭⎪⎫0,18B.⎣⎢⎡⎭⎪⎫18,1 C.[1,8)D.[8,+∞)解析 ∵x =⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1=1-a a ·1-b b ·1-cc=(b +c )(c +a )(a +b )abc ≥2bc ·2ca ·2ab abc=8,当且仅当a =b =c 时取等号,∴x ≥8. 答案 D3.已知x ,y 都为正数,且1x +4y=1,则xy 有( )A.最小值16B.最大值16C.最小值116D.最大值116解析 ∵x ,y ∈(0,+∞)且1x +4y=1,∴1=1x +4y ≥24xy=4xy,∴xy ≥4,∴xy ≥16,当且仅当⎩⎪⎨⎪⎧1x =4y ,1x +4y =1,x ,y ∈(0,+∞),即⎩⎪⎨⎪⎧x =2,y =8,时取等号,此时(xy )min =16. 答案 A4.已知a ,b ,∈R *,则⎝ ⎛⎭⎪⎫a b +b c +c a ⎝ ⎛⎭⎪⎫b a +c b +a c ≥________.解析 ⎝ ⎛⎭⎪⎫a b +b c +c a ⎝ ⎛⎭⎪⎫b a +c b +a c =1+1+1+ac b 2+a 2bc +b 2ac +ab c 2+bc a 2+c 2ab ≥3+2ac b 2·b 2ac+2a 2bc ·bc a 2+2abc 2+c 2ab=9. 答案 95.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元). 解析 利用均值(基本)不等式解决问题.设该长方体容器的长为x m ,则宽为4xm.又设该容器的造价为y 元,则y =20×4+2⎝ ⎛⎭⎪⎫x +4x ×10,即y =80+20⎝⎛⎭⎪⎫x +4x(x >0).因为x +4x≥2x ·4x=4⎝⎛⎭⎪⎫当且仅当x =4x,即x =2时取“=”,所以y min =80+20×4=160(元).答案 1606.已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求at +12+bt 的最大值.解 (1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1. (2)-3t +12+t=34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t )max =4.综合提高7.已知圆柱的轴截面周长为6,体积为V ,则下列关系式总成立的是( ) A.V ≥π B.V ≤π C.V ≥18πD.V ≤18π解析 设圆柱的底面半径为r ,高为h , 则由题意得:4r +2h =6,即2r +h =3,于是有V =πr 2h ≤π·⎝ ⎛⎭⎪⎫r +r +h 33=π⎝ ⎛⎭⎪⎫333=π,当且仅当r =h 时取等号.答案 B8.如果圆柱的轴截面周长l 为定值,那么圆柱的体积最大值是( )A.⎝ ⎛⎭⎪⎫l 63π B.⎝ ⎛⎭⎪⎫l 33π C.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 解析 l =4r +2h ,即2r +h =l2,V =πr 2h ≤⎝ ⎛⎭⎪⎫r +r +h 33π=⎝ ⎛⎭⎪⎫l 63π.答案 A9.定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析 先利用新定义写出解析式,再利用重要不等式求最值.因为x ⊗y =x 2-y 2xy ,所以(2y )⊗x =4y 2-x 22xy .又x >0,y >0,故x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy=x 2+2y 22xy ≥22xy 2xy=2,当且仅当x =2y 时,等号成立. 答案210.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000 v v 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为______辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时. 解析 把所给l 值代入,分子分母同除以v ,构造基本不等式的形式求最值. (1)当l =6.05时,F =76 000v v 2+18v +121=76 000v +121v+18≤76 0002v ·121v+18=76 00022+18=1 900.当且仅当v =11米/秒时等号成立,此时车流量最大为1 900辆/时. (2)当l =5时,F =76 000v v 2+18v +100=76 000v +100v+18≤76 0002v ·100v+18=76 00020+18=2 000.当且仅当v =10米/秒时等号成立,此时车流量最大为2 000辆/时,比(1)中的最大车流量增加100辆/时.答案 (1)1 900 (2)10011.如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 在AM 上,D 在AN 上且对角线MN 过C 点,已知|AB |=3米,|AD |=2米.(1)要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内? (2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求最小面积;(3)若AN 的长度不少于6米,则当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小面积.解 设AN 的长为x 米(x >2),矩形AMPN 的面积为y . ∵|DN ||AN |=|DC ||AM |,∴|AM |=3x x -2, ∴S 矩形AMPN =|AN |·|AM |=3x 2x -2(x >2)(1)由S 矩形AMPN >32得3x2x -2>32,∵x >2,∴3x 2-32x +64>0,即(3x -8)(x -8)>0,∴2<x <83或x >8,即AN 的长的取值范围是⎝ ⎛⎭⎪⎫2,83∪(8,+∞). (2)令y =3x 2x -2=3(x -2)2+12(x -2)+12x -2=3(x -2)+12x -2+12≥23(x -2)·12x -2+12=24, 当且仅当3(x -2)=12x -2, 即x =4时,y =3x2x -2取得最小值,即S 矩形AMPN 取得最小值24平方米.(3)令g (x )=3x +12x(x ≥4),设x 1>x 2≥4,则g (x 1)-g (x 2)=3(x 1-x 2)+12(x 2-x 1)x 1x 2=3(x 1-x 2)(x 1x 2-4)x 1x 2,∵x 1>x 2≥4,∴x 1-x 2>0,x 1x 2>16,∴g (x 1)-g (x 2)>0,∴g (x )在[4,+∞)上递增. ∴y =3(x -2)+12x -2+12在[6,+∞)上递增. ∴当x =6时,y 取得最小值,即S 矩形AMPN 取得最小值27平方米.12.甲、乙两地相距s km ,汽车从甲地匀速行驶到乙地,速度不得超过c km/h ,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v (km/h)的平方成正比,比例常数为b ,固定部分为a 元.(1)把全程运输成本y 元表示为速度v (km/h)的函数,并指出函数的定义域; (2)为了使全程运输成本最少,汽车应以多大的速度行驶? 解 (1)因为汽车每小时的运输成本为bv 2+a (元), 全程时间为s v (小时),故y =s v(bv 2+a ),即y =s ⎝ ⎛⎭⎪⎫a v +bv ,v ∈(0,c ].(2)由于a v+bv ≥2ab ,当且仅当v = ab时取等号,故 ①若 ab ≤c ,则当v = ab时,y 取最小值. ②若a b >c ,则先证y =s ⎝ ⎛⎭⎪⎫a v +bv ,v ∈(0,c ]为单调减函数,事实上,当v 1、v 2∈(0,c ],且v 1<v 2,则y 1-y 2=s ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a v 1+bv 1-⎝ ⎛⎭⎪⎫a v 2+bv 2=s ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a v 1-a v 2+(bv 1-bv 2)=s (v 1-v 2)⎝ ⎛⎭⎪⎫b -a v 1v 2=sb (v 1-v 2)·v 1v 2-a bv 1v 2,∵v 1、v 2∈(0,c ],v 1<v 2, ∴v 1-v 2<0,v 1v 2>0,v 1<ab ,v 2< a b. 进而v 1v 2<a b,从而y 1-y 2>0.故y =s ⎝⎛⎭⎪⎫av+bv ,v ∈(0,c ]为单调减函数, 由此知当v =c 时,y 取得最小值.综上可知,若ab≤c,则当v=ab时,y取得最小值;若ab>c,则当v=c时,y取得最小值.。
高中数学第1章不等式的基本性质和证明的基本方法1.2基本不等式讲义新人教B版选修4_5
1.2 基本不等式学习目标:1.理解两个正数的基本不等式.2.了解三个正数和一般形式的基本不等式.3.会用基本不等式求一些函数的最值及实际应用题.教材整理 基本定理(重要不等式及基本不等式) 1.定理1设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.定理2如果a ,b 为正数,则a =b 时,等号成立.这个不等式我们称之为基本不等式或平均值不等式.同时,我们称a +b2为正数a ,b 的算术平均值,称ab 为正数a ,b 的几何平均值,该定理又可叙述为:两个正数的算术平均值大于或等于它们的几何平均值.3.定理3如果a ,b ,c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.4.定理4如果a 1,a 2,…,a n 为n 个正数,则a 1=a 2=…=a n时,等号成立.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<bC .a <ab <b <a +b 2D.ab <a <a +b2<b[解析] ∵0<a <b ,∴a <a +b2<b ,A ,C 错误;ab -a =a (b -a )>0,即ab >a ,故选B.[答案] B【例1】 已知a ,b ,c 都是正数,求证:b +c +a≥a +b +c .[精彩点拨] 观察不等号两边差异,利用基本不等式来构造关系. [自主解答] ∵a >0,b >0,c >0,∴a 2b +b ≥2a 2b·b =2a , 同理:b 2c +c ≥2b ,c 2a+a ≥2c .三式相加得:a 2b +b 2c +c 2a+(b +c +a )≥2(a +b +c ), ∴a 2b +b 2c +c 2a≥a +b +c .1.首先根据不等式两端的结构特点进行恒等变形,或配凑使之具备基本不等式的结构和条件,然后合理地选择基本不等式或其变形进行证明.2.当且仅当a =b =c 时,上述不等式中“等号”成立,若三个式子中有一个“=”号取不到,则三式相加所得的式子中“=”号取不到.1.(2019·全国卷Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明:(1)1a +1b +1c≤a 2+b2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24.[证明] (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1, 故有a 2+b 2+c 2≥ab +bc +ca =ab +bc +caabc=1a +1b +1c.所以1a +1b +1c≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有 (a +b )3+(b +c )3+(c +a )3≥33(a +b )3(b +c )3(a +c )3=3(a +b )(b +c )(a +c )≥3×(2ab )×(2bc )×(2ac )=24, 所以(a +b )3+(b +c )3+(c +a )3≥24.【例2】 (1)已知x ,y ∈R +,且x +2y =1,求x +y的最小值;(2)已知x >0,y >0,且5x +7y =20,求xy 的最大值.[精彩点拨] 根据题设条件,合理变形,创造能用基本不等式的条件. [自主解答] (1)因为x +2y =1, 所以1x +1y =x +2y x +x +2y y =3+2y x +x y≥3+22y x ·xy=3+22,当且仅当2y x=xy,x +2y =1,即x =2-1,y =1-22时,等号成立. 所以当x =2-1,y =1-22时,1x +1y取最小值3+2 2. (2)xy =135(5x ·7y )≤135⎝ ⎛⎭⎪⎫5x +7y 22=135⎝ ⎛⎭⎪⎫2022=207, 当且仅当5x =7y =10,即x =2,y =107时,等号成立,此时xy 取最大值207.在求最值时,除了注意“一正、二定、三相等”之外,还要掌握配项、凑系数等变形技巧,有时为了便于应用公式,还用换元法,多用于分母中有根式的情况.2.若将本例(1)的条件改为“已知x >0,y >0,且1x +9y=1”,试求x +y 的最小值.[解] ∵x >0,y >0,且1x +9y=1,∴x +y =(x +y )⎝⎛⎭⎪⎫1x +9y=y x+9xy+10≥2y x ·9xy+10=16. 当且仅当y x=9xy,即y =3x 时等号成立. 又1x +9y=1,∴当x =4,y =12时,(x +y )min =16.万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,该产品的年销售量只能是1万件.已知生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为年平均每件产品成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将该产品的年利润y 万元表示为年促销费用m 万元的函数;(2)该厂家的年促销费用投入为多少万元时,厂家的年利润最大?最大年利润是多少万元?[精彩点拨] (1)可先通过m =0时,x =1求出常数k ,再根据条件列出y 关于m 的函数;(2)在(1)的函数关系式下,利用基本不等式求最值.[自主解答] (1)依题意得m =0时,x =1,代入x =3-km +1,得k =2,即x =3-2m +1. 年成本为8+16x =8+16⎝⎛⎭⎪⎫3-2m +1(万元), 所以y =(1.5-1)⎣⎢⎡⎦⎥⎤8+16⎝⎛⎭⎪⎫3-2m +1-m =28-m -16m +1(m ≥0). (2)由(1)得y =29-⎣⎢⎡⎦⎥⎤(m +1)+16m +1≤ 29-2(m +1)·16m +1=21. 当且仅当m +1=16m +1,即m =3时,厂家的年利润最大,为21万元.设出变量――→建立数学模型――→定义域利用均值不等式求最值 ――――→“=”成立的条件结论3.某工厂建一底面为矩形(如图),面积为162 m 2,且深为1 m 的无盖长方体的三级污水池,由于受地形限制,底面的长和宽都不能超过16 m ,如果池外围四壁建造单价为400 元/m 2,中间两条隔墙建造单价为248 元/m 2,池底建造单价为80 元/m 2,试设计污水池的长和宽,使总造价最低.[解] 设污水池的宽为x m ,则长为162xm ,则总造价f (x )=400×⎝⎛⎭⎪⎫2x +2×162x+248×2x +80×162=1 296x +1 296×100x+12 960=1 296⎝ ⎛⎭⎪⎫x +100x +12 960.由限制条件,知⎩⎪⎨⎪⎧0<x ≤16,0<162x ≤16,得818≤x ≤16. 设g (x )=x +100x ⎝ ⎛⎭⎪⎫818≤x ≤16, 因为g (x )在⎣⎢⎡⎦⎥⎤818,16上是增函数, 所以当x =818时⎝ ⎛⎭⎪⎫此时162x =16,g (x )有最小值,即f (x )有最小值,f (x )min =1 296×⎝ ⎛⎭⎪⎫818+80081+12 960=38 882(元).所以当长为16 m ,宽为818 m 时,总造价最低,为38 882元.1.在基本不等式a +b2≥ab 中,为什么要求a >0,b >0?[提示] 对于不等式a +b2≥ab ,如果a ,b 中有两个或一个为0,虽然不等式仍成立,但是研究的意义不大,当a ,b 都为负数时,不等式不成立;当a ,b 中有一个为负数,另一个为正数,不等式无意义.2.你能给出基本不等式的几何解释吗?[提示] 如图,以a +b 为直径的圆中,DC =ab ,且DC ⊥AB . 因为CD 为圆的半弦,OD 为圆的半径,长为a +b2,根据半弦长不大于半径,得不等式ab≤a +b2.显然,上述不等式当且仅当点C 与圆心重合,即当a =b 时,等号成立.因此,基本不等式的几何意义是:圆的半弦长不大于半径;或直角三角形斜边的中线不小于斜边上的高.3.利用基本不等式,怎样求函数的最大值或最小值?[提示] 利用算术平均数与几何平均数定理(即基本不等式)可以求函数的最大值、最小值.(1)已知x ,y ∈(0,+∞),如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P . (2)已知x ,y ∈(0,+∞),如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14S 2.以上两条可简记作:和一定,相等时,积最大;积一定,相等时,和最小.条件满足:“一正、二定、三相等”.【例4】 求下列函数的值域.(1)y =x 2+12x ;(2)y =2x x 2+1.[精彩点拨] 把函数转化为y =ax +bx或y =1ax +b x的形式,再利用基本不等式求解.[自主解答] (1)y =x 2+12x =12⎝ ⎛⎭⎪⎫x +1x ,当x >0时,x +1x ≥2,∴y ≥1;当x <0时,-x >0,-x +1-x ≥2,x +1x ≤-2,∴y ≤-1,综上函数y =x 2+12x的值域为{y |y ≤-1或y ≥1}.(2)当x >0时,y =2x x 2+1=2x +1x. 因为x +1x ≥2,所以0<1x +1x≤12,所以0<y ≤1,当且仅当x =1时,等号成立; 当x <0时,x +1x≤-2,所以0>1x +1x≥-12, 所以-1≤y <0,当且仅当x =-1时,等号成立; 当x =0时,y =0. 综上,函数y =2xx 2+1的值域为{y |-1≤y ≤1}.形如y =cx 2+ex +f ax +b 型的函数,一般可先通过配凑或变量替换等变形为y =t +Pt+C (P ,C为常数)型函数,再利用基本不等式求最值,但要注意变量t 的取值范围.4.求函数y =x 2+8x -1(x >1)的最小值.[解] 因为x >1,所以x -1>0.所以y =x 2+8x -1=(x -1)2+2x +7x -1=(x -1)2+2(x -1)+9x -1=(x -1)+9x -1+2≥2(x -1)·9x -1+2=8, 当且仅当x -1=9x -1, 即x =4时,等号成立. 所以当x =4时,y min =8.1.函数y =1x -3+x (x >3)的最小值是( ) A .5 B .4 C .3D .2[解析] 原式变形为y =1x -3+x -3+3. ∵x >3,∴x -3>0,∴1x -3>0, ∴y ≥2(x -3)·1x -3+3=5, 当且仅当x -3=1x -3,即x =4时等号成立. [答案] A2.下列函数中最小值为4的是( ) A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =3x+4×3-xD .y =lg x +4log x 10[解析] A 项,当x <0时,y =x +4x<0,故A 项错误;B 项,当0<x <π时,sin x >0,∴y =sin x +4sin x ≥2sin x ·4sin x =4,当且仅当sin x =4sin x,即sin x =2时取等号,但sin x ≤1,B 项错误;C 项,由指数函数的性质可得3x>0,所以y =3x+4·3-x≥24=4,当且仅当3x=2,即x =log 32时取得最小值4,故C 项正确;D 项,当0<x <1时,lg x <0,log x 10<0,所以y =lg x +4log x 10<0,故D 项错误.[答案] C3.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C .1a +1b>2abD .b a +ab≥2[解析] A 选项中,当a =b 时,a 2+b 2=2ab ,则排除A ;当a <0,b <0时,a +b <0<2ab ,1a +1b<0<2ab,则排除B ,C 选项;D 选项中,由b a >0,a b >0,得b a +a b≥2b a ·ab=2,当且仅当a =b 时取“=”,所以选D.[答案] D4.不等式b a +a b>2成立的充要条件是________. [解析] 由b a +a b >2,知b a>0,即ab >0, 又b a ≠a b,∴a ≠b .因此b a +a b>2的充要条件是ab >0且a ≠b . [答案] ab >0且a ≠b5.(2019·全国卷Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.[解] (1)由于[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)]≤3[(x-1)2+(y +1)2+(z +1)2],故由已知得(x -1)2+(y +1)2+(z +1)2≥43,当且仅当x =53,y =-13,z =-13时等号成立.所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)证明:由于[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)(z -a )+(z -a )(x -2)] ≤3[(x -2)2+(y -1)2+(z -a )2],故由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.因此(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.。
数学人教B版选修4-5学案:课堂导学1.2 基本不等式含解析
课堂导学三点剖析一,利用基本不等式进行证明【例1】 若a ,b ,c 是互不相等的实数,求证:a 2+b 2+c 2〉ab +bc +ca 。
思路分析:所证不等式是关于a ,b ,c 的对称式,注意到a 2+b 2>2ab ,然后轮换相加即可.证明:∵a ,b ,c 是互不相等的实数, ∴a 2+b 2>2ab ,b 2+c 2〉2bc ,c 2+a 2>2ca .将上面三个同向不等式相加得2(a 2+b 2+c 2)〉2(ab +bc +ca ),即a 2+b 2+c 2〉ab +bc +ca . 温馨提示分段应用基本不等式,然后整体相加(乘)得结论,是证明对称不等式的常用技巧。
在证明不等式时,有时多次运用这个结论来证明较复杂的不等式。
二,利用基本不等式求最值【例2】 (1)已知x <45,求y =4x -1+541-x 的最大值; (2)已知x >0,y >0,且x +2y =1,求x1+y1的最小值.思路分析:根据题设条件,合理变形,创造能用均值定理的条件,求最值。
解:(1)∵x 〈45,∴4x —5〈0,故5-4x >0。
∴y =4x —1+541-x =—(5—4x +x451-)+4。
∵5-4x +x 451-≥xx 451)45(2--=2,∴y ≤-2+4=2。
当且仅当5—4x =x451-,即x =1或x =23(舍)时,等号成立,∴当x =1时,y 取最大值为2.(2)∵x +2y =1,∴x1+y1=xy x 2++y y x 2+=3+x y 2+yx ≥3+2yx x y ⋅2=3+22。
当且仅当xy 2=yx ,又x +2y =1,即x =2—1,y =1—22时等号成立.∴当x =2—1,y =1—22时, x1+y1取最小值3+22.温馨提示用均值定理求最值时,为了满足和或积为定值的条件,常采用配,凑的方法变换,另外变量为正和等号成立的条件也要特别注意. 三,利用基本不等式解决综合问题【例3】 如图,为处理含某种杂质的污水,要制造一底宽为2 m 的无盖长方体沉淀箱污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长度为a m ,高度为b m,已知流出的水中,设杂质的质量分数与a ,b 的乘积ab 成反比,现有制箱材料60 m 2,问a ,b 各为多少时,经沉淀后流出的水中,该杂质的质量分数最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学 1.2基本不等式导学案新人教版选修4-5
【学习目标】1.了解两个正数的算术平均数和几何平均数的定义;
2.使学生理解并掌握基本不等式;
3.利用基本不等式及其变形证明不等式或求最值.
【重点难点】均值不等式的应用,“等号”是否取到的问题. 一、自主学习
要点1:定理1:如果R b a ∈,,那么 ,当且仅当 时,等号成立.要点2:(基本不等式)如果0,>b a ,那么ab b a ≥+2
,当且仅当 时,等号成立. 注:应用定理2的条件:一正、二定、三相等.
要点3:如果b a ,都是正数,我们就称 为b a ,的算术平均, 为b a ,的几何平均.于是,基本不等式可以表述为: 要点4.已知b a ab b a ++,,22中一个为定值,其他两个的最值的求法.
二、合作,探究,展示,点评
题型一.利用基本不等式证明不等式:
例1.2log log ≥+a b b a 成立的必要条件是( )
A.1,1>>b a ,
B.10,0<<>b a
C.()()011>--b a ,
D.以上都不正确
思考题1:已知+∈R c b a ,,,且1=++c b a .求证:8111111≥⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫
⎝⎛-c b a .
题型二.利用基本不等式求函数最值:
例2.设0>x ,则函数x x y 133-
-=的最大值是 .
思考题2:已知2lg lg =+y x ,则
y
x 11+的最小值为 .
题型三.基本不等式的实际应用:
例3.某公司租地建仓库,每月土地占用费1y 与仓库到车站的距离成反比,而每月库存货物的运费2y 与仓库到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用1y 和2y 分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站多远处?
思考题3:在对角线有相同长度的所有矩形中,怎样的矩形周长最长,怎样的矩形面积最大?
【课堂小结与反思】:
《基本不等式》课时作业
1.已知,0>>b a 则下列不等式成立的是( )
ab b a b a A >+>
>2. b ab b a a B >>+>2
. ab b b a a C >>+>2. b b a ab a D >+>>2
. 2.设,10<<<b a 则22,2,b a ab b a ++,ab 2中最大的是 。
3.若2=+b a ,则b a 33+的最小值为 。
4. 下列命题中正确的是( )
A.函数2
3
22++=x x y 的最小值为2,
B.函数x
x y 1+=的最小值为2, C.函数()0432>--=x x
x y 的最小值为342-, D. 函数()0432>--=x x
x y 的最大值为342- 5已知,1>>b a 若b a P lg lg =,()2
lg ,lg lg 21b a R b a Q +=+=,则R Q P 、、的大小顺序 。
6.若14,=+∈+y x R y x 且,则xy 的最大值为 。
7.若,25≥x 则()4
2542-+-=x x x x f 有( ) A.最大值45, B.最小值4
5, C.最大值1, D.最小值1。
8求函数()()x x x f 21-=
的最大值。
9.设,230<
<x 求函数()x x y 234-=的最大值;
10.当54<x 时,求函数5
4124-+
-=x x y 的最大值。
11.若对任意a x x x x ≤++>13,
02恒成立,则a 的取值范围是 。
12.⑴求证da cd bc ab d c b a +++≥+++2222,
⑵设c b a ,,是不全相等的正数,求证:
①()()()abc a c c b b a 8>+++, ②ca bc ab c b a ++>++.
13.将一矩形花坛ABCD 扩建成一个更大的矩形花园AMPN ,要求B 在AM 上,
D 在AN 上,且对角线MN 过C 点,已知m AD m AB 2,3==.
⑴要使矩形AMPN 的面积大于232m ,则AN 的长应在什么范围内?
⑵当AN 的长度是多少时,矩形AMPN 的面积最小?并求最小面积?
⑶若AN 的长度不小于m 6,则当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小面积.。