2014年虎跳中学中考数学模拟试题 (16)

合集下载

2014中考数学模拟试题含答案(精选5套)

2014中考数学模拟试题含答案(精选5套)

2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2014年台湾省中考数学试卷(第二次)

2014年台湾省中考数学试卷(第二次)

2014年台湾省中考数学试卷(第二次)一、选择题(1~29题)1.(3分)算式17﹣2×[9﹣3×3×(﹣7)]÷3之值为何?()A.﹣31B.0C.17D.1012.(3分)如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四3.(3分)算式(﹣8)3+(﹣4)4之值为何?()A.﹣16﹣162B.﹣16+162C.16﹣162D.16+162 4.(3分)若x2﹣4x+3与x2+2x﹣3的公因式为x﹣c,则c之值为何?()A.﹣3B.﹣1C.1D.35.(3分)如图,有一圆通过四边形ABCD的三顶点A、B、D,且此圆的半径为10.若∠A=∠B=90°,AD=12,BC=35,则四边形ABCD的面积为何?()A.288B.376C.420D.4706.(3分)阿伟的游戏机充满电后,可用来连续播放音乐36个小时或连续玩游戏6个小时.若游戏机在早上7点充满电后,阿伟马上使用游戏机播放音乐直到下午3点,并从下午3点继续使用游戏机玩游戏直到它没电,则他的游戏机何时没电?()A.晚上7点20分B.晚上7点40分C.晚上8点20分D.晚上8点40分7.(3分)如图,四边形ABCD、BEFD、EGHD均为平行四边形,其中C、F两点分别在EF、GH上.若四边形ABCD、BEFD、EGHD的面积分别为a、b、c,则关于a、b、c的大小关系,下列何者正确?()A.a>b>c B.b>c>a C.c>b>a D.a=b=c8.(3分)已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?()A.38B.39C.40D.419.(3分)有一直圆柱状的木棍,今将此木棍分成甲、乙两段直圆柱状木棍,且甲的高为乙的高的9倍.若甲、乙的表面积分别为S1、S2,甲、乙的体积分别为V1、V2,则下列关系何者正确?()A.S1>9S2B.S1<9S2C.V1>9V2D.V1<9V2 10.(3分)图1为某四边形ABCD纸片,其中∠B=70°,∠C=80°.若将CD迭合在AB上,出现折线MN,再将纸片展开后,M、N两点分别在AD、BC上,如图2所示,则∠MNB的度数为何?()A.90B.95C.100D.10511.(3分)甲、乙、丙三个箱子原本各装有相同数量的球,已知甲箱内的红球占甲箱内球数的14,乙箱内没有红球,丙箱内的红球占丙箱内球数的712.小蓉将乙、丙两箱内的球全倒入甲箱后,要从甲箱内取出一球,若甲箱内每球被取出的机会相等,则小蓉取出的球是红球的机率为何?()A.56B.512C.518D.74812.(3分)如图,O为△ABC的外心,△OCP为正三角形,OP与AC相交于D 点,连接OA.若∠BAC=70°,AB=AC,则∠ADP的度数为何?()A.85B.90C.95D.11013.(3分)算式999032+888052+777072之值的十位数字为何?()A.1B.2C.6D.814.(3分)数轴上A、B、C三点所代表的数分别是a、1、c,且|c﹣1|﹣|a﹣1|=|a ﹣c|.若下列选项中,有一个表示A、B、C三点在数轴上的位置关系,则此选项为何?()A.B.C.D.15.(3分)若a=(﹣3)13﹣(﹣3)14,b=(﹣0.6)12﹣(﹣0.6)14,c=(﹣1.5)11﹣(﹣1.5)13,则下列有关a、b、c的大小关系,何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a 16.(3分)若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A.﹣4B.﹣2C.0D.417.(3分)若整数a的所有因子中,小于25的正因子为1、2、3、4、6、8、12、16、24,则a与720的最大公因子为何?()A.24B.48C.72D.24018.(3分)如图表示甲、乙两车行驶距离与剩余油量的线型关系,其中甲、乙两车均可行驶超过20公里.若甲、乙两车均行驶5公里时,乙车剩余油量比甲车剩余油量多0.5公升,则根据图中的数据,比较甲、乙两车均行驶20公里时的剩余油量,下列叙述何者正确?()A.甲车剩余油量比乙车剩余油量多1公升B.甲车剩余油量比乙车剩余油量多2公升C.乙车剩余油量比甲车剩余油量多1公升D.乙车剩余油量比甲车剩余油量多2公升19.(3分)平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°20.(3分)若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b 之值为何?()A.22B.28C.34D.4021.(3分)如图,△ABC中,BC=AC,D、E两点分别在BC与AC上,AD⊥BC,BE⊥AC,AD与BE相交于F点.若AD=4,CD=3,则关于∠FBD、∠FCD、∠FCE的大小关系,下列何者正确?()A.∠FBD>∠FCD B.∠FBD<∠FCD C.∠FCE>∠FCD D.∠FCE<∠FCD 22.(3分)已知甲、乙两等差级数的项数均为6,甲、乙的公差相等,且甲级数的和与乙级数的和相差32.若比较甲、乙的首项,较小的首项为1,则较大的首项为何?()A.54B.52C.5D.1023.(3分)如图为某店的宣传单,若小昱拿到后,到此店同时买了一件定价x 元的衣服和一件定价y元的裤子,共省500元,则依题意可列出下列哪一个方程式?()A.0.4x+0.6y+100=500B.0.4x+0.6y﹣100=500C.0.6x+0.4y+100=500D.0.6x+0.4y﹣100=50024.(3分)小智将如图两水平线L1、L2的其中一条当成x轴,且向右为正向;两铅直线L3、L4的其中一条当成y轴,且向上为正向,并在此坐标平面上画出二次函数y=ax2+2ax+1的图形.关于他选择x、y轴的叙述,下列何者正确?()A.L1为x轴,L3为y轴B.L1为x轴,L4为y轴C.L2为x轴,L3为y轴D.L2为x轴,L4为y轴25.(3分)已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求997000之值的个位数字为何?()A.0B.4C.6D.826.(3分)如图,△ABC中,D、E两点分别在BC、AD上,且AD为∠BAC的角平分线.若∠ABE=∠C,AE:ED=2:1,则△BDE与△ABC的面积比为何?()A.1:6B.1:9C.2:13D.2:15 27.(3分)如图,矩形ABCD的外接圆O与水平地面相切于A点,圆O半径为2,且BC=2AB.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了75π,则此时哪一弧与地面相切?()A.BC B.CD C.DA D.AB28.(3分)小蓁与她的五位朋友参加保龄球比赛,如图为她们六人所得分数的盒状图.若小蓁所得到的分数恰为她们六人的平均分数,则小蓁得到多少分?()A.165B.169C.170D.17529.(3分)如图,P为圆O外一点,OP交圆O于A点,且OA=2AP.甲、乙两人想作一条通过P点且与圆O相切的直线,其作法如下:(甲)以P为圆心,OP长为半径画弧,交圆O于B点,则直线PB即为所求;(乙)作OP的中垂线,交圆O于B点,则直线PB即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确二、非选择题(1~2题)30.小佳的老板预计订购5盒巧克力,每盒颗数皆相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数为何?请完整写出你的解题过程及所有可能的答案.31.如图,O为△ABC内部一点,OB=312,P、R为O分别以直线AB、直线BC为对称轴的对称点.(1)请指出当∠ABC在什么角度时,会使得PR的长度等于7?并完整说明PR 的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC不是你指出的角度时,PR的长度是小于7还是会大于7?并完整说明你判断的理由.2014年台湾省中考数学试卷(第二次)参考答案与试题解析一、选择题(1~29题)1.(3分)算式17﹣2×[9﹣3×3×(﹣7)]÷3之值为何?()A.﹣31B.0C.17D.101【解答】解:原式=17﹣2×(9+63)÷3=17﹣2×72÷3=17﹣144÷3=17﹣48=﹣31.故选:A.2.(3分)如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四【解答】解:∵(5,a)、(b,7),∴a<7,b<5,∴6﹣b>0,a﹣10<0,∴点(6﹣b,a﹣10)在第四象限.故选:D.3.(3分)算式(﹣8)3+(﹣4)4之值为何?()A.﹣16﹣162B.﹣16+162C.16﹣162D.16+162【解答】解:原式=(﹣22)3+(﹣2)4=16﹣162.故选:C.4.(3分)若x2﹣4x+3与x2+2x﹣3的公因式为x﹣c,则c之值为何?()A.﹣3B.﹣1C.1D.3【解答】解:∵x2﹣4x+3=(x﹣1)(x﹣3)与x2+2x﹣3=(x﹣1)(x+3),∴公因式为x﹣c=x﹣1,故c=1.故选:C.5.(3分)如图,有一圆通过四边形ABCD的三顶点A、B、D,且此圆的半径为10.若∠A=∠B=90°,AD=12,BC=35,则四边形ABCD的面积为何?()A.288B.376C.420D.470【解答】解:连接BD,∵∠A=90°,∴BD是⊙O的直径,∴BD=20,根据勾股定理得:AB=16,∴S梯形ABCD =AD+BC2×AB=12(12+35)×16=376,故选:B.6.(3分)阿伟的游戏机充满电后,可用来连续播放音乐36个小时或连续玩游戏6个小时.若游戏机在早上7点充满电后,阿伟马上使用游戏机播放音乐直到下午3点,并从下午3点继续使用游戏机玩游戏直到它没电,则他的游戏机何时没电?()A.晚上7点20分B.晚上7点40分C.晚上8点20分D.晚上8点40分【解答】解:设他的游戏机还需要x小时没电.则依题意得1 36×8=1﹣16x,解得x=14 3143小时=4小时40分钟.所以,他的游戏机到晚上7点40分没电.故选:B.7.(3分)如图,四边形ABCD、BEFD、EGHD均为平行四边形,其中C、F两点分别在EF、GH上.若四边形ABCD、BEFD、EGHD的面积分别为a、b、c,则关于a、b、c的大小关系,下列何者正确?()A.a>b>c B.b>c>a C.c>b>a D.a=b=c【解答】解:连接EH,∵四边形ABCD、BEFD、EGHD均为平行四边形,∴S△BDC=S△BDE,S△DEF=S△DEH,∴四边形ABCD、BEFD、EGHD的面积分别为a、b、c,则a=b=c.故选:D.8.(3分)已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?()A.38B.39C.40D.41【解答】解:小明买了x个面包.则15x﹣15(x+1)×90%=45解得x=39故选:B.9.(3分)有一直圆柱状的木棍,今将此木棍分成甲、乙两段直圆柱状木棍,且甲的高为乙的高的9倍.若甲、乙的表面积分别为S1、S2,甲、乙的体积分别为V1、V2,则下列关系何者正确?()A.S1>9S2B.S1<9S2C.V1>9V2D.V1<9V2【解答】解:∵两圆柱的底面积相同,且甲的高为乙的高的9倍,∴设圆柱的底面半径为r,乙圆柱的高为h,∴甲圆柱的高为9h,∴甲圆柱的表面积S1为2πr×9h+2πr2=2πr(9h+r),体积V1为9πr2h;乙圆柱的表面积S2为2πrh+2πr2=2πr(h+r),体积V2为πr2h;∴S1<9S2,V1=9V2,故选:B.10.(3分)图1为某四边形ABCD纸片,其中∠B=70°,∠C=80°.若将CD迭合在AB上,出现折线MN,再将纸片展开后,M、N两点分别在AD、BC上,如图2所示,则∠MNB的度数为何?()A.90B.95C.100D.105【解答】解:如图,∵将CD迭合在AB上,出现折线MN,再将纸片展开后,M、N两点分别在AD、BC上,∴∠1=∠C=80°,∠2=∠3,∵∠1=∠B+∠4,∴∠4=∠1﹣∠B=80°﹣70°=10°,而∠2+∠3+∠4=180°,∴2∠2=180°﹣10°=170°,∴∠2=85°,∴∠MNB=∠2+∠4=85°+10°=95°.故选:B.11.(3分)甲、乙、丙三个箱子原本各装有相同数量的球,已知甲箱内的红球占甲箱内球数的14,乙箱内没有红球,丙箱内的红球占丙箱内球数的712.小蓉将乙、丙两箱内的球全倒入甲箱后,要从甲箱内取出一球,若甲箱内每球被取出的机会相等,则小蓉取出的球是红球的机率为何?()A.56B.512C.518D.748【解答】解:设每个箱子中原来有球x个,∵甲箱内的红球占甲箱内球数的14,乙箱内没有红球,丙箱内的红球占丙箱内球数的7 12.∴甲箱内的红球有14x,乙箱内红球为0,丙箱内的红球有712x个,∴三个箱子中共有红球14x+712x=56x个,∴取出的球是红球的概率为:56x3x=518,故选:C.12.(3分)如图,O为△ABC的外心,△OCP为正三角形,OP与AC相交于D 点,连接OA.若∠BAC=70°,AB=AC,则∠ADP的度数为何?()A.85B.90C.95D.110【解答】解:∵O为△ABC的外心,∠BAC=70°,AB=AC,∴∠OAC=35°,AO=CO,∴∠OAC=∠OCA=35°,∴∠AOC=110°,∵△OCP为正三角形,∴∠AOP=50°,∴∠ADP=∠OAD+∠AOD=85°.故选:A.13.(3分)算式999032+888052+777072之值的十位数字为何?()A.1B.2C.6D.8【解答】解:999032的后两位数为09,888052的后两位数为25,777072的后两位数为49,09+25+49=83,所以十位数字为8,故选:D.14.(3分)数轴上A、B、C三点所代表的数分别是a、1、c,且|c﹣1|﹣|a﹣1|=|a ﹣c|.若下列选项中,有一个表示A、B、C三点在数轴上的位置关系,则此选项为何?()A.B.C.D.【解答】解:∵数轴上A、B、C三点所代表的数分别是a、1、c,设B表示的数为b,∴b=1,∵|c﹣1|﹣|a﹣1|=|a﹣c|.∴|c﹣b|﹣|a﹣b|=|a﹣c|.A、b<a<c,则有|c﹣b|﹣|a﹣b|=c﹣b﹣a+b=c﹣a=|a﹣c|.正确,B、c<b<a则有|c﹣b|﹣|a﹣b|=b﹣c﹣a+b=2b﹣c﹣a≠|a﹣c|.故错误,C、a<c<b,则有|c﹣b|﹣|a﹣b|=b﹣c﹣b+a=a﹣c≠|a﹣c|.故错误.D、b<c<a,则有|c﹣b|﹣|a﹣b|=c﹣b﹣a+b=c﹣a≠|a﹣c|.故错误.故选:A.15.(3分)若a=(﹣3)13﹣(﹣3)14,b=(﹣0.6)12﹣(﹣0.6)14,c=(﹣1.5)11﹣(﹣1.5)13,则下列有关a、b、c的大小关系,何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a【解答】解:∵a﹣b=(﹣3)13﹣(﹣3)14﹣(﹣0.6)12+(﹣0.6)14=﹣313﹣314﹣3512+3514<0,∴a<b,∵c﹣b=(﹣1.5)11﹣(﹣1.5)13﹣(﹣0.6)12+(﹣0.6)14=(﹣1.5)11+1.513﹣0.612+0.614>0,∴c>b,∴c>b>a.故选:D.16.(3分)若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A.﹣4B.﹣2C.0D.4【解答】解:∵2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,∴2x3﹣ax2﹣5x+5=2x3+(a﹣2b)x2﹣(ab+1)x+b+3,∴﹣a=a﹣2b,ab+1=5,b+3=5,解得b=2,a=2,∴a+b=2+2=4.故选:D.17.(3分)若整数a的所有因子中,小于25的正因子为1、2、3、4、6、8、12、16、24,则a与720的最大公因子为何?()A.24B.48C.72D.240【解答】解:1、2、3、4、6、8、12、16、24最小公倍数是48,48与720的最大公因数是48,所以,a与720的最大公因子是48.故选:B.18.(3分)如图表示甲、乙两车行驶距离与剩余油量的线型关系,其中甲、乙两车均可行驶超过20公里.若甲、乙两车均行驶5公里时,乙车剩余油量比甲车剩余油量多0.5公升,则根据图中的数据,比较甲、乙两车均行驶20公里时的剩余油量,下列叙述何者正确?()A.甲车剩余油量比乙车剩余油量多1公升B.甲车剩余油量比乙车剩余油量多2公升C.乙车剩余油量比甲车剩余油量多1公升D.乙车剩余油量比甲车剩余油量多2公升【解答】解:设甲乙两车行驶5公里时,甲车的剩油量为x升,则乙车的剩油量为(x+0.5)升,甲车每公里耗油a升,乙车每公里耗油b升,由题意得x−5a=8x+0.5−5b=8,解得:b=0.1+a.20公里时甲车的剩油量为(8﹣10a)升,20公里时乙车的剩油量为8﹣10(0.1+a)=(7﹣10a)升,∴行驶20公里时甲车剩余油量比乙车剩余油量8﹣10a﹣(7﹣10a)=1升.故选:A.19.(3分)平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,AC=BCCD=CE,AD=BE∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.20.(3分)若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b 之值为何?()A.22B.28C.34D.40【解答】解:4x2+12x﹣1147=0,移项得:4x 2+12x=1147,4x 2+12x +9=1147+9,即(2x +3)2=1156,2x +3=34,2x +3=﹣34,解得:x=312,x=﹣372,∵一元二次方程式4x 2+12x ﹣1147=0的两根为a 、b ,且a >b ,∴a=312,b=﹣372, ∴3a +b=3×312+(﹣372)=28, 故选:B .21.(3分)如图,△ABC 中,BC=AC ,D 、E 两点分别在BC 与AC 上,AD ⊥BC ,BE ⊥AC ,AD 与BE 相交于F 点.若AD=4,CD=3,则关于∠FBD 、∠FCD 、∠FCE 的大小关系,下列何者正确?( )A .∠FBD >∠FCDB .∠FBD <∠FCDC .∠FCE >∠FCD D .∠FCE <∠FCD【解答】解:∵AD ⊥BC ,AD=4,CD=3,∴AC= AD 2+CD 2= 42+32=5,∴BC=AC=5,BD=BC ﹣CD=5﹣3=2,∵tan ∠FBD=FD 2, tan ∠FCD=FD 3, ∴tan ∠FBD >tan ∠FCD ,∴∠FBD >∠FCD ,∵AD ⊥BC ,BE ⊥AC ,∴FC ⊥AB (三角形的三条高相交于同一点),又∵BC=AC ,∴∠FCE=∠FCD .故选:A .22.(3分)已知甲、乙两等差级数的项数均为6,甲、乙的公差相等,且甲级数的和与乙级数的和相差32.若比较甲、乙的首项,较小的首项为1,则较大的首项为何?( )A .54B .52C .5D .10【解答】解:设甲、乙两等差级数中乙级数的首项较小,令b 1=1,较大的首项为a 1,设两等差级数的公差为d ,则∵甲级数的和为6a 1+6×52d=6a 1+15d , 乙级数的和为6×1+6×52d=6+15d , ∴(6a 1+15d )﹣(6+15d )=32, ∴6a 1﹣6=32, ∴a 1=54. 故选:A .23.(3分)如图为某店的宣传单,若小昱拿到后,到此店同时买了一件定价x元的衣服和一件定价y 元的裤子,共省500元,则依题意可列出下列哪一个方程式?( )A .0.4x +0.6y +100=500B .0.4x +0.6y ﹣100=500C .0.6x +0.4y +100=500D .0.6x +0.4y ﹣100=500 【解答】解:设衣服为x 元,裤子为y 元,由题意得,0.6x+0.4y+100=500.故选:C.24.(3分)小智将如图两水平线L1、L2的其中一条当成x轴,且向右为正向;两铅直线L3、L4的其中一条当成y轴,且向上为正向,并在此坐标平面上画出二次函数y=ax2+2ax+1的图形.关于他选择x、y轴的叙述,下列何者正确?()A.L1为x轴,L3为y轴B.L1为x轴,L4为y轴C.L2为x轴,L3为y轴D.L2为x轴,L4为y轴【解答】解:∵y=ax2+2ax+1,∴x=0时,y=1,∴抛物线与y轴交点坐标为(0,1),即抛物线与y轴的交点在x轴的上方,∴L2为x轴;∵对称轴为直线x=﹣2a2a=﹣1,即对称轴在y轴的左侧,∴L4为y轴.故选:D.25.(3分)已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求997000之值的个位数字为何?()A.0B.4C.6D.8【解答】解:∵9.972=99.4009,9.982=99.6004,9.992=99.8001,∴99.6004<99.7<99.8001,∴9.98<99.7<9.99,∴998<997000<999,即其个位数字为8.故选:D.26.(3分)如图,△ABC 中,D 、E 两点分别在BC 、AD 上,且AD 为∠BAC 的角平分线.若∠ABE=∠C ,AE :ED=2:1,则△BDE 与△ABC 的面积比为何?( )A .1:6B .1:9C .2:13D .2:15【解答】解:∵AE :ED=2:1,∴AE :AD=2:3,∵∠ABE=∠C ,∠BAE=∠CAD ,∴△ABE ∽△ACD ,∴S △ABE :S △ACD =4:9,∴S △ACD =94S △ABE , ∵AE :ED=2:1,∴S △ABE :S △BED =2:1,∴S △ABE =2S △BED ,∴S △ACD =94S △ABE =92S △BED , ∵S △ABC =S △ABE +S △ACD +S △BED =2S △BED +92S △BED +S △BED =152S △BED , ∴S △BDE :S △ABC =2:15, 故选:D .27.(3分)如图,矩形ABCD 的外接圆O 与水平地面相切于A 点,圆O 半径为2,且BC=2AB .若在没有滑动的情况下,将圆O 向右滚动,使得O 点向右移动了75π,则此时哪一弧与地面相切?( )A.BC B.CD C.DA D.AB 【解答】解:∵圆O半径为2,∴圆的周长为:2π×r=4π,∵将圆O向右滚动,使得O点向右移动了75π,∴75π÷4π=18…3π,即圆滚动18周后,又向右滚动了3π,∵矩形ABCD的外接圆O与水平地面相切于A点,BC=2AB,∴AB+BC+CD=23×4π=83π<3π,∴此时AD与地面相切.故选:C.28.(3分)小蓁与她的五位朋友参加保龄球比赛,如图为她们六人所得分数的盒状图.若小蓁所得到的分数恰为她们六人的平均分数,则小蓁得到多少分?()A.165B.169C.170D.175【解答】解:设小蓁得到x分,根据题意得:(120+145+175+195+210+x)÷6=x,解得:x=169,答:小蓁得到169分;故选:B.29.(3分)如图,P为圆O外一点,OP交圆O于A点,且OA=2AP.甲、乙两人想作一条通过P点且与圆O相切的直线,其作法如下:(甲)以P为圆心,OP长为半径画弧,交圆O于B点,则直线PB即为所求;(乙)作OP的中垂线,交圆O于B点,则直线PB即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【解答】解:(甲)如图1,∵以P为圆心,OP长为半径画弧,交圆O于B点,∴OP=BP,∴∠OBP=∠BOP,∴∠OBP≠90°,∴PB不是⊙O的切线,∴(甲)错误;(乙)如图2,∵作OP的中垂线,交圆O于B点,交OP于M,∴OB=PB,OM=PM,∵OA=2AP,∴OM=34OA=34OB,∴∠BOP=∠BPO≠45°,∴∠OBP≠90°,∴(乙)错误,故选:B.二、非选择题(1~2题)30.小佳的老板预计订购5盒巧克力,每盒颗数皆相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数为何?请完整写出你的解题过程及所有可能的答案.【解答】解:设该公司的工作人员为x 人.则15x +805×3≥12(x −1)+315x +805×3<12(x −1)+12, 解得 16<x ≤19.因为x 是整数,所以x=17,18,19.答:所有可能的工作人员人数是17人、18人、19人.31.如图,O 为△ABC 内部一点,OB=312,P 、R 为O 分别以直线AB 、直线BC 为对称轴的对称点.(1)请指出当∠ABC 在什么角度时,会使得PR 的长度等于7?并完整说明PR的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC 不是你指出的角度时,PR 的长度是小于7还是会大于7?并完整说明你判断的理由.【解答】解:(1)如图,∠ABC=90°时,PR=7.证明如下:连接PB 、RB ,∵P 、R 为O 分别以直线AB 、直线BC 为对称轴的对称点, ∴PB=OB=312,RB=OB=312, ∵∠ABC=90°,∴∠ABP +∠CBR=∠ABO +∠CBO=∠ABC=90°,∴点P 、B 、R 三点共线,∴PR=2×312=7; (2)PR 的长度是小于7,理由如下:∠ABC ≠90°,则点P 、B 、R 三点不在同一直线上,∴PB +BR >PR ,∵PB +BR=2OB=2×312=7, ∴PR <7.。

四川省广元市虎跳中学2013-2014学年八年级上第一次诊断性考试数学试题(北师大)

四川省广元市虎跳中学2013-2014学年八年级上第一次诊断性考试数学试题(北师大)

虎跳中学2013年秋第一次诊断性考试八年级数学试卷一、选择题(请将正确答案的序号填在答题卷的表格..中,每小题3分,共30分)1、下列所给的各组线段,能组成三角形的是:A、10cm、20cm、30cmB、20cm、30cm、40cmC、10cm、20cm、40cmD、10cm、40cm、50cm2、如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是:A、带①去B、带②去C、带③去D、①②③都带去3、如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2011个三角形,那么这个多边形是:A、2012边形B、2013边形C、2014边形D、2015边形4、如图:若△ABE≌△ACF,且AB=7,AE=3,则EC的长为:A、3B、4C、4.5D、55、如图:EA∥DF,AE=DF,要使△AEC≌△DBF,则只要:A、AB=CDB、EC=BFC、∠A=∠DD、AB=BC6、一个正多边形的一个内角等于144°,则该多边形的边数为:A.8 B.9 C.10 D.117、如图,已知△ABC的∠A=60°,剪去∠A后得到一个四边形,则∠1+∠2的度数为:A、270°B、240°C、200°D、180°8、周末,李红帮父亲到瓷砖店去购买一种多边形形状的瓷砖,用于镶地板,•她购买的瓷砖形状不可以是:A、正三角形B、正方形C、正五边形D、正六边形9、如图,AD 是△ABC 的中线,那么下列结论中错误..的是: A 、BD=CD B 、BC=2BD=2CD C 、ACD ABDS S ∆∆= D 、△ABD ≌△ACD10、如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。

其中正确的个数有: A 、1个 B 、2个 C 、3个 D 、4个 二、填空题(每小题3分,共15分)11、如图,已知△ABC ≌△DEF ,AB=6,EF=7,DF=5,则△ABC 的周长是 .12、如图,已知△ABC ≌△DEF ,∠E=30°, ∠F=50°,则∠A= °. 13、如图,已知DE ∥BC,若∠A=58°,∠BDE=128°,则∠C= °. 14、如图,在△ABC 中,BC ⊥AC,CD 是AB 边上的高,若AB=10cm ,BC=6cm ,AC=8cm,那么CD= cm.15、一个多边形的内角和是它外角和的8倍,则这个多边形是 边形.2013-2014学年度第一学期虎跳中学一诊八年级数学试卷(时间120min,满分120分)二、填空题(每小题3分,共15分)11、 12、° 13、° 14、 cm 15、三、解答题(请写出详细的解答过程,共8小题,共75分)16、(7分)已知一个多边形的每一个外角都等于30°,求这个多边形的边数和它的内角和的度数。

2014年虎跳中学中考数学模拟试题 (2)

2014年虎跳中学中考数学模拟试题 (2)

2014年初中学业水平考试模拟数学试卷(时间:120分钟,满分:120分)一、选择题(8×3分=24分)1、由四舍五入法得到的近似数8.02×104,下列说法正确的是()A.精确到十分位,有3个有效数字B.精确到个位,有2个有效数字C.精确到百位,有3个有效数字D.精确到千位,有4个有效数字2、有理数a、b在数轴上的位置如图所示,则ba+的值是()A.大于0 B.小于0C.小于a D.大于b3、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A B C D4、将一副三角板如图放置,使点A在DE上,BC∥DE,则∠AFC的度数为()A.45°B.50°C.60°D.75°5、“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保交通顺畅和行人安全。

小刚每天从家骑自行车上学都经过三个路口,且每个路只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家时出发去学校,他遇到两次红灯的概率是()A、18B、38C、58D、786、一次函数axy+=1与bkxy+=2的图象如图所示,则下列结论:①0<k,②0>a,③当3<x时,21yy<中正确的个数是()A、0B、1C、2D、37、如图,两条宽度均为40m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是()A、αsin1600(m2) B、αcos1600(m2) C、1600sinα(m2) D、1600cosα(m2)(第2题)-1(6题图) (7题图)8、如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为( )(A )6 (B )3(C )200623 (D )10033231003⨯+二、填空题(8×3分=24分)9、-2014的倒数的相反数是______________.10、在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个, 将这个数用科学记数法表示为______________个。

虎跳中学中考模拟试题

虎跳中学中考模拟试题

2014虎跳中学中考数学模拟考试题(全卷满分120分,考试时间100分钟)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.-3的倒数是A .3B .-3 31.c D.31- 2.下列计算中,正确的是( )A . 632a a a ÷=B . 236(2)8a a -=-C . ()22ab ab = D .3a =3.下列左图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( )4.今年我国参加高考人数约为10200000,将10200000用科学记数法表示为( ) A .710.210⨯ B .71.0210⨯ C .70.10210⨯ D .710210⨯ 5.下列数据3,2,3,4,5,2,2的中位数是( ) A .5 B .4 C .3 D .2 6.函数11-=x y 中, 自变量x 的取值范围是 A .1=x B.1≥x C.1-≤x D.1≠x7.如图1,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o,那么∠2的度数是( )C.68oD.60o图38.在正方形网格中,△ABC 位置如图2所示,则sin ∠ABC 的值为( ) B.23 C.22 D.129.如图3,在□ABCD 中,E 为AD 的三等分点,AD AE 32=,连接BE ,交AC 于点F ,AC =12,则AF 为( ) (A )4(B )4.8 (C )5.2(D )6第3题图A .B .C . A B C 图210.不等式组211420x x ->⎧⎨-⎩,≤的解在数轴上表示为( )11.已知x =1是方程x 2+bx +b -3=0的一个根,那么方程的另一个根为A. -2B. -1C. 1D. 2 12.一次函数y=3x+2的图象不经过A. 第一象阴B. 第二象限C. 第三象限D. 第四象限 13.如图,△ABC 是⊙O 的内接正三角形,点P 是优弧上一点,则sin ∠APB 的值是A .21 B.23 C.22 D.3第13题图 14.如图,△ABC 是面积为18cm 的等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积为A .4cm 2B .6cm 2C .8 cm 2D .10 cm 2二、填空题(本大题满分16分,每小题4分)15.因式分解:322363a a b ab -+ = .16.已知反比例函数5m y x-=的图象在第二、四象限,则m 取值范围是__________17.如图,有一圆心角为120 o、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是第17题图 第18题图18.如图,将矩形ABCD 沿EF 、EC 折叠,点B 恰好落在EA 上, 已知CD=4,BC=2,BE=1,则EF 的长为 .三、解答题(本大题满分62分)19.((本题满分10分))(1)计算:、︒-+-60cos 2921(2)化简:2111a a a -++。

虎跳中学中考模拟试题

虎跳中学中考模拟试题

(时间:100分钟 满分:110分)一、选择题(本大题满分42分,每小题3分) 1. 在0,-2,1,12这四个数中,最小的数是( )A. 0B. -2C. 1D. 122.计算()32a ,正确结果是( )A. 5aB.6aC.8aD.9a 3.数据26000用科学记数法表示为2.6×10n ,则n 的值是( ) A. 2 B. 3 C. 4 D. 5 4.在平面直角坐标系中,点A (2-,4)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5. 如图1,这是由5个大小相同的小正方体摆成的立体图形,它的俯视图...是6.当x=-2时,代数式x +1的值是( ) A. -1B. -3C. 1D. 37.如图2所示,∠1+∠2=180°,∠3=100°,则∠4等于()ABCD图1A .70° B.80° C.90° D.100° 8.下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)9.不等式组11x x ≤⎧⎨>-⎩的解集是( ) A. x >-1 B. x ≤1 C. x <-1 D. -1<x ≤1 10.要使式子1-x 在实数范围内有意义,则x 的取值范围是( ) A 、x ≥1 B 、x <1 C 、x ≤1 D 、x ≠111.图3是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是( )A. 60分B. 70分C.75分D. 80分分数 测验1 测验2 测验3 测验4 测验5 测验6 图4c 58° ba72°50°caα图212.已知图4中的两个三角形全等,则∠α的度数是( )A .72°B .60°C .58°D .50°13.在Rt ABC ∆中, 90=∠C ,如果2=AB ,1=BC ,那么B sin 的值是( ) A.21 B.23 C.33 D.314.如图5,⊙B 的半径为4cm , 60=∠MBN ,点A 、C 分别是射线BM 、BN 上的动点,且直线BN AC ⊥.当AC 平移到与⊙B 相切时,AB 的长度是( )A.cm 8B.cm 6C.cm 4D.cm 2BCAMN图5二、填空题(本大题满分12分,每小题3分) 15.分解因式: x 2y ﹣2y 2x+y 3= .16.用火柴棒按如图6所示的方式摆图形,按照这样的规律继续摆下去,第4个图需要 根火柴棒,第n 个图形需要 根火柴棒(用含n 的代数式表示)17.方程02=-x x 的解是 .18. 如图7, AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =30°,点P 在线段OB 上运动.设∠ACP =x ,则x 的取值范围是 . 三、解答题(本大题满分56分) 19.(满分8分,每小题4分) (1)计算:sin30°+(﹣1)0+()﹣2﹣.(2)化简:(a +1)(a -1)-a (a -1).……(1)(2)(3)图6图7AB O Cx P20.(满分8分)今年春节期间,三亚南山文化苑和亚龙湾森林公园接待游客日均量共5万人次,共收取门票850万元,收费如下表所示:问:三亚南山文化苑和亚龙湾森林公园接待游客日均量各多少万人?21.(满分8分)如图8,在正方形网格中,△ABC(1)将△ABC向右平移5个单位长度,画出平移后的△A1B1C1 ;(2)画出△ABC关于x轴对称的△A2B2C2 ;(3)将△ABC绕原点O 旋转180°,画出旋转后的△A3B3C3 ;(4)在△A1B1C1 、△A2B2C2 、△A3B3C3中△________与△________成轴对称;△________与△________成中心对称.22.(满分8分)现在“校园手机”越来越受到社会的关注,为此某校九(1)班随机调查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下统计图.(1)求这次调查的家长人数,并补全图①;(3分) (2)求图②中表示家长“赞成”的圆心角的度数;(2分)(3)从这次接受调查的家长来看,若该校的家长为2500名,则有多少名家长持反对态度?(3分)23、如图9,四边形ABCD 是正方形,ECF △是等腰直角三角形,其中CE CF =, G 是CD 与EF 的交点.(1)求证:BCF DCE △≌△; (2)求证:DE BF =., DE BF ⊥ (3)若5BC =,3CF =,90BFC ∠=,求:DG GC 的值.A D图924、如图10,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C(1)求抛物线的函数解析式.(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.图10参考答案一.选择题BBCBA ADCDA CDBA 二、填空题15.y (x ﹣y )2 16.21,5n+1 17.01=x , 12=x 18.30°≤x ≤90° 三、解答题19.(1)解:原式=+1+4﹣=5. (2) 化简:原式=a 2-1-a 2+a=a -120. 解:设三亚南山文化苑接待游客日均量为x 万人,亚龙湾森林公园接待游客日均量y 万人,根据题意得,解得:答:三亚南山文化苑接待游客日均量为3.5万人,亚龙湾森林公园接待游客日均量1.5万人.21.(1)△111C B A 如图所示 (2)△222C B A 如图所示(3)△333C B A 如图所示 (4)△222C B A 、△333C B A ;△111C B A 、△333C B Ax+y=5 128x+188y=850x=3.5 y =1.522.解:(1)∵由条形统计图,无所谓的家长有120人,根据扇形统计图,无所谓的家长占20%,∴家长总人数为120÷20%=600人。

2014中考数学试题及答案

2014中考数学试题及答案

2014中考数学试题及答案2014年中考数学试题一、选择题(共10小题,每小题3分,满分30分)1. 下列哪个选项是正确的整数比?A. 2:3B. 1.5:2.5C. 0.6:0.2D. 3.14:2.72. 绝对值不大于5的所有整数之和为:A. 0B. 10C. 15D. 203. 若a、b、c是等差数列,且a+b+c=6,b+c+d=9,则d的值为:A. 1B. 2C. 3D. 44. 一个圆的半径是7厘米,求这个圆的周长(π取3.14):A. 42厘米B. 28厘米C. 18厘米D. 14厘米5. 下列哪个选项是反比例函数的图象?A. 过原点的直线B. 经过第二象限的曲线C. 经过第一、三象限的曲线D. 双曲线6. 一个等腰三角形的底边长为6厘米,腰长为5厘米,这个三角形的面积是多少平方厘米?A. 12B. 14C. 16D. 187. 下列哪个选项是一元二次方程的解?A. x = 2B. x = -2C. x = 1或x = -1D. x = 08. 已知函数f(x) = 2x + 1,求f(3)的值:A. 7B. 6C. 5D. 49. 下列哪个选项是正确的小数与分数之间的转换?A. 0.75 = 3/4B. 0.8 = 4/5C. 0.125 = 1/8D. 0.2 = 1/510. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,求这个长方体的体积:A. 24立方厘米B. 21立方厘米C. 16立方厘米D. 12立方厘米二、填空题(共5小题,每小题4分,满分20分)11. 已知一个等差数列的前三项分别是2、5、8,那么第100项是______。

12. 一个圆的直径是10厘米,那么这个圆的面积(π取3.14)是______平方厘米。

13. 一个三角形的三个内角之比为2:3:5,那么这个三角形的最大内角是______度。

14. 已知函数g(x) = x^2 - 3x + 2,求g(4)的值是______。

2014年中考数学全真模拟试题含答案(精选2套)

2014年中考数学全真模拟试题含答案(精选2套)

2014年中考数学模拟试题(一)(本试卷分A卷(100分)、B卷(60分),满分160分,考试时间120分钟)A卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列四个实数中,绝对值最小的数是【】A.-5 B.2-C.1 D.42.一个几何体的三视图如图所示,那么这个几何体是【】A.B.C.D.3.某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为【】A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×1094.把不等式组x>1x23-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是【】A.B.C.D.5.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是【】A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量6.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为【】A .125°B .120°C .140°D .130°7.成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是【 】A .x y 2077x y 17066+=⎧⎪⎨+=⎪⎩B .x y 2077x y 17066-=⎧⎪⎨+=⎪⎩C .x y 2077x y 17066+=⎧⎪⎨-=⎪⎩ D .77x y 1706677x y 2066⎧+=⎪⎪⎨⎪-=⎪⎩ 8.如图,在 ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=【 】A .2:5B .2:3C .3:5D .3:29.若抛物线2y x 2x c =-+与y 轴的交点为(0,﹣3),则下列说法不正确的是【 】 A .抛物线开口向上 B .抛物线的对称轴是x=1C .当x=1时,y 的最大值为﹣4D .抛物线与x 轴的交点为(-1,0),(3,0)10.同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P 落在抛物线2y x 3x =-+上的概率为【 】A .118 B .112 C .19 D .1611.如图,反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为【 】A.1 B.2 C.3 D.412.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为【】A.45cm B.35cm C.55cm D.4cm二、填空题(每小题5分,共20分)13、分解因式:ab3﹣4ab=_________。

2014数学模拟试题

2014数学模拟试题

12014年中考数学模拟试题亲爱的同学,相信你已学到了不少数学知识,掌握了基本的数学思想方法,能够解决许多数 学问题,本试卷将给你一个展示的机会•请别急,放松些,认真审题,从容作答,你一定会取得前 所未有的好成绩.(本试卷满分150分,考试时间为120分钟)1A . a-bB . a bC .- a- b 9.如图,N AOB =90Z B=30° ,△ AOB 绕点O 顺时针旋转: 则旋转角〉的大小可以是( A . 30° B . 45°C .角度得到的.若点 A 在AB 上, ).60° D . 90°6.如果点P (m , -2m )在第四象限,那么 m 的取值范围是( ).第12题图14.如图,圆锥的底面半径为 6cm ,高为8cm ,那么这个圆锥的侧面积是、选择题(共 10小题,每小题 A 卷(满分100分)4分,计40分•每小题只有一个选项是符合题意的)11 •的倒数是( ).21 1 A. 2B . -2C .D -222. 1978年,我国国内生产总值是 3 645亿元,2009年升至249 530亿元.将249 530亿元用科学记 数表示为().A . 24.953 1013 元B . 24.953 1012 元x-10 12y-174-2 z• • •(第9题图)y 的对应值,可判断该二次函数的图象与x 轴( ).13C . 2.4953 10 元 14D . 2.4953 10 元3.图中圆与圆之间不同的位置关系有( ).(第3题图)A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧 D .无交点二、填空题(共 8小题,每小题4分,计32分) 11. 函数y = J 】—1中,自变量x 的取值范围是_ 12. 如图的围棋盘放在某个平面直角坐标系内,白棋②(-6,-8),那么黑棋①的坐标应该是 ___________13. 如图是一个被等分成 6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是 _______________ .的坐标为(-7,-4),白棋④的坐标为4.王老师为了了解本班学生课业负担情况, 在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时) :1.5, 2, 2, 2, 2.5, 2.5 , 2.5, 2.5, 3, 3.5 .则这10 个数据的平均数和众数分别是( ).A . 2.4, 2.5B . 2.4, 2C . 2.5 , 2.5D . 2.5, 25. 若正比例函数的图象经过点(-1 , 2),则这个图象必经过点(). A . (1, 2) B . ( -1 , -2 ) C . (2, -1 ) D . (1, -2 )C .m :: 07.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面 (接缝忽略不计),则这个圆锥的底面半径是( ).A . 1.5B . 2C . 3D . 612015.用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,按此规律,第 瓷砖 _____________ 块.6个图形中需要黑色).D .- a + b△ AOB 可以看作是由题号-一--二二三A 卷合计B 卷 合计AB 卷 总分得分10 .根据下表中的二次函数 y二ax2bx c 的自变量x 与函数第13题图 第14题图2______ cm .的结果是(直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米? 16•如图所示的抛物线是二次函数y = -x2 ax a2 -4的图象,那么a的值是 ______________ .17.学习小组5位同学参加初中毕业生实验操作考试(满分20分)的平均成绩是16分•其中三位男生考试成绩的方差为 6 (分2),两位女生的成绩分别为17分,15分•则这个学习小组5位同学考试成绩的方差为 ______________ 分2•21.(本小题满分10分)设有关于x的一元二次方程x2+2 •... a x+ b =0(a> o.)(1)a、b满足什么关系时,方程有实根;(2)若a是从1、2、3三个数中任取一个数,b是从2、3两个数中任取的一个数,求上述方程有实根的概率。

2014年中考数学全真模拟试题含答案

2014年中考数学全真模拟试题含答案

2014年中考数学模拟试题(本试卷分A 卷(100分)、B 卷(60分),满分160分,考试时间120分钟)A 卷(共100分)一、选择题(每小题3分,36分) 1、﹣6的相反数为( ) A :6 B :61C :-61D :-62、下列计算正确的是( )A :a 2+a 4=a 6B : 2a+3b=5abC :(a 2)3=a6D :a 6÷a 3=a 23、已知反比例函数的图象经过点(1,﹣2),则k 的值为( )A :2B : -21 C :1D :-2 4、下列图形中,既是轴对称图形又是中心对称图形的有( )A :4个B :3个C :2个D :1个 5、如图,a ∥b ,∠1=65°,∠2=140°,则∠3=( )A :100°B :105°C :110°D :115°6、一组数据4,3,6,9,6,5的中位数和众数分别是( )A :5和5.5B :5.5和6C :5和6D :6和67、函数的图象在( )A :第一象限B :第一、三象限C :第二象限D :第二、四象限 8、如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB=30°,CD=,则阴影部分图形的面积为( )A :4πB :2πC :πD :32π 9、甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千 米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( ) A :x 30=1540-x B :x 40=1530-x C :x30=1540+x D :x 40=1530+x 10、如图,在矩形ABCD 中,AB=10,BC=5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则阴影部分图形的周长为( )A :15B :20C :25D :3011、如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A :21B :55C :1010D :55212、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C的方向运动,到达点C 时停止,设运动时间为x (秒),y=PC 2,则y 关于x 的函数的图象大致为( )A :B :C :D :二、填空题(本大题共4小题,每小题5分,共20分) 13.若m 2-n 2=6,且m -n=2,则m +n= ▲ . 14.函数2x 1y x 1+=-中自变量x 的取值范围是 ▲ . 15.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组x 305x>0-≥⎧⎨-⎩的整数,则这组数据的平均数是 ▲ .16.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= ▲ .三、解答题(本大题共5小题,共44分) 17.计算:()()1201302sin 60534015131π-⎛⎫+---+-+ ⎪-⎝⎭.18.已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .19.随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):数据段 频数 频率 30~40 10 0.05 40~50 36 50~60 0.39 60~70 70~80 20 0.10 总计2001注:30~40为时速大于等于30千米而小于40千米,其他类同 (1)请你把表中的数据填写完整; (2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?20.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树的正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为3米,台阶AC 的坡度为13:(即AB :BC=13:),且B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度(侧倾器的高度忽略不计).21.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.x 50 60 90 120y 40 38 32 26(1)求y关于x的函数解析式;(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.B卷(共60分)四、填空题(本大题共4小题,每小题6分,共24分)22.在△ABC中,已知∠C=90°,7sinA sinB5+=,则sinA sinB-=▲.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为▲cm.24.如图,已知直线l:y3x=,过点M(2,0)作x轴的垂线交直线l于点N,过点N 作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为▲.25.在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A (13,0),直线y kx 3k 4=-+与⊙O 交于B 、C 两点,则弦BC 的长的最小值为 ▲ . 五、解答题(本大题共3小题,每小题12分,共36分)26.如图,AB 是半圆O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C ,BD ⊥PD ,垂足为D ,连接BC .(1)求证:BC 平分∠PDB ; (2)求证:BC 2=AB•BD ;(3)若PA=6,PC=62,求BD 的长.27.如图,在等边△ABC 中,AB=3,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,将△ADE 沿DE 翻折,与梯形BCED 重叠的部分记作图形L . (1)求△ABC 的面积;(2)设AD=x ,图形L 的面积为y ,求y 关于x 的函数解析式;(3)已知图形L 的顶点均在⊙O 上,当图形L 的面积最大时,求⊙O 的面积.28.已知二次函数2y ax bx c =++(a >0)的图象与x 轴交于A (x 1,0)、B (x 2,0)(x 1<x 2)两点,与y 轴交于点C ,x 1,x 2是方程2x 4x 50+-=的两根.(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;(2)若∠ADC=90°,求二次函数的解析式.2014年中考数学模拟试题答案一、A CDCBB ADCDBC13. 314.1x2≥-且x≠115. 516. 517. 解:原式=3317 5311222-+-⨯-+=。

虎跳中学中考模拟试题

虎跳中学中考模拟试题

虎跳中学2014年中考模拟试卷 数学科试题(考试时间:100分钟 满分120分)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑. 1. —3的绝对值是A. —3B. 13-C. 13 D .32. 若代数式 x ﹢2的值为—3,则 x 等于A. 1 B . —1 C . —5 D. 5 3. 下列计算正确的是 A. 523a a a =+B. a a a =÷45C. 44a a a =⋅ D .632)(ab ab =4. 某中学九年级(1)班同学举行“奥运在我心中”演讲比赛.第三小组的六名同学成绩如下(单位:分): 9.1, 9.3, 9.5, 9.2, 9.4, 9.2.则这组数据的众数是A .9.1 B. 9.2C. 9.3D. 9.55. 图1是由四个小正方体叠成的一个立体图形,那么它的俯视图为6. 下列各数中,与1+2的积为有理数的是A . 2-1B . 2+1 C. -1-2 D. 2 7. 一次函数y =3x ﹢2的图像不经过A . 第一象限B . 第二象限C. 第三象限D. 第四象限 8. 如图2,A 、B 、C 均在⊙O 上,∠ABO =55O,则∠BCA=A. 35oB. 45oC. 50oD. 70o9. 已知三角形两边的长分别是4和10,则此三角形第三边的长可能是 A. 5 B. 6 C. 11 D. 16B .CD .C 图210. 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,则可列方程为A.60045050x x =+ B. 60045050x x =- C. 60045050x x =+ D. 60045050x x=-11. 甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是 A .16B .14C .13D .1212. 如图3,直线m n ∥,︒∠1=55,︒∠2=45,则∠3的度数为A .80︒B .90︒C .100︒D .110︒13. 如图,E 是□ABCD 的边AD 的中点,CE 与BA 的延长线交于点F ,若∠FCD =∠D ,则下列结论不成立...的是 A .AD =CF B .BF =CF C .AF =CD D .DE =EF14. 如图5,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,交AD 于E ,AD =8,AB =4,则DE 的长为 A. 3 B. 4 C. 5 D. 6 二、填空题(本大题满分16分,每小题4分) 15. 分解因式:a 3 —a =________________. 16. 在反比例函数1my x-=的图象的每一条曲线上,y 都随x 的增大而减小,则m 的取值范围是__________.17. 如图6,等腰梯形ABCD 中,AD ∥BC ,AB ∥DE ,BC=8,AB =5 ,AD =5,则△CDE 的周长是_______.AP D 图760°AEBCD图6ABCDEC ′图53mn 21m ∥,∠1=55,∠2=45,∠380︒F D ECBA图3图418. 如图7,等边△ABC 的边长为3,点P 为BC 上一点,且BP =1,点D 为AC 上一点,若∠APD =60°,则CD 的长为 . 三、解答题(本大题满分62分) 19.(满分10分)计算: (1-2|+113-⎛⎫⎪⎝⎭+ (-1)2011. (2)2(3)2a a a ++-()20.(满分8分)海南省历史悠久,人杰地灵,史称琼崖,为了了解学生对家乡历史文化名人的知晓情况,某校对部分的学生进行了随机抽样调查,并将调查结果绘制成如图所示的统计图(部分).根据统计图中的信息,回答下列问题. (1)补充条形统计图完整;(2)在扇形统计图中,“了解很少”所在扇形的圆心角是_________度; (3)若全校共有学生2400人,那么该校约有多少名学生“基本了解”海南省的历史文化名人?21. (满分9分)如图8,在Rt △ABC 中,∠ACB=90°,已知CD ⊥AB ,BC=1. (1)如果∠BCD=30°,求AC ;(2)如果tan ∠BCD=31,求CD.22.(满分8分) 受气候等因素的影响,今年某些农产品的价格有所上涨. 李大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元.则甲、乙两种蔬菜各种植了多少亩?23.(满分13分)如图9,在正方形ABCD 中,E 是CD 上一点,DF ⊥BE 交BE 的延长线于点G ,交BC 的延长线于点F .﹪不了解 了解很少 了解程度很了解基本了解 ACB D图8(1)求证:△BCE ≌△DCF . (2)若∠DBE =∠CBE ,求证BD =BF . (3)在(2)的条件下,求CE :ED 的值. 24. (满分14分)如图10,在平面直角坐标系中,二次函数2=++y x bx c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于(03)C -,点,点P 是直线BC 下方抛物线上的动点.(1)求这个二次函数表达式;(2)连接PO ,PC ,并将△POC 沿y 轴对折, 得到四边形POP C ',那么是否存在点P ,使 四边形POP C '为菱形?若存在,求出此时点 P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.参考答案:一、DCBBB ADACC CCBC二、15. a (a ﹢1)(a ﹣1) 16. 1m < 17. 15 18.32三、19.(1)解:原式=3+2+3-1 (2)解:原式=22692a a a a +++- =7 =89a + 20.解:(1)5÷10﹪=50,50﹣25﹣5﹣5=15(人),作图(略).(2)180(3)(人)720515255152400=+++⨯∴“基本了解”的学生720人.21.解:(1)∵CD ⊥AB ∴ ∠BDC =90°∵∠DCB =30° ∴∠B =60° 在Rt △ACB 中,∠ACB =90° ∴tan60°=BCAC……………………………4分 ∴AC =3…………………5分 (2)在Rt △BDC 中, tan ∠BCD =31=CD BD 设BD =k ,则CD =k 3如图10ACBD图9A BC D EFG由勾股定理得:()22213=+k k ………………………6分解得:1010101021-==k k ,(不合题意,舍去) ∴1010=k …………………8分 ∴CD =10103 .………………………9分 22. 解:设甲、乙两种蔬菜的种植面积分别为x 、y 亩,依题意可得:⎩⎨⎧=+=+138001*********y x y x 解这个方程组得⎩⎨⎧==64y x 答:(略) 23解:(1)证明∵四边形ABCD 是正方形,∴BC =DC ,∠BCE =∠DCF =90o ,………………(2分) ∴∠CBE ﹢∠BEC =90o ,又∵BG ⊥DF , ∴∠CBE ﹢∠F =90o ∴∠BEC =∠F , ∴△BCE ≌△DCF ……………………(4分) (2)证明:∵BG ⊥DF∴∠BGD =∠BGF ……………………(6分) 又∵BG=BG ,∠DBG ∠FBG , ∴△DBG ≌△FBG ,∴BD=BF ; ……………………(8分) (3)解:延长AD 、BG 交于点H .∵BD=BF ,BG ⊥DF ……………(10分) ∴∠DBG ∠FBG ,∵AD ∥BC ,∴∠H =∠FBG , ∴∠DB H =∠H ,∴DB=DH , ∵AH ∥BC ,∴△BCE ~△HDE ,……………(12分) ∴CE :DE =BC :DH ,∴CE :DE =BC :DB . ∵四边形ABCD 是正方形, ∴BC :BD=2:1. ∴CE :DE=2:1, ∴CE :DE 的值为22.……………(13分) ABCD E FGH24. 解:(1)将B 、C 两点的坐标代入2=++y x bx c 得3=9=3b c c +-⎧⎨-⎩,解得=2=3b c -⎧⎨-⎩.所以二次函数的表达式为:2=23y x x --.……………(4分) (2)假设抛物线上存在点P ,使得四边形POP C '为菱形.设P 点坐标为(x ,223x x --) ……………(5分) 连接PP '交CO 于点E . ∵四边形POP C '为菱形, ∴ PC=PO ;PE ⊥CO .∴OE=EC=32,∴P 点的纵坐标为32-,……………(7分)即223x x --=32-,解得12x x .即存在这样的点,此时P ,32-)……………(9分)3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,223x x --). ……………(10分) 由223x x --=0得点A 坐标为(-1,0).又已知点B 和点C 的坐标, 从而直线BC 的解析式为y=x -3. Q 点的坐标为(x ,x -3),则AB=4,CO=3,BO=3,PQ=23x x -+. ∴S 四边形ABPC =S △ABC + S △BPQ + S △CPQ =12AB·CO +12PQ·BF +12PQ·FO =12AB·CO +12PQ·(BF +FO ) =12AB·CO +12PQ·BO=12×4×3+12(23x x -+)×3 =239622x x -++=23375()228x --+ . .……………(13分)当x=32时,四边形ABPC 的面积最大.此时P 点的坐标为(32,154-),四边形ABPC 的最大面积为758. ……………(14分)。

2014年虎跳中学中考数学模拟试题 (15)

2014年虎跳中学中考数学模拟试题 (15)

2014年初中学业水平考试模拟数学试卷温馨提示:1.本试卷满分120分,考试时间120分钟.本试卷共三道大题,25个小题.一、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题3分,共24分)1.-2014-=.2.永州市2011年财政总收入增长31.7%,完成70.5亿元,请将70.5亿用科学计数法表示为:.3.布袋里有3个白球和2个红球,从布袋里取一次球,则取出红球的概率是。

4.如图,平行直线AB、CD被直线EF所截,∠1=60°,则∠3的同旁内角为.5.若正比例函数y kx=的图象经过点(-1,2),则k的值为.6.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件可以是(第四题图)(第六题图)7.观察下列一组数:1,1,2,3,5,8,13,21,34…则紧跟34后面的两个数分别为、。

8.根据指令[s,A](s≥0,0°<A<360°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系的坐标原点,且面对x轴正方向.(1)若给机器人下了一个指令[3,90°],则机器人应移动到点;(2)请你给机器人下一个指令,使其移动到点(6,-6).二、选择题(本大题共8个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上.每小题3分,共24分)9.在下列图形中,为中心对称图形的是()A等边三角形;B平行四边形;C正五边形;D等腰三角形。

10.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是().主视图 左视图 俯视图 A 4 B 5 C 6 D 811.某校八年级一班随机抽取6名同学的一次地生模拟测试成绩如下:90,75,90,86,86,90.数据中的众数和中位数分别是:A. 90,88B. 86,90C. 86,75D. 90,9012.在△ABC 中,∠C =90°,sinA =35,则tanB = ( ) A .43 B .34 C .35 D .4513.不等式组⎩⎨⎧≤-<+5121x x x 的解集是:A. 5≤xB. 52≤<-xC.52≤<xD. 2<x14.下列计算正确的是:A.422a a a =+B.()a a a a a a +=÷++223C.1046a a a =⋅ D .()633a a =15.二次函数2y ax bx c =++的图象如图所示,则下列关系式不正确的是( )第15题图 第16题图 A 、a <0 B 、abc >0 C 、c b a ++>0 D 、ac b 42->0 16.反比例函数(0)ky k x=>的部分图如图所示,A 、B 是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2的大小关系为( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法确定三、解答题(本大题共9个小题,共72分,解答题要求写出证明步骤或解答过程) 17.(本小题6分)计算:20+()()()121213201-++--316⨯-.18.(本小题6分)解方程:12121=-+--xx x .19.(本小题6分)先化简,再求值:22211(-)+-xy x y x y x y ÷-,其中1,-1x y =.20.(本小题8分)十八大代表年龄结构比较合理、学历层次较高。

2014中考数学模拟试卷(附详细答案)(3份)

2014中考数学模拟试卷(附详细答案)(3份)

2014年中考数学模拟试卷三(时间120分钟,满分120分)一、选择题(每小题3分,共36分)1.从不同方向看一只茶壶,你认为是俯视图的是()2.下列等式一定成立的是( )A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab 3.下列图形中,既是轴对称图形,又是中心对称图形的是()4.如果不等式组⎩⎪⎨⎪⎧ x +9<5x -1,x >m +1①②的解集是x >2,则m 的取值范围是( ) A .m <1 B .m ≥1 C .m ≤1 D .m >15.已知三角形的两边长是方程x 2-5x +6=0的两个根,则该三角形的周长L 的取值范围是( )A .1<L <5B .2<L <6C .5<L <9D .6<L <106.反比例函数y =2x的两个点为(x 1,y 1),(x 2,y 2),且x 1>x 2,则下式关系成立的是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定7.在△ABC 中,AB >AC ,点D ,E 分别是边AB ,AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等的是( )A .EF ∥AB B .BF =CFC .∠A =∠DFED .∠B =∠DEF8.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A .13B .23C .19D .129.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是()10.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( )A .12 120元B .12 140元C .12 160元D .12 200元11.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6 cm B.4 cmC.(6-23)cm D.(43-6)cm12.如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB,BC,CA为一边向△ABC外作正方形ABDE,BCMN,CAFG,连接EF,GM,ND,设△AEF,△BND,△CGM的面积分别为S1,S2,S3,则下列结论正确的是( )A.S1=S2=S3 B.S1=S2<S3C.S1=S3<S2 D.S2=S3<S1二、填空题(每小题4分,共20分)13.因式分解:x3-9x=__________.14.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是__________.(第14题图)15.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为__________米(如图).(第15题图)16.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B 交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.(第16题图)其中正确的是__________(写出正确结论的序号). 17.如图①,将一个量角器与一张等腰直角三角形(△ABC )纸片放置成轴对称图形,∠ACB =90°,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,测得CE =5 cm ,将量角器沿DC 方向平移 2 cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图②,则AB 的长为__________cm.(精确到0.1 cm)图① 图②三、解答题(共64分)18.(6分)计算:12-⎝ ⎛⎭⎪⎫-12-1-tan 60°+3-8+|3-2|.19.(7分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是__________,它是自然数__________的平方,第8行共有__________个数;(2)用含n 的代数式表示:第n 行的第一个数是__________,最后一个数是__________,第n 行共有__________个数;(3)求第n 行各数之和.20.(7分)为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户4月份用水15度,交水费22.5元,5月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户6月份的水费支出不少于60元,但不超过90元,求该用户6月份的用水量x的取值范围.21.(7分)据媒体报道:某市4月份空气质量优良,高居全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1~4月份中30天空气综合污染指数,统计数据如下:空气污染指数0~50 51~100101~150151~200201~250251~300大于300空气质量级别Ⅰ级(优)Ⅱ级(良)Ⅲ1(轻微污染)Ⅲ2(轻度污染)Ⅳ1(中度污染)Ⅳ2(中度重污染)Ⅴ(重度污染)30,32,40,42,45,45,77,83,85,87,90,113,127,153,167,38,45,48,53,57,64,66,77,92,98,130,184,201,235,243.请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1)30(2)(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.22.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,点F 在AC 的延长线上,且∠CBF =12∠CA B .(1)求证:直线BF 是⊙O 的切线;(2)若AB =5,sin∠CBF =55,求BC 和BF 的长.23.(9分)如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB ,CD 相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,此时扣链EF 成一条线段,EF =32 cm.图1 图2(1)求证:AC ∥BD ;(2)求扣链EF 与立杆AB 的夹角∠OEF 的度数(精确到0.1°,可使用科学计算器); (3)小红的连衣裙穿在衣架后的总长度达到122 cm ,问挂在晒衣架后是否会拖落到地面?请通过计算说明理由.24.(10分)如图,在平面直角坐标系中,已知A,B,C三点的坐标分别为A(-2,0),B(6,0),C(0,3).(1)求经过A,B,C三点的抛物线的解析式;(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD,BC的交点E 的坐标;(3)若抛物线的顶点为P,连接PC,PD,判断四边形CEDP的形状,并说明理由.25.(10分)已知:在如图1所示的锐角△ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.图1(1)求证:BF∥AC;(2)若AC边的中点为M,求证:DF=2EM;(3)当AB=BC时(如图2),在未添加辅助线和其他字母的条件下,找出图2中所有与BE 相等的线段,并证明你的结论.图2参考答案一、1.A 俯视图是从上面看到的平面图形,也是在水平投影面上的正投影.易判断选A.2.D 3.B4.C 由①得x >2,由②得x >m +1. ∵其解集是x >2,∴m +1≤2,∴m ≤1. 5.D 6.D7.C DE 是△ABC 的中位线,DE ∥BC ,所以∠EDF =∠BFD .又DF =FD ,所以两三角形已具备了一边一角对应相等的条件.添加A 中条件EF ∥AB ,可利用ASA 证全等;添加B 中条件BF =CF ,可利用SAS 证全等;添加C 中条件,不能证明全等;添加D 中条件∠B =∠DEF ,可利用AAS 证明全等.8.C9.C 当a >0时,直线从左向右是上升的,抛物线开口向上,B ,D 是错的;函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),A 是错的,所以C 是正确的,故选C.10.C11.C 如图,三角板A ′B ′C ′平移的距离为B ′B ″.∵AB =12 cm ,∠A =30°,∴BC =B ″C ″=6 cm ,利用三角函数可求出BC ″=2 3 cm ,所以B ′B ″=(6-23)cm.12.A 如下图,由全等可证EQ =BC =BN =CM ,AC =DG =FA =CG ,∴S 1=12FA ·EQ ,S 2=12BN ·DG ,S 3=12MC ·CG ,∴S 1=S 2=S 3.二、13.x (x -3)(x +3) x 3-9x =x (x 2-9)=x (x -3)(x +3).14.105° ∵∠AOD =30°,∴DAB 的度数为210°,∠BCD =105°.15.9 设路灯高为x 米,由相似得1.5x =530,解得x =9,所以路灯甲的高为9米.16.①②⑤ 17.24.5三、18.解:原式=23+2-3-2+2-3=2.19.解:(1)64 8 15 (2)(n -1)2+1 n 22n -1(3)方法一:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n 行各数之和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1.方法二:第n 行各数分别为(n -1)2+1,(n -1)2+2,(n -1)2+3,…,(n -1)2+2n -1,共有2n -1个数,它们的和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1. 20.解:(1)a =22.5÷15=1.5;b =(50-20×1.5)÷(30-20)=2;(2)根据题意,得60≤20×1.5+2(x -20)≤90,35≤x ≤50. 所以该用户6月份的用水量x 的取值范围是35≤x ≤50. 21.解:(1)30 (2)中位数是80(3)∵360×9+1230=252,∴空气质量优良(包括Ⅰ、Ⅱ级)的天数是252天. 22.(1)证明:如图,连接AE .∵AB 是⊙O 的直径,∴∠AEB =90°.∴∠1+∠2=90°.∵AB =AC ,∴∠1=12∠CAB .∵∠CBF =12∠CAB ,∴∠1=∠CBF .∴∠CBF +∠2=90°,即∠ABF =90°.∵AB 是⊙O 的直径,∴直线BF 是⊙O 的切线. (2)解:如图,过点C 作CG ⊥AB 于点G ,∵sin ∠CBF =55,∠1=∠CBF ,∴sin ∠1=55.∵∠AEB =90°,AB =5,∴BE =AB ·sin∠1= 5.∵AB =AC ,∠AEB =90°,∴BC =2BE =2 5.在Rt △ABE 中,由勾股定理得AE =AB 2-BE 2=25,∴sin ∠2=255,cos ∠2=55.在Rt △CBG 中,可求得GC =4,GB =2,∴AG =3. ∵GC ∥BF ,∴△AGC ∽△ABF . ∴GC BF =AG AB .∴BF =GC ·AB AG =203. 故BC 和BF 的长分别为25,203.23.(1)证法一:∵AB ,CD 相交于点O ,∴∠AOC =∠BOD .∵OA =OC ,∴∠OAC =∠OCA =12(180°-∠AOC ).同理可证:∠OBD =∠ODB =12(180°-∠BOD ),∴∠OAC =∠OBD ,∴AC ∥BD .证法二:∵AB =CD =136 cm ,OA =OC =51 cm ,∴OB =OD =85 cm ,∴OA OB =OC OD =35.又∵∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴∠OAC =∠OBD .∴AC ∥BD .(2)解:在△OEF 中,OE =OF =34 cm ,EF =32 cm , 作OM ⊥EF 于点M ,则EM =16 cm ,∴cos ∠OEF =EM OE =1634=817≈0.471,用科学计算器求得∠OEF ≈61.9°.(3)解法一:小红的连衣裙会拖落到地面.在Rt △OEM 中,OM =OE 2-EM 2=342-162=30(cm); 过点A 作AH ⊥BD 于点H ,同(1)可证:EF ∥BD , ∴∠ABH =∠OEM ,则Rt △OEM ∽Rt △ABH , ∴OE AB =OM AH ,AH =OM ·AB OE =30×13634=120(cm). ∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.解法二:小红的连衣裙会拖落到地面.同(1)可证:EF ∥BD ,∴∠ABD =∠OEF =61.9°.过点A 作AH ⊥BD 于点H ,在Rt △ABH 中,sin ∠ABD =AHAB,AH =AB ×sin∠ABD =136×sin 61.9°=136×0.882≈120.0 cm.∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.24.解:(1)由于抛物线经过点C (0,3),可设抛物线的解析式为y =ax 2+bx +3(a ≠0),则⎩⎪⎨⎪⎧4a -2b +3=0,36a +6b +3=0.解得⎩⎪⎨⎪⎧a =-14,b =1,故抛物线的解析式为y =-14x 2+x +3.(2)点D 的坐标为(4,3),直线AD 的解析式为y =12x +1,直线BC 的解析式为y =-12x+3,由⎩⎪⎨⎪⎧y =12x +1,y =-12x +3,得交点E 的坐标为(2,2).(3)四边形CEDP 为菱形.理由:连接PE 交CD 于F ,如图.∵P 点的坐标为(2,4),又∵E (2,2),C (0,3),D (4,3),∴PC =DE =5,PD =CE = 5.∴PC =DE =PD =CE .故四边形CEDP 是菱形.25.(1)证明:如图1.图1∵点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F ,∴BF =DF ,DH =BH .∴∠1=∠2.又∵∠EDA =∠A ,∠EDA =∠1,∴∠A =∠2.∴BF ∥AC .(2)证明:取FD 的中点N ,连接HM ,HN .图2∵H 是BD 的中点,N 是FD 的中点,∴HN ∥BF .由(1)得BF ∥AC ,∴HN ∥AC ,即HN ∥EM .∵在Rt △ACH 中,∠AHC =90°,AC 边的中点为M ,∴HM =12AC =AM .∴∠A =∠3.∴∠EDA =∠3.∴NE ∥HM . ∴四边形ENHM 是平行四边形.∴HN =EM .∵在Rt △DFH 中,∠DHF =90°,DF 的中点为N ,∴HN =12DF ,即DF =2HN .∴DF =2EM . (3)解:当AB =BC 时,在未添加辅助线和其他字母的条件下,原题图2中所有与BE 相等的线段是EF 和CE .图3证明:连接CD.(如图3)∵点B关于直线CH的对称点为D,CH⊥AB于点H,∴BC=CD,∠ABC=∠5.∵AB=BC,∴∠ABC=180°-2∠A,AB=CD.①∵∠EDA=∠A,∴∠6=180°-2∠A,AE=DE.②∴∠ABC=∠6=∠5.∵∠BDE是△ADE的外角,∴∠BDE=∠A+∠6.∵∠BDE=∠4+∠5,∴∠A=∠4.③由①,②,③得△ABE≌△DCE.∴BE=CE.由(1)中BF=DF得∠CFE=∠BFC.由(1)中所得BF∥AC可得∠BFC=∠ECF.∴∠CFE=∠ECF.∴EF=CE.∴BE=EF.∴BE=EF=CE.。

2014年中考数学模拟试卷

2014年中考数学模拟试卷

2014年中考模拟试卷数学卷(南门卷)(满分:150分;考试时间:120分钟)一、精心选一选:本大题共8小题,每小题4分,共32分,每小题给出的四个选项中有且只有一个选项是正确的, 请把正确选项的代号写在题后的括号内,答对的得4分;答错、不答或答案超过一个的一律得0分. 1.下列各数中,最大的数是( ) A .-1B . 0C .1D . 22.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,∠A=50°,∠ADE=60°,则下列结论正确的是( )A .∠AED =50°B .∠C =60° C .AD=AED .BC=2DE 3. 下列计算正确的是( )A . 4416x x x ⋅=B . 222()a b a b +=+C .4=± D . ()()23641a a ÷=4. 为了解莆田市今年参加中考的32000名学生的体重情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是( ). A .32000名学生是总体B .1600名学生的体重是总体的一个样本C .每名学生是总体的一个个体D .以上调查是普查5.右图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是( ) A .主视图 B .左视图C .俯视图D . 左视图与俯视图6. 如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=3,BE=4,则阴影部分的面积是( )A . 19B .15C .12D .67.如图,AB 是半圆的直径,点D 是AC 的中点,∠B=50°,则下列判断不正确的是( )A .∠ACB=90°B .AC=2CDC .∠DAB=65°D .∠DAB+∠DCB=180°8.已知二次函数y=ax 2+bx +c(a≠O)的图象如图所示,则下列结论中正确的是( )A .abc <0B .当-1<x <2时,y 随x 的增大而减小C .b +2a=0D .关于x 的方程ax 2+bx +c=O(a≠0)的根是x=-1二、细心填一填:本大题共8小题,每小题4分,共32分.9.莆田市绶溪公园企溪绿道于2014年1月全线贯通并对外开放,全长约 5100米.5100用科学记数法表示为_______________。

虎跳中学中考模拟试题

虎跳中学中考模拟试题

虎跳中学2014年初三年级学业水平考试数学模拟试卷时间:100分钟 满分:120分姓名 班级 座号一、选择题(本大题满分42分,每小题3分) 1.21-的绝对值是( ) 11A. B.2 C. D.222- -2.我国第一艘航母“辽宁舰”最大排水量为67 500吨,用科学记数法表示这个数字是( )A.6.75×103 吨B.67.5×103吨C.6.75×104 吨D.6.75×105吨 3.16的平方根是( )A.4B.±4C.8 D .±84.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为( )A. 30°B.25°C. 20°D.35° 5.下列等式成立的是( )A.a 2×a 5=a 10=+C.(-a 3)6=a 18a =6.分式方程12x 1x 1=-+的解是( ) A.1 B.-1 C. 无解 D. 3 7 .袋中有4个红球,x 个黄球,从中任摸一个恰为黄球的概率为43,则x 为( ) A .9 B .12 C .10 D .168.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )9. 关于x 的一元二次方程mx 2-3x-4=4x+3有实数根,则m 的取值范围是( ). A .m >-47 B .m ≤-47且m ≠0 C .m ≥-47 D .m ≥-47且m ≠010. 若A 为锐角,且sinA=54,则tanA 的值为( ) A.43 B. 34 C. 53 D.35 11.如图,在Rt △ABC 中,∠BAC=90°,D 、E 分别是AB 、BC 的中点,F 在CA 的延长线上,∠FDA=∠B ,AC=6,AB=8,则四边形AEDF 的周长为( )A.22B.20C.18D.1612.如图,已知AB 、CD 是⊙O 的两条直径,∠ABC=28°,那么∠BAD=( ) A.28° B.42° C.56° D.84°第11题 第12题 第13题 第14题 13、如图,小伟设计两个直角三角形来测量河宽DE ,他量得AD=20m ,BD=15m ,CE=45m ,则河宽DE 为( )A 、50mB 、40mC 、60mD 、80m14.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数64y y x x=-=和的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC的面积为( )A.3B.4C.5D.10 二、填空题(本大题满分16分,每小题4分)15.分解因式:a 3-ab 2=________. 16.13-=_________.17.若二次根式2x -4有意义,则x 的取值范围是 。

虎跳中学年中考模拟试题

虎跳中学年中考模拟试题

虎跳中学2014年初中毕业生学业模拟考试数 学 科 试 题(全卷满分120分,考试时间100分钟)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.3-的绝对值是A .3B .3-C .13D .13-2.下列运算正确的是A .a 4•a 2=a 6B .22532a b a b -=C .325()a a -=D .2336(3)9ab a b = 3.当2x =-时,代数式x 2+1的值是A .3B .-3C .5D .5-4.在下面的四个几何体中,它们各自的左视图与主视图不相同的是( )5.一个三角形的两边长分别为3cm 和7cm ,则此三角形的第三边的长可能是 A .3cm B .4cm C .7cm D .11cm6.据中国之声《新闻纵横》2014年4月17日报道,澳大利亚海事安全局根据当地时间16日获得的最新消息,已经对搜索MH370的范围进行了修正,目前划定的搜索区域约为55151平方公里,用科学计数法表示55151为A .5.5151x104B .55.151x103C .551.51x102D .0.55151x105 7.计算:)21(22xxx -÷-的正确结果为 .A.xB.x1 C.-x 1 D. -xx 2-8.一次函数12+=x y 的图像经过A. 第二、三、四象限B. 第一、三、四象限C. 第一、二、四象限D. 第一、二、三象限9.不等式组⎩⎨⎧<>-31x x 的解集是 A. 1>x B. 31<<x C. 1->x D. 3<x正方体 长方体 圆柱 圆锥 A B C D10.下列图形中,既是轴对称图形又是中心对称图形的是这些运动员跳高成绩的中位数和众数分别是A .1.70,1.65B . 1.65,1.70C .1.70,1.70D .3,5 12..如图3,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是图4 13.如图4,⊙B 的半径为4cm , 60=∠MBN ,点A 、C 分别是射线BM、BN 上的动点,且直线BN AC ⊥.当AC 平移到与⊙B 相切时,AB 的长度是A. cm 2B. cm 4C. cm 6D. cm 814.如图5,将□ABCD 折叠,使顶点D 恰落在AB 边上的点M 处,折痕为AN ,那么对于结论 ①MN ∥BC ,②MN AM =,下列说法正确的是A. ①②都错B. ①②都对C. ①对②错D. ①错②对二、填空题(本大题满分16分,每小题4分) 15.分解因式:a 2b -4b=_________.16.某工厂计划a 天生产60件产品,则平均每天生产该产品__________件.17.如图6,在平行四边形ABCD 中,AB = 6cm ,∠BCD 的平分线交AD 于点E ,则线段DE 的长度是____ cm .18.如图7,将半径为4cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为ABCD MN 图5ABCED图6图7_________cm .三、解答题(本大题满分62分)19.(满分8分) (1114()3--- (2)解方程:0111=--x20.(满分10分)在当地农业技术部门指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收. 下面是小明爸爸、妈妈的一段对话.请用学过的知识帮助小明算出他们家今年菠萝的收入。

广元市虎跳中学2014届九年级上第一次诊断性考试数学试题

广元市虎跳中学2014届九年级上第一次诊断性考试数学试题

虎跳中学2013秋第一次诊断性考试九年级数学试卷(满分120分,考试时间120分钟)一、选择题(每题3分,共30分)1、如果有意义,则的取值范围是()A. B. C. D.2、化简的结果是()A 5B -5C 士5D 253.下列图形中,既是中心对称图形又是轴对称图形的是()A B C D4、一元二次方程的解是()A、 B、 C、 D、5.方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根6、关于的一元二次方程的一个根为0,则的值是()A. B.C.或-1 D.7.7 7、三角形两边的长分别是4和6,第三边的长是一元二次方程的一个实数根,则该三角形的周长是()A、20B、20或16C、16D、18或218.若,则()A a,b互为相反数B a,b互为倒数CD a=b9、方程(x-5)(x+2)=1的根为()A、 5B、 -2C、 -2或5D、以上均不对10下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共15分)11、点P(-2,4)关于坐标原点对称的点的坐标是( )12.一元二次方程x2-8=-2x的.二次项系数是_________,一次项系数是_________,常数项是_______13、关于x的一元二次方程有两个不相等的实数根, 则k的取值范围是_______________________.14、已知方程x2-7x+12=0的两根恰好是Rt△ABC的两条边的长,则Rt△ABC•的第三边长为________ .15、观察下列各式:请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________________三、计算和解方程(每小题5分,共30分)16、计算(1) ① (2)17、解方程(1)(公式法)(2)(3)(4)(配方法)四、解答题(每小题7分,共21分)18、已知当a=+1时先化简再求值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
2-+x x 6、一个正方体的表面展开图如图所示,则正方 体中的“A ”所在面的对面所标字是( ) A 、 花 B 、红 C 、刺 D 、桐
7、把不等式-2X-3< 3的解集在数轴上表示,正确的是( )
8、下列命题是真命题的是( ) A 、三点确定一个圆
B 、平行四边形既是轴对称图形又是中心对称图形
C 、对角线相等且互相平分的四边形是矩形
D 、有两边和一角对应相等的两个三角形全等 二、填空题(每小题3分,共
24分)
9、 的立方根的绝对值是______ 10、如图,是一水库横断面的一部分,坝高h=6m , 迎水坡AB=10m ,斜坡坡角为а,则tan а=______
11、函数 y=
自变量x 的取值范围是______ 12、今年我市参加初中毕业会考的考生约36300人,用科学记数法表示为_______人
13、在学雷锋捐款活动中,某组同学捐款金额如下(单位:元)4,5,5,10,18,15,10,5,这8名同学捐款金额的从数是_______(元),
h
B
327
-B
A
C
D
(-12
)-3
+25-sin45°∙tan60°+(3∙cos30°)°+(-3∙sin60°)°
a-b a+2b ÷a 2-b 2
a 2+4ab+4
b 2
-1
平均为______(元)
14、某公司计划在一座圆锥形土丘上铺满草皮,土丘高50
坡度 ,
则草皮面积为_______(结果可含根号, ) 15、在一个不透明的口袋中,装有5个红球4个白球3除颜色外都相同,从中任意摸出一个球,摸到红球的概率是______ 16、若实数a 满足,a 2+2a=1,则3a+6a-2的值为______ 三、解答题(本大题共9小题,共72分)
17、计算:(6分)
18、(本小题6分)先化简,再求值, 其中a=1,b=2
4x-3y=11
19、(小题6分)解方程组
2x+y=13 20、(本小题8分)为了解某校九年级男生体育测试情况,体育老师随机抽取部分男生进行测试,并对成绩进行统计,绘制成图1和图2两幅。

尚不完整的统计图 i=1:3
i=1:3π
1
(1)求本次抽测的男生______人。

(2)将两幅图补充完整。

(3)若规定引体向上5次以上(含5次)为达标,则该校350名九
年级男生估计有多少人能达标? 21、(本小题8分)祁阳某楼盘准备以每平方米5000元的均价对外销售,由于国家有关房地产新政策出去台后,购房者持观望态度,为加快资金周转,房产开发商对价格经过两次调整后,决定以每平方米4050元的均价开盘销售。

(1)求平均每次下调的百分率。

(2)张先生准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案供选择:①打9.8折销售,②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠。

图1B
23、(本小题10分)BC ,垂足为E ,连接DE ,且∠AFE=∠B 。

(1)求证:ΔADF ∽ΔDEC (2)
24、(本小题10分),抛物线交x 轴于A P 是它的顶点,点A 的横坐标是-3,点B (1)求m,n 的值
若AB=8,AD=63,AF=43,求
(2)求直线PC 的解析式
25、(本小题10分),如图,在直角坐标系中,四边形OABC 是矩形,OA=3,OC=4,P 为直线AB 上一动点,将直线OP 绕点P 逆时针旋转90o 交直线BC 于点Q 。

(1)当点P 在线段AB 上运动(不与A ,B 重合)时,求证:
(2)在(1)成立的条件下,设点P 的横坐标为m ,线段CQ 的长度为L,求出L 关于m 的函数解析式,并判断L 是否存在最小值,若存在求出最小值,若不存在,请说明理由。

(3)在直线AB 上是否存在点P ,使Δ求出点P
数学模拟试题参考答案
一、选择题(每小题3分,共24分): 1-8题:C 、B 、C 、C 、D 、D 、A 、C
OA ∙BQ=AP ∙BP
二、填空题(每小题3分,共24分):
9题、 10题、3/4 11题、x ≥-2且x ≠3 12题、3.63×104
13题、5,9 14题、 15题、5/12 16题、1 三、解答题:
17题(6分)、
18题(本小题6分)、
当a=1,b=2时,原式=
19题(小题6分)、x=5,y=3
20题(本小题8分)、(1)50人
(2)、如右图 (3)、50×32%+14+6=36(人)
21题(本小题8分)、(1)设平均每次下调的百分率为x,依题意得 500(
1-x)2=4050 解得:x=10%
(2)、方案一购房费用:100×4050×0.98=396900(元) 方案二购房费用:100×4050-100×1.5×24=401400(元) 方案一更优惠
22题(本小题8分)、证明:∵点E 为AC 的中点 OC=OB ∴OE ∥AB ∠EOC=∠B ∠EOD=∠ODB 又∵∠ODB=∠B ∴∠EOC=∠EOD
又∵OC=OD OE=OE ∴ΔOCE ≌ΔODE ∴∠EDO=∠ECO=900 ∴DE ⊥OD
∴DE 是⊙O 的切线 23题(本小题10分)、(1)证明:∵四边形ABCD 是平行四边形
33 15500原式=8+522•3+1+1=162原式=a-b a+2b (a+2b)2(a+b)(a-b)a+2b
a+b
=a+2b a b a+b =
b
a+b
32
∴∠B+∠C=1800
又∵∠AFE+∠AFD=1800 ∠AFE=∠B ∴∠C=∠AFD 而AD ∥BC
∴∠DEC=∠ADF ∴ΔADF ∽ΔDEC
(2)∵ΔADF ∽ΔDEC

∴ DE=12
又∵∠B+∠BAE+∠EAD=1800 ∠B+∠BAE=90 ∴∠EAD=900
在Rt ΔDAE 中 9/2-3m+n=0 24题(本小题10分):(1)由题意得:
1/2+m+n=0 解得:m=1 n=-3/2
(2)抛物线的解析式为y=1/2x 2+x-3/2
顶点P 的坐标(-1,-2) 点C (0,-3/2) 设直线PC 的解析式为:y=kx+b
解得 y=12x 32
∴直线PC 的解析式为
25题(本小题10分):(1)证明:∵∠APO+∠AOP=900 ∠APO+∠BPQ= 900 ∴∠AOP=∠BPQ ∴Rt ΔAPO ∽Rt ΔBQP

∴OA ·BQ=AP ·BP (2)∵OA ·BQ=AP ·BP ∴3(3-L)=m(4-m)
∴L 关于m 的解析式为
AD DE =AF
CD CD=AB
AE=DE 2-AD 2=6
y=12x
3
2
k=12 b=32
OA BP =
PA
BQ
L=13
m 24m+3
∵a=1/3>0则L有最小值 L最小值=5/3
(3)存在,理由∵OP⊥PQ则OP=PQ
ΔAPO∽ΔBQP
∴OA/BP=PO/PQ=1 即OA=BP=3
∴AP=1
∴直线AB上存在点P,使ΔPOQ为等腰三角形,点P的坐标为(1,3)。

相关文档
最新文档