扇形的半径等于圆锥的母线长

合集下载

2中考复习:圆弧,圆锥,扇形相关计算

2中考复习:圆弧,圆锥,扇形相关计算

中考复习:圆弧,圆锥,扇形相关计算一.基本公式:1.弧长的计算:半径为R,圆心角为n°的弧长公式为:180n Rl π= 2扇形的面积:①如果扇形的半径为R,圆心角为n ︒,那么扇形面积的计算公式为:2360n R S π=扇形. ②如果扇形所对的弧长为l ,扇形的半径为R ,那么扇形面积的计算公式为:12S lR =扇形。

3。

圆锥的侧面积和全面积①沿着圆锥的母线,把一个圆锥的侧面展开得到一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线长, 如图24。

4—3所示,若圆锥的母线长为l ,底面圆的半径为r , 那么这个扇形的半径为l ,扇形的弧长为2r π, 因此圆锥的侧面积S =侧122r l rl ππ⨯⋅=. ②圆锥的侧面积与底面积之和称为圆锥的全面积:所以()2S S S .rl r r l r πππ=+=+=+侧全底4。

多边形的有关计算:设正多边形的边数为n ,边长为n a ,半径为n R ,边心距为n r ,中心角为α,周长为n P ,面积为n S ,则求:中心角00360180;2sin n a R n n α==边长;边心距nR r n 0180cos =,周长n n na P =,面积n n n P r S ⋅=21二.常见习题分类: (1)。

基本公式的应用和推广方法:一般情况下,先看问题,列出相关公式。

然后将已知条件中的量带入公式中,未知量即可求出。

例如弧长公式,l ,R,n 三个未知量,知道其中两个,另一个即可求出. 例题:①半径为1的圆的周长等于060的圆心角所对的弧长,则该弧所在圆的半径是__________。

②弧长为24,cm π半径为180cm 的弧所对的圆心角的度数为__________。

图③如果一条弧的弧长等于l ,它的圆心角等于0,n 那么它的半径R =______,如果圆心角增加01,那么它的弧长增加_________。

④秋千拉绳长3米,静止时踩板离地面0.5米,其小朋友荡该秋千时,秋千在最高处踩板离地面2米(左右对称),则该秋千所汤过的圆弧长为( ) A 。

2021年广西南宁市数学中考真题含答案解析及答案(word解析版)

2021年广西南宁市数学中考真题含答案解析及答案(word解析版)

广西南宁市中考2021年数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请考上用2B铅笔在答题卡上将选定答案标号涂黑.1.(3分)(2013•南宁)在﹣2,1,5,0这四个数中,最大的数是( ) A.﹣3B.1C.5D.0考点:有理数大小比较.分析:根据有理数大小比较的法则:①正数都大于0。

②负数都小于0。

③正数大于一切负数进行比较即可.解答:解:在﹣2,1,5,0这四个数中,大小顺序为:﹣2<0<1<5,所以最大的数是5.故选C.点评:本题主要考查了有理数的大小的比较,解题的关键利用熟练掌握有理数的大小比较法则,属于基础题.2.(3分)(2013•南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是( ) A.B.C.D.考点:点、线、面、体.分析:根据半圆绕它的直径旋转一周形成球即可得出答案.解答:解:半圆绕它的直径旋转一周形成球体.故选:A.点评:本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.3.(3分)(2013•南宁)2021年6月11日,神舟十号飞船发射成功,神舟十号飞船身高9米,重约8吨,飞行速度约每秒7900米,将数7900用科学记数法表示,表示正确的是( ) A.0.79×104B.7.9×104C.7.9×103D.0.79×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数。

当原数的绝对值<1时,n是负数.解答:解:将7900用科学记数法表示为:7.9×103.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是( ) A.三角形B.线段C.矩形D.正方形考点:平行投影.分析:根据平行投影的性质分别分析得出即可即可.解答:解:将矩形木框立起与地面垂直放置时,形成的影子为线段。

华东师大初中数学中考总复习:圆综合复习--知识讲解(基础)

华东师大初中数学中考总复习:圆综合复习--知识讲解(基础)

中考总复习:圆综合复习—知识讲解(基础)【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点诠释:圆心确定圆的位置,半径确定圆的大小.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB ,BC ,AC 都是弦.②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧.⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧.⑦同心圆:圆心相同,半径不相等的圆叫做同心圆.⑧弓形:由弦及其所对的弧组成的图形叫做弓形.⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角.考点二、圆的有关性质1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合.2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r要点诠释:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点诠释:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点诠释:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r 1-r 2”时,要特别注意,r 1>r 2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°. 要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n n n n n S a r n P r ==.考点五、圆中的计算问题1.弧长公式:180n R l π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇. 3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和.要点诠释:在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.考点六、求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.【典型例题】类型一、圆的有关概念及性质1. (2015•石景山区一模)如图,A ,B ,E 为⊙0上的点,⊙O 的半径OC ⊥AB 于点D ,若∠CEB=30°,OD=1,则AB 的长为( )A .B .4C .2D .6【思路点拨】 连接OB ,由垂径定理可知,AB=2BD ,由圆周角定理可得,∠COB=60°,在Rt △DOB 中,OD=1,则BD=1×tan60°=,故AB=2.【答案】C ;【解析】连接OB ,∵AB 是⊙O 的一条弦,OC ⊥AB ,∴AD=BD ,即AB=2BD ,∵∠CEB=30°,∴∠COB=60°,∵OD=1, ∴BD=1×tan60°=,∴AB=2,故选C .【总结升华】弦、弦心距,则应连接半径,构造基本的直角三角形是垂径定理应用的主要方法.举一反三:【变式】如图,⊙O 的直径CD=5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OD=3:5.则AB 的长是( )A 、2cmB 、3cmC 、4cmD 、221cm【答案】 解:连接OA ,∵CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,∴AB=2AM ,∵CD=5cm ,∴OD=OA=12CD=12×5=52cm , ∵OM :OD=3:5,∴OM=35OD=×=, ∴在Rt △AOM 中,AM =22OA OM -=2253()()22-=2,∴AB=2AM=2×2=4cm.故选C .类型二、与圆有关的位置关系2.如图所示,已知AB 为⊙O 的直径,直线BC 与⊙O 相切于点B ,过A 作AD ∥OC 交⊙O 于点D ,连接CD .(1)求证:CD 是⊙O 的切线;(2)若AD =2,直径AB =6,求线段BC 的长.【思路点拨】要证明DC 是⊙O 的切线,因为点D 在⊙O 上,所以连接交点与圆心证垂直即可.【答案与解析】(1)证明:如图(2),连接OD .∵ AD ∥OC ,∴ ∠1=∠3,∠2=∠A ,∴ OA =OD ,∴ ∠3=∠A ,∴ ∠1=∠2.∵ OD =OB ,OC =OC .∴ △COD ≌△COB ,∴ ∠CDO =∠CBO =90°,∴ CD 是⊙O 的切线.(2)解:连接BD ,∵ AB 是⊙O 的直径,∴ ∠ADB =90°.在△DAB 和△BOC 中,∵ ∠ADB =∠OBC ,∠A =∠2,∴ △DAB ∽△BOC ,∴AD BD OB BC =, ∴ OB BD BC AD =. 在Rt △DAB 中,由勾股定理得22226242BD AB AD =-=-=.∴ 342622BC ⨯==.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线.【答案与解析】证法1:连接OE 、DE(如图(1)).∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.∵ G 是AD 的中点,∴ EG =12AD =DG . ∴ ∠1=∠2.∵ OE =OD ,∴ ∠3=∠4.∴ ∠1+∠3=∠2+∠4,即∠OEG =∠ODG =90°.∴ GE 是⊙O 的切线.证法2:连接OE 、ED(如图(2)).在△ADC 中,∠ADC =90°,∴ ∠A+∠ACD =90°.又∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.在△AED 中,∠AED =90°,G 是AD 中点,∴ AG =GE =DG ,∴ ∠A =∠AEG .又∵ OE =OC ,∴ ∠OEC =∠ACD .又∵ ∠A+∠ACD =90°,∴ ∠AEG+∠OEC =90°.∴ ∠OEG =90°,∴ OE ⊥EG .∴ GE 是⊙O 的切线.类型三、与圆有关的计算3.在一节数学实践活动课上,老师拿出三个边长都为5cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.【思路点拨】(1)(Ⅰ)连接正方形的对角线BD,利用勾股定理求出BD的长即可;(Ⅱ)利用勾股定理求出小正方形对角线的长即可;(Ⅲ)找出过A、B、C三点的圆的圆心及半径,利用勾股定理求解即可;(2)连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,再根据勾股定理解答.【答案与解析】解:(1)(Ⅰ)如图连接BD,∵ AD=3×5=15cm,AB=5cm,∴ BD==cm;(Ⅱ)如图所示,∵三个正方形的边长均为5,∴ A、B、C三点在以O为圆心,以OA为半径的圆上,∴ OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)如图所示,连接OA,OB,∵ CE⊥AB,AC=BC,∴ CE是过A、B、C三点的圆的直径,∵ OA=OB=OD,∴ O为圆心,∴⊙O的半径为OA,OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为5×2=10cm;(2)如图④为盖住三个正方形时直径最小的放置方法,连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,则有:,解得:,则ON=,∴直径为.【总结升华】此题比较复杂,解答此题的关键是找出以各边顶点为顶点的圆的圆心及半径,再根据勾股定理解答.举一反三:【变式】如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).【答案】 解:(1)图1:∵点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动,∴∠BAM=∠CBN ,又∵∠APN=∠BPM ,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:图2中,∠APN=90°;图3中∠APN=108°.(2)由(1)可知,∠APN=所在多边形的内角度数,故在图n 中,.4.如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【思路点拨】观察图形,可以适当进行“割”与“补”,使阴影面积转化为扇形面积.【答案】256π; 【解析】连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD. 答案:256π. 【总结升华】用等面积替换法将不规则的图形转化为简单的规则图形是解本类题的技巧.类型四、与圆有关的综合应用5.(2014•黄陂区模拟)如图,在△ABC中,以AC为直径的⊙O交BC于D,过C作⊙O的切线,交AB的延长线于P,∠PCB=∠BAC.(1)求证:AB=AC;(2)若sin∠BAC=35,求tan∠PCB的值.【思路点拨】(1)连接AD,根据圆周角定理求得∠ADC=90°,根据弦切角定理求得∠PCB=∠CAD,进而求得∠CAD=∠BAD,然后根据ASA证得△ADC≌△ADB,即可证得结论.(2)作BE⊥AC于E,得出BE∥PC,求得∠PCB=∠CBE,根据已知条件得出=,从而求得=,根据AB=AC,得出tan∠CBE===,就可求得tan∠PCB=.【答案与解析】解:(1)连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵PC是⊙O的切线,∴∠PCB=∠CAD,∵∠PCB=∠BAC,∴∠CAD=∠BAD,在△ADC和△ADB中,,∴△ADC≌△ADB(ASA),∴AB=AC.(2)作BE⊥AC于E,∵PC是⊙O的切线,∴AC⊥PC,∴BE ∥PC ,∴∠PCB=∠CBE ,∵sin ∠BAC==, ∴=, ∵AB=AC ,∴tan ∠CBE===,∴tan ∠PCB=.【总结升华】本题考查了圆周角定理,切线的性质,三角形全等的判定和性质,直角三角函数等,作出辅助线构建直角三角形是解题的关键.举一反三:【高清课堂:圆的综合复习 例2】【变式】已知:如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC=30°,CD 是⊙O 的切线,ED ⊥AB 于F .(1)判断△DCE 的形状并说明理由;(2)设⊙O 的半径为1,且213-=OF ,求证△DCE ≌△OCB .【答案】(1)解:∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD=90°,∴∠DCE=180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED=90°-∠BAC=30°.故△CDE 为等腰三角形.(2)证明:在△ABC 中,∵AB=2,AC=AO=1,∴BC=2212-=3.OF=213-,∴AF=AO+OF=213+.又∵∠AEF=30°,∴AE=2AF=3+1.∴CE=AE-AC=3=BC .而∠OCB=∠ACB-∠ACO=90°-60°=30°=∠ABC,故△CDE ≌△COB.6.如图,已知⊙O 的直径AB =2,直线m 与⊙ O 相切于点A ,P 为⊙ O 上一动点(与点A 、点B 不重合),PO 的延长线与⊙ O 相交于点C ,过点C 的切线与直线m 相交于点D .(1)求证:△APC ∽△COD .(2)设AP =x ,OD =y ,试用含x 的代数式表示y .(3)试探索x 为何值时, △ACD 是一个等边三角形.【思路点拨】(1)可根据“有两个角对应相等的两个三角形相似”来说明 △APC ∽△COD ; (2)根据相似三角形的对应边成比例,找出x 与y 的关系;(3)若△ACD 是一个等边三角形,逆推求得x 的值.【答案与解析】解 (1)∵PC 是⊙O 的直径,CD 是⊙O 的切线, ∴∠PAC =∠OCD =90°.由△DOA ≌△DOC ,得到∠DOA =∠DOC , ∴∠APC =∠COD , ∴△APC∽△COD.(2)由△APC∽△COD,得AP OC PC OD = , ∴y x 12= 则 xy 2= (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=,于是2OD OC =,可得2y =,从而1=x ,故当1x =时,ACD △是一个等边三角形.【总结升华】本例是一道动态几何题.(1)考查了相似三角形的判定,证三角形相似有:两个角分别对应相等的两个三角形相似;两条边分别对应成比例,且夹角相等的两个三角形相似;三条边分别对应成比例的两个三角形相似;(2)考查了相似三角形的性质.利用第一问的结论,得出对应边成比例,找出y 与x 间的关系.(3)动点问题探求条件.一般运用结论逆推的方法找出结论成立的条件.本题应从ACD △是一个等边三角形出发,逆推6030ADC ODC ∠=∠=,,于是2OD OC =,可得2y =,从而1=x , 故当1x =时,ACD △是一个等边三角形.举一反三:【高清课堂:圆的综合复习 例1】【变式】如图,MN 是⊙O 的直径,2MN =,点A 在⊙O 上,30AMN =∠,B 为弧AN 的中点,P 是直径MN 上一动点,则PA PB +的最小值为( ) A.22 B.2 C.1 D.2【答案】选B ;解:过B 作BB ′⊥MN 交⊙O 于B ′,连接AB ′交MN 于P ,此时PA+PB =AB ′最小.连AO 并延长交⊙O 于C ,连接CB ′,在Rt △ACB ′中,AC =2,∠C =190452⨯=°°, ∴ 2sin 45222AB AC '==⨯=°.。

(常考题)人教版初中数学九年级数学上册第四单元《圆》检测(答案解析)(2)

(常考题)人教版初中数学九年级数学上册第四单元《圆》检测(答案解析)(2)

一、选择题1.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A .3B .332C .3D .332+ 2.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120°3.如图,分别以AB,AC 为直径的两个半圆,其中AC 是半圆O 的一条弦,E 是弧AEC 中点,D 是半圆ADC 中点.若DE=2,AB=12,且AC˃6,则AC 长为( )A .6+2B .8+2C . 6+22D .8+22 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80π5.如图,在O 中,AB ,AC 为互相垂直且相等的两条弦,⊥OD AB ,OE AC ⊥,垂足分别为D ,E ,若4AB =,则O 的半径是( )A .22B .2C .3D .42 6.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139°7.如图,大半圆中有n 个小半圆,若大半圆弧长为1L ,n 个小半圆弧长的和为2L ,大半圆的弦AB ,BC ,CD 的长度和为3L .则( )A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>8.如图,半径为1cm 的P 在边长为9πcm ,12πcm ,15πcm 的三角形外沿三遍滚动(没有滑动)一周,则圆P 所扫过的面积为( )cm 2A .73πB .75πC .76πD .77π9.如图,⊙O 的直径2AB AM =,和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C ,则四边形ABCD 的面积S 的最小值为( )A .1B .2C .2D .410.如图,C 、D 是以AB 为直径的O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持长度不变,M 是弦CD 的中点,过点C 作CP AB ⊥于点P .若3CD =,5AB =,PM x =,则x 的最大值是( )A .4B .5C .2.5D .23 11.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .6 12.在扇形中,∠AOB =90°,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ( )A .1cmB .2cmC .3nD .4cm二、填空题13.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________.14.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.15.如图,已知O 是以数轴上原点O 为圆心,半径为2的圆,45AOB ∠=︒,点P 在x正半轴上运动,若过点P 与OA 平行的直线与O 有公共点,设P 点对应的数为x ,则x 的取值范围是______.16.如图,在扇形AOB 中90AOB ∠=︒,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为________.17.如图,若∠BOD =140°,则∠BCD=___________ .18.小明用一张扇形纸片做一个圆锥的侧面,已知该扇形的半径是10cm ,弧长是12πcm 2,那么这个圆锥的高是________cm .参考答案19.如图,ABC 是等边三角形,180BAD BCD ∠+∠=︒,8BD =,2CD =,则AD =________.20.如图,已知空间站A 与星球B 距离为a ,信号飞船C 在星球B 附近沿圆形轨道行驶,B ,C 之间的距离为b .数据S 表示飞船C 与空间站A 的实时距离,那么S 的最小值________.三、解答题21.如图,AB 是O 的直径,CD 是O 的一条弦,且CD AB ⊥于点E .(1)若50A ∠=︒,求OCE ∠的度数;(2)若42CD =,2AE =,求O 的半径.22.正方形ABCD 的四个顶点都在⊙O 上,E 是⊙O 上的一点.(1)如图1,若点E 在AB 上,F 是DE 上的一点,DF =BE .①求证:ADF ≌ABE ;②求证:DE ﹣BE =2AE .(2)如图2,若点E 在AD 上,直接写出线段DE 、BE 、AE 之间的等量关系.23.如图,已知,90Rt ABC ACB ∆∠=︒.(1)请在图中用无刻度的直尺和圆规作一个圆,使得圆心О在边AC 上,且与边,AB BC 所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,若9,12AC BC ==,求O 的半径.24.如图,AB 是圆的直径,且AD//OC ,求证:CD BC =.25.在学习《圆》这一章时,老师给同学们布置了一道尺规作图题.尺规作图:过圆外一点作圆的切线.已知:P 为O 外一点.求作:经过点P 的O 的切线. 小敏的作法如下: ①连接OP ,作线段OP 的垂直平分线MN 交OP 于点C ;②以点C 为圆心,CO 的长为半径作圆,交O 于,A B 两点; ③作直线,PA PB .所以直线,PA PB 就是所求作的切线.根据小敏设计的尺规作图过程.(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:由作图可知点,A B 在以C 为圆心,CO 为半径的圆上,OAP OBP ∴∠=∠= ︒.( )(填推理的依据),PA OA PB OB ∴⊥⊥,OA OB 为O 的半径∴直线,PA PB 是O 的切线,( )(填推理的依据)26.如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,利用两点之间线段最短和垂线段最短可判断此时FB +FE 的值最小,再判断△ABB′为等边三角形,然后计算出B′E 的长即可.【详解】解:作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,则FB =FB′,∴FB +FE =FB′+FE =B′E ,此时FB +FE 的值最小,∵∠BAC =30°,∴∠B′AC =30°,∴∠BAB′=60°,∵AB =AB′,∴△ABB′为等边三角形,∵B′E ⊥AB ,∴AE =BE =32, ∴B′E 3=332, 即BF +EF 33. 故选:B .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质.2.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.3.D解析:D【分析】连接OE ,交AC 于点F ,由勾股定理结合垂径定理求出AF 的长,即可得到结论.【详解】解:连接OE ,交AC 于点F ,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点,∵12AB =∴6OE AO ==设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点,∴DF AC ⊥,DF AF =∵2DE =,∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+即2226(6)(2)x x =-++, ∴122x =,222x =∴2(2)822AC x =+=+822-∵6AC > ∴822AC =+故选:D【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键.4.B解析:B【分析】先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl =π×4×5=20π.故选:B .【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.5.A解析:A【分析】根据垂径定理可知,AE=CE ,AD=BD ,易证四边形ODAE 是正方形,即可求得.【详解】如图,连接OA∵⊥OD AB ,OE AC ⊥,AB ⊥AC∴四边形ODAE 是矩形,AE=CE ,AD=BD又∵4AB AC ==,∴AE=AD=2∴四边形ODAE 是正方形,且边长为2∴O 的半径OA=22故选A【点睛】本题考查垂径定理,掌握垂径定理的条件和结论是解题的关键.6.C解析:C【分析】利用圆周角定理求出∠BOC 即可解决问题.【详解】解:∵∠BOC=2∠BDC ,∠BDC=21°,∴∠BOC=42°,∴∠AOC=180°-42°=138°.故选:C .【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型. 7.A解析:A【分析】利用圆周长公式计算1L 和2L 的长.根据圆周长公式分别写出1L 和2L 的表达式进行比较,再根据“两点之间线段最短的性质”得出13L L >,即可选出答案.【详解】解:设n 个小半圆半径依次为1r ,2r ,⋯,n r .则大圆半径为()12n r r r ++⋯+()112n L r r r π∴=++⋯+,212n L r r r πππ=++⋯+()12n r r r π=++⋯+,12L L ∴=;根据“两点之间线段最短的性质”可得:13L L >,123L L L ∴=>..故选A .【点睛】本题考查了半圆弧长的计算,两点之间线段最短的性质,是基础题,难度不大. 8.A解析:A【分析】圆在三角形的三个角的顶点处旋转的路线是弧,通过观察可以发现圆转动时在三个角上共转动了圆心角360°,所以在三个顶点处转了一个圆的面积,在三个边上滚过的图形是以三角形边长为长,圆的直径为宽的矩形,然就分别计算,最后求和.【详解】解:根据运动特点可知三个顶点处转了一个圆的面积,在三个边上滚过的图形矩形∴圆P所扫过的面积=π+(9π+12π+15π)×2=73π故选:A【点睛】解答本题的关键是,找出圆滚动一周的图形,并将图形进行分割,拼组,化难为易,列式解答即可.9.C解析:C【分析】由切线的性质得到AM、BN与AB垂直,过点D作DF⊥BC于F,,构造一个直角三角形DFC,再由切线长定理和勾股定理列方程,得出关于y的函数关系式,根据直角梯形的面积公式求解.【详解】∵AB是直径,AM、BN是切线,∴AM⊥AB,BN⊥AB,∴AM∥BN.过点D作DF⊥BC于F,则AB∥DF.∴四边形ABFD为矩形.∴DF=AB=2,BF=AD.∵DE、DA,CE、CB都是切线,∴根据切线长定理,设DE=DA=x,CE=CB=y.在Rt△DFC中,DF=2,DC=DE+CE=x+y,CF=BC﹣BF=y﹣x,∴(x+y)2=22+(y﹣x)2,∴y=1x,∴四边形的面积S=12AB(AD+BC)=12×2×(x+1x),即S=x+1x(x>0).∵(x+1x )﹣2=x﹣2+1xxx2≥0,当且仅当x=1时,等号成立.∴x +1x ≥2,即S ≥2, ∴四边形ABCD 的面积S 的最小值为2.故选:C .【点睛】考查了切线的性质、平行线的判定、矩形的性质和勾股定理,解题关键是作出辅助线. 10.C解析:C【分析】如图:延长CP 交O 于N ,连接DN ,易证12PM DN =,所以当DN 为直径时,PM 的值最大.【详解】解:如图:延长CP 交O 于N ,连接DN .AB CN ⊥,CP PN ∴=,CM DM =,12PM DN ∴=, ∴当DN 为直径时,PM 的值最大,最大值为52. 故选:C .【点睛】本题考查是圆的综合题,垂径定理,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.11.C解析:C【分析】过点P 作PD ⊥MN ,连接PM ,由垂径定理得DM =3,在Rt △PMD 中,由勾股定理可求得PM 为5即可.【详解】解:过点P 作PD ⊥MN ,连接PM ,如图所示:∵⊙P 与y 轴交于M (0,−4),N (0,−10)两点,∴OM =4,ON =10,∴MN =6,∵PD ⊥MN ,∴DM =DN =12MN =3, ∴OD =7,∵点P 的横坐标为−4,即PD =4,∴PM 22PD DM +2243+5,即⊙P 的半径为5,故选:C .【点睛】本题考查了垂径定理、坐标与图形性质、勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键. 12.A解析:A【分析】圆锥的底面周长等于侧面展开图的扇形弧长,因而要先求扇形的弧长,根据扇形的面积公式2360n R S π=,可以求出扇形的半径,就可以求出弧长. 【详解】 解:根据扇形的面积公式2360n R S π=得到:2904360R ππ=; ∴R=4,则弧长9042180cm ππ⋅==, 设圆锥的底面半径为r ,则2π=2πr ;∴r=1cm .故选:A .【点睛】 本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.二、填空题13.【分析】M 点为BC 和AB 的垂直平分线的交点利用点ABC 坐标易得BC 的垂直平分线为直线x=3AB 的垂直平分线为直线y=x 从而得到M 点的坐标然后计算MB 得到⊙M 的半径【详解】解:∵点ABC 的坐标分别是(解析:()3,3【分析】M 点为BC 和AB 的垂直平分线的交点,利用点A 、B 、C 坐标易得BC 的垂直平分线为直线x=3,AB 的垂直平分线为直线y=x ,从而得到M 点的坐标,然后计算MB 得到⊙M 的半径.【详解】解:∵点A ,B ,C 的坐标分别是(0,2),(2,0),(4,0),∴BC 的垂直平分线为直线x=3,∵OA=OB ,∴△OAB 为等腰直角三角形,∴AB 的垂直平分线为第一、三象限的角平分线,即直线y=x ,∵直线x=3与直线y=x 的交点为M 点,∴M 点的坐标为(3,3),∵MB ==∴⊙M .故答案为(3,3.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.14.2【分析】方法一:在轴上取一点连接可求由可得由点在上运动可知共线时可以取得最大值或最小值最大值最小值由最大值与最小值求出即可;方法二:连接取中点连接利用三角形三边关系有可得作差计算即可【详解】解:方 解析:2【分析】方法一:在x 轴上取一点()6,0E ,连接PE ,可求3OB BE ==,5AE =,由OM PM =,OB BE =,可得12BM PE =,由点P 在A 上运动,可知P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,由最大值与最小值求出72m =,32n =即可;方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,利用三角形三边关系有BN MN BM BN MN -≤≤+,可得m BN MN =+,n BN MN =-,作差计算22m n MN PA -===即可.【详解】解:方法一:在x 轴上取一点()6,0E ,连接PE ,∵()3,0B ,()3,4A ,∴3OB BE ==,22345AE =+=,∵OM PM =,OB BE =,∴12BM PE =, ∵点P 在A 上运动, ∴P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,∴72m =,32n =, ∴2m n -=, 故答案为2.方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,BN MN BM BN MN -≤≤+,m BN MN =+,n BN MN =-,22m n MN PA -===.故答案为:2.【点睛】本题考查三角形的中位线,勾股定理,三角形三边关系,线段和差,掌握三角形的中位线,勾股定理,三角形三边关系,线段和差,引辅助线构造准确图形是解题关键.15.【分析】根据题意知直线和圆有公共点则相切或相交相切时设切点为C连接OC根据等腰直角三角形的直角边是圆的半径2求得斜边是2所以x的取值范围是0<x≤2【详解】解:设切点为C连接OC则圆的半径OC=2O解析:022<≤x【分析】根据题意,知直线和圆有公共点,则相切或相交.相切时,设切点为C,连接OC.根据等腰直角三角形的直角边是圆的半径2,求得斜边是22.所以x的取值范围是0<x≤22.【详解】解:设切点为C,连接OC,则圆的半径OC=2,OC⊥PC,∵∠AOB=45°,OA//PC,∴∠OPC=45°,∴PC=OC=2,∴OP=2222+=22,所以x的取值范围是0<x≤22,故答案为0<x≤22.【点睛】此题主要考查了直线与圆的位置关系,勾股定理,作出切线找出直线与圆有交点的分界点是解决问题的关键.16.【分析】连结OC根据勾股定理可求OC的长根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积依此列式计算即可求解【详解】连接如图∵在扇形中又故答案为:【点睛】考查了正方形的性质和扇形面π-解析:24【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.【详解】连接OC,如图,∵在扇形AOB 中,90AOB ∠=︒,AC BC =,45COD ∴∠=︒,又CD DE ⊥,45OCD COD ∴∠=∠=︒, 22OD CD ∴==,22(22)(22)4OC ∴=+=,224541(22)243602ODC BOC S S Sππ⨯∴=-=-⨯=-阴影扇形. 故答案为:24π-.【点睛】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度. 17.【分析】如图(见解析)先根据圆周角定理可得再根据圆内接四边形的性质即可得【详解】如图在优弧上取一点E 连接BEDE 由圆内接四边形的性质得:故答案为:【点睛】本题考查了圆周角定理圆内接四边形的性质熟练掌 解析:110︒【分析】如图(见解析),先根据圆周角定理可得70BED ∠=︒,再根据圆内接四边形的性质即可得.【详解】如图,在优弧BD 上取一点E ,连接BE 、DE ,140BOD ∠=︒,1702BED BOD ∠∴∠==︒, 由圆内接四边形的性质得:180110BC ED D B ∠=︒-∠=︒,故答案为:110︒.【点睛】本题考查了圆周角定理、圆内接四边形的性质,熟练掌握圆周角定理是解题关键. 18.8【分析】设圆锥的底面半径为利用圆锥的侧面展开图为一个扇形这个扇形的弧长等于圆锥底面的周长圆的周长公式计算出然后利用勾股定理计算出圆锥的高【详解】解:设圆锥底面圆的半径为则有∴圆锥的高为故答案是:【 解析:8【分析】设圆锥的底面半径为r ,利用圆锥的侧面展开图为一个扇形、这个扇形的弧长等于圆锥底面的周长、圆的周长公式计算出r ,然后利用勾股定理计算出圆锥的高.【详解】解:设圆锥底面圆的半径为r ,则有,212r ππ=6r =∴圆锥的高为221068cm -=.故答案是:8【点睛】本题考查了平面图形与立体图形之间的互相转化、求圆锥的底面半径、圆的周长公式以及勾股定理等相关知识,能够利用“扇形的弧长等于圆锥底面的周长”求得圆锥的底面半径是解题的关键.19.6【分析】在线段BD 上取一点E 使得BE=CD 连接AE 由四点共圆得∠再证明△是等边三角形得再由线段的和差关系可得结论【详解】解:在线段BD 上取一点E 使得BE=CD 连接AE ∵∴四点共圆∴∠∴∠∵△是等边解析:6【分析】在线段BD 上取一点E ,使得BE=CD ,连接AE ,由,,,A B C D 四点共圆得∠ABE ACD =∠,再证明ABE ACD ≅∆,△ADE 是等边三角形,得AD DE AE ==,再由线段的和差关系可得结论.【详解】解:在线段BD 上取一点E ,使得BE=CD ,连接AE ,∵180BAD BCD ∠+∠=︒∴,,,A B C D 四点共圆,∴∠ABD ACD =∠∴∠ABE ACD =∠∵△ABC 是等边三角形,∴AB AC BC ==,60DAE ∠=︒,∴△ABE ACD ≅∆,∠60BAE CAF +∠=︒,∴,BAE CAD BAF CAD ∠=∠∠=∠,∴∠60CAD CAE +∠=︒,即60DAE ∠=︒,∴△ADE 是等边三角形,∴AD DE AE ==,∵=8BD ,2CD =,∴6DE BD BE BD CD =-=-=,∴6AD DE ==.【点睛】此题主要考查了全等三角形的判定与性质,以及四点共圆的判定,证明∠ABE ACD =∠是解答此题的关键.20.a-b 【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可【详解】解:空间站A 与星球B 飞船C 在同一直线上时S 取到最小值a-b 故答案 解析:a-b【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点,到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可.【详解】解:空间站A 与星球B 、飞船C 在同一直线上时,S 取到最小值a-b .故答案为:a-b .【点睛】本题考查了圆外一点到圆的最大距离和最短距离,最大距离和最短距离都在过圆心的直线上.属于基础知识.三、解答题21.(1)10︒;(2)3【分析】(1)首先求出 ∠ADE 的度数,再根据圆周角定理求出 ∠AOC 的度数,最后求出 ∠OCE 的度数;(2)由弦CD 与直径 AB 垂直,利用垂径定理得到 E 为CD 的中点,求出 CE 的长,在直角三角形 OCE 中,设圆的半径 OC = r ,OE = OA-AE ,表示出 OE ,利用勾股定理列出关于 r 的方程,求出方程的解即可得到圆的半径 r 的值.【详解】解:()1CD AB ⊥,50A ∠=︒,40ADE ∴∠=︒.280AOC ADE∴∠=∠=︒,908010OCE∴∠=︒-︒=︒;()2因为AB是圆O的直径,且CD AB⊥于点E,所以11422222CE CD==⨯=,在Rt OCE中,222OC CE OE=+,设圆O的半径为r,则OC r=,2OE OA AE r=-=-,所以222(22)(2)r r=+-,解得:3r=.所以圆O的半径为3.【点睛】此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.22.(1)①见解析;②见解析;(2)BE﹣DE=2AE【分析】(1)①易证AD=AB,EB=DF,所以只需证明∠ADF=∠ABE,利用同弧所对的圆周角相等不难得出,从而证明全等;②易证AEF是等腰直角三角形,所以EF=2AE,所以只需证明DE﹣BE=EF即可,由BE=DF不难证明此问题;(2)类比(1)不难得出(2)的结论.【详解】(1)①证明:在正方形ABCD中,AB=AD,∵∠1和∠2都对AE,∴∠1=∠2,在ADF和ABE中,12AB ADBE DF=⎧⎪∠=∠⎨⎪=⎩,∴ADF≌ABE(SAS);②由①有ADF≌ABE,∴AF=AE,∠3=∠4.在正方形ABCD中,∠BAD=90°.∴∠BAF+∠3=90°.∴∠BAF+∠4=90°.∴∠EAF=90°.∴EAF是等腰直角三角形.∴EF2=AE2+AF2.∴EF2=2AE2.∴EF=2AE.即DE﹣DF=2AE.∴DE﹣BE=2AE.(2)BE﹣DE=2AE.理由如下:在BE上取点F,使BF=DE,连接AF.∵AB=AD,BF=DE,∠ABE=∠EDA,∴ADE≌ABF(SAS),∴AF=AE,∠DAE=∠BAF.在正方形ABCD中,∠BAD=90°.∴∠BAF+∠DAF=90°.∴∠DAE+∠DAF=90°.∴∠EAF=90°.∴EAF是等腰直角三角形.∴EF2=AE2+AF2.∴EF2=2AE2.∴EF2AE.即BE﹣BF2AE.∴BE﹣DE2.【点睛】本题为圆的综合题,本题主要考查圆周角定理、全等三角形的判定及勾股定理的运用等,有一定的综合性,难度适中.23.(1)见解析;(2)O的半径为4【分析】(1)先作∠ABC的角平分线,交AC于点O,然后过O作AB的垂线,交AB于E,以O为圆心,OE 为半径作圆即可;(2)先利用勾股定理求出AB ,然后由OBC ABO ABC S S S ∆∆∆+=即可求出O 的半径.【详解】解:(1)如图所示:(2)设直线AB 与O 切于点D ,连接OD ,则,OD AB ⊥90,ACB ∴∠=︒22222291215AB AC BC ∴=+=+=.15,AB ∴=设O 的半径为,r由得OBC ABO ABC S S S ∆∆∆+=1215912,r r +=⨯4,r ∴=即O 的半径为4【点睛】本题考查了尺规作图,切线的性质,理解题意熟练掌握角平分线和垂线的作图是解题的关键.24.证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC或者OD都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC=.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化.25.(1)见解析;(2)90;直径所对的圆周角是直角;经过半径外端,且与半径垂直的直线是圆的切线.【分析】(1)根据题意画图即可;(2)分别利用圆周角定理以及切线的判定方法得出答案.【详解】(1)如图(2)如图,连接OA,OB后,由作图可知点,A B在以C为圆心,CO为半径的圆上,∴∠=∠=90︒.(直径所对的圆周角是直角)OAP OBP∴⊥⊥,PA OA PB OBOA OB为O的半径,∴直线,PA PB是O的切线,(经过半径外端,且与半径垂直的直线是圆的切线)【点睛】此题主要考查了切线的判定以及圆周角定理,正确把握切线的判定方法是解题关键.26.2(2)4a π-,1.14 【分析】根据对称性用a 表示出阴影的面积,再将a=2代入求解即可.【详解】解:由题意可知:S 阴=211442222a a a π⎡⎤⎛⎫-⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2(2)4a π-= 当2a =时,S 阴=(3.142)4 1.144-⨯=. 【点睛】本题考查列代数式、代数式求值、圆的面积公式、三角形的面积公式,解答的关键是找出面积之间的关系,利用基本图形的面积公式解决问题.。

第十八讲 与圆有关的计算(含解答)-

第十八讲  与圆有关的计算(含解答)-

第十八讲 与圆有关的计算【趣题引路】拿破仑是法国一位卓越的军事家、政治家,又是一个数学爱好者.一次他在远征埃及的航海途中,问部下:“怎样光用圆规把圆分成四等份?•”大家面面相觑,还是拿破仑自己解了这个谜.聪明的读者你知道他是怎样解的吗? 解析 (1)先用圆规画一个已知圆,如图 (1).(2)在已知圆中,画4个相同的小圆,它们的直径等于已知圆的半径,如图 (2) (3)在4个小圆相交的图形中,4个偏月牙形就是面积完全相同的图形,如图 (3).【知识延伸】与圆有关的计算,着重讲正多边形和圆、圆的面积、周长、弧长,扇形的面积以及圆柱和圆锥侧面展开图的计算问题.对于以上问题,首先要理解概念,熟记公式,法则,其次要会灵活运用各方面的知识.如正n 边形的计算可以集中在正n 边形的半径、边心距把正n 边形分成2n•个全等的直角三角形中,通过解直角三角形或三角形相似来解决.例1 如图,正五边形ABCDE 的边长为10,它的对角线分别交于点A 1,B 1,•C 1,D 1,E 1. (1)求证:D 1把线段AE 1分成黄金分割;(2)求五边形A 1B 1C 1D 1E 1的边长. 证明 (1)作正五边形的外接圆O, ∵AB=BC=CD=DE=EA=72°,∴∠D 1AB=∠D 1BA=•∠E 1BD 1=36°. 又∠BE 1D 1=∠BD 1E 1=72°, ∴AD 1=D 1B=BE.∵△ABE 1∽△B D 1E 1,∴11111AE BE BE D E =, 即11111AE AD AD D E =. ∴A D 12=AE 1·D 1E 1,即D 1把线段A E 1分成黄金分割. (2)设D 1E 1=x,则A E 1=AB=10,AD 1=10-D 1E 1=10-x,∴(10-x)2=10x,即x 2-30x+100=0. 解得,得x 1=15-55,x 2=15+55>10(舍去)∴D 1E 1=15-55.点评对于正多边形的计算,要注意利用相似三角形的性质去解,在本题的计算中,•用到了正五边形的两条对角线的交点是对角线的黄金分割点.在计算与面积有关问题时,等积变形,•把不规则图形的面积变成规则图形的面积去求,是经常使用的方法.例2 如图,已知在矩形ABCD 中,AB=1,BC=2,以B 为圆心,BC•为半径画弧交AD 于点F,交BA 的延长线于点F.求阴影部分的面积.解析 连结BF,∵BF=BC=2,AB=1,∠BAF=90°, ∴∠ABF=60°.在Rt △ABF 中,AF=22BF AB -=3,∴S 阴影=S 扇形BEF -S △ABF=2602360π-12×1×3 =23π-32. 点评阴影部分是不规则图形,无法直接计算,设法利用规则图形面积来计算,连结BF,则阴影部分的面积等于扇形面积减去三角形的面积.在处理展开图问题时,一定不要弄错对应关系,如圆锥侧面展开图是扇形,•这个扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长等.例2 如图,一个圆锥的高是10cm,侧面开展图是半圆,求圆锥的侧面积. 解析 设圆锥底面半径为r,扇形弧长为C,母线长为L. 由题意,得c=22lπ ,又∵c=2r π, ∴22lπ=2r π,得L=2r. ① 在Rt △SOA 中L 2=r 2+102. ② 由①,②解得r=1033cm, L=2033cm.∴所求圆锥的侧面积为S=πrL=π1033·2033=2003π(cm2).点评经过圆锥高(即轴)的截面所揭示的母线、高、底面半径.•锥角等元素之间的关系是解题的突破口,也是圆锥中几种量之间的基本关系.【好题妙解】佳题新题品味例1已知如图,AC切⊙O于点A,点B在⊙O上,AB=AC=AO,OC、BC分别交⊙O•于点E、F.求证:EF是⊙O的内接正二十四边形的一边.证明连结OB,OF,因AC是⊙O的切线,∴∠OAC=90°,∵AC=AO,∴∠AOC=45°.∵AB=AO=BD,∴△ABO是等边三角形.∴∠BAO=60°,∴∠BAC=60°+90°=150°,∵AB=AC,∴∠ABC=15°.∴∠AOF=2∠ABC=30°.∴∠EOF=∠AOC-∠AOF=45°-30°=15°.∵正二十四边形的中心角为360°÷24=15°,∴EF是正二十四边形的一边.点评证明一条弦是正多边形的一边.•需证这条弦所对的圆心角等于这个多边形的中心角.如证一条弦是正三角形的一边,需证这条边所对的圆心角为120°.证一条弦是正六边形的一边,需证这条弦所对的圆心角为60°.例2如图,⊙O1与⊙O2内切于点P,过P的直线交⊙O1于点A,交⊙O2于点B,•AC切⊙O2于点C,交⊙O1于点D,且PB、PD的长恰好是关于x的方程x2-16m+x=0的两根.求(1)PC的长;(2)若BP BC=,且S△PBC:S△APC=1:k,求代数式m(k2-k)的值.解析 (1)过P作两圆公切线PT,∵∠A=TPD,∠TPC=∠DCP,∠DCP=∠1+∠A,∠TPC=∠2+∠TPD.∴∠1=∠2.已知∠PBC=∠PCD,∴△PBC∽△PCD.∴P C2=PB·PD.而PB,PD是方程x2-16m+x+4=0的根. ∴PC2=4,∴PC=2.O2T21DCBAP O1(2)由BP=BC及∠1=∠2,知BC∥PD,PB=BC.∴AB BCAP PD=,∵1PBCAPCSPBPA S k∆∆==,∴1BC AB kPD AP k-==.∴PB2=4(1)kk-·PD2=41kk-.又由根与系数关系知PB+PD=16m+,∴m+16=PB2+PD2+2PB·PD=4(1)kk-+41kk-+8.∴m=24k k-,∴m(k2-k)=4.点评(1)小题仅涉及PB、PD的长是方程x2-16m+x+4=0的根,故易知PB·PD,从而须找PC•与PB·PD的关系;(2)由题意可知PB·PD均可用字母K表示,由根与系数的关系可知K 与m的关系,由此求出m,代入m(k2-k)中即可.例3如图有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形ABC.求(1)被剪掉阴影部分的面积.(2)用所得的扇形铁皮围成一个圆锥,该圆锥的底面半径是多少?(结果可用根号表示).解析 (1)连结BC,∵∠BAC=90°,∴BC为⊙O的直径.又∵AB=AC,∴AB=AC=BC.sin45°=1×22=22.∴S阴=S⊙O-S扇形BAC=π(12)2-2290()2180π⨯=18π(m)2.(2)设圆锥的底面圆的半径为r,∴2902180π⨯=2πr ∴r=28.点评用和差法求图形中阴影部分的面积是最基本的方法,也是应用最广泛的方法.中考真题欣赏例1 (2003年吉林省中考题)圆心角都是90°的扇形OAB与扇形OCD,如图那样叠放在一起,连结AC、BD.(1)求证:△AOC≌△BOD;(2)若OA=3cm,OC=1cm,求阴影部分的面积.证明 (1)∵∠COD=∠AOB=90°.∴∠AOC=∠BOD.∵OA=OB,OC=OD,∴△AOC≌△BOD.(2)S阴影=S扇形AOB-S扇形COD=14π×32-14π×12=2π.点评(1)只需证∠DOB=∠COA即可;(2)将阴影部分转化为两个扇形面积的差,•再进行计算.例2 (2003年桂林市中考题)如图,AB是⊙O的直径,过圆上一点D作⊙O的切线DE,与过点A的直线垂直于E,弦BD的延长线与直线AE交于点C.(1)求证:点D为BC的中点;(2)设直线EA与⊙O的另一交点为F.求证:C A2-AF2=4CE·EA;(3)若AD=12DB,⊙O的半径为r,求由线段DE,AE和AD所围成的阴影部分的面积.证明 (1)连结OD,∵ED为⊙O的切线, ∴OD⊥DE,∵DE⊥AC,∴OD∥AC.∵O为AB中点,∴D为BC中点.(2)连结BF,∵AB为⊙O的直径,∴∠CFB=∠CED=90°.∴ED∥BF,∵D为BC中点,∴E为CF中点.∴CA2-AF2=(CA-AF)(CA+AF)=(CE+AE-EF+AE)·CF=2AE·2CE.∴CA2-AF2=4CE·AE.(3)解析:∵AD=12DB,∴∠AOD=60°.连结DA,可知△OAD为等边三角形.∴OD=AD=r. 在Rt△DEA中,∠EDA=30°,∴EA=12r,ED=32r,EDCA BF∴S 阴影=S 梯形DOAE -S 扇形OAD =13()222r r +-16πr 2=338r 216πr 2. 点评(1)由O 为圆心,设法证CF ∥OD,可得结论;(2)由D 为BC 的中点,证E 为CF 的中点,证得ED ∥BF,然后进行线段的恒等变形,•可得结论.(3)由图形的差可得阴影部分.竞赛样题展示例1 (2002年全国数学竞赛试题)如图,7•根圆形筷子的横截面圆的半径为r,求捆扎这7根筷子一周的绳子长度.解析:设⊙O 1,⊙O 2和绳子切A,B,C 点,知∠A O 1B =60°,∴AB 的长为601803r ππ=r, ∴AB 和线段BC 和的长为3πr,故整个绳长为6(AB+BC)=6(13r π+2r)=2(π+6)r.点评绳长由两部分组成,一部分是直线长,另一部分是弧线长,只要计算出AB•的长和O 1O 2的长,其余类推即可. 例2 (汉城国际数学竞赛试题)把3根长为1cm 的火柴杆和三根长为3cm 的火柴杆,摆放在如左图的圆周上构成六边形,此六边形的面积是由三根1cm 的火柴杆所构成的等边三角形面积的多少倍?解析 如图 (1),因为六边形ABCDEF 内接于⊙O,连结OA,OB,OC,OD,OE,OF, 显然△AOB ≌△AOF ≌△EOF;△BOC ≌△COD ≌△DOE.把底边长为1和3的等腰三角形作间隔排列拼成如图 (2),• 并向两端延长边长为3的边,得边长为5的等边三角形.边长为5的等边三角形可分割为25个边长为1的等边三角形,•于是此六边形可分割为22个边长为1的等边三角形.故此六边形的面积是边长为1的等边三角形面积的22倍.点评几何计算常建立在几何证明的基础之上,通过证明,•解决有关图形的位置关系和数量关系,从而使问题获得解决.全能训练A卷1.两圆相交,公共弦长为且在一圆中为内接正三角形的一边,在另一圆中为内接正六边形的一边,求这两圆的面积之比.2.已知三个正多边形的边数分别是a,b,c,从中各取一个内角相加,其和为360°.求111a b c++的值.3.已知半径为1的圆内接正五边形ABCDE中,P是AE的中点.求AP·BP的值.4.已知一个正三角形,一个正方形,一个圆的周长相等,•正三角形和正方形的外接圆半径为r1,r2,圆的半径为R,则r1,r2,R的大小关系是( ).A.r1>r2>RB.r2>R>r1C.R>r1>r2D.r2>r1>R5.如图,已知一个边长为2cm的正六边形,若要剪一张圆形纸片完全盖住这个图形,则这个圆形纸片的最小半径是_________.6.如图,大小两个同心圆的圆心为O,现任作小圆的三条切线分别交于A、B、C点,记△ABC的面积为S,以A、B、C为顶点的三个阴影部分的面积分别为S1,S2,S3,•试判断S1+S2+S3-S是否为定值,若是,求出这个值;若不是,说明理由.A卷答案:1.设正三角形外接圆O1的半径为R3,正三角形边长是AB,正六边形外接圆O2的半径为R6,∴R3=33AB,R6=AB.∴R3:R6=3:3 ,∴S⊙O1:S⊙O2=R32:R62=1:3.2.由180(2)aa︒-+180(2)bb︒-+180(2)cc︒-=360°,得111a b c++=12.3.连结OA交BP于F,证AP=PF,再证△OPF∽△BPO.∴PF·BP=O P2,∴AP·BP=PF·BP=OP2=14.A5.2cm6.如图,设大小圆半径分别为R和r(R和r为定值).小圆的每条切线与大圆所夹小弓形的面积相等且为定值,设这个定值为p,则有S1+S2+S3′=P;S2+S3+S1′=•P;•S3+S1+S2′=P. ∴(S1+S2+S3)·2+(S1′+S2′+S3′)=3P.又∵S1+S2+S3+S1′+S2′+S3′+S=πR2.∴S1′+S2′+S3′= -(S1+S2+S3)-S代入①式得:S1+S2+S3-S=3P- πR2 (定值)故S1+S2+S3-S为定值,这个定值为3P-πR2.B卷1.如图1,两个半圆,大圆的弦CD平行于直径AB,且与小圆相切,已知CD=24,•则在大半圆中挖去小半圆后剩下部分的面积为________.(1) (2)2.如图2,圆心在原点,半径为2的圆内一点P(22,22) ,过P作弦AB与劣弧AB组成一个弓形,则该弓形面积的最小值为___________.3.小伟在半径为1cm,圆心角为60°的扇形铁皮上剪取一块尽可能大的正方形铁皮,小伟在扇形铁皮上设计如图所示的甲,乙两种剪取方案,请你帮小伟计算一下,按甲、乙两种方案剪取所得的正方形面积,并估算哪个正方形的面积较大(•估算时3=1.73,结果保留两位有效数字).4.如图,在圆周内部有一凸四边形,其边的延长线分别交圆周于A 1,•A 2,B 1,B 2,C 1,C 2,D 1,D 2. 求证:若A 1B 2=B 1C 2=C 1D 2=D 1A 2,则由直线A 1A 2,B 1B 2,C 1C 2,D 1D 2所围成的四边形是圆内接四边形.5.如图,给定正七边形A 1A 2…A 7.证明:121314111A A A A A A =+.- 11 - B 卷答案:1.可将小半圆的圆心移至大半圆圆心重合.此时小半圆与CD 切于M 点,•同心圆圆心设为O, 则S 阴=12πOD 2-12πOM 2=12π(O D 2-OM 2)= 12πMD 2=12π×122=72π。

专题31圆锥的计算篇(原卷版)

专题31圆锥的计算篇(原卷版)

知识回顾微专题专题31 圆锥的计算考点一:弧长的计算1. 圆的周长计算公式:r C π2=2. 弧长计算公式: ︒=180rn l π(弧长为l ,圆心角度数为n ,圆的半径为r )1.(2022•丹东)如图,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC ,OC ,若AB =6,∠A =30°,则BC ⌒的长为( )第1题 第2题 第3题 A .6πB .2πC .πD .π2.(2022•广西)如图,在△ABC 中,CA =CB =4,∠BAC =α,将△ABC 绕点A 逆时针旋转2α,得到△AB ′C ′,连接B ′C 并延长交AB 于点D ,当B ′D ⊥AB 时,BB ′⌒的长是( ) A .332π B .334π C .938π D .9310π 3.(2022•河北)某款“不倒翁”(图1)的主视图是图2,P A ,PB 分别与AMB ⌒所在圆相切于点A ,B .若该圆半径是9cm ,∠P =40°,则AMB ⌒的长是( ) A .11πcm B .211π cm C .7πcm D .27π cm4.(2022•湖北)如图,在Rt △ABC 中,∠C =90°,∠B =30°,AB =8,以点C 为圆心,CA 的长为半径画弧,交AB 于点D ,则AD ⌒的长为( )第4题 第5题 A .πB .34π C .35π D .2π5.(2022•甘肃)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(AB ⌒),点O 是这段弧所在圆的圆心,半径OA =90m ,圆心角∠AOB =80°,则这段弯路(AB ⌒)的长度为( ) A .20πmB .30πmC .40πmD .50πm6.(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m ,高为23m ,则改建后门洞的圆弧长是( )第6题 第7题 第8题 A .π35mB .π38mC .π310m D .(π35+2)m7.(2022•枣庄)在活动课上,“雄鹰组”用含30°角的直角三角尺设计风车.如图,∠C =90°,∠ABC =30°,AC =2,将直角三角尺绕点A 逆时针旋转得到△AB ′C ′,使点C ′落在AB 边上,以此方法做知识回顾下去……则B 点通过一次旋转至B ′所经过的路径长为 .(结果保留π)8.(2022•沈阳)如图,边长为4的正方形ABCD 内接于⊙O ,则AB ⌒的长是 (结果保留π).9.(2022•大连)如图,正方形ABCD 的边长是2,将对角线AC 绕点A 顺时针旋转∠CAD 的度数,点C 旋转后的对应点为E ,则弧CE 的长是 (结果保留π).第9题 第10题 第11题10.(2022•青海)如图,从一个腰长为60cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,则此扇形的弧长为 cm .11.(2022•广州)如图,在△ABC 中,AB =AC ,点O 在边AC 上,以O 为圆心,4为半径的圆恰好过点C ,且与边AB 相切于点D ,交BC 于点E ,则劣弧DE ⌒的长是 .(结果保留π)考点二:扇形面积的计算1. 圆的面积公式:2r S π=2. 扇形的定义:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。

初三数学弧长和扇形面积公式知识精讲

初三数学弧长和扇形面积公式知识精讲

初三数学弧长和扇形面积公式知识精讲一. 本周教学内容:弧长和扇形面积公式、圆锥的侧面积和全面积 教学目的1. 使学生学会弧长和扇形面积公式、圆锥及其特征,使学生掌握圆锥的轴截面图及其特点。

2. 使学生掌握弧长和扇形面积公式、圆锥侧面展开图的画法及侧面积计算公式。

3. 使学生比较熟练地应用弧长和扇形面积公式、圆锥的基本性质和轴截面解决有关圆锥表面积的计算问题。

4. 培养学生空间观念及空间图形与平面图形的相互转化思想,培养学生空间想象能力和计算能力。

教学重点和难点:教学重点是弧长和扇形面积公式,圆锥及其特征,圆锥的侧面积计算难点是圆锥侧面展开图(扇形)中各元素与圆锥各元素之间的关系 教学过程1. 圆周长:r 2C π= 圆面积:2r S π=2. 圆的面积C 与半径R 之间存在关系R 2C π=,即360°的圆心角所对的弧长,因此,1°的圆心角所对的弧长就是360R2π。

n °的圆心角所对的弧长是180Rn π 180Rn π=∴lP 120*这里的180、n 在弧长计算公式中表示倍分关系,没有单位。

3. 由组成圆心角的两条半径和圆心角所对的弧所围成的圆形叫做扇形。

发现:扇形面积与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也就越大。

4. 在半径是R 的圆中,因为360°的圆心角所对的扇形的面积就是圆面积2R S π=,所以圆心角为n °的扇形面积是: R 21360R n S 2l =π=扇形(n 也是1°的倍数,无单位)5. 圆锥的概念观察模型可以发现:圆锥是由一个底面和一个侧面围成的。

其中底面是一个圆,侧面是一个曲面,如果把这个侧面展开在一个平面上,展开图是一个扇形。

如图,从点S 向底面引垂线,垂足是底面的圆心O ,垂线段SO 的长叫做圆锥的高,点S 叫做圆锥的顶点。

锥也可以看作是由一个直角三角形旋转得到的。

也就是说,把直角三角形SOA 绕直线SO 旋转一周得到的图形就是圆锥。

人教版九年级数学上册作业课件 第二十四章 圆 弧长和扇形面积 第2课时 圆锥的侧面积与全面积

人教版九年级数学上册作业课件 第二十四章 圆 弧长和扇形面积 第2课时 圆锥的侧面积与全面积
7.已知圆锥的侧面展开图是一个半径为12 cm,弧长为12π cm的扇形, 求这个圆锥的侧面积及高.
解:侧面积为12 ×12×12π=72π(cm2).设底面半径为 r cm,则有 2πr =12π,∴r=6.由于高、母线、底面圆的半径恰好构成直角三角形, 根据勾股定理可得,高 h= 122-62 =6 3 (cm)
知识点 2:圆锥的全面积 8.圆锥的底面半径为 4 cm,高为 5 cm,则它的表面积为( D ) A.12π cm2 B.26π cm2 C. 41 π cm2 D.(4 41 +16)π cm2
9.已知直角三角形 ABC 的一条直角边 AB=12 cm,另一条直角边 BC =5 cm,则以 AB 为轴旋转一周,所得到的圆锥的表面积是( A ) A.209π cm2 B.155π cm2 C.90π cm2 D.65π cm2
解:l=2π×3=nπ18×0 6 ,∴n=180,∴圆锥侧面展开图是一个半圆,如 图所示,∠BAP=90°,AB=6 m,AP=3 m,∴BP=3 5 m,∴小猫 所经过的最短路程是 3 5 m
人教版
第二十四章 圆
24.4 弧长和扇形面积 第2课时 圆锥的侧面积与全面积
1.圆锥是由一个底面和一个__侧__面围成的几何体,连接圆锥_顶__点__和底面 圆周上任意一点的线段叫做圆锥的母线.
练习1:一圆锥的母线长为5,高为4,则该圆锥底面圆的周长为_6_π__.
2.圆锥的侧面展开图是一个__扇__形,扇形的半径为圆锥的_母__线__长,扇形 的弧长即为圆锥底面圆的_周__长__.圆锥的全面积等于底面积+_侧__面__积__.
则圆锥的侧面积为12 π·AC2=18π(cm2)
17.(2020·广东中考改编)如图,从一块半径为1 m的圆形铁皮上剪出一个 圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,求该圆锥 的底面圆的半径r.

圆锥的侧面积-2020-2021学年九年级数学上册同步课堂帮帮帮(苏科版)(解析版)

圆锥的侧面积-2020-2021学年九年级数学上册同步课堂帮帮帮(苏科版)(解析版)

圆锥的侧面积知识点一、圆锥的侧面展开图1.母线:连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线;2.把一个圆锥的侧面展开会得到一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线长.如图所示,若圆锥的母线长为l,底面圆的半径为r,则这个扇形的半径为l,扇形的弧长为.圆锥的底面半径r,高h,母线长l之间可构成一个直角三角形,所以满足.例:如图所示,有一块半径为1m,圆心角为90°的扇形铁皮,要将它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A. B. C. D.【解答】C【解析】设底面半径为,则,解得,∴高 C.知识点二、圆锥的侧面积若圆锥的底面半径为r,母线长为l,则圆锥的侧面积公式为.圆锥的侧面积与底面积之和称为圆锥的全面积,.例:1.已知圆柱的底面半径为3cm,母线长为6cm,则圆柱的侧面积是()A.36cm2B.36πcm2C.18cm2D.18πcm2【解答】B【解析】根据侧面积公式可得π×2×3×6=36πcm2,故选B.巩固练习一.选择题1.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是()A.9cm2B.9πcm2C.18πcm2D.18cm2【解答】D【解析】所得几何体的主视图的面积是2×3×3=18cm2.故选D.2.已知圆锥的底面半径为4cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.10cm2D.10πcm2【解答】B×2π×4×5=20π(cm2).【解析】这个圆锥的侧面积=12故选B.3.用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的底面半径是()A.2√10B.4√2C.2√2D.2【解答】D【解析】∵用面积为12π,半径为6的扇形围成一个圆锥的侧面,=4π,∴围成的圆锥底面圆的周长为:12π×26设围成的圆锥底面圆的半径为r,则2πr=4π,解得,r=2,∴圆锥的底面半径是2.故选D.4.用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A .3B .2.5C .2D .1.5【解答】A 【解析】半圆的周长=12×2π×6=6π,∴圆锥的底面周长=6π,∴圆锥的底面半径=6π2π=3,故选A .5.若一个圆锥的侧面展开图是半径为10cm ,圆心角为120°的扇形,则该圆锥的底面半径是( )A .310cmB .103cmC .203cmD .320cm 【解答】B【解析】圆锥的侧面展开图是扇形,扇形的弧长=120π×10180=20π3, 则圆锥的底面半径=20π3÷2π=103(cm ),故选B .6.圆锥的母线长为9cm ,底面圆的直径为10cm ,那么这个圆锥的侧面展开图的圆心角度数是( )A .150°B .200°C .180°D .240° 【解答】B【解析】设这个圆锥的侧面展开图的圆心角为n °,根据题意得10π=n⋅π⋅9180,解得n =200,即这个圆锥的侧面展开图的圆心角度数为200°.故选B .7.如图所示的扇形是一个圆锥的侧面展开图,若∠AOB =120°,弧AB 的长为12πcm ,则该圆锥的侧面积为( )A .12πB .56πC .108πD .144π【解答】C 【解析】设AO =BO =R ,∵∠AOB =120°,弧AB 的长为12πcm ,∴120πR 180=12π,解得:R =18,∴圆锥的侧面积为12lR =12×12π×18=108π, 故选C .8.小明用图中所示的扇形纸片作一个圆锥的侧面.已知扇形的半径为5cm ,弧长是8πcm ,那么这个圆锥的高是( )A .8cmB .6cmC .3cmD .4cm【解答】C【解析】设圆锥底面圆的半径为r ,根据题意得2πr =8π,解得r =4,所以这个的圆锥的高=√52−42=3(cm ).故选C .9.用一张扇形的纸片卷成一个如图所示的圆锥模型,要求圆锥的母线长为6cm ,底面圆的直径为8cm ,那么这张扇形纸片的圆心角度数是( )A .150°B .180°C .200°D .240°【解答】D【解析】∵底面圆的直径为8cm ,∴圆锥的底面周长为8πcm,设圆锥的侧面展开图的圆心角为n°,=8π,∴nπ×6180解得:n=240°,故选D.10.已知圆锥的底面面积为9πcm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18πcm2D.27πcm2【解答】C【解析】∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3cm,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选C.11.如图,圆锥的母线长AB=10cm,高AO=6cm,则圆锥面积为()A.144πcm2B.640πcm2C.320πcm2D.80πcm2【解答】A【解析】∵圆锥的母线长AB=10cm,高AO=6cm,∴圆锥的底面半径OB=√AB2−AO2=8cm,∴该圆锥的侧面积=πrl=π×8×10=80π(cm2),底面积=πr2=π×82=64π(cm2),∴该圆锥的面积=80π+64π=144π(cm2).故选A.12.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是()A.√2cm B.3√2cm C.4√2cm D.4 cm【解答】C【解析】∵圆心角为120°,半径为6cm 的扇形的弧长=120⋅π⋅6180=4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高=√62−22=4 √2(cm ).故选C .13.如图,是一个圆锥的主视图,则这个圆锥的全面积是( )A .12πB .15πC .21πD .24π【解答】D【解析】∵圆锥的底面半径为6÷2=3,高为4,∴圆锥的母线长为5,∴圆锥的全面积=π×3×5+π×32=24π,故选D .14.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面圆的半径为()A .34πB .32πC .34D .32【解答】C【解析】设该圆锥的底面圆的半径为r ,根据题意得2πr =90⋅π⋅3180,解得r =34,所以该圆锥的底面圆的半径为34.故选C .15.如图,圆锥的侧面积为8πcm 2,母线与底面夹角为60°,则此圆锥的高为( )A.4cm B.8cm C.2√3cm D.6cm【解答】C【解析】设圆锥的底面圆的半径为r,∵母线与底面夹角为60°,∴圆锥的母线长为2r,•2r•2π•r=8π,解得r=2,∴12∴圆锥的高=√3r=2√3(cm).故选C.二.填空题16.已知圆锥的高h=2√3cm,底面半径r=2cm,则圆锥的全面积是.【解答】12πcm2【解析】∵圆锥的高为2√3cm,底面半径为2cm,∴圆锥的母线长为:√22+(2√3)2=4(cm),底面周长是:2×2π=4π(cm),×4π×4=8π(cm2),则侧面积是:12底面积是:π×22=4π(cm2),则全面积是:8π+4π=12π(cm2)故答案为12πcm2.17.若圆锥的侧面积是24πcm2,母线长是8cm,则该圆锥底面圆的半径是cm.【解答】3【解析】设圆锥底面圆的半径是rcm.×8×2πr=24π,由题意,12解得,r=3,故答案为3.18.直角三角形的两直角边长分别为4cm,3cm,以其中长直角边所在直线为轴旋转一周,得到的几何体的侧面积是 cm 2.【解答】15π【解析】∵直角三角形的两直角边长分别为4cm ,3cm ,∴由勾股定理得斜边为5,以4cm 边所在的直线为轴,将直角三角形旋转一周,则所得到的几何体的底面周长=6πcm ,侧面面积=12×6π×5=15π(cm 2). 故答案为15π.19.一个圆锥的表面积为40πcm 2,底面圆的半径是4cm ,则圆锥侧面展开图的圆心角是 度.【解答】240【解析】∵底面圆的半径为4cm ,∴底面周长为8π,底面圆的面积为:16π,∴侧面积为40π﹣16π=24π,设圆锥的母线长为l ,则12×8πl =24π, ∴母线长l =6cm ,设扇形的圆心角为n °,∴nπ×62360=24π,解得:n =240,故答案为240.20.如图所示,圆锥的母线长为10cm ,其侧面展开图是圆心角为216°的扇形,则该圆锥的高为 .【解答】8cm【解析】设圆锥的底面圆的半径为r ,根据题意得2πr=216⋅π⋅10,解得r=6,180所以圆锥的高=√102−62=8(cm).故答案为8cm.21.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2,扇形的圆心角θ=120°,则该圆锥的高h为.【解答】4√2,解得R=6,【解析】根据题意得 2π×2=120⋅π⋅R180所以该圆锥的高h=√62−22=4√2.故答案为4√2.22.把一个半径为12,圆心角为150°的扇形围成一个圆锥(按缝处不重叠),那么这个圆锥的高是.【解答】√119【解析】设这个圆锥的底面圆的半径为r,,解得r=5,根据题意得2πr=150⋅π⋅12180所以圆锥的高=√122−52=√119.故答案为√119.23.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于cm.【解答】1【解析】设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,,2πr=120π×3180解得:r=1cm.故答案为1.24.如图,圆锥的高为2√3cm,∠α=30°,则圆锥的侧面积为cm2.【解答】8π【解析】如图,∠α=30°,AO=2√3,,在Rt△ABO中,∵tan∠BAO=BOAO∴BO=2√3tan30°=2,即圆锥的底面圆的半径为2,∴AB=4,即圆锥的母线长为4,∴圆锥的侧面积=1•2π•2•4=8π.2故答案为8π.三.解答题25.圆锥母线长6cm,底面圆半径为3cm,求它的侧面展开图的圆心角度数.【解答】180°【解析】设圆锥侧面展开图的圆心角的度数为n°,根据题意得2π•3=n⋅π⋅6,180解得n=180°,即圆锥侧面展开图的圆心角的度数为180°.26.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长.(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;【解答】(1)12π;(2)80π【解析】(1)2π×6=12π.(2)∵∠C =90°,AC =6,BC =8,∴AB =√AC 2+BC 2=10,所以以直线AC 为轴,把△ABC 旋转一周,得到的圆锥的侧面积=12×10×2π×8=80π;27.已知Rt △ABC 的斜边AB =13cm ,一条直角边AC =5cm ,以直线AB 为轴旋转一周得一个几何体.求这个几何体的表面积.【解答】102013π(cm 2) 【解析】∵Rt △ABC 的斜边AB =13cm ,直角边AC =5cm ,∴另一直角边BC =12cm ,以斜边AB 为轴旋转一周,得到由两个圆锥组成的几何体,直角三角形的斜边上的高OC =5×1213=6013cm , 则以6013cm 为半径的圆的周长=12013πcm , 几何体的表面积=12×12013π×(5+12)=102013π(cm 2). 28.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2cm ,扇形的圆心角θ=120°.(1)求该圆锥的母线长l ;(2)求该圆锥的侧面积.【解答】(1)6cm ;(2)12πcm 2【解析】(1)由题意,得2πr =120πl 180. ∴l =3r =6(cm ).(2)S 侧=120π×62360=12π(cm 2). 29.如图,在梯形ABCD 中,AD ∥BC ,∠C =90°,∠BAD =120°,AB =AD =4,BC =6,以点A 为圆心在这个梯形内画出一个最大的扇形(图中阴影部分).(1)求这个扇形的面积;(2)若将这个扇形围成圆锥,求这个圆锥的底面积.【解答】(1)4π;(2)43π 【解析】(1)过点A 作AE ⊥BC 于E ,则AE =AB sin B =4×√32=2√3,∵AD ∥BC ,∠BAD =120°,∴扇形的面积为120π×(2√3)2360=4π,(2)设圆锥的底面半径为r ,则2πr =120π×2√3180, 解得:r =2√33若将这个扇形围成圆锥,这个圆锥的底面积4π.3。

圆锥的侧面积1

圆锥的侧面积1

§3.8 圆锥的侧面积学习重点:圆锥的侧面展开图及侧面积的计算.圆锥的侧面展开图是扇形,其半径等于母线长,弧长等于圆锥底面圆的周长.设圆锥的底面半径为r ,母线长为ι,则它的侧面积:S 侧=πr ι,S 全=S 侧+S 底=πr (ι+r ).学习过程:一、例题讲解:【例1】 已知圆锥的底面积为4πcm 2,母线长为3cm ,求它的侧面展开图的圆心角.【例2】 若圆锥的底面直线为6cm ,母线长为5cm ,则它的侧面积为 cm .(结果保留π)【例3】 在Rt △ABC 中,已知AB=6,AC=8,∠A=90°.如果把Rt △ABC 绕直线AC 旋转一周得到一个圆锥,其全面积为S 1;把Rt △ABC 绕直线AB 旋转一周得到另一个圆锥,其全面积为S 2.那么S 1:S 2等于( )A .2:3B .3:4C .4:9D .5:12【例4】 圆锥的侧面积是18π,它的侧面展开图是一个半圆,求这个圆锥的高和锥角.【例5】 一个圆锥的高为33cm ,侧面展开图是半圆,求:(1)圆锥母线与底面半径的比;(2)锥角的大小;(3)圆锥的全面积.二、随堂练习1.已知圆锥的底面直径为4,母线长为6,则它的侧面积为 .2.粮仓的顶部是圆锥形,这个圆锥的底面直径是4m ,母线长3m ,为防雨需在粮仓的顶部铺上油毡,那么这块油毡的面积至少为( )A .6m 2B .6πm 2C .12m 2D .12πm 23.若圆锥的侧面展开图是一个半径为a 的半圆,则圆锥的高为( )A .aB .33aC .3aD .23a三、课后练习:1.一圆锥的侧面展开图的圆心角为120°,该圆锥的侧面积与全面积之比值为( )A .43B .32C .54D .212.若圆锥经过轴的剖面是正三角形,则它的侧面积与底面积之比为( )A .3:2B .3:1C .2:1D .5:33.如图,将半径为2的圆形纸片沿半径OA 、OB 将其截成1:3两部分,用所得的扇形围成圆锥的侧面,则圆锥的底面半径为( )A .21B .1C .1或3D .21或234.如图,将三角形绕直线ι旋转一周,可以得到图所示的立体图形的是( )5.在△ABC 中,∠C=90°,AB=4cm ,BC=3cm .若△ABC 绕直线AC 旋转一周得到一个几何体,则此几何体的侧面积是( )A .6πcm 2B .12πcm 2C .18πcm 2D .24πcm 2 6.将一个半径为8cm ,面积为32πcm 2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为( )A .4B .43C .45D .214 7.已知圆锥的母线长是10cm ,侧面展开图的面积是60πcm 2,则这个圆锥的底面半径是 cm .8.已知圆锥的底面半径是2cm ,母线长是5cm ,则它的侧面积是 .9.圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、全面积的比是 .10.一个扇形,半径为30cm ,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为 .11.一个扇形,半径为30cm ,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的全面积为 .12.一个圆锥形的烟囱帽的侧面积为2000πcm 2,母线长为50cm ,那么这个烟囱帽的底面直径为( )A .80cmB .100cmC .40cmD .5cm13.圆锥的高为3cm,底面半径为4cm,求它的侧面积和侧面展开图的圆心角.14.以斜边长为a的等腰直角三角形的斜边为轴,旋转一周,求所得图形的表面积.15.已知两个圆锥的锥角相等,底面面积的比为9:25,其中底面较小的圆锥的底面半径为6cm,求另一个圆锥的底面积的大小.16.轴截面是顶角为120°的等腰三角形的圆锥侧面积和底面积的比是多少?17.如图,已知圆锥的母线SB=6,底面半径r=2,求圆锥的侧面展开图扇形的圆心角α.18.一个圆锥的底面半径为10cm,母线长20cm,求:(1)圆锥的全面积;(2)圆锥的高;(3)轴与一条母线所夹的角;(4)侧面展开图扇形的圆心角.19.一个扇形如图,半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,求圆锥底面半径和锥角.21.若△ABC为等腰直角三角形,其中∠ABC=90°,AB=BC=52cm,求将等腰直角三角形绕直线AC旋转一周所得到图形的面积.22.用一块圆心角为300°的扇形铁皮做一个圆锥形烟囱帽,圆锥的底面直径为1m,求这个扇形铁皮的半径.23.如图,粮仓的顶部是圆锥形,这个圆锥的底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头重合部分,那么这座粮仓实际需用油毡的面积是多少?24.如图,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形ABC,求:(1)被剪掉的阴影部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆半径是多少?(结果可用根号表示)。

【精品试卷】人教版数学九年级上册《24.4 弧长和扇形面积》练习

【精品试卷】人教版数学九年级上册《24.4 弧长和扇形面积》练习
的圆弧与AE交于,则弧AH的弧长为( )
13
A.
6
13
π
B.
4
π
5
C.
3
π
5
D.
2
π

3.把一个弧长AC为10π cm的扇形AOC围成一个圆锥,测得母线OA = 13cm,则圆锥的
高ℎ为( )
A. 12cm
B. 10cm
C. 6cm
D. 5cm
4.如图,正方形ABCD的边长为8,以点为圆心,AD为半径,画圆弧DE得到扇形
∴ 由勾股定理得:ℎ = 12.
故选:.
根据扇形的弧长求得圆锥的底面半径,然后利用勾股定理求得高即可.
考查了圆锥的计算,解答该题的关键是了解圆锥的底面周长等于扇形的弧长,难度不
大.
4.【答案】D;
【解析】解:设圆锥的底面圆的半径为,
根据题意可知:
AD = AE = 8,∠DAE = 45°,
答案和解析
1.【答案】B;
【解析】解:设弧所在圆的半径为 cm,
135πr
由题意得, 180
= 2π × 3 × 5

解得, = 40.
故选:.
设出弧所在圆的半径,由于弧长等于半径为3cm的圆的周长的5倍,所以根据原题所给
出的等量关系,列出方程,解方程即可.
解决本题的关键是熟记圆周长的计算公式和弧长的计算公式,根据题意列出方程.
故选:.
从2:00到4:00,这根分针的尖走了2圈,根据圆的周长 = 2πr,计算即可.
此题主要考查弧长的计算,解答该题的关键是理解题意,灵活运用所学知识解决问
题.
10.【答案】B;
阴影 = 2扇形 ‒ 正方形 = 2 ×

扇形、圆形计算公式

扇形、圆形计算公式

1.圆的周长C=2πr=πd2.圆的面积S=πr²3.扇形弧长l=nπr/1804.扇形面积S=nπr²/360=rl/25.圆锥侧面积S=πrl〖圆的定义〗几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。

〖圆的相关量〗圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.141592653589793238462643383279502884197169399375105820974944 5923078164062862089986280348253421170679...,通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。

圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

圆心角和圆周角:顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。

圆锥侧面展开图是一个扇形。

这个扇形的半径成为圆锥的母线。

〖圆和圆的相关量字母表示方法〗圆—⊙半径—r 弧—⌒直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S〖圆和其他图形的位置关系〗圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

《弧长和扇形面积的计算》PPT课件下载(第2课时)

《弧长和扇形面积的计算》PPT课件下载(第2课时)
7.已知圆锥的底面直径为20 cm,母线长为90 cm,则圆锥的表面 积是_1__0_0_0_π__ cm². (结果保留π)
8.粮仓顶部是一个圆锥形,其底面周长为36 m,母线长为8 m,为 防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部 分,那么这座粮仓实际需用_1__6_0__m2的油毡.
例2 如图,用一张半径为24 cm的扇形纸板制作一顶圆锥形帽子(接
缝忽略不计),如果圆锥形帽子的底面半径为10 cm,那么这张扇形
纸板的面积是( A )
A.240π cm2
B.480π cm2
C.1 200π cm2
D.2 400π cm2
导引:圆锥的侧面展开图是扇形,圆锥的侧面积就是相关 扇形的面积,直接利用圆锥的侧面积公式S=πrl计算.S= πrl=π×10×24=240π(cm2),故选择A .
如图,PA为圆锥的一条母线,PO为圆锥的高 . 将圆锥的侧面沿母线PA展开成平面图形,该图形为 一个扇形,扇形的半径长等于圆锥的母线长 .
反过来,扇形也可以围成一个圆锥 .
1.圆锥:圆锥是由一个底面和一个侧面围成的几何体.如图所示. 2.圆锥的母线:如图所示,圆锥的顶点与底面圆周上任意一点的连 线叫做圆锥的母线.母线有无数条,且每条母线都相等. 3.圆锥的高:如图所示,圆锥的顶点与底面圆心之间的线段叫做圆 锥的高.
锥的高为=5(cm),故应选A .
结论
圆锥的侧面展开图的弧长等于底面的圆周长, 圆锥的母线l、圆锥的底面半径r、圆锥的高h,三 者满足r2+h2=l2 .
1 如图,圆心角∠AOB=20°,将 AB 旋转n°得到 CD,则 CD 的度 数是__2_0__°.
2 已知一个圆锥的高为6cm,半径为8cm,则这个圆锥的母长 为_1_0_c__m__.

圆的基本性质复习

圆的基本性质复习

第三章 圆的基本性质复习(三)【知识要点】1.在半径为R 的圆上,n 0的圆心角所对的弧长l 的的计算公式为180n R l π=2.由弧长公式可推出:180l n R π=,180l R n π= 3.如果扇形的半径为R ,圆心角为n 0,扇形的弧长为l ,那么扇形面积的计算公式为:213602n R S lR π== (注意:要根据已知条件选择适当的公式来求扇形面积)。

4.如果弓形的面积是S ,弓形所在扇形的面积是S 1,圆心角是n 0,扇形的两条半径与弓形的弦所成的三角形面积是S 2,则(1)当n =1800时,S=S 1;(等于半圆)(2)当n <1800时,S=S 1-S 2;(小于半圆)(3)当n > 1800时,S=S 1+S 2 (大于半圆)5.圆锥可以看做是一个直角三角形绕它的一条直角边旋转一周所成的图形,斜边旋转而成的曲面叫做面锥的侧面.无论转到什么位置,这条斜边都叫做圆锥的母线,另一条直角边旋转而成的面叫做圆锥的底面如果记圆锥的高线长为h ,地面半径为r ,母线长为l ,则h 2+r 2=2l .6.圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥的母线长l ,弧长是圆锥的底面周长C =2лr ,侧面积S 侧=лr l 。

7.圆锥的侧面积与底面积的和叫圆锥的全面积(或表面积).S 全=2rl r ππ+。

【基本题型】1. 己知扇形的圆心角为1200,半径为6,则扇形的弧长是( )A. 3πB. 4π C . 5π D . 6π2. 已知1000的圆心角所对弧长为5π cm ,则这条弧所在圆的半径为( )A. 7cm B 8cm C. 9cm D. 10cm3. 弧长等于半径的圆弧所对的圆心角是( )A.0360π B. 0180π C. 090π D.6004. 在⊙O 中,300的圆心角所对的弧长是圆周长的 ;300的圆周角所对的弧长是圆周长的 。

5. ⊙O 的周长是24π,则长为6π的弧所对的圆心角为 ,所对的圆周角为 。

关于圆锥的母线与弧长及侧面积计算

关于圆锥的母线与弧长及侧面积计算

关于圆锥的母线与弧长及侧面积计算示例文章篇一:《圆锥的奇妙世界:母线、弧长与侧面积计算》嘿,同学们!今天咱们来聊聊圆锥这个超级有趣的图形。

你们看,圆锥就像一个尖顶的帽子,在我们的生活中到处都能看到它的影子呢。

比如说,冰激凌的蛋筒,那就是圆锥形状的。

圆锥啊,有一个很重要的部分叫母线。

母线就像是圆锥侧面的一条条骨架,从圆锥的顶点一直延伸到圆锥底面的边缘。

想象一下,如果把圆锥的侧面展开,母线就变成了扇形的半径。

那圆锥底面的圆周长和圆锥侧面展开的扇形弧长有啥关系呢?这就很神奇啦。

圆锥底面圆的周长就等于侧面展开扇形的弧长。

打个比方,这就像一条绳子绕着圆锥底面一圈,然后把这个圆锥侧面展开,这条绳子就变成了扇形的弧长。

如果底面圆的半径是r,根据圆的周长公式C = 2πr,这个2πr就是弧长啦。

接下来就是圆锥侧面积的计算啦。

圆锥的侧面积就等于扇形的面积。

我们知道扇形面积公式是S = 1/2lr(这里的l就是弧长,r就是母线长)。

因为弧长l = 2πr(底面圆周长),所以圆锥侧面积S = 1/2×2πr×母线长= πr l。

我记得有一次,我和我的小伙伴们一起做手工,要做一个圆锥形的小帐篷。

我们就得计算这个圆锥的侧面积,这样才能知道需要多少布料。

我的小伙伴小明就很迷糊,他说:“这怎么算呀,好复杂。

”我就跟他说:“你看,我们先量出底面圆的半径和母线长不就好啦。

就像我们量自己的身高和脚的大小一样简单。

”然后我们一起量出了半径和母线长,很顺利地算出了侧面积,做出了小帐篷。

还有在课堂上,老师问我们:“如果圆锥底面半径是3厘米,母线长是5厘米,那侧面积是多少呢?”有个同学就直接回答:“这还不简单,根据公式S = πrl,就是π×3×5 = 15π平方厘米呗。

”老师就笑着说:“对啦,看来大家都掌握了这个知识呢。

”圆锥的母线、弧长和侧面积计算虽然看起来有点难,但是只要我们理解了它们之间的关系,就像解开了一道有趣的谜题一样。

2023-2024学年山东省济宁市曲阜市九年级(上)期中数学试卷(含解析)

2023-2024学年山东省济宁市曲阜市九年级(上)期中数学试卷(含解析)

2023-2024学年山东省济宁市曲阜市九年级第一学期期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)1.一元二次方程x2﹣x+3=0的二次项系数、一次项系数、常数项分别是( )A.1,1,3B.1,﹣1,3C.﹣1,1,3D.﹣1,1,﹣3 2.许多数学符号蕴含着对称美,在下列数学符号中,既是轴对称图形,又是中心对称图形的符号是( )A.B.C.D.3.在平面直角坐标系xOy中,点A(﹣1,2)关于原点对称的点的坐标是( )A.(1,﹣2)B.(﹣1,2)C.(﹣2,1)D.(﹣1,﹣2)4.已知一元二次方程x2﹣4x﹣1=0的两根分别为m,n,则m+n﹣mn的值是( )A.5B.3C.﹣3D.﹣45.将抛物线y=x2向右平移2个单位后,抛物线的解析式为( )A.y=(x+2)2B.y=x2+2C.y=(x﹣2)2D.y=x2﹣26.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A.16B.14C.12D.107.已知A(﹣3,y1),B(3,y2),C(4,y3)是抛物线y=2(x﹣2)2+1上的三点,则y1,y2,y3由小到大依序排列是( )A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y2<y3<y18.如图,冰淇淋蛋筒下部呈圆锥形,则蛋筒圆锥部分包装纸的面积(接缝忽略不计)是( )A.27cm2B.54cm2C.27πcm2D.54πcm29.如图,点E是正方形ABCD的边CD上一点,把△ADE绕点A顺时针旋转90°到△ABF 的位置,若四边形AECF的面积为25,DE=3,则AE的长为( )A.4B.C.5D.10.如图,△ABC内接于⊙O,E是的中点,连接BE,OE,AE,若∠BAC=70°,则∠OEB的度数为( )A.70°B.65°C.60°D.55°11.2023年4月23是第28个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一,据统计,某书院对外开放的第一个月进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2850人次,若进书院人次的月平均增长率为x,则可列方程为( )A.600(1+2x)=2850B.600(1+x)2=2850C.600+600(1+x)+600(1+x)2=2850D.2850(1﹣x)2=60012.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),交y轴的正半轴于点C,对称轴交抛物线于点D,交x轴于点E,则下列结论:①abc<0;②2a+b=0;③b+2c>0;④a+b>am2+bm(m为任意实数);⑤一元二次方程ax2+bx+c+2=0有两个不相等的实数根;(6)当△BCD为直角三角形时,a的值有2个.其中正确的有( )A.2个B.3个C.4个D.5个二、填空题:本大题共6小题,每小题2分,共12分.13.若关于x的方程x2﹣2x﹣m=0有两个实数根,则m的取值范围是 .14.如图,平面直角坐标系中,二次函数y=x2﹣4x+3的图象与x轴交于点A,B,以第一象限内点C为圆心半径为2的圆经过A、B两点,则点C的坐标为 .15.如图,将△ABC绕着点A顺时针旋转x°到△ADE的位置,使点E首次落在BC上.已知∠ABC=30°,∠BAE=35°,则x= .16.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次不等式﹣x2+2x+m>0的解集为 .17.如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t﹣5t2,则小球从飞出到落地所用的时间为 s.18.如图,在平面直角坐标系中,点A在y轴的正半轴上,OA=1,将OA绕点O顺时针旋转45°到OA1,扫过的面积记为S1,A1A2⊥OA1交x轴于点A2;将OA2绕点O顺时针旋转45°到OA3,扫过的面积记为S2,A3A4⊥OA3交y轴于点A4;将OA4绕点O顺时针旋转45°到OA5,扫过的面积记为S3,A5A6⊥OA5交x轴于点A6;…;按此规律,则S2023的值为 .三、解答题:本大题共7小题,共52分.19.解下列方程:(1)x2−8x+1=0;(2)x(x﹣2)﹣x+2=0.20.定义:如果关于x的一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0,那么我们称这个方程为“黄金方程”.(1)判断一元二次方程2x2+5x+3=0是否为黄金方程,并说明理由.(2)已知3x2﹣ax+b=0是关于x的黄金方程,若a是此黄金方程的一个根,求a的值.21.△ABC在平面直角坐标系中如图所示.(1)请画出△ABC关于原点O对称的△A1B1C1,并写出A1,B1的坐标;(2)将△A1B1C1向右平移6个单位得到△A2B2C2,请画出△A2B2C2;(3)△ABC与△A2B2C2关于点P成中心对称,请直接写出点P的坐标.22.“阳光玫瑰”葡萄近几年来广受各地消费者青睐,在云南省广泛种植.某水果经销商以每公斤15元的价格购进一批“阳光玫瑰”葡萄,若按每公斤30元的价格销售,平均每天可售出60公斤结合销售记录发现,若售价每降低1元,平均每天的销售量增加10公斤,为了尽快减少库存,该水果商决定降价销售.(1)若一次降价2元,则每天的销售利润为 元;(2)销售单价定为每公斤多少元时,每天销售阳光玫瑰获得的利润w最大?最大利润是多少元?23.如图,已知△ABC是等边三角形,在△ABC外有一点D,连接AD,BD,CD,将△ACD 绕点A按顺时针方向旋转得到△ABE,AD与BE交于点F,∠BFD=97°(sin37°=0.6).(1)求∠ADC的大小;(2)若∠BDC=7°,BD=3,CD=5,求AD的长.24.如图,AB是⊙O的直径,点F、C在⊙O上且,连接AC、AF,过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线;(2)若,CD=4,求⊙O的半径.25.如图,抛物线y=﹣x2+4x+5与x轴交于点A和点B,与y轴交于点C.(1)求出A、B、C三点的坐标;(2)将抛物线y=﹣x2+4x+5图象x轴上方部分沿x轴向下翻折,保留抛物线与x轴的交点和x轴下方图象,得到的新图象记作M,图象M与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.若以EF为直径作圆,该圆记作图象N.①在图象M上找一点P,使得△PAB的面积为3,求出点P的坐标;②当图象N与x轴相离时,直接写出t的取值范围.参考答案一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)1.一元二次方程x2﹣x+3=0的二次项系数、一次项系数、常数项分别是( )A.1,1,3B.1,﹣1,3C.﹣1,1,3D.﹣1,1,﹣3【分析】根据一元二次方程的二次项系数、一次项系数和常数项的定义求解.解:一元二次方程x2﹣x+3=0的二次项系数为1,一次项系数为﹣1,常数项为3.故选:B.【点评】本题考查了一元二次方程的一般式:要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.2.许多数学符号蕴含着对称美,在下列数学符号中,既是轴对称图形,又是中心对称图形的符号是( )A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.解:A.是中心对称图形,不是轴对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.是轴对称图形,不是中心对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,符合题意.故选:D.【点评】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.3.在平面直角坐标系xOy中,点A(﹣1,2)关于原点对称的点的坐标是( )A.(1,﹣2)B.(﹣1,2)C.(﹣2,1)D.(﹣1,﹣2)【分析】两个点关于原点对称时,它们的坐标符号相反.由此可求点A关于原点对称的点的坐标.解:∵点A(﹣1,2),∴A点关于原点对称的点为(1,﹣2),故选:A.【点评】本题考查关于原点对称的点的坐标,熟练掌握关于原点对称的点的坐标特点是解题的关键.4.已知一元二次方程x2﹣4x﹣1=0的两根分别为m,n,则m+n﹣mn的值是( )A.5B.3C.﹣3D.﹣4【分析】先根据根与系数的关系得到m+n=4,mn=﹣1,然后利用整体代入的方法求m+n ﹣mn的值.解:根据题意得m+n=4,mn=﹣1,所以m+n﹣mn=4﹣(﹣1)=5.故选:A.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.5.将抛物线y=x2向右平移2个单位后,抛物线的解析式为( )A.y=(x+2)2B.y=x2+2C.y=(x﹣2)2D.y=x2﹣2【分析】按照“左加右减,上加下减”的规律求则可.解:根据题意y=x2的图象向右平移2个单位得y=(x﹣2)2.故选:C.【点评】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.6.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A.16B.14C.12D.10【分析】根据切线长定理得到AF=AD=2,BD=BE,CE=CF,根据BC=5,于是得到△ABC的周长=2+2+5+5=14,解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.【点评】本题考查了三角形的内切圆与内心,切线长定理,熟练掌握切线长定理是解题的关键.7.已知A(﹣3,y1),B(3,y2),C(4,y3)是抛物线y=2(x﹣2)2+1上的三点,则y1,y2,y3由小到大依序排列是( )A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y2<y3<y1【分析】把各点坐标代入抛物线y=2(x﹣2)2+1,求出y1,y2,y3的值,再比较大小即可.解:∵A(﹣3,y1),B(3,y2),C(4,y3)是抛物线y=2(x﹣2)2+1上的三点,∴y1=y=2(﹣3﹣2)2+1=51,y2=2(3﹣2)2+1=3,y3=2(4﹣2)2+1=9,∵3<9<51,∴y2<y3<y1.故选:D.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.8.如图,冰淇淋蛋筒下部呈圆锥形,则蛋筒圆锥部分包装纸的面积(接缝忽略不计)是( )A.27cm2B.54cm2C.27πcm2D.54πcm2【分析】由于锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,所以根据扇形的面积公式可计算出蛋筒圆锥部分包装纸的面积解:根据题意,圆锥的侧面积=×2π×3×9=27(cm2),即蛋筒圆锥部分包装纸的面积为27cm2.故选:C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.如图,点E是正方形ABCD的边CD上一点,把△ADE绕点A顺时针旋转90°到△ABF 的位置,若四边形AECF的面积为25,DE=3,则AE的长为( )A.4B.C.5D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=3,在Rt△ADE中,AE===.故选:B.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.10.如图,△ABC内接于⊙O,E是的中点,连接BE,OE,AE,若∠BAC=70°,则∠OEB的度数为( )A.70°B.65°C.60°D.55°【分析】连接OB、OC,则∠BOC=2∠BAC=140°,可得∠OBC=20°,再证EBC=∠EAC=∠EAB=∠BAC=35°,由三角形内角和定理求∠OEB即可.解:连接OB、OC,则∠BOC=2∠BAC=140°,∵OB=OC,∴∠OBC=∠OCB=20°,∵E是的中点,∴,∴∠EBC=∠EAC=∠EAB=∠BAC=35°,∴∠OBE=∠OBC+∠EBC=55°,∵OB=OE,∴∠OEB=∠OBE=55°,故选:D.【点评】本题主要考查了圆周角定理、同弧或等弧所对的圆周角相等,三角形内角和定理,熟练掌握各知识点是解决本题的关键.11.2023年4月23是第28个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一,据统计,某书院对外开放的第一个月进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2850人次,若进书院人次的月平均增长率为x,则可列方程为( )A.600(1+2x)=2850B.600(1+x)2=2850C.600+600(1+x)+600(1+x)2=2850D.2850(1﹣x)2=600【分析】先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于2850,列方程即可.解:设进馆人次的月平均增长率为x,则由题意得:600+600(1+x)+600(1+x)2=2850.故选:C.【点评】本题考查由实际问题抽象出一元二次方程,列出方程是解题的关键.本题难度适中,属于中档题.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),交y轴的正半轴于点C,对称轴交抛物线于点D,交x轴于点E,则下列结论:①abc<0;②2a+b=0;③b+2c>0;④a+b>am2+bm(m为任意实数);⑤一元二次方程ax2+bx+c+2=0有两个不相等的实数根;(6)当△BCD为直角三角形时,a的值有2个.其中正确的有( )A.2个B.3个C.4个D.5个【分析】根据二次此函数图象与系数的关系即可判断①;根据抛物线的对称轴x=,,即可判断②;根据得a=,则抛物线解析式可写为,将x=1代入解析式中,再结合图象即可判断③;根据二次函数图象的性质可得当x=1时,有最大值a+b+c,以此即可判断④;根据抛物线与y=﹣2的交点个数即可判断⑤;当△BCD为直角三角形时,有两种情况:∠CDB=90°,∠DCB=90°,以此可判断⑥.解:∵抛物线开口向下,∴a<0,∵抛物线对称轴>0,∴b>0,∵抛物线y轴交于正半轴,∴c>0,∴abc<0,故①正确;∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),∴抛物线对称轴为=1,∴,∴b=﹣2a,即2a+b=0,故②正确;由可得,则抛物线解析式可写为,由图象可知,当x=1时,y>0,即,∴b+2c>0,故③正确;∵抛物线开口向下,x=1为该抛物线对称轴,∴当x=1时,该函数有最大值,最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥am2+bm(m为任意实数),故④错误;由图可知,抛物线与直线y=﹣2有两个交点,∴一元二次方程ax2+bx+c+2=0有两个不相等的实数根,故⑤正确;当△BCD为直角三角形时,有两种情况,一是∠CDB=90°,二是∠DCB=90°,∴a值有两个,故⑥正确;综上,正确的结论有①②③⑤⑥,共5个.故选:D.【点评】本题考查了二次函数图象与系数的关系,解决本题的关键是综合运用二次函数图象上点的坐标特征、抛物线与x轴的交点进行计算.二、填空题:本大题共6小题,每小题2分,共12分.13.若关于x的方程x2﹣2x﹣m=0有两个实数根,则m的取值范围是 m≥﹣1 .【分析】根据判别式的意义得到Δ=(﹣2)2﹣4×1×(﹣m)≥0,然后解不等式即可.解:根据题意得Δ=(﹣2)2﹣4×1×(﹣m)≥0,解得m≥﹣1.故答案为m≥﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.14.如图,平面直角坐标系中,二次函数y=x2﹣4x+3的图象与x轴交于点A,B,以第一象限内点C为圆心半径为2的圆经过A、B两点,则点C的坐标为 (2,) .【分析】过点C分别作CD⊥AB于点D,CE⊥y轴于点E,先根据二次函数y=x2﹣4x+3求出A、B两点的坐标,再进一步求出线段AB的长,利用垂径定理与勾股定理求出CD 的长,即点C的纵坐标,再求出OD的长,即点C的横坐标.解:过点C作CD⊥AB于点D,CE⊥y轴于点E,连接CA,如图所示,∵二次函数y=x2﹣4x+3的图象与x轴交于点A,B,∴解x2﹣4x+3=0得,x1=1,x2=3,∴A、B两点的坐标分别为(1,0),(3,0),∴AB=2,OA=1,∵CD⊥AB,∴AD=AB=1,∴OD=OA+AD=2,在Rt△ACD中,CD=,∴点C的纵坐标为,∵CE⊥y轴,CD⊥AB,∴∠CEO=∠CDA=∠EOD=90°,∴四边形EODC是矩形,∴CE=OD=2,∴点C的横坐标为2,∴点C的坐标为(2,)故答案为:(2,).【点评】本题考查了二次函数与x轴的交点及垂径定理的应用,掌握点到x轴,y轴的距离就是点的横纵坐标的绝对值是解题的关键.15.如图,将△ABC绕着点A顺时针旋转x°到△ADE的位置,使点E首次落在BC上.已知∠ABC=30°,∠BAE=35°,则x= 25 .【分析】过点A作AF⊥EC于F,先根据旋转的性质得∠CAE=x°,由三角形的外角定理得∠AEC=65°,进而可求出∠EAF=25°,然后根据等腰三角形的性质得∠EAF=∠CAF=25°,据此可求出旋转角的度数.解:过点A作AF⊥EC于F,根据旋转的性质得:旋转角为∠CAE,AE=AC,∴∠CAE=x°,∵∠ABC=30°,∠BAE=35°,∴∠AEC=∠ABC+∠BAE=65°,∴∠EAF=90°﹣∠AEC=25°,∵AE=AC,AF⊥EC,∴∠EAF=∠CAF=25°,∴∠CAE=∠EAF+∠CAF=50°.∴x°=25°.故答案为:25.【点评】此题主要考查了图形的旋转变换及性质,等腰三角形的性质,三角形的内角和定理等,解答此题的关键是准确识图,熟练掌握图形旋转变换的性质,理解等腰三角形底边上的高、底边上的中线、顶角的平分线重合(三线合一).16.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次不等式﹣x2+2x+m>0的解集为 ﹣1<x<3 .【分析】根据函数的图象,得到函数的对称轴和一个抛物线与x轴交点坐标,计算出另一个抛物线与x轴的交点坐标,得出函数值大于0的x的取值范围,即可得到答案.解:由图象可知:抛物线的对称轴为:x=1,抛物线与x轴的一个交点为:(3,0),则抛物线与x轴的另一个交点的横坐标为:1×2﹣3=﹣1,由图象可知:函数值大于0的x的取值范围为:﹣1<x<3,即关于x的一元二次不等式﹣x2+2x+m>0的解集为:﹣1<x<3,故答案为:﹣1<x<3.【点评】本题考查了二次函数与不等式(组),正确掌握二次函数与不等式(组)的关系是解题的关键.17.如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t﹣5t2,则小球从飞出到落地所用的时间为 4 s.【分析】根据关系式,令h=0即可求得t的值为飞行的时间解:依题意,令h=0得0=20t﹣5t2得t(20﹣5t)=0解得t=0(舍去)或t=4即小球从飞出到落地所用的时间为4s故答案为4.【点评】本题考查了二次函数的性质在实际生活中的应用.此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0时的情形,借助二次函数解决实际问题.此题较为简单18.如图,在平面直角坐标系中,点A在y轴的正半轴上,OA=1,将OA绕点O顺时针旋转45°到OA1,扫过的面积记为S1,A1A2⊥OA1交x轴于点A2;将OA2绕点O顺时针旋转45°到OA3,扫过的面积记为S2,A3A4⊥OA3交y轴于点A4;将OA4绕点O顺时针旋转45°到OA5,扫过的面积记为S3,A5A6⊥OA5交x轴于点A6;…;按此规律,则S2023的值为 22019π .【分析】根据旋转的性质,得到△A1OA2、△A3OA4、△A5OA6、⋯、都是等腰直角三角形,分别求出,OA4=2,,利用扇形面积求出S1,S2,S3,S4,抽象概括出相应的数字规律,进而得出结论即可.解:将OA绕点O顺时针旋转45°到OA1,A1A2⊥OA1交x轴于点A2∴∠AOA1=45°,OA=OA1=1,∠OA1A2=90°,∴∠A1OA2=90°﹣∠AOA1=45°,∴∠OA2A1=90°﹣∠A1OA2=45°,∴△A1OA2是等腰直角三角形,∴A1A2=OA1=1,∴;同理可得:△A3OA4、△A5OA6、⋯、都是等腰直角三角形,OA4=2,…,∴,,,,⋯;∴,∴,故答案为:22019π.【点评】本题考查坐标与旋转,等腰三角形的判定和性质,扇形的面积.熟练掌握旋转的性质,扇形的面积公式,抽象概括出相应的数字规律,是解题的关键.三、解答题:本大题共7小题,共52分.19.解下列方程:(1)x2−8x+1=0;(2)x(x﹣2)﹣x+2=0.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.解:(1)∵a=1,b=﹣8,c=1,∴Δ=(﹣8)2﹣4×1×1=60>0,则x==4±,∴x1=4+,x2=4﹣;(2)∵x(x﹣2)﹣x+2=0,∴(x﹣2)(x﹣1)=0,则x﹣2=0或x﹣1=0,解得:x1=2,x2=1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.定义:如果关于x的一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0,那么我们称这个方程为“黄金方程”.(1)判断一元二次方程2x2+5x+3=0是否为黄金方程,并说明理由.(2)已知3x2﹣ax+b=0是关于x的黄金方程,若a是此黄金方程的一个根,求a的值.【分析】(1)根据黄金方程的定义进行求解即可;(2)根据黄金方程的定义得到b=﹣a﹣3,则原方程为3x2﹣ax﹣a﹣3=0,再由a是此黄金方程的一个根,得到2a2﹣a﹣3=0,解方程即可.解:(1)一元二次方程2x2+5x+3=0是黄金方程,理由如下:由题意得,a=2,b=5,c=3,∴a﹣b+c=2+3﹣5=0,∴一元二次方程2x2+5x+3=0是黄金方程;(2)∵3x2﹣ax+b=0是关于x的黄金方程,∴3+b﹣(﹣a)=0,∴b=﹣a﹣3,∴原方程为3x2﹣ax﹣a﹣3=0,∵a是此黄金方程的一个根,∴3a2﹣a2﹣a﹣3=0,即2a2﹣a﹣3=0,∴(a+1)(2a﹣3)=0,解得a=﹣1或.【点评】本题主要考查了解一元二次方程,一元二次方程解的定义,正确理解题意是解题的关键.21.△ABC在平面直角坐标系中如图所示.(1)请画出△ABC关于原点O对称的△A1B1C1,并写出A1,B1的坐标;(2)将△A1B1C1向右平移6个单位得到△A2B2C2,请画出△A2B2C2;(3)△ABC与△A2B2C2关于点P成中心对称,请直接写出点P的坐标.【分析】(1)根据关于原点对称的点的特征,先找出A1、B1、C1的位置,再依次连接即可;(2)根据平移前后点的特征,先找出A2、B2、C2的位置,再依次连接即可;(3)根据连接任意两对对称点,两条线段的交点为对称中心,连接AA2、BB2,它们的交点即为点P,根据图形得出点P的坐标即可.解:(1)如图,△A1B1C1的图形如图所示,A1(﹣1,﹣1),B1(﹣4,﹣2).(2)如图,△A2B2C2的图形如图所示.(3)连接AA2、BB2,它们的交点即为点P,∵△ABC与△A2B2C2关于点P成中心对称,∴由图可知,点P的坐标为(3,0).【点评】本题考查了画中心对称图形、作图﹣平移,掌握画两个图形的对称中心的方法是解答本题的关键.确定成中心对称的两个图形的对称中心的方法:(1)连接任意一对对称点,取这条线段的中点,则该点为对称中心.(2)任意连接两对对称点,这两条线段的交点即是对称中心.22.“阳光玫瑰”葡萄近几年来广受各地消费者青睐,在云南省广泛种植.某水果经销商以每公斤15元的价格购进一批“阳光玫瑰”葡萄,若按每公斤30元的价格销售,平均每天可售出60公斤结合销售记录发现,若售价每降低1元,平均每天的销售量增加10公斤,为了尽快减少库存,该水果商决定降价销售.(1)若一次降价2元,则每天的销售利润为 1040 元;(2)销售单价定为每公斤多少元时,每天销售阳光玫瑰获得的利润w最大?最大利润是多少元?【分析】(1)根据题意和题目中的数据,可以求出一次降价2元时,每天的销售利润;(2)根据题意,可以写出w与销售单价之间的函数解析式,然后利用二次函数的性质,即可得到w的最大值.解:(1)由题意可得,若一次降价2元,则每天的销售利润为:(30﹣2﹣15)×(60+2×10)=1040(元),故答案为:1040;(2)设销售单价定为每公斤x元,由题意可得,w=(x﹣15)[60+(30﹣x)×10]=﹣10(x﹣)2+1102.5,∴当x=时,w取得最大值,此时w=1102.5,答:销售单价定为每公斤元时,每天销售阳光玫瑰获得的利润w最大,最大利润是1102.5元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质求最值.23.如图,已知△ABC是等边三角形,在△ABC外有一点D,连接AD,BD,CD,将△ACD 绕点A按顺时针方向旋转得到△ABE,AD与BE交于点F,∠BFD=97°(sin37°=0.6).(1)求∠ADC的大小;(2)若∠BDC=7°,BD=3,CD=5,求AD的长.【分析】(1)由旋转的性质可得AB=AC,∠ADC=∠E,∠CAB=∠DAE=60°,由三角形的内角和定理可求出答案;(2)连接DE,可证△AED是等边三角形,可得∠ADE=60°,AD=DE,由旋转的性质可得△ACD≌△ABE,可得CD=BE=4,由勾股定理可求出答案.解:(1)∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴AB=AC,∠ADC=∠E,∠CAB=∠DAE=60°,∵∠BFD=97°=∠AFE,∴∠E=180°﹣97°﹣60°=23°,∴∠ADC=∠E=23°;(2)如图,连接DE,∵AD=AE,∠DAE=60°,∴△AED是等边三角形,∴∠ADE=60°,AD=DE,∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴△ACD≌△ABE,∴CD=BE=5,∵∠BDC=7°,∠ADC=23°,∠ADE=60°,∴∠BDE=90°,∴DE===4,∴AD=DE=4.【点评】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.24.如图,AB是⊙O的直径,点F、C在⊙O上且,连接AC、AF,过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线;(2)若,CD=4,求⊙O的半径.【分析】(1)连接OC,由F,C,B三等分半圆,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连接BC,由AB为直径得∠ACB=90°,由F,C,B三等分半圆得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=8,在Rt△ACB中,根据勾股定理求得AB,进而求得⊙O的半径.【解答】(1)证明:连接OC,如图,∵,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接BC,如图,∵AB为直径,∴∠ACB=90°,∵=,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=4,∴AC=2CD=8,在Rt△ACB中,BC2+AC2=AB2,即82+(AB)2=AB2,∴AB=,∴⊙O的半径为.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和含30度的直角三角形三边的关系.25.如图,抛物线y=﹣x2+4x+5与x轴交于点A和点B,与y轴交于点C.(1)求出A、B、C三点的坐标;(2)将抛物线y=﹣x2+4x+5图象x轴上方部分沿x轴向下翻折,保留抛物线与x轴的交点和x轴下方图象,得到的新图象记作M,图象M与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.若以EF为直径作圆,该圆记作图象N.①在图象M上找一点P,使得△PAB的面积为3,求出点P的坐标;②当图象N与x轴相离时,直接写出t的取值范围.【分析】(1)分别令x=0,y=0即可求A、B、C点坐标;(2)①设P点的纵坐标为m,由题意可得6(﹣m)=3,求出m=﹣1,当﹣x2+4x+5=﹣1时,P(2+,﹣1)或(2﹣,﹣1);当﹣x2+4x+5=1时,P(2+,﹣1)或(2﹣,﹣1);②画出函数图象,由题意可知﹣9<t≤0,当﹣x2+4x+5=﹣t时,求出E(2﹣,t),F(2+,t),则EF=2,当=﹣t时,解得t=,此时图象N与x轴相切,即可求﹣9<t<时,图象N与x轴相离.解:(1)令x=0,则y=5,∴C(0,5),令y=0,则﹣x2+4x+5=0,解得x=5或x=﹣1,∴A(﹣1,0),B(5,0);(2)①设P点的纵坐标为m,∵△PAB的面积为3,∴6(﹣m)=3,解得m=﹣1,当﹣x2+4x+5=﹣1时,解得x=2+或x=2﹣,∴P(2+,﹣1)或(2﹣,﹣1);当﹣x2+4x+5=1时,解得x=2+或x=2﹣,∴P(2+,﹣1)或(2﹣,﹣1);综上所述:P点坐标为(2+,﹣1)或(2﹣,﹣1)或(2+,﹣1)或(2﹣,﹣1);②∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线的顶点为(2,9),∵图象M与直线y=t恒有四个交点,∴﹣9<t≤0,当﹣x2+4x+5=﹣t时,解得x=2+或x=2﹣,∴E(2﹣,t),F(2+,t),∴EF=2,当=﹣t时,解得t=,∵t<0,∴t=,此时图象N与x轴相切,∴﹣9<t<时,图象N与x轴相离.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,图象翻折的性质,圆与直线的位置关系,数形结合解题是关键.。

弧长与扇形面积的押轴题解析汇编二弧长与扇形面积

弧长与扇形面积的押轴题解析汇编二弧长与扇形面积

弧长与扇形面积的押轴题解析汇编二弧长与扇形面积 一、选择题3.(2011年内蒙古呼和浩特,3,3)已知圆柱的底面半径为1,母线长为2,则圆柱的侧面积为( ) A.2 B.4 C.2π D.4π解题思路】根据圆柱的侧面积的计算公式:圆柱的侧面积=底面周长⨯高.【答案】D【点评】本题考查圆柱的侧面积的求法,应明确圆柱的侧面展开图是矩形,矩形的长是圆柱的底面圆的周长,矩形的宽是圆柱的母线长.难度较小.4. (2011广东珠海,3,3分)圆心角为600且半径为3的扇形的弧长为( )A 、2πB 、πC 、23πD 、3π 【解题思路】根据弧长公式L=180R n π=180360⨯π=π。

可知选项B 正确.难度适中. 【答案】B .【点评】本题考查了扇形的弧长计算方法和计算公式。

1. (2011安徽,7,4分)如图,⊙半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧BC 的长 ( )A.5π B.25π C. 35π D. 45π【解题思路】由弧长公式L=可知,只要求出弧BC 所对的圆心角度数即可.连接OB 、OC ,得∠BOC=2∠A=2×36°= 72°,所以L=,应选B.【答案】B.【点评】本题主要考查圆中弧长公式和圆周角定理的应用.难度较小. 2. (2011贵州毕节,15,3分)如图,在△ABC 中,AB =AC =10,CB=16,分别以AB 、AC 为直径作半圆,则图中阴影部分面积是( ) A 、4850-π B 、4825-π C 、2450-π D 、24225-π 【解题思路】设半圆与BC 的交点为D,连结AD,可得阴影部分面积等于两个半圆面积之和减去三角形ABC 的面积。

故答案B 正确。

A 、C 、D 均不正确。

【答案】B【点评】本题考查了圆中阴影部分面积的求法,在解题是要善于把阴影部分进行分割,把它转化为弓形、三角形、扇形等图形。

圆锥的母线就是其侧面展开图扇形的半径

圆锥的母线就是其侧面展开图扇形的半径

例3.蒙古包可以近似地看成由圆锥和圆柱组成的.如果想 用毛毡搭建20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要多少m2的毛毡? (π取3.142结果精确 到1 m2).
解:如图是一个蒙古包的示意图
课本练习
随堂练习 1.已知一个圆锥的底面半径为12cm,母线长为
20cm,则这个圆锥的侧面积为_2_4_0___c_m__2 ,全面
1.圆锥的高h 连结顶点与底面圆心的线段.
h
l l 2.圆锥的母线 把连结圆锥顶点和底面圆周上的任 意一点的线段叫做圆锥的母线。
Or
思考:圆锥的母线有几条? 3.底面半径r
圆锥的底面半径、高线、母线长 三者之间的关系:
l
h
l2 h2 r2
例如:已知一个圆锥的高为
6cm,半径为8cm,则这个圆
积为__3_8_4___cm__2_
2.一个圆锥形的冰淇淋纸筒,其底面直径为6cm,
高为4cm,围成这样的冰淇淋纸筒所需纸片的面
积为( D ) A. 66cm2
C. 28cm2
B.30cm2 D. 15cm2
3.一个圆锥形零件的高4cm,底面 半径3cm,求这个圆锥形零件的侧 面积和全面积。
Or
锥的母长为__1_0_c_m__
l
h
Or
沿着圆锥的母线,把一个圆锥的侧面 展开,得到一个扇形,这个扇形的弧 长与底面的周长相等
圆锥侧面展开图是扇形,这个扇 形的半径与圆锥中的母线相等
圆锥的底面周长就是其侧面展开图扇形的弧长, 圆锥的母线就是其侧面展开图扇形的半径。
图 23.3.7
圆锥的侧面积和全面积
一只蚂蚁要从底面圆周上一点B出发,沿圆

初三数学弧长和扇形面积公式、圆锥的侧面积和全面积知识精讲 人教实验版

初三数学弧长和扇形面积公式、圆锥的侧面积和全面积知识精讲 人教实验版

初三数学弧长和扇形面积公式、圆锥的侧面积和全面积知识精讲 人教实验版 一. 本周教学内容:弧长和扇形面积公式、圆锥的侧面积和全面积教学目的1. 使学生掌握弧长和扇形面积公式、圆锥及其特征,使学生掌握圆锥的轴截面图及其特点。

2. 使学生掌握弧长和扇形面积公式、圆锥侧面展开图的画法及侧面积计算公式。

3. 使学生比较熟练地应用弧长和扇形面积公式、圆锥的基本性质和轴截面解决有关圆锥表面积的计算问题。

4. 培养学生空间观念及空间图形与平面图形的相互转化思想,培养学生空间想象能力和计算能力。

教学重点和难点:教学重点是弧长和扇形面积公式,圆锥及其特征,圆锥的侧面积计算难点是圆锥侧面展开图(扇形)中各元素与圆锥各元素之间的关系 教学过程1. 圆周长:r 2C π= 圆面积:2r S π=2. 圆的面积C 与半径R 之间存在关系R 2C π=,即360°的圆心角所对的弧长,因此,1°的圆心角所对的弧长就是360R2π。

n °的圆心角所对的弧长是180Rn π180Rn π=∴l P 120 *这里的180、n 在弧长计算公式中表示倍分关系,没有单位。

3. 由组成圆心角的两条半径和圆心角所对的弧所围成的圆形叫做扇形。

发现:扇形面积与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也就越大。

4. 在半径是R 的圆中,因为360°的圆心角所对的扇形的面积就是圆面积2R S π=,所以圆心角为n °的扇形面积是:R 21360R n S 2l =π=扇形(n 也是1°的倍数,无单位)5. 圆锥的概念观察模型可以发现:圆锥是由一个底面和一个侧面围成的。

其中底面是一个圆,侧面是一个曲面,如果把这个侧面展开在一个平面上,展开图是一个扇形。

如图,从点S 向底面引垂线,垂足是底面的圆心O ,垂线段SO 的长叫做圆锥的高,点S 叫做圆锥的顶点。

锥也可以看作是由一个直角三角形旋转得到的。

圆锥体母线长公式

圆锥体母线长公式

圆锥体母线长公式咱们今天就来好好唠唠圆锥体母线长公式这个事儿。

不知道大家有没有过这样的经历,去买甜筒冰淇淋的时候,那个甜筒的形状是不是有点像圆锥?我记得有一次,我带小侄子去买冰淇淋,他盯着那个甜筒看了半天,问我:“姑姑,这怎么像个尖尖的帽子?”我笑着告诉他,这其实就是一个圆锥的形状呢。

咱说回圆锥体母线长公式。

圆锥体母线长公式是:l = √(r² + h²) ,这里的 l 表示母线长,r 是圆锥底面半径,h 是圆锥的高。

为了让大家更清楚这个公式是咋来的,咱们来想象一下。

把一个圆锥沿着它的母线剪开,然后平铺在一个平面上,你会发现得到了一个扇形。

这个扇形的半径就是圆锥的母线长。

那为啥母线长可以用这个公式来计算呢?假设咱们有一个圆锥,底面半径是 3 厘米,高是 4 厘米。

那根据勾股定理,母线长就等于根号下 3 的平方加上 4 的平方,也就是根号下 9 加 16 ,等于 5 厘米。

这就好比我们要搭一个帐篷,知道了底面的大小和帐篷的高度,就能算出支撑帐篷的杆子得多长,这杆子的长度就类似于母线的长度。

再比如说,在建筑工地上,工人师傅要建造一个圆锥形的建筑物。

如果知道了底面的半径和建筑物的高度,就能通过这个公式算出母线的长度,从而确定需要多长的材料来搭建这个圆锥形的结构。

在做数学题的时候,经常会碰到求圆锥体母线长的题目。

这时候可别慌,只要记住这个公式,把题目中给出的半径和高的数值代进去,认真算一算,就能得出答案啦。

还记得我上学那会,有一次数学考试就考到了这个知识点。

当时我可紧张了,就怕自己算错。

结果认真分析题目,运用这个公式,最后做对了,那心情,别提多开心了!总之,圆锥体母线长公式虽然看起来有点复杂,但只要我们多做几道题,多联系实际生活中的例子,就能轻松掌握啦。

希望大家以后再碰到和圆锥体母线长相关的问题,都能迎刃而解,就像吃冰淇淋一样轻松愉快!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S阴= S扇形ACB-S扇形ACE-SRt△OCE-S扇形DOB
学习目标:1、掌握图形与圆的相关定义与性质 2、学会分析与圆有关的计算
1. 若正六边形的边心距为 ,则这个正六边形的半 径为 ( C ) A. 1 B. 2 C. 4 D.
2. 如图5-3-2,⊙O是正五边形ABCDE的外接圆,则
∠CAD= 36° .
(图一)
(图二)
S阴=SRt△COF+S扇形BOC- SRt△DOE- SRt△CDF
=
∴阴影部分的面积:
答案:
考题再现 1. (2012广东)如图5-3-5,在□ABCD中,AD=2,AB=4, ∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连
接CE,则阴影部分的面积是 (结果保留π ).
2. (2014佛山)如图5-3-6,AC⊥BC,AC=BC=4,以BC为 直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过 点O作AC的平行线交两弧于点D,E,则阴影部分的面积是 .
学习目标:1、掌握图形与圆的相关定义与性质 2、学会分析与圆有关的计算
6. 圆锥的体积= ×底面积×高 (注意:①圆锥的母线
1 3
与展开后所得扇形的半径相等;②圆锥的底面周长与展开后所
得扇形的弧长相等).
7. 圆柱的母线(高)=展开后所得矩形的宽,
圆柱的底面周长=矩形的长.
8. 圆柱的侧面积=底面圆的周长×高.
考点2
弧长与扇形的面积计算
(结果保留π ).
【例2】(2013广东)如图5-3-3,三个小正方形的边长都为1, 则图中阴影部分面积的和是
思路点拨:阴影部分可看成是圆心角为135°,半径为1
是扇形,根据扇形的面积公式即可求解.
学习目标:1、掌握图形与圆的相关定义与性质 2、学会分析与圆有关的计算
解题指导:解此类题的关键是掌握扇形的面积公式.
第3节 与圆有关的计算
授课人:姜先磊
概念定理
1. 正多边形和圆的相关概念 (1)正多边形:各边相等,各角也相等的多边形叫做正多 边形. (2)正多边形的中心:正多边形的外接圆的圆心叫做这个 正多边形的中心. (3)正多边形的半径:正多边形的外接圆的半径叫做这个 正多边形的半径. (4)正多边形的边心距:正多边形的中心到正多边形一边 的距离叫做这个正多边形的边心距. (5)中心角:正多边形的每一边所对的外接圆的圆心角叫 做这个正多边形的中心角.
考题预测
3. 如图5-3-8,直径AB为12的半圆,绕A点逆时针旋转60°, 此时点B旋转到点B′,则图中阴影部分的面积是 ( B ) A. 12π B. 24π C. 6π D. 36π
4. 如图5-3-9,四边形ABCD是⊙O的内接四边形,⊙O的半径 为2,∠B=135°,则 的长为 ( B ) A. 2π B. π C. D.
解此类题要注意以下要点:
(1)三角形的面积公式; (2)正多边形的性质.
学习目标:1、掌握图形与圆的相关定义与性质 2、学会分析与圆有关的计算
考题再现
1. (2011肇庆)已知正六边形的边心距为 3 ,则它的 周长是 A. 6 B. 12 ( B )
C.
D.
学习目标:1、掌握图形与圆的相关定义与性质 2、学会分析与圆有关的计算
解此类题要注意以下要点:
求不规则的图形的面积,可以转化为几个规则图形的面 积的和或差来求.
学习目标:1、掌握图形与圆的相关定义与性质 2、学会分析与圆有关的计算
解:如图5-3-4,根据图示知,∠1+∠2=180°-90°45°=45°.
∵∠ABC+∠ADC=180°.
∴图中阴影部分的圆心角的和是180°-∠1-∠2=135°.
∴在Rt△ABD中,AD=BD=
(2)如答图5-3-1,连接OC,OD.
∵∠ABC=30°,
∴∠AOC=2∠B=60°. ∵OA=OB, ∴由(1)得∠ຫໍສະໝຸດ OD=90°,∴∠COD=150°.

附加题:能力提升 如图,∠AOB=90°,OA=OB=2,D,E分别是OA,OB 边中点,点C是弧AB中点,则图一中阴影面积为? 图二中阴影面积呢?
9. 圆柱的表面积=上下底面面积+侧面积.
10. 圆柱的体积=底面积×高.
学习目标:1、掌握图形与圆的相关定义与性质 2、学会分析与圆有关的计算
注意事项: (1)在弧长计算公式中,n是表示1°的圆心角的倍数,n和 180都不要带单位. (2)若圆心角的单位不全是度,则需要先化为度后再计算 弧长. (3)题设未标明精确度的,可以将弧长用π 表示. (4)正确区分弧、弧的度数、弧长三个概念:度数相等的弧, 弧长不一定相等;弧长相等的弧不一定是等弧;只有在同圆或等 圆中,才有等弧的概念,才是三者的统一. (5)求阴影面积常用的方法:①直接用公式法; ②和差法; ③割补法. (6)求阴影面积的主要思路是将不规则图形面积转化为规 则图形的面积.
方法规律
学习目标:1、掌握图形与圆的相关定义与性质 2、学会分析与圆有关的计算
考点1
正多边形和圆的相关计算 考点精讲
【例1】(2015广州)已知圆的半径是
,则该圆的内接正
六边形的面积是______________________
思路点拨:解题的关键是要记住正六边形的特点,它被 半径分成六个全等的等边三角形.
5. 如图5-3-10,AB为⊙O的直径,弦AC=2,∠ABC=30°
,∠ACB的平分线交⊙O于点D,求: (1)BC,AD的长; (2)图中两阴影部分面积的和.
解:(1)∵AB是直径,
∴∠ACB=∠ADB=90°. 在Rt△ABC中,∠ABC=30°,AC=2, ∴AB=4. ∴ ∵∠ACB的平分线交⊙O于点D, ∴∠DCA=∠BCD. ∴ ∴AD=BD.
2. 扇形:由组成圆心角的两条半径和圆心角所对的弧所 围成的图形叫做扇形. 3. 圆锥 (1)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥 的母线.连接顶点与底面圆心的线段叫圆锥的高. (2)圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆
锥底面的周长,扇形的半径等于圆锥的母线长.
1、掌握图形与圆的相关定义与性质 2、学会分析与圆有关的计算
学习目标:1、掌握图形与圆的相关定义与性质 2、学会分析与圆有关的计算
主要公式 1. 圆周长公式:C=2π r.
2. 弧长公式:
半径为r).
(弧长为l,圆心角度数为n,圆的
3. 圆面积公式:S=π r2 .
4. 扇形面积公式: 为扇形的弧长). 5. 圆锥的侧面积公式: 圆锥的全面积公式:S全=S底+S侧=π r2+π rl. ; (其中l
学习目标:1、掌握图形与圆的相关定义与性质 2、学会分析与圆有关的计算
解:连接正六边形的中心与各个顶点,得到六个等边三角
形,
等边三角形的边长是 因而等边三角形的面积是 ∴正六边形的面积为 . ,高为3, .
解题指导:解此类题的关键是掌握正多边形的特点,正 六边形被它的半径分成六个全等的等边三角形.
相关文档
最新文档