第1章-张量分析(清华大学张量分析-你值得拥有)

合集下载

张量分析(1)

张量分析(1)

x2
' x2
e2'
e2 e ' 1
' x1

e1 x1
x1
x2
' x2
' x1
x2
' x2 e2'
e 2 e1'

' x1
e1 x1
x1
令:αi' j cos(ei' ,e j )
( i' , j 1,2 )
则: αi' j

cos(e1' , e1 ) cos(e1' , e2 ) cos sin cos( e , e ) cos( e , e ) ' ' sin cos 1 2 2 2
A B ( Aij Bij )ei e j Tijei e j Τ
符合 φ ijklei e j ek el ,为一新张量
另证:

Ai ' j ' i 'i j ' j Aij Bi ' j ' i 'i j ' j Bij
Ai ' j ' Bi ' j ' i 'i j ' j ( Aij Bij )
xi xi , j ij x j aii jk a jk
三.Ricci 符号
定义:
ei j k
1 1 0
ei j k
即:
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0

张量分析——精选推荐

张量分析——精选推荐

《连续介质力学》例题和习题第一张、矢量和张量分析第一节 矢量与张量代数一、 矢量代数令 11223A A A =++A e e e 112233B B B =++B e e e 则有 11223A A A αααα=++A e e e 11122233()()()A B A B A B +=+++++A B e ee 1122331122331122()()A A A B B B A B A B A B ∙=++∙++=++A B e e e e e e112233112233111112121313212122222323313132323333()() A A A B B B A B A B A B A B A B A B A B A B A B ⨯=++⨯++=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯A B e e e e e e e e e e e e e e e e e e e e e e e e 又因为 11⨯=e e 0 123⨯=e e e 132⨯=-e e e 213⨯=-e e e 22⨯=e e 0 231⨯=e e e 312⨯=e e e 321⨯=-e e e 33⨯=e e 0则 2332131132122(_)()()A B A B A B A B A B A B⨯=+-+-A B e e e习题1、证明下列恒等式:1)[]2()()()()⨯∙⨯⨯⨯=∙⨯A B B C C A A B C2) [][]()()()()⨯∙⨯=∙⨯-∙⨯A B C D A C D B B C D A2、请判断下列矢量是否线性无关?1232=-+A e e e 23=--B e e 12=-+C e e .其中i e 单位为正交的基矢量。

*补充知识:矩阵及矩阵运算1、定义:[]()111213212223313233,1,2,3ij A A A A A A A i j A AA ⎡⎤⎢⎥⎡⎤===⎣⎦⎢⎥⎢⎥⎣⎦A i 表示行,j 表示列;m 和n 相等表示为方阵,称为m (或n )阶矩阵。

张量分析

张量分析

张量分析张量分析,又称张量微积分,是一门研究多维空间中的向量和张量的数学工具。

它在物理学、工程学、计算机科学等领域有着广泛的应用。

张量分析的核心思想是通过张量的计算和运算,来描述和解释多维空间中的现象和问题。

在数学中,张量是一种广义的向量概念。

它不仅可以表示标量和向量,还可以表示具有更高维度的物理量。

例如,二阶张量可以表示物体的形变和应力分布,三阶张量可以表示电磁场的分布,四阶张量可以表示弹性材料的性质等。

张量分析的基本概念包括张量的定义和表示、张量的变换规律以及张量的运算。

对于二阶张量,可以用一个矩阵来表示。

张量的变换规律与坐标系的选择有关,不同的坐标系下,同一个张量可以表示为不同的矩阵形式。

张量的运算包括加法、数乘、内积和外积等。

这些运算在物理和工程问题中具有重要的意义,可以帮助研究人员推导和解决实际问题。

在物理学中,张量分析被广泛应用于描述和分析物体的运动、形变、应力等问题。

例如,通过分析物体的应力张量,可以判断物体是否会发生破坏或变形。

在工程学中,张量分析可以用于解决弹性力学、流体力学、电磁学等问题。

在计算机科学中,张量分析可以用于图像处理、模式识别等领域。

张量分析的发展离不开数学家们的努力。

早在19世纪,克里斯托弗·亚当斯(Christopher Adams)就提出了张量的概念。

20世纪初,爱因斯坦在相对论的研究中也广泛应用了张量分析。

随着计算机的发展和计算能力的提高,张量分析在科学研究中的应用也越来越广泛。

虽然张量分析在各个领域中都有广泛的应用,但它的理论和方法并不容易掌握。

要学好张量分析,需要对线性代数、微积分和向量分析等数学知识有扎实的掌握。

此外,也需要具备一定的物理学和工程学的基础知识。

对于初学者来说,可以通过学习相关的教材和参考资料,同时结合实际问题进行练习和应用。

总之,张量分析是一门重要的数学工具,对于描述和解决多维空间中的问题具有重要的意义。

它在物理学、工程学、计算机科学等领域有着广泛的应用。

张量分析书籍附详尽易懂

张量分析书籍附详尽易懂

n个
称为n维仿射空间。E n 中旳每一种元素称为点。
记:
o (0, ,0),
x (x1,, xn ) ,
(x1, , xn )
且分别称为放射空间旳原点、位置矢量和负矢量。
对于n维仿射空间,全部旳位置矢量构成一种集合:
V0 x (x1,, xn ) xi , xi F,1 i n
(1 t)(1,1) t(1,1) a t b
(1 2t,1 2t) a t b
当 t b 时:
(2t 1,2t 1) (1,1)
当 t a 时:
(2t 1,2t 1) (1,1)
由此可得 a 0 ,b 1 。显然 r1 等 r2 价。
r1 与 r5 : (取 s b5 b1 )
域上旳矢量空间。且仍记为V0 。
数域上旳矢量空间V0 具有如下性质:x, y, z V0 ,、 F
(1)
x yyx
(2)
(x y) z x ( y z)
(3)V0中存在称为有关加法旳单位元素o,使得:
xo x
x V0
(4)V0中每一种元素x都存在唯一旳(-x ),使得:
x (x) o
当t=b时:位置矢量标
定b点。即:
S
(4b 2,3 2b) (2,1)
由此拟定b=1 。
x2
当t=a时:位置矢量标
3
2
定a点。即:
1
(4a 2,3 2a) (1,1.5 )
由此拟定a=0.75 。
图中画出了计算成果 。
x2 3
2 u ab
1
2 (a)
u xy
x1
4
6
u xy u ab
1
2
。 Vx空间中旳矢量称为约束矢量。

最新张量分析第一章ppt课件

最新张量分析第一章ppt课件
132,321,213
0,当 i , j , k 中有取值相同者.
1
1
3
2
3
2
偶排列
奇排列
21
矢量叉积 a b ( a 2 b 3 a 3 b 2 ) e 1 ( a 1 b 2 a 2 b 1 ) e 3 ( a 3 b 1 a 1 b 3 ) e 2 用置换符号可写成
a b c ( ijka jb k ) ( c i)
23
1.2 恒等式 ijk istjs kt jt ks
第一种证明:
11 12 13 1 0 0
1r 1s 1t
I 21 22 23 0 1 0 1 rst I 2r 2s 2t rst
31 32 33 0 0 1
3r 3s 3t
ir is it ijkrst jr js jt
a b abco s
点积满足
abba
a ( b c ) a b a c
11
(5)矢量的叉积
e1 e2 e3 aba1 a2 a3
b1 b2 b3
(a2b3a3b2)e1(a1b2a2b1)e3(a3b1a1b3)e2
注意:
a b b a
axb
O
b
a -axb
12
质量守恒,动量守恒,能量守恒,热力学基本定律 3)连续介质的本构方程
描述各种连续介质模型对外部作用的响应;
3
第一章 连续介质力学的数学基础
重点掌握: 1. 张量的概念 满足坐标变换规律 运算法则 2 .证明一些恒等式 3 .梯度,散度,旋度等概念
7
第一章 连续介质力学的数学基础
1.1 矢量
1.1.1矢量的概念
在三维欧几里得空间内, 具有大小和方向 的有向 线段.

第一章 张量分析基础知识

第一章 张量分析基础知识

晶体物理性能南京大学物理系由于近代科学技术的发展,单晶体人工培养技术的成熟,单晶体的各方面物理性能(如力、声、热、电、磁、光)以及它们之间相互作用的物理效应,在各尖端科学技术领域里,都得到了某些应用.特别是石英一类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电子技术中,比较早地在工业规模上进行大批生产和广泛应用.激光问世的四十多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应用中,已成单晶体应用中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之一,目的就是希望对晶体特别是光电技术中使用的晶体(包括基质晶体与非线性光学晶体)的有关物理性能及其应用方面的基本知识,有一个了解.对今后从事光电晶体的生长、检测和应用的工作,在分析问题、解决问题方面有所帮助,同时要在今后工作中不断从实践和理论两个方面扩大知识领域,有一个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个方面作深入全面的介绍,也将侧重于激光晶体有关的一些性能及其应用.鉴于以上考虑,《晶体物理性能》讲义将以离子晶体为主要对象,以光电技术上应用为线索组织内容,共分为八章.着重于从宏观角度结合微观机制介绍晶体基本物理性能以及各种交互作用过程的物理效应和它们在光电技术中的某些应用,包括弹性与弹性波(第二章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第八章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、方便地描述这些物理性能必须使用张量来表示.因此,在第一章,我们介绍了关于张量分析基础知识方面的内容.由于水平有限,实践经验缺乏,时间仓促,因而内容安排不妥、取舍不当、错误之处一定很多,希望同学们提出宝贵意见,批评指正.第一章张量的基础知识§1.1标量、矢量和二阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5二阶张量的变换与张量的定义………………………………………………………§1.6张量的足符互换对称…………………………………………………………………§1.7张量的矩阵表示和矩阵的代数运算…………………………………………………§1.8二阶对称张量的几何表示和二阶张量的主轴………………………………………§1.9二阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第二章晶体的弹性与弹性波§2.1弹性性质与原子间力…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应力……………………………………………………………………………………§2.4推广的虎克定律、弹性系数…………………………………………………………§2.5立方晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因子的测量方法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3高频电场的介电极化(光的色散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离子晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的一般性质…………………………………………………………………§4.2常用铁电体的实验规律……………………………………………………………§4.3铁电体的相变热力学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电方程和机电耦合系数…………………………………………………………§4.7压电晶体的应用实例――石英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲面……………………………………………………………§5.4晶体表面上的折射…………………………………………………………………§5.5晶体偏光干涉及其应用……………………………………………………………第六章倍频与参量频率转换§6.1非线性极化…………………………………………………………………………§6.2非线性极化系数……………………………………………………………………§6.3非线性介质中电磁场耦合方程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7角度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放大…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐方法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13非线性材料的性能要求……………………………………………………………第七章电光效应及其应用§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的几个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第八章声光效应及其应用§8.1弹光效应……………………………………………………………………………§8.2声光交互作用产生的衍射现象……………………………………………………§8.3声光交互作用的理论………………………………………………………………§8.4声光效应在一些物理常数测量中的应用…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散角α的推导………………………………………………………E.双轴晶体中双折射面相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第一章 张量分析基础知识以前学的课程中,有关力学、热学、电学、光学等的性质都是以各向同性介质来表述的或以一维问题来说明问题,这对于突出某些物理现象的微观的物理原因方面是必要的,但晶体物理性能是讲晶体中的力学、电学、光学、声学、磁学、热学等物理性能,而晶体的各向异性却是一种很普遍的特性,特别是很多现象如热电、压电、电光、声光、非线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要方面。

张量分析提纲及部分习题答案

张量分析提纲及部分习题答案

y
对静止的连续介质,有
ζ n fd 0 , ζd fd 0 ,
A
ζ f 0。
(21) 证明应力是一个张量; 记 ij :表示在给定基 g i 下,在面 g j 上,单位面积受力 F j 在 g i 方向上的分量为
对斜圆锥面上任一点 (图中黑点处) , 不难由相似三角形得到,
z z R cos C i R sin j zk ,进而可得, H H r Rz sin zR cos r R cos C R g i j, gz i sin j k , H H z H H r
dx g dx I g dx II 1 4 x I 2 dx I 6 x I x II 2 dx II Pdx I Q dx II 11 12 1 1 I 。 2 4 dxII g 21dx I g 22 dx II 6 x I x II dx I 9 x II dx II P2 dx I Q2 dx II
Pi Qi 时,坐标 xI , xII 才可能存在。即向量场 P, Q 无旋时,其在两点间 x II x I Pi Qi 的路径积分与路径无关,积出的值就是坐标。本例中, II I ,故相应的“协 x x
当 变坐标”不存在。 (正因为如此,坐标也没有逆变、协变之说。 ) (9) 有点类似曲面第一基本型(1.3.12) 。 (10) Lame 常数定义(1.3.13)在非正交系中也成立,但此时(1.3.12a)不成立。
1.9-1.13:略; 1.14: 注意,所谓斜圆锥是指, O 点沿 z 方向在大圆平面上的投影 M 在大圆的直径上。

张量分析课件

张量分析课件

P = ∑αij Ej (i=1,2,3) i
j =1
3
Pi′ = ∑ α i′j′ E j′ (i'=1,2,3)
j ′ =1
3
代 入
将一阶张量Ej和Pi的变换规律
Pi′ = ∑ Ai′i Pi
3
代 入
E j′ = ∑ Aj ′j E j
j =1
i =1 3
∑A
i =1
3
i ′i i
P = ∑∑ α i′j′ Aj′j E j
证: 刚体定轴转动:
ω
(Z轴)转轴
刚 体
(
)
v τi A ni O′ ri
v
刚体定轴转动
r2 r r I 质点:ij = m(rij δ ij − ( r )i ( r ) j ) O
v Ri
= m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3)
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩. 证: 质点:I ij = m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3) 九个分量:
δij在坐标变换后,其各个分量的值不变. 即在任意坐 标系中按上式定义的二价对称δ符号是一个二阶张量.
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩.

(完整版)《张量分析》报告

(完整版)《张量分析》报告

一 爱因斯坦求和约定1.1指标变量的集合:n n y y y x x x ,...,,,...,,2121表示为:n j y n i x j i ...,3,2,1,,...,3,2,1,==写在字符右下角的 指标,例如xi 中的i 称为下标。

写在字符右上角的指标,例如yj 中的j 称为上标;使用上标或下标的涵义是不同的。

用作下标或上标的拉丁字母或希腊字母,除非作了说明,一般取从1到n 的所有整数,其中n 称为指标的范围。

1.2求和约定若在一项中,同一个指标字母在上标和下标中重复出现,则表示要对这个指标遍历其范围1,2,3,…n 求和。

这是一个约定,称为求和约定。

例如:333323213123232221211313212111bx A x A x A b x A x A x A bx A x A x A =++=++=++筒写为:ijijbx A =j——哑指标i——自由指标,在每一项中只出现一次,一个公式中必须相同遍历指标的范围求和的重复指标称为“哑标”或“伪标”。

不求和的指标称为自由指标。

1.3 Kronecker-δ符号(克罗内克符号)和置换符号Kronecker-δ符号定义j i ji ij ji ≠=⎩⎨⎧==当当01δδ置换符号ijkijk e e =定义为:⎪⎩⎪⎨⎧-==的任意二个指标任意k j,i,当021)(213,132,3的奇置换3,2,1是k j,i,当112)(123,231,3的偶置换3,2,1是k j,i,当1ijk ijke ei,j,k 的这些排列分别叫做循环排列、逆循环排列和非循环排列。

置换符号主要可用来展开三阶行列式:231231331221233211231231133221332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++==因此有:ijmjimii i i jijAA aa a a a ==++=δδδδδ332211kijjkiijkkjiikjjikijkee e e e e e ==-=-=-=同时有:ijjijij iiiijijijkj ikilkljkijjjiiijijijkjikiie e aa aa a a a aa δδδδδδδδδδδδδδδδδδδ=⋅=++=========++=332211332211331001010100131211232221333231321333222111321321321-=====δδδδδδδδδδδδδδδδδδδδδδδδδδδe e k j i k j i k j i k k k j j j i i i ijk333222111321321321r q p r q p r q p k k k j j j i i i pqr ijke e δδδδδδδδδδδδδδδδδδ⋅=ipp i p i p i p i δδδδδδδδδ==++11332211krkqkpjrjqjpiriqippqrijke e δδδδδδδδδ=jqirjriqjrjqiriqkqrijke e kp δδδδδδδδ-===321321322311332112312213322113312312332211333231232221131211k j i ijkkjiijkaa a e a a a e aa a a a a a a a a a a a a a a a a aaaa a aaa a A ==---++==Kronecker-δ和置换符号符号的关系为:itjsjtiskstkije e δδδδ-=二 张量代数2.1张量的加法(减法)两个同阶、同变异(结构) 的张量可以相加(或相减)。

张量分析第一章 习题答案

张量分析第一章 习题答案
j
一阶张量 一阶张量 根据张量识别定理: δ ij 是1+1阶即二阶张量. (2) 对于任意二阶张量 b jk 缩并:
∑ε
j ,k
ijk
b jk
一阶张量
∑ε
j ,k
1 jk b jk = b23 − b32
∑ε
j ,k
2 jk
b jk = b31 − b13
∑ε
j ,k
3 jk
b jk = b12 − b21

i1i2 ⋅⋅⋅iµ j1 j2 ⋅⋅⋅ jµ
得 Ai1′i 1 Ai2′i2 ⋅⋅⋅ Aiµ′iµ Aj1′ j1 Aj2′ j2 ⋅⋅⋅ Ajν ′ jν ai1i2 ⋅⋅⋅iµ j1 j2 ⋅⋅⋅ jν 命题得证! 命题得证!
ci1′i2′ ⋅⋅⋅iµ′ =
∑ ∑
i1i2 ⋅⋅⋅iν j1 j2 ⋅⋅⋅ jν

i1i2 ⋅⋅⋅iµ j1′ j2′ ⋅⋅⋅ jν ′ j1 j2 ⋅⋅⋅ jν
在新坐标系中: ci1′i2′ ⋅⋅⋅iµ′ = ∑ ai1′i2′ ⋅⋅⋅iµ′ j1′ j2′ ⋅⋅⋅ jν ′ b j1′ j2′ ⋅⋅⋅ jν ′
j1′ j2′ ⋅⋅⋅ jν ′
比较
ai1′i2′ ⋅⋅⋅iµ′ j1′ j2′ ⋅⋅⋅ jν ′ =
ai1′i2′ ⋅⋅⋅iµ′ =

i1i2 ⋅⋅⋅iµ
得 Ai1′i 1 Ai2′i2 ⋅⋅⋅ Aiµ′iµ ai1i2 ⋅⋅⋅iµ
命题得证! 命题得证!
6. 根据张量识别定理证明:δ ij是二阶张量, ε ijk 为三阶张量. 证: (1) 对于任意一阶张量 对于任意 阶张量 a j ∑ δij a j = ai

张量分析-第1讲LJ

张量分析-第1讲LJ

a2 F3 a3 F2 a c b1 a b c1 a3 F1 a1 F3 a c b2 a b c2 a1 F2 a2 F1 a c b3 a b c3
所以有: a b c a c b a b c
g1和g 2
g1和g 2 不是单位矢量,即它们有量纲的, 一般地说,
其长度也不为单位长度。此外它们也并不正交。 矢量F可以在 g1和g 2 上分解:
F F g1 F g 2
1 2
(平行四边形法则)
则有: F g 1 F 1g 1 g 1 F 2 g 2 g 1
F g 1 F 1g 1 g 1 F 2 g 2 g 1
e2 b2 c2
e3
e3 b3 b2 c3 b3 c2 e 1 b3 c1 b1c3 e 2 b1c2 b2 c1 e 3 c3
b3 a 2 F3 a3 F2 e 1 a3 F1 a1 F3 e 2 a1 F2 a 2 F1 e 3 F3
j 1
F2 ' e 2 ' e1 F1 e 2 ' e 2 F2 e 2 ' e 3 F3 2 ' j F j
j 1 3
3
F3' e 3' e1 F1 e 3' e 2 F2 e 3' e 3 F3 3' j F j
j 1
矢量场函数的散度: 矢量场函数的旋度:
i F x Fx j y Fy
Fx Fy Fz F z y x
k Fz Fy Fx Fz Fy Fx i k j y z y z z x x Fz

张量分析及其应用

张量分析及其应用

Ux Uy Uz 0 x y z
1.4 指标记法的运算
1.4.5 例题 ——熟悉指标记法和普通记法的转换 不可压缩牛顿流体的Navier-Stokes方程:
( U tiU j U xji)b i x p ix U jx i j
写出其普通记法
{a 1 ,a2,a3 },{a 1,a2,a3}

a a ie i, a a ie i
aiaeiaieiei a i a e i a ie ie i a ie ie i
a a i
ii i(对 i’ 求和)
a a i
ii i(对 i 求和)
x 1 a 1x 1 1 a 1x 2 2 a 1x 3 3 x 2 a 2x 1 1 a 2x 2 2 a 2x 3 3 x 3 a 3x 1 a 3x 2 2 a 3x 3 3
ei Aijej i 为自由指标,j 为哑标
表示
e 1 A 1e 1 A 1e 2 2 A 1e 3 3 e 2 A 2e 1 A 2e 2 2 A 2e 3 3 e 3A 3e 1 A 3e 2 2 A 3e 3 3
ee121211
12 22
1233ee12
e3 31 31 33e3
ei iiei (对 i 求和,i’为自由指标)
从坐标变换的角度研究标量、矢量和张量
1.5.2 标量(纯量 Scalar)
可见:
e ijk e jk i e k ij e jik e ik j e k ji
e i j k 也称为三维空间的排列符号。
若 e1, e2, e3 是右手卡氏直角坐标系的单位基矢量

ei ej eijkek
常见的恒等式

张量分析

张量分析

张量分析研一 熊焕君 2017.9.281.引论:我们对标量和矢量都非常熟悉。

标量是在空间中没有方向的量,其基本特征是只需要一个数就可以表示,且当坐标系发生转动时这个数保持不变,因此也称其为不变量。

而矢量是个有方向的量,三维空间中矢量需要一组三个数(分量)来表示,其基本特征是当坐标系发生转动时,这三个数按一定规律而变化。

然而在数学物理问题中,还常出现一些更为复杂的量,如描述连续体中一点的应力状态或一个微元体的变形特征等,仅用标量和矢量不足以刻画出他们的性质。

要描述这些量则有必要将标量和矢量的概念加以引申和扩充,即引入新的量——张量。

在概念上,张量和矢量有许多类同之处。

一方面张量也表示某一客观存在的几何量或物理量,显然张量作为一个整体是与描述它所选取的坐标系无关,可像矢量代数那样,用抽象法进行描述;另一方面也可像矢量一样采用坐标法进行描述,此时张量包含有若干个分量元素,各个分量的取值与具体的坐标系相关联。

张量的主要特征是,在坐标系发生变化时,其分量取值遵守着一定的转化定律。

张量方法的核心内容是研究一个复杂的量集坐标转换规律。

我们知道,一个物理定律如果是正确的,就必须不依赖于用来描述它的任何坐标系,张量方法就是既采用坐标系,而又摆脱具体坐标系的影响的不变方法。

于是我们可以在简单的直角坐标系中建立描述某一运动法则的支配方程,如果需要可以用张量方法将其转换到任意一个曲线坐标系中去。

例如对于很大一类边值问题,若选用恰当的曲线坐标系,其边界条件可以简化的表达,那么我们就可以将支配方程用张量方法转化到所采用的坐标系中来,从而使问题的求解容易处理。

2.记号与约定张量是包含有大量分量元素的复杂量集,必须使用适当的记号和约定,才能使其表达形式简化紧凑,从而使分析和讨论有序地进行。

从某种意义上讲,可以说张量是对记号的研究。

所以我们必须熟悉各种约定记号,才能对张量这个工具运用自如。

在张量方法中对一个量的标记采用字母标号法。

张量分析1

张量分析1

第一章 张量的概念§ 1.1 引言什么是张量?这是读者在开始学习本课程时会提出的问题,现从读者已有的力学知识出发,举例对这个问题作一些初步的阐述,使读者对张量这个新的概念,有个初步的理解。

有三维空间,一个矢量(例如力矢量、速度矢量等)在某些参考坐标系中,有三个分量,这三个分量的集合,规定了这个矢量。

当坐标变化换时 ,这些分量按一定的变换法则变换。

在力学中还有一些更复杂的量。

例如受力物体内一点的应力状态,有9个应力分量,如以直角坐标表示,用矩阵形式列出,则有()⎪⎪⎪⎭⎫⎝⎛σσσσσσσσσ=σzz zyzxyz yy yxxz xy xx ij 这9个分量的集合,规定了一点的应力状态,称为应力张量。

当坐标变换时,应力张量的分量按一定的变换法则变换,再如,一点的应力状态,具有和应力张量相似的性质,称为应变张量。

把上述的力矢量、速度矢量、应力张量、应变张量等量的性质抽象化,撇开它们所表示的量的物理性质,抽出其数学上的共性,便得出抽象的张量概念。

所谓张量是一个物理量或几何量,它由在某参考坐标系中一定数目的分量的集合所规定,当坐标变换时,这些分量按一定的变换法则变换。

张量有不同的“阶”和“结构”,这由它们所遵循的不同的变换法则来区分。

矢量是一阶张量;应力张量、应变张量是二阶张量;还有三阶、四阶、......等高阶张量。

可以看出,张量是矢量概念的推广。

关于张量的严密的解析定义,将在 § 1.8中讨论。

由张量的特性可以看出,它是一种不依赖于特定坐标系的表达物理定律的方式。

采用张量记法表示的方程,在某一坐标系中成立,则在容许变换的其它坐标系中也成立,即张量方程具有不变性。

这使它特别适合于表达物理定律,因为物理定律与人们为了描述它所采用的坐标系无关。

因此,张量分析为人们提供了推导基本方程的有力工具。

此外,张量记法简洁,是一种非常精炼的数学语言。

张量这个名词是沃伊特(V oigt )首先提出的,用来表示晶体的应力(张力)状态,可见张量分析与弹性力学关系的密切。

张量分析

张量分析

引言张量是一个数学概念。

我们知道,可以由一个实数值完全确定的物理量(如长度、温度、密度等)称为标量;可以用一个实数值(模值)和空间一定方向来表征的物理量(如力、速度、加速度等)称为矢量。

有许多物理量既不是标量,也不是矢量,它们具有更复杂的性质,需要用更复杂的数学实体—张量来描述。

例如,连续体内一点的应力状态和一点的应变状态需要更分别用应力张量σ和应变张量∈来描述,xx xy xz yx yyyz zx yxzz σττστστττσ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭ 112211221122xxxy xz yxyyyz zx yx zz εγγγεγγγε⎧⎫⎪⎪⎪⎪⎪⎪∈=⎨⎬⎪⎪⎪⎪⎪⎪⎩⎭又如,质点对于某定点的转动惯量需要用惯性张量来描述⋅⋅⋅。

事实上,标量和矢量都是张量的特例,它们分别为零阶张量和一阶张量。

这是两种最简单的张量。

在处理物理学和力学问题中,张量理论是一种有效的数学工具。

它有许多突出的优点,例如:(1)张量方程的一个重要特性是与坐标系的选择无关。

这一特性使它能够很好地反映物理定律和各物理量之间的关系。

张量方程对于任何坐标系都具有统一的形式,因此,当坐标系不确定时,照样可以将物理现象用数学方程表达出来。

(2)张量方程的上述特性使我们能够从某种特殊坐标系中建立起适用于一切坐标系的方程。

(3)属于某阶张量的某种物理量所具有的张量特性,对于所有这类张量(不管它们表达何种物理现象)来说,必定也都具有这些特性。

(例如应力张量是二阶对称张量,倘若我们掌握了应力的张量特性,便可以断定所有二阶对称张量,如应变张量、惯性张量以及平板曲率张量等,也都具有这些特性。

) (4)张量表述和张量算法具有十分清晰、简捷的特点。

张量理论是数学中的一个分支。

张量的普遍概念是十九世纪中叶对连续介质力学有了深入研究之后建立起来的。

(在法文中,张量tension 一词具有“应力”的意思;也就是说,张量是像应力那样具有某些特定性质的量。

学习张量必看_一个文档学会张量!!!!张量分析

学习张量必看_一个文档学会张量!!!!张量分析

张量函数及其微积分
Appendix A
引言
广义相对论(1915)、理论物理 连续介质力学(固体力学、流体力学) 现代力学的大部分文献都采用张量表示
主要参考书: W. Flugge, Tensor Analysis and Continuum
Mechanics, Springer, 1972. 黄克智等,张量分析,清华大学出版社,2003.

a13 x3 a23 x3

a1 j x j a2 j x j

x3

a31 x1

a32 x2

a33 x3

a3 j x j
利用爱因斯坦求和约定,写成:
xi aij x j
其中 j 是哑指标,i 是自由指标。
张量基本概念
★ 在表达式或方程中自由指标可以出现多次,但不得 在同项内出现两次,若在同项内出现两次则是哑指 标。例: 若i为自由指标
分量记法: ui
Appendix A.1
张量基本概念
指标符号用法
1. 三维空间中任意点 P 的坐标(x, y, z)可缩写成 xi , 其中x1=x, x2=y, x3=z。
2. 两个矢量 a 和 b 的分量的点积(或称数量积)为:
3
a b= a1b1 a2b2 a3b3 aibi i 1
ji, j fi 0
ji, j fii 0
张量基本概念
★ 自由指标表示:若轮流取该指标范围内的任何值, 关系式将始终成立。
例如:表达式 xi aij x j
在自由指标 i 取1,2,3时该式始终成立,即有

x1 x2

张量分析答案完整版

张量分析答案完整版

= T J• T ii • 2
=
tr(T
•T
)
=T
•T
•G

T T = •m •a am
• •
JT 3
=T •T •T •G •
=T T T •m •p •a a mp
对于 S :
得证。
JT 1
=T jj
J• T
•2
= tr(T T
•TT) = TT
TT

•G

= T T J m •a • T •a m • 3

i j
[u
v
w
]
+

i j
[u
v
w]
[ = T⋅ii δ
i j
u
v
w ]=T⋅ii [u
v
w ]= φ1T [u
v
w ],命题得证。
(2)式左边
[ ] [ ] [ ] = T⋅ija jgi
T
a ⋅b
b
b
g
a
c cgc
+ adgd
T ⋅ijb jgi
T⋅ab cb g a + T⋅ija jgi
∂v m
'
∂x n '

∂vn' ∂x m'
∂xm = ∂xm'
∂x n ∂xn '
(
∂vm ∂xn

∂vn ∂x m
)
即T(m' .n' )
=
β m' m'
β n' n'
(
∂vm ∂xn

∂vn ∂x m

1第一章 笛卡尔张量

1第一章 笛卡尔张量

序言张量分析对于现在的力学专业学生以及力学相关问题的解决,是应该掌握的重要数学工具。

事实上,如果没有张量的知识,就无法学习连续介质力学基本理论和阅读相关专业的文献资料。

无庸讳言,张量概念非常抽象,相对来说比较难于学习和把握。

但是,只要克服张量学习过程中的畏难情绪,抓住张量概念的关键点,梳理张量分析的基本数学规则,结合一定的力学实例的张量描述,从而建立张量分析的概念和基本分析方法,就能够为运用张量分析解决实际问题奠定坚实基础。

张量概念最早是由高斯(Gauss)、黎曼(Riemann)、克里斯托夫(Christoffel)等人在十九世纪发展微分几何过程中引入的,是从线性空间推广到非线性空间的纯粹数学的演绎,由于自然科学发展水平的限制,这种具有根本性变革的数学工具长期被自然科学领域所忽略。

直到1915年,爱因斯坦获得格罗斯曼的协助,借助张量分析这一数学工具创立了伟大的广义相对论,才凸显了张量分析在描述具有协变性质物理规律的关键作用。

这个事实再次有力地向我们传达了数学和自然科学之间彼此的依存关系,即数学的规则被赋予了自然规律的意义后才成为有生命力的学问,而借助数学工具建立起的自然规律才能呈现自然科学的奥秘。

此后,张量分析迅速渗透到理论物理、现代微分几何、连续介质力学等学科领域中。

就力学专业的学生而言,学习和掌握张量分析,可以更加深刻地领会连续介质力学的概念和一般力学规律,充分锻炼我们的理性思维能力,提高分析问题和解决问题的能力和水平。

用代数方法和解析方法描述空间问题时,必须引进坐标系或建立坐标基矢量。

坐标系的引入为建立各种物理或几何规律带来了可能和极大的方便,同时也往往使问题复杂化。

可以设想,客观规律应该独立于坐标系,但客观规律的表达形式却严重依赖于所用的具体坐标系,使得客观规律本身的内在性质与建立在坐标系上的数学表达形式完全融为一体。

这样,一方面可能会因其数学的形式外壳而不易揭示问题的内在本质,另一方面,甚至对很多客观规律根本无法进行数学表述。

张量分析

张量分析

第一篇 张量分析第一章 矢 量 §1—1 矢量表示法物理中的位移、速度、力都是矢量。

利用三维空间中的有向线段ν表示矢量是最直观的表示法,如图1-1所示。

有向线段的长度v 代表矢量的大小。

这种方法不依赖于坐标系的选择。

矢量的分量表示法是另一种表示方法,选定一个坐标系。

比如通常的正交直线坐标系,即卡氏坐标系,然后确定矢量对于该坐标系的分量(,,)x y z v v v ν(1-1a)这一有序数也可视作一个单行矩阵。

矢量也可以用基矢与其对应分量写成x y z iv jv kv ν=++ (1-1b)其中,,x y z iv jv kv 称为分矢量。

而i(1,0,0),j(0,1,0),k(0,0,1) (1-1c)是单位矢量,它们组成卡氏系中的一组基矢(称为标架)。

§1-2指标符号上面所述用分量(,,)x y z v v v 或用基矢量i,j,k 来表示矢量的方法,在推广到比三维更高的空间时就有困难了。

因此,发展了另一种记法。

把x 、y 、z 分别记为111,,x y z 这样,一个n 维空间的矢量(无法用直观图表示)用分量表示时为123(,,,...,)n v v v v ν= (1-2a)它可视为一个M 维的单行矩阵,且可写为{}i v ν= (1,2,3,...,)i n =同理,基矢i,j,k 可分别写为123,,e e e ,n 维空间的基矢i e (1,2,3,...,)i n =。

而与式(1-1b)对应的写法为112233n n e v e v e v e v ν=++++ (1-2b)相应的分矢量为11,,,i i e v e v ,其中1e =(0,…,0,1,0,…,0) (1-2c)↑ 顺序第i 个这里i 叫做v 的下标,也有记作jv (如本书第三章以后章节所出现)的,这时j 称为上标。

有些量比矢量更复杂,只用一个下(或上)指标还不够,还要采用更多的指标,比如,,,ij ij ijk A B C ,等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u
v
uv v
u
平行四边形法则
a(u v) au av
4
(ab)u a(bu)
矢量及其代数运算
➢ 直线坐标系与矢径
2021/3/10 讲解:XX1章 矢量与张量
笛卡尔坐标系:直角直线 费马坐标系:斜角直线
z r:矢径
r xi yj zk
r u 矢径 r确定了基矢量:i、 j、k
k
i
j
Hale Waihona Puke y 矢量u可表示为:P P g
称为矢量P的协变分量
x2
P2 g2
P2 g2
P
x2
P2 g2
P
2
P1g1
x1
2
P1 g1
2
P2 g2
2
P1 g1
2
2
P1g1 x1 13
斜角直线坐标系的基矢量与矢量分量
➢ 三维空间中的斜角直线坐标系和基矢量
2021/3/10 讲解:XX1章 矢量与张量
x3
x3 g3
x2
(x1, x2 )
x2
(x1, x2 )
r
j
i
x1
笛卡尔坐标系
r
P
g2
g1 x1
费马坐标系
10
斜角直线坐标系的基矢量与矢量分量
➢ 平面内斜角直线坐标系和矢径
2021/3/10 讲解:XX1章 矢量与张量
x2
r
g2
g1 x1
费马坐标系
(
x1
,
x
2
)
r
矢径
x1g1 x2 g2
r确定了基矢量:g1、g2
2021/3/10 讲解:XX1章 矢量与张量
第1章 矢量与张量 2021年3月12日 1
张量的两种表达形式
实体形式
分量形式
2021/3/10 讲解:XX1章 矢量与张量
几何形式 定义式
代数形式 计算式
概念的内涵和外 延(定量)
怎样计算?
2
主要内容
2021/3/10 讲解:XX1章 矢量与张量
➢ 矢量的乘法 矢量的混合积
2021/3/10 讲解:XX1章 矢量与张量
u v w u v w群 u论的v 轮w换次序不变性w
ux uy uz u ux vx wx
vx vy vz uy v顺y 时w针z 轮换 wx wy wwz uzv vz wz
v u
u
v
w 2
ux vx
uy vy
uz vz
其中 g1、g2 不一定是单位矢量。
P
矢量 P可表示为:
P P1g1 P2 g2
2
P g P g
11
1
斜角直线坐标系的基矢量与矢量分量
2021/3/10 讲解:XX1章 矢量与张量
➢ 平面内斜角直线坐标系的协变基矢量和逆变基矢量
P P g :哑指标
x2
(x1, x2 ) Einstein求和约定
r
x2
x2 g2
O x1g1
x1
三维空间中的 斜角直线坐标系
r x1g1 x2 g2 x3 g3 xi gi
由 dr
r xi
dxi
gidxi
可定
义协变基矢量 gi 为
gi
r xi
g1 g2 g3 g1 g2 g3 g
14
g是正实数(右手系)
斜角直线坐标系的基矢量与矢量分量
2021/3/10 讲解:XX1章 矢量与张量
➢ 三维空间中的斜角直线坐标系和基矢量
定义逆变基矢量 g j,满足对偶条件:
g j gi ij (i, j = 1, 2,3)
问题:已知 gi,如何求 g j ?
※ 根据几何图形直接确定
由对偶条件可知, g1与 g2 、g3 均正交,因此正交于 g2与 g3所
确定的平面;其模的大小等于
g1 1
如何计算 u (v w)?
vw
观察右图,可知 v w正交于
u
v、w构成的平面,而 u (v w)
w
正交于 v w,因此,u (v w)
一定在 v 、w 构成的平面
v
u (v w) v w
u (v w)
(u w)v (u v)w (u v) w
数形结合 8
矢量及其代数运算
u uxi uy j uzk
5
x 笛卡尔坐标系
矢量及其代数运算
2021/3/10 讲解:XX1章 矢量与张量
➢ 矢量的乘法
u
矢量的内积
定义式(实体形式,几何表达):
u v u v cos
v cos
u v v u (可交换性)
计算式(分量形式,代数表达): u cos
v
u uxi uy j uzk
v vxi vy j vzk
物理意义:
u v uxvx uyvy uzvz
计算功(功率)
可交换性:
运算次序的无关性
对称性
6
uv u v
(许瓦兹不等式)
不变性
矢量及其代数运算
2021/3/10 讲解:XX1章 矢量与张量
➢ 矢量的乘法
矢量的外积
定义式(实体形式,几何表达) :w u v
g1 cos
g1 g1
2 g2
2
15
g3
斜角直线坐标系的基矢量与矢量分量
2021/3/10 讲解:XX1章 矢量与张量
➢ 三维空间中的斜角直线坐标系和基矢量
问题:已知 gi,如何求 g j ?
※ 由协变基矢量求逆变基矢量
w uv
u v u v sin
u v v u (反交换性)
计算式(分量形式,代数表达) :
w uv
v u
i jk ux uy uz
vx vy vz
物理意义: 计算面积
7
计算 v u时换行。
矢量及其代数运算
➢ 矢量的乘法 三个矢量u、v 、w 之间的运算
2021/3/10 讲解:XX1章 矢量与张量
u u
x y
vx vy
wx u u
wz
vu
uv vv
uw vw
wx wy wz uz vz wz
wu wv ww 9
u v w v w u w u v u w v v u w w v u
斜角直线坐标系的基矢量与矢量分量
➢ 从直角直线坐标系到斜角直线坐标系(平面内)
2021/3/10 讲解:XX1章 矢量与张量
r
g2
g:协变基矢量
P
基于简化的思想,
引入逆变基矢量 g
g1 x1
费马坐标系
存在对偶关系:
g
g
0 1
12
斜角直线坐标系的基矢量与矢量分量
➢ 平面内斜角直线坐标系下矢量的协变分量与逆变分量
2021/3/10 讲解:XX1章 矢量与张量
P P g P g P P g
称为矢量P的逆变分量
➢ 矢量及其代数运算
➢ 斜角直线坐标系的基矢量与矢量分量
➢ 曲线坐标系及坐标转换关系
➢ 并矢与并矢式
➢ 张量的基本概念
➢ 张量的代数运算
➢ 张量的矢积
3
矢量及其代数运算
2021/3/10 讲解:XX1章 矢量与张量
➢ 矢量和矢量的模
u 、v、w u 、v 、w
➢ 矢量的加法: 平行四边形法则
uv vu (u v) w u (v w) u v u (v) u (u) 0 (a b)u au bu
相关文档
最新文档