湘教版中考数学复习学案(数与式)

合集下载

中考数学专题复习资料数与式

中考数学专题复习资料数与式

第一轮中考复习——数及式知识梳理:一.实数和代数式的有关概念 1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。

数轴上所有的点及全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数是0。

数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且及原点的距离相等。

4.倒数:1除以一个数的商,叫做这个数的倒数。

一般地,实数a 的倒数为a1。

0没有倒数。

两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。

5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。

a =,绝对值的几何意义:数轴上表示一个数到原点的距离。

6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。

(1)正数大于零,零大于负数。

(2)两正数相比较绝对值大的数大,绝对值小的数小。

(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。

(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。

7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。

单独的一个数或字母也是代数式。

8.整式:单项式及多项式统称为整式。

单项式:只含有数及字母乘积形式的代数式叫做单项式。

一个数或一个字母也是单项式。

单项式中数字因数叫做这个单项式的系数。

一个单项式中所有字母的指数的和叫做这个单项式的次数。

多项式:几个单项式的代数和多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

第二章命题与证明《复习学案》九年级上册数学(湘教版) (2)第2课时

第二章命题与证明《复习学案》九年级上册数学(湘教版) (2)第2课时

第二章几何证明初步期末复习学案姓名:班级:学号:命题人:李小平 NO:02【复习目标】1、(1)了解定义、命题、公理、定理的含义(2)能将命题写成“如果…那么…”的形式,并会找出命题的条件(题设)和结论(3)会写出一个命题的逆命题,并会找出逆命题的条件(题设)和结论(4)能判断一个命题的真假。

并会举反例证明一个命题是错误的2、(1)了解证明的含义,理解证明的必要性,体会证明的过程要步步有据(2)了解几何证明的三个步骤并会求证文字语言叙述的命题3、体会反证法的含义,知道反证法的步骤,会用反证法证明命题4、综合运用所学知识利用逻辑推理进行严谨的证明,发展初步演绎推理的能力【学习过程】一、自主学习:1、(1)用来说明一个名词含义的语句叫做定义。

表示的语句叫做命题。

有些真命题是通过长期实践总结出来的,被大家所公认的,并且作为证实其他命题的起始依据,这样的真命题叫做。

通过推理的方法得到证实的真命题称作(2)命题通常由和组成,是已知的事项,是由已知事项推断出的事项,命题的一般叙述形式为,其中,所引出的部分是条件,所引出的部分是结论(3)在两个命题中,如果第一个命题的是第二个命题的,而第一个命题的是第二个命题的,那么这两个命题叫做互逆命题,如果把其中一个命题叫做,那么另一命题叫做它的。

如果一个定理的逆命题也是真命题,那么这个逆命题就是原来定理的(4)错误的命题叫,正确的命题叫做,要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的,而不符合命题的就可以了,这种例子称为2、(1)除公理外,命题的真实性都必须经过推理,推理的过程叫做(2)几何证明的过程一般包括三个步骤:①根据题意,画出②结合图形,写出③找出由已知推出求证的途径,写出3、(1)证明一个命题时,不是由已知条件出发直接证明命题的结论,而是先提出与命题的相反的假设,推出矛盾,从而证明命题成立,这种证明的方法叫做反证法(2)用反证法证明一个命题,有三个步骤:①否定②推出③肯定4、公理与定理:(定理需要会证明)(1)两直线平行,同位角相等(公理)两直线平行,内错角相等;两直线平行,同旁内角互补(2)同位角相等,两直线平行(公理)内错角相等,两直线平行;同旁内角互补,两直线平行(3)对顶角相等(3)全等三角形的判定:ASA(公理)、SAS(公理)、SSS(公理)、AAS、HL(4)全等三角形的性质:全等三角形的对应边相等,对应角相等(公理)两个全等三角形的对应高相等(5)三角形三个内角的和等于180度(6)三角形的一个外角等于与它不相邻的两个内角的和三角形的一个外角大于与它不相邻的任意一个内角三角形的外角和等于360度(7)线段垂直平分线上的点到这条线段的的距离相等到一条线段的相等的点,在这条线段的垂直平分线上。

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。

2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。

★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

数轴 1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。

2024年九年级中考数学一轮复习大单元《数与式》学习设计

2024年九年级中考数学一轮复习大单元《数与式》学习设计

数与式【学科大概念】数与式是描述客观世界中数量关系最为基本的数学语言和工具.【课程大概念】运用数与式简洁、准确的表述研究对象之间的数量关系(数学语言),有效借助运算方法解决计算问题,发展数学运算能力,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神.单元概述【单元内容】数与式包括实数及其运算,代数式及整式(含因式分解),分式,二次根式,是初中数学《代数》部分的重要内容;本单元重在回顾梳理实数(有理数、无理数)、代数式(整式、分式、二次根式)相关概念及内在联系,应用运算法则进行整式、分式、二次根式的加、减、乘、除、乘方运算,梳理出三类代数式算理之间的逻辑关系,发展数学运算素养.【中考考查方向】实数的有关概念、科学计数法、实数的大小比较、实数的运算、代数式、整式的相关概念、整式的运算、因式分解、分式有无意义及分式值为0的条件、分式的性质、分式的运算、二次根式的概念、二次根式的性质、二次根式的运算等.【课标要求】1.数与式(1)理解有理数的意义;理解乘方的意义,掌握有理数的加、减、乘、除乘方及简单的混合运算;理解负数的意义;能用数轴上的点表示实数,能比较实数的大小;能借助数轴理解相反数和绝对值的意义.(2)理解有理数的运算律,能运用运算律简化运算,能运用有理数的运算解决简单的问题.2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根,了解乘方与开方互为逆运算;(2)了解无理数和实数,知道实数由有理数和无理数组成,感悟数的扩充,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;.(3)了解二次根式、最简二次根式的概念,了解二次根式的运算法则,会用他们进行简单的四则运算.3.代数式(1)能分析具体问题中的简单数量关系,并用代数式表示.(2)会求代数式的值;能根据待定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.4.整式与分式(1)了解整数指数幂的意义和基本性质;会用科学计数法表示数.(2)理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加减运算;能进行简单的乘法的运算.(3)能用提公因式法、公式法、进行因式分解.(4)了解分式和最简的分式加减乘除运算.(5)能利用乘法公式进行简单的推理.(6)了解代数推理.【单元目标】1.从概念,性质及运算法则三个方面梳理实数与代数式相关内容,分析实数、整式、分式、二次根式、代数式之间的区别与联系,构建数与式的知识与逻辑体系;2.应用运算法则进行整式、分式、二次根式的加、减、乘、除、乘方混合运算,总结三类计算算理之间的内在联系,解决相关计算问题,发展数学运算能力;3.人人参与过关,自主纠错,反思错因,灵活应用整式、分式、二次根式解决综合实际问题.【评价预设】评价内容水平一☆水平二☆☆水平三☆☆☆整体建构能说出实数、代数式、整式、分式、二次根式相关概念及性质,举例说明它们之间的区别与联系;梳理整式、分式、二次根式的运算法则,说出三类计算算理之间的内在联系;从概念、性质、运算法则三个方面画出思维导图,构建数与式单元知识、逻辑体系.探究迁移能说出对整式、分式、二次根式的基本性质与运算法则的理解,并会举例说明;经历整式、分式、二次根式的运算过程,总结运算过程中的一般思路方法、注意事项以及三类运算之间的内在联系;结合找规律问题,分析数与式中的用到的数学方法,总结解决相关数学问题的规律方法.拓展过关能从实数、整式、分式及二次根式的基本概念、性质及运算等方面梳理数与式之间的内在联系,能说出数与式的本质;自主纠错,反思错因,能综合运用整式、分式、二次根式解决相关计算问题;围绕数与式的相关运算进行二次过关,能综合运用数与式解决实际问题.【学时建议】【单元目标追求】一、我的学习目标:(结合单元学习目标制定)二、通过本单元的学习,我的目标达成情况及改进措施三、通过本单元学习,除了学科知识外,我的其他收获(如学习能力、核心素养、生活实际应用等)【单元前测】(一)实数及其运算1.把下列各数填入相应的集合内.-7,3,2,23-,98,327,0.99,2π,-0.31,227.(1)有理数集合{}(2)无理数集合{}(3)正实数集合{}(4)负实数集合{}2.(多选)下列说法不正确的是()A.2m-4与3m-1是同一个数的平方根,则m 的值是-3;B.-0.064的立方根是-0.4;C.16的算术平方根是4;D.364的平方根是23.(2022·潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为512-,下列估算正确的是()A .512025-<<B .2511522-<<C .151122-<<D .5112->4.用科学记数法表示数(1)2022年北京冬奥会国家速滑馆“冰丝带”屋顶上安装的光伏电站,据测算,每年可输出约44.8万度的清洁电力.将44.8万度用科学记数法可以表示为__________(2)我国古代数学家祖冲之推算出π的近似值为,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为___________.5.(2018·潍坊)用教材中的计算器进行计算,开机后依次按下把显示结果输入如图的程序中,则输出的结果是____________.(二)代数式相关概念及性质6.若把分式r 2B中的x 和y 都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍7.(2022·潍坊多项选择题)如图,实数a ,b 在数轴上的对应点在原点两侧,下列各式成立的是()A .||1a b>B .a b -<C .0a b ->D .0ab ->8.若121+n xy 与313y x m -的和仍是一个单项式,则m =,n =.9.已知x、y、z 是△ABC 的三边长,如果−22+−1+−=0,则△ABC 的形状为____________.10.当3-32-x x 有意义时,x 的取值为;11--x x 的值为0时,x 的取值为.11.当为何值时,下列各式有意义?(1)2−3;(2)−2;(3)−32;(4)3K1;12.化简下列二次根式(1)288(2(3)483(4)(三)代数式相关运算13.若代数式325222+-+x y mx 的值与字母x 的取值无关,则m 的值.14.计算(1)327−212(2)5∙(−10)−12÷24(3)(5+3)(5-3)+3×6-8(4)27×(-2)+|2-6|-(1-7)0-(−12)−2(5)22212-21-22-()(++15.计算(1)(a +1)(a -1)-(a -2)2(2)532b −a 2−(B 2+32p(3)12x 2xx 2x 44x x 22--+÷+++16.因式分解(1)22yx +-(2)22363ay axy ax +-(3)(−2p 2−(2+p 2(4)x 2-2x+(x-2)(5)(x﹣2)(x﹣4)-15(6)a 2b +ab 2﹣a ﹣b数与式整体建构【学习目标】1.梳理实数、代数式、整式、分式、二次根式相关概念及性质,举例说明它们之间的区别与联系;2.对比分析整式、分式、二次根式的运算法则,说出三类计算算理之间的内在联系;3.以概念、性质、运算法则为主线画出思维导图,构建数与式单元知识、逻辑体系.【学习任务】构建数与式的知识、逻辑体系【学习活动】结合教材和271BAY对应资源梳理七年级上《有理数》《有理数的运算》《整式的加减》《代数式与函数的初步认识》七年级下《整式的乘除》《乘法公式与因式分解》、八年级上《分式》、八年级下《实数》《二次根式》的相关知识点,然后完成纸质学程和电子学程对应的学习活动,能梳理实数(有理数、无理数)、代数式(整式、分式、二次根式)相关概念及内在联系,应用运算法则进行整式、分式、二次根式的加、减、乘、除、乘方运算活动一:探究实数及其运算问题1:实数是什么?如何对实数进行分类?有几种分类方法?你的分类依据是什么?无理数的常见形式有哪些?问题2:实数的相关概念:数轴、相反数、倒数、绝对值、平方根、算术平方根、立方根的意义是什么?问题3:n的方法是什么?问题4:实数的大小比较方法有哪些?问题5:实数的运算法则、运算顺序、运算律是什么?需要注意的问题是什么?活动二:探究代数式有关概念问题1:什么是代数式、整式、分式、二次根式?它们之间有什么关系与区别?问题2:整式相关概念:整式、单项式(系数、次数)、多项式(系数、次数)、同类项、因式分解的意义是什么?问题3:分式的相关概念及性质:分式有无意义的条件是什么?分式的基本性质有哪些?最简分式、约分、通分的意义是什么?问题4:二次根式的概念及性质:二次根式的性质是什么?最简二次根式的意义是什么?活动三:探究代数式相关运算问题1:整式的运算:整式的加减、乘除、幂的运算法则是什么?问题2:因式分解的方法有哪些?整式的乘除与因式分解的关系是什么?问题3:分式的运算:分式的加减、乘除、乘方运算法则是什么?问题4:二次根式的运算:二次根式的加减、乘除法则是什么?问题5:整式的运算、分式的运算、二次根式的运算之间有什么联系?注意事项有哪些?活动四:构建数与式知识思维导图结合前面的三个学习活动,梳理平方根、算术平方根、立方根、科学记数法、整式、因式分解、分式、二次根式等核心概念及性质,构建本单元的思维导图,总结本单元与其他单元的逻辑体系.数与式【学习目标】1.说出对整式、分式、二次根式的基本性质与运算法则的理解,举例说明三类计算算理之间的内在联系;2.经历整式、分式、二次根式的运算过程,总结运算过程中的一般思路方法和注意事项;3.解决找规律问题,说出数式规律和定义新运算问题中用到的数学方法.【学习任务】探究整式、分式、二次根式的性质及运算【学习活动】活动一:探究整式的运算问题1:代数式及求代数式的值1.若2+2=1,则42+8−3的值是_______.2.已知26+=x ,那么xx 222-的值是________.3.与下面科学计算器的按键顺序:对应的计算任务是()A.0.6×+124B.0.6×+124C.0.6×5÷6+412D.0.6×+412问题2:整式及其运算1.(2020·潍坊)下列运算正确的是()A.235a b ab+= B.325a a a ⋅= C.222()a b a b+=+ D.()326a b a b=2.(2022·潍坊多项选择)下列运算正确的是()A .(a ﹣)2=a 2﹣a+B .(﹣a ﹣1)2=C .=D .=23.若3=+b a ,2+2=7,则ab =_______.4.计算:(1)32−+3−3+3(2)()()()()233232222x y x xy yx ÷-+-⋅探究迁移5.先化简再求值.(1)已知,153,2,32++=+-=-=x x P x N a x M 且P N M +⋅不含x 项,求a 的值(2)2+32−3−+22+4(+3),其中=tan 60°.6.如图,某市有一块长为3+米,宽为2+米的长方形地块, 规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米? 并求出当=3,=2时的绿化面积.问题3:因式分解1.(2019·潍坊)下列因式分解正确的是()A.)2(36322ax ax ax ax -=-B.))((22y x y x y x --+-=+C.222)2(42b a b ab a +=-+ D.22)1(2--=-+-x a a ax ax 2.因式分解(1)())2(2y x x y x +-+=________(2)()9)(62+-+-x y y x =________(3)44922---y y x =______________(4)a ax ax 672+-=___________________(5)(2017·潍坊))2(22-+-x x x =___________________【探究生成】整式的运算的一般思路和注意事项有哪些?整式的乘除运算与因式分解的关系是什么?活动二:探究分式的运算问题1:分式的概念及基本性质1.若x,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2+KB.22C .2332D.22(K )22.x 的值是()A.±1B.1C.-1D.不存在问题2:分式的运算1.若411=-b a ,则abb a b ab a 722+---的值_________.2.分式的化简(1)122−9+2K3(2)ab ba b a b a ----+223113(3)2226934x x x x x +-+⋅--(4)xxx x x x x +-⋅-+÷+--1111121223.分式的化简求值(1)(2019·河南)先化简,再求值:44212122+--÷--+x x x x x x )(其中3=x .(2)课堂上,老师给出这样一道题,当x =3、725-、37+时,求代数式1121111222+--+÷++÷-x xx x x x x 的值,小明看了觉得太复杂了,你能解决这个问题吗?请写出具体过程.【探究生成】分式运算的一般思路是什么?注意事项有哪些?活动三:探究二次根式的运算问题1:二次根式的概念及基本性质1.实数a、b 在数轴上的位置如图所示,化简(+1)2+(−1)2-(−)2的结果是()A.-2B.0C.-2aD.2b2.直线l :()23-+-=n x m y (m 、n 是常数)的图像如图所示,化简:−−2−4+4−−1.问题2:二次根式的运算1.(2014聊城)下列计算正确的是()A.23×33=63B.2+3=5C.55-22=33D.2÷3=632.计算:(1)27135.07523221-+-(2)755.02713311232+++-xol(3)48÷3-12×12+24.(4)(12)-2-6sin30°-(17-5)0+2+|2-3|.3.先化简,再求值1−2r 2K1-,其中=4.121=+a a ,当0<<1时,aa 1-=__________【探究生成】1.二次根式的运算的一般思路是什么?注意事项有哪些?2.整式、分式、二次根式的运算过程一般思路方法、注意事项以及三类运算之间的内在联系是什么?活动四:探究数与式的综合运算分析问题1:数与式综合分析(12103时,小亮的计算过程如下:2103=41627316+-+=-2=-小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照①~③的格式写在横线上,并依次标注序号:1224-=;②10(1)1-=-;③|6|6-=-;.请写出正确的计算过程.(2)先化简,再求值:22213()369x x x x x x --⋅-++,其中x 是方程2230x x --=的根.问题2:数与式规律探索1.观察下列各式:a 1=21,a 2=43,a 3=85,a 4=167,a 5=329,…,根据其中的规律可得a n =(用含n 的式子表示).(A 层延伸拓展)观察下列一组数:1=13,2=35,3=69,4=1017,5=1533,...,它们是按一定规律排列的,利用其中的规律,第n 个数_____=n a 【公示提示:1+2+3+4+⋯+=or1)2】2.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,…,第n 个数记为n a ,则___2004=+a a 222166410(1)第6个数是,第10个数是问题3:定义新运算1.用“㊣”定义新运算,对于任意实数ab 都有a ㊣b =12+b ,例如7㊣4=42+1=17,那么5㊣3=_________,当m 为实数时,m ㊣(m ㊣2)=_________。

中考数学一轮复习:数与式(教师版)

中考数学一轮复习:数与式(教师版)

实数与代数式辅导教案学生姓名性别年级九年级学科数学授课教师上课时间第()次课共()次课课时:3课时教学课题实数与代数式教学目标1.了解平方根、算术平方根、立方根、无理数、实数、近似数、有效数字的概念,了解开方与乘方互为逆运算.2.了解因式分解的意义;理解因式分解与整式乘法的区别和联系;会用提公因式法、公式法(直接用公式不超过两次)进行因式分解.3.会进行分式的加、减、乘、除及混合运算,掌握分式的化简、求值的方法和技巧.教学重点与难点完全平方公式的应用,十字相乘法分解因式一、作业检查作业完成情况:优□良□中□差二、内容回顾三、知识整理1.实数的分类:(1)按定义分类:2.相反数:只有_______的两个数互为相反数.数a的相反数是_______;若a和b互为相反数,则a+b=_______.3.绝对值:在数轴上,表示数a的点到_______的距离,叫做数a的绝对值,记作a,正数的绝对值是_______,负数的绝对值是_______,0的绝对值是_______,即4.倒数:乘积为_______的两个数互为倒数.数a(a≠0)的倒数是________;若实数a,b互为倒数,则ab=_______.5.平方根、算术平方根与立方根:(1)若x2=a(a≥0),则称x为a的_______,记为+a或a,其中a叫做a的_______.0的算术平方根是_______.同样,若x3=a,则称x为a的_______,记为3a,0的立方根为_______.(2)一个正数的平方根有两个,它们_____,负数没有平方根.一个数的立方根只有一个.7.整式的运算:(1)整式加减的实质就是_______.(2)整式的乘法包括:单项式乘以单项式,________,_______.(3)整式的除法:单项式除以单项式,把_______和_______分别相除,作为商的因式.对于只在被除式里含有的字母,则连同它的指数作为_______.多项式除以单项式时,先把多项式的每一项除以这个单项式,再把_______.(4)幂的运算法则(m,n是整数,a≠0):[来源:Z_xx_]①a m·a n=_______;②(a m)n=_______;③(ab)n=________;④a m÷a n=_______.8.乘法公式:(1)平方差公式:(a+b)(a-b)=_______.(2)完全平方公式:(a±b)2=_______.9.因式分解:(1)定义:把一个多项式化成几个整式_______的形式叫做把这个多项式因式分解.(2)方法:①提公因式法:ma+mb+mc=_______.②公式法:a2-b2=_______;a2±2ab+b2=_______.10.二次根式的性质:[来源:学科网ZXXK](1)二次根式a(a≥0)是一个_______数.(2)()2a=_______(a≥0).(3)()()() 2_______a>0_______a=0_______a<0 a a⎧⎪==⎨⎪⎩11.二次根式的乘除:(1)乘法法则:a.b=_______ (a≥0,b≥0).(2)除法法则:ab=_______(a≥0,b>0).四、例题分析实数:考点一实数的有关概念例1下列四个数中,是负数的是( )A.2-B.()22-C.-2D.()22-例2下列四个实数中,是无理数的为( )A.0 B.3C.-2 D.27考点二相反数、绝对值和倒数例3(1)-2012的相反数是( )A.-2 012 B.2012 C.-12012D.12012(2)-12的绝对值是A.12 B.-12 C.112D.-112(3)-34的倒数是()A.34 B.-43C.43D.34-考点三数轴的应用例4实数a、b在数轴上的位置如图所示,下列式子错误的是( )A.a<b B.a>bC.-a<-b D.b-a>0考点四科学记数法和近似数例5 从权威部门获悉,中国海洋面积是299.7万平方千米,约为陆地面积的三分之一,299.7万平方千米用科学记数法表示为(保留两个有效数字) ( )A .3×106平方千米B .0.3×107平方千米C .3.0×106平方千米D .2. 99×106平方千米来源:学科网ZXXK] 考点五 平方根、算术平方根和立方根例6 (1) 4的平方根是 ( )A .2B .16C .±2D .±16(2) 64的立方根是 ( )A .8B .±8C .4D .±4考点六 无理数的估算例7 估算10+1的值在 ( )A .2和3之间B .3和4之间[来源:学,科,网]C .4和5之间D .5和6之间考点七 实数的大小比较例8 在实数0,-π,3,-4中,最小的数是 ( )A .0B .-πC .3D .-4 考点八 非负数的性质例9已知170a b -++=,则a +b 等于 ( )A .-8B .-6C .6D .8来源:学科网ZXXK]考点九 实数的运算例10 计算:(1) ()()021********⎛⎫---+⨯-+- ⎪⎝⎭; (2) ()()202012312sin 302813π-⎛⎫-︒--+---+- ⎪⎝⎭.例11 在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和-1,则点C所对应的实数是( )考点十与实数有关的探索规律题例12定义:f(a,b)=(b,a),g(m,n)=(﹣m,﹣n).例如f(2,3)=(3,2),g(﹣1,﹣4)=(1,4).则g[f(﹣5,6)]等于()A.(﹣6,5) B.(﹣5,﹣6)C.(6,﹣5) D.(﹣5,6)[来源:学,科,网Z,X,X,K]整式与因式分解:考点一列代数式例1某企业今年3月份的产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元考点二求代数式的值例2 已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为________.考点三同类项例3如果单项式-12x a y2与13x3y b是同类项,那么a、b的值分别为( )A.2、2 B.-3、2 C.2、3 D.3、2 考点四整数指数幂与幂的运算例4计算2-2的结果为( )A.14B.2C.-14D.4例5下列计算正确的是( )A.2a2+a2=3a4 B.a6÷a2=a3 C.a6·a2=a12D.(-a6)2=a12考点五整式的运算例6化简:3(2x2-y2)-2(3y2-2x2);例7先化简,再求值:2b 2+(a +b)(a -b )-(a -b)2,其中a =-3,b =12.考点六 因式分解例8 (1)分解因式:x 3-9x =________;(2)分解因式:nm 2+6nm +9m =________.考点七 图形中的整式乘除运算例9 如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积为 ( )A .2 cm 2B .2a cm 2C .4a cm 2D .(a 2-1)cm 2分式:考点一 分式的有关概念例1若21a +分式有意义,则a 的取值范围是 ( ) A .a =0B .a =1C .a ≠-1D .a ≠0 例2若分式12x x -+的值为0,则 ( ) A .x =-2B .x =0C .x =1或x =-2D .x =1 考点二 分式的基本性质例3如果把5x x y+的x 与y 都扩大10倍,那么这个代数式的值 ( ) A .不变B .扩大50倍C .扩大10倍D .缩小为原来的110考点三 分式的运算例4化简111x x --,可得 ( )[来源:om]A .21x x -B .-21x x -C .221x x x +-D .221x x x-- 例5化简:22224m m m m m m ⎛⎫-÷=⎪+--⎝⎭_______. 考点四 分式的化简求值例6先化简,再求值:()()22431121x x x x x ⎡⎤-++÷⎢⎥+--⎢⎥⎣⎦,其中x =6.例7化简分式2221121x x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,并从-1≤x ≤3中选一个你认为合适的整数x 代入求值.[来源二次根式:考点一 二次根式有关的定义例1要使二次根式24x -有意义,那么x 的取值范围是 ( )[来源:学。

2017中考数学第一轮复习教案《湘教版》

2017中考数学第一轮复习教案《湘教版》

2017年中考数学复习教案第一章:实数部分一、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

二、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

三、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

可使用加法交换律、结合律。

2、减法:减去一个数等于加上这个数的相反数。

3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。

(2)除以一个数等于乘以这个数的倒数。

(3)0除以任何数都等于0,0不能做被除数。

5、乘方与开方:乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。

无论何种运算,都要注意先定符号后运算。

四、有效数字和科学记数法1、科学记数法:设N >0,则N= a ×n 10(其中1≤a <10,n 为整数)。

2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。

精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。

中考数学复习《数与式》考点及测试题(含答案)

中考数学复习《数与式》考点及测试题(含答案)

中考数学复习《数与式》考点及测试题(含答案)【专题分析】本专题的主要考点有实数的有关概念,科学记数法,非负数的性质,实数的运算;幂的运算,整式的运算,因式分解;分式的概念,分式的加减,分式的混合运算;二次根式的有关概念,二次根式的性质,二次根式的运算等.中考中数与式的考查一般以客观张题为主,但分式的化简求值经常有开放型题目.数与式的考查常见题型以选择题或填空题为主,整式和分式的化简求值一般以解答题的形式进行考查.数与式在中考中所占比重约为20%~25%. 【解题方法】解决数与式问题的常用方法有数形结合法,特殊值法,分类讨论法,整体代入法,设参数法,逆向思维法等. 【知识结构】【典例精选】:计算:2-1-3tan 60°+(π-2 015)0+⎪⎪⎪⎪⎪⎪-12.【思路点拨】根据负整数指数幂、特殊角的三角函数、零次幂以及绝对值的概念计算即可.【自主解答】解:原式=12-3×3+1+12=-1.把x 2y -2y 2x +y 3分解因式正确的是( )A.y(x2-2xy+y2) B.x2y-y2(2x-y)C.y(x-y)2 D.y(x+y)2【思路点拨】首先提取公因式y,再利用完全平方公式进行二次分解即可.答案:C规律方法:利用两种方法结合的分解因式题目,提公因式后不要忘记利用公式法二次分解,分解因式要在规定的范围内分解彻底.先化简,再求值:(x+3)(x-3)+2(x2+4),其中x= 2.【思路点拨】原式第一项利用平方差公式展开,第二项去括号,合并同类项得到最简结果,将x的值代入计算即可求出代数式的值.【自主解答】解:原式=x2-9+2x2+8=3x2-1.当x=2时,原式=3×(2)2-1=5.规律方法:整式的计算,要根据算式的特点选择合适的方法,可先选择乘法公式展开,然后合并;或先因式分解,然后计算.先化简,再求值:m-33m2-6m÷⎝⎛⎭⎪⎫m+2-5m-2,其中m是方程x2+3x+1=0的根.【思路点拨】在化简时要先算括号里面的,再把除法变为乘法,然后分解因式并约分,最后相乘.【自主解答】解:原式=m-33m m-2÷m2-9m-2=m-33m m-2×m-2m+3m-3=13m m+3.∵m是方程x2+3x+1=0的根,∴m2+3m+1=0,∴m2+3m=-1,即m(m+3)=-1,∴原式=13×-1=-13.规律方法:1.本题采用了整体代入法求解,这是求代数式的值常用的方法,体现了整体思路的应用.2.分式的化简求值是先化简,再求值;化简时一定要化到最简,结果是最简分式或整式.【能力评估检测】一、选择题1.已知空气的单位体积质量是0.001 239 g/cm 3,则用科学记数法表示该数为( A )A .1.239×10-3g/cm 3B .1.239×10-2 g/cm 3C .0.123 9×10-2 g/cm 3D .12.39×10-4 g/cm 3 2.下列运算错误的是( B )A. ⎝ ⎛⎭⎪⎫120=1 B .x 2+x 2=2x 4C .|a |=|-a | D. ⎝ ⎛⎭⎪⎫b a 23=b3a63.下列运算错误的是( D )A.a -b 2b -a2=1 B.-a -ba +b=-1 C. 0.5a +b 0.2a -0.3b =5a +10b 2a -3b D. a -b a +b =b -a b +a4.下列二次根式中,不能与2合并的是( C ) A.12B. 8C. 12D.18 5.若m =22×(-2),则有( C )A .0<m <1B .-1<m <0C .-2<m <-1D .-3<m <-26.(2015·绍兴鲁迅中学模拟)下列三个分式12x 2,5x -14m -n ,3x的最简公分母是( D )A .4(m -n )xB .2(m -n )x 2C. 14x2m -nD .4(m -n )x 27.已知x -1x =3,则4-12x 2+32x 的值为( D )A .1 B. 32 C. 52 D. 72【解析】把x -1x =3两边同乘x ,得x 2-1=3x ,即x 2-3x =1,所以4-12x 2+32x =4-12(x 2-3x )=4-12×1=72. 8.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252【解析】观察前四个表格中的数字,第1个表格中 9=2×4+1,第2个表格中20=3×6+2,第3个表格中35=4×8+3,第4个表格中54=5×10+4,且每个表格中左下角的数字是右上角数字的一半,左上角的数字比左下角数字小1,所以b =12×20=10,a =b -1=9,x =20×10+9=209.故选C.答案: C9.实数a ,b 在数轴上对应的点的位置如图所示,计算|a -b |的结果为( C )A .a +bB .a -bC .b -aD .-a -b【解析】由图可知,a <0,b >0,所以a -b <0,所以 |a -b |=-(a -b ),C 正确.10.如图,在边长为2a 的正方形中央剪去一边长为 (a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( C )第1个 第2个 第3个 第4个 … … …A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2【解析】平行四边形的面积为(2a )2-(a +2)2=4a 2-(a 2+4a +4)=4a 2-a 2-4a -4=3a 2-4a -4.故选C.11.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”,其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边的长为1x,矩形的周长为2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x (x >0),解得x =1.这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小, 因此x +1x (x >0)的最小值是2.模仿张华的推导,你求得式子x 2+9x(x >0)的最小值是( )A .2B .4C .6D .10【解析】∵x >0,∴在原式中分母分子同除以x ,即x 2+9x =x +9x ,在面积是9的矩形中设矩形的一边长为x ,则另一边长为9x ,矩形的周长为2⎝⎛⎭⎪⎫x +9x ;当矩形成为正方形时,就有x =9x (x >0),解得x =3.这时矩形的周长2⎝⎛⎭⎪⎫x +9x =12最小,因此x +9x(x >0)的最小值是6.故选C.答案: C 二、填空题12.分解因式:9x 3-18x 2+9x =9x (x -1)2 . 13.若式子2-xx有意义,则实数x 的取值范围是x ≤2且x ≠0 .14.计算:-36+214+327=-32. 15.已知(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为12.【解析】由题意知,∵(a +6)2≥0,b 2-2b -3≥0.而(a +6)2+b 2-2b -3=0,∴(a +6)2=0且b 2-2b -3=0.整理,得a =-6,b 2-2b =3,∴2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.三、解答题16.计算:||-3-12+2sin 60°+⎝ ⎛⎭⎪⎫13-1.解:原式=3-23+2×32+3=3. 17.先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33. 解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2. 当x =-1,y =33时,原式=-1+1=0. 18.先化简,再求值:⎝⎛⎭⎪⎫1-1x +2÷x 2+2x +1x +2,其中x =3-1. 解:原式=x +1x +2÷x +12x +2=x +1x +2·x +2x +12=1x +1. 当x =3-1时,原式=13-1+1=13=33.19.探究下面的问题:(1)在图甲中,阴影部分的面积和为a 2-b 2(写成两数平方差的形式); (2)将图甲中的第①块割下来重新与第②块拼成如图乙所示的一个长方形,那么这个长方形的长是a +b ,宽是 a -b ,它的面积是(a +b )(a -b )(写成两个多项式的形式);(3)由这两个图可以得到的乘法公式是(a +b )(a -b )=a 2-b 2(用式子表示);(4)运用这个公式计算:(x -2y +3z )(x +2y -3z ).(x -2y +3z )(x +2y -3z )=[x -(2y -3z )]·[x +(2y -3z )]=x 2-(2y -3z )2=x 2-4y 2+12yz -9z 2.20.如果10b =n ,那么b 为n 的劳格数,记为b =d (n ),由定义可知:10b=n 与b =d (n )所表示的b ,n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d (10)=1,d (10-2)=-2; (2)劳格数有如下运算性质:若m ,n 为正数,则d (mn )=d (m )+d (n ),d ⎝ ⎛⎭⎪⎫m n =d (m )-d (n ).根据运算性质,填空:d a 3d a=3(a 为正数),若d (2)=0.301 0,则d (4)=0.602 0,d (5)=0.6990,d (0.08)=-1.097.(3)如表中与数x 对应的劳格数d (x )有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27 d (x ) 3a -b +c 2a -ba +c1+a -b -c3-3a -3c4a -2b3-b -2c6a -3b解:(1)1 -2(2)d a 3d a =3d a d a=3.由运算性质可得,d (4)=0.602 0,d (5)=d (10)-d (2)= 1-0.301 0=0.699 0,d (0.08)=-1.097.(3)若d (3)≠2a -b ,则d (9)=2d (3)≠4a -2b ,d (27)=3d (3)≠6a -3b ,从而表中有三个劳格数是错误的,与题设矛盾,∴d (3)=2a -b ;若d (5)≠a +c ,则d (2)=1-d (5)≠1-a -c , ∴d (8)=3d (2)≠3-3a -3c ,d (6)=d (3)+d (2)≠1+a -b -c ,表中也有三个劳格数是错误的,与题设矛盾.∴d(5)=a+c.∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:d(1.5)=d(3)+d(5)-1=3a-b+c-1,d(12)=d(3)+2d(2)=2-b-2c.。

(完整版)湘教版中考数学知识点总结归纳

(完整版)湘教版中考数学知识点总结归纳

初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等.④数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变.减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0.③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N 叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

2025年湖南中考数学一轮复习考点研析 第一章 数与式第3讲 整式与因式分解

2025年湖南中考数学一轮复习考点研析 第一章 数与式第3讲 整式与因式分解

单项式乘 先用单项式乘多项式中的每 多项式 一项,再把所得的积相加
m(a+b+c)=__m__a_+__m_b_+__m_c____
类别
运算法则
举例
先用一个多项式的每一项 多项式乘 多项式 分别乘另一个多项式的每 (a+b)(m+n)__a_m_+__a_n_+__b_m__+__b_n__
一项,再把所得的积相加
类别
内容
整式 单项式和__多__项__式__统称整式
单项式
概念 系数
(1)由数与字母的__积___组成的代数式叫作单项式. (2)单独一个字母或者一个数也是单项式 单项式中的数字因数
次数 单项式中的所有字母的__指__数___的和
类别
内容
概念 几个单项式的__和___叫作多项式
多项式
项 次数
组成多项式的每个单项式 多项式中__次__数__最__高__的项的次数
8a3b÷4ab=__2_a_2_
多项式
除以单 先用这个多项式的每一项除以这个单 (14m5n3-7m2)÷7m2=
项式 项式,再把所得的商相加
_2_m_3_n_3-__1_
类别
运算法则
举例 (2x2+3x-20)÷(2x- 5)=x+4
把被除式和除式按同一字母的降 多项式除 以多项式 幂排列(若有缺项,则用0补齐)后,用

(3)不恒成立.理由如下: ∵ C2 - A·B=(2a - 2b)2 - (a - 3b)(3a - b)=4a2 - 8ab + 4b2 - (3a2 - 10ab + 3b2)=4a2-8ab+4b2-3a2+10ab-3b2=a2+2ab+b2=(a+b)2≥0, ∴C2≥A·B, ∴(2)中的C2与A·B的大小关系不恒成立.

2016新湘教版中考数学总复习教案(打印稿)

2016新湘教版中考数学总复习教案(打印稿)

2016年中考数学第一轮复习教案第一章实数与中考中考要求及命题趋势1.正确理解实数的有关概念;2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。

4.掌握实数的四则运算、乘方、开方运算以及混合运算5.会用多种方法进行实数的大小比较。

2012年中考将继续考查实数的有关概念,值得一提的是,用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。

实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。

应试对策牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。

第一讲实数的有关概念【回顾与思考】知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值大纲要求:1.使学生复习巩固有理数、实数的有关概念.2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。

3.会求一个数的相反数和绝对值,会比较实数的大小4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。

考查重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a2、|a|、 a (a≥0)之和为零作为条件,解决有关问题。

实数的有关概念(1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。

2023年中考数学总复习第一章《数与式》第二节 二次根式

2023年中考数学总复习第一章《数与式》第二节 二次根式

2023年中考数学总复习第一章《数与式》第二节二次根式一、选择题1.[2020·邯郸丛台区二模]下列二次根式中,是最简二次根式的是()A.B.C.D.2.[2020·上海]下列二次根式中,与是同类二次根式的是()A.B.C.D.3.[2020·衡水模拟]下列计算正确的是()A.B.C.D.4.[2020·宜昌]对于无理数,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是()A.B.C.D.5.[2020·石家庄模拟]如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与BC.A与C D.B与C(第5题图)6.[2020·原创]下列运算正确的是()A. B.C. D.7.[2020·聊城]计算的结果正确的是()A.1B.C.5D.98.[人八下课本P11,T12高仿]如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78cm2B.cm2C.cm2D.cm2(第8题图)9.[易错][2020·秦皇岛模拟]按如图所示的运算程序,若输入数字“9”,则输出的结果是()A.7B.C.1D.(第9题图)二、填空题10.[2020·扬州]代数式在实数范围内有意义,则实数x的取值范围是_______.11.[2020·保定模拟]若2□=6,则“□”内的运算符号为_______.12.[2020·河北模拟]计算×-的结果是_______.13.[2020·保定定兴县一模]==_______.14.[2020·哈尔滨]计算的结果是______.15.[2020·常德]计算:=_______.16.[2020·山西]计算:=_______.三、解答题17.[2019·石家庄新华区模拟]计算:.18.[创新][2020·遵化二模]利用平方差公式可以进行简便计算:例1:99×101=(100-1)(100+1)=1002-12=10000-1=9999;例2:39×410=39×41×10=(40-1)(40+1)×10=(402-12)×10=(1600-1)×10=1599×10=15990.请你参考上述算法,运用平方差公式简便计算:(1)。

中考数学复习数与式

中考数学复习数与式

中考复习数与式2一.代数式的概念— 单项式—整式—— 有理式— — 多项式代数式 — —分式— 无理式(根式)1.单项式(1)单项式:数与代表数的字母的积这样的代数式叫做单项式,单独一个数或一个字母也是单项式。

注意:数与字母之间是乘积关系。

例:3x 2也是数与字母的积(32与x 的积)。

特征:分母中无字母。

(2)单项式的系数:单项式中的数字因数。

如:2xy 的系数是2;-5zy 的系数是-5 。

2πab 的系数是2π 如果一个单项式,只含有字母因数,则有:带正号的单项式(例如ab 2)的系数为1;带负号的单项式(例如:-ab 2)的系数为-1。

(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例题:1、单项式322y x -的系数是 ,次数是 。

2、单项式n m 3π-的系数是 ,次数是 。

2.多项式(1)多项式:几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项。

某项的次数是几,该项就叫几次项。

不含字母的项叫做常数项,也叫零次项。

一个多项式有几项就叫做几项式。

多项式中的符号,看作各项的性质符号(正负号)。

(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

根据次数和项数把该多项式叫做几次几项式。

(3)多项式的排列:1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。

例题:1、多项式a b a a 3323--23b b +是 次 项式,按b 的降幂排列为 。

2、对于代数式:1,r ,11+x ,312+x ,)(22b a -π,πx 2;属于单项式的有 ,属于多项式的有 。

课堂练习:1.下列各式中是多项式的是 ( )A .21- B .y x + C .3ab D .22b a - 2.下列说法中正确的是( )A .x 的次数是0B .y 1是单项式 C .21是单项式 D .a 5-的系数是5 3.整式:单项式和多项式统称为整式。

湖南省中考数学复习方案 第1单元 数与式(新课标)课件 湘教版

湖南省中考数学复习方案 第1单元 数与式(新课标)课件 湘教版

1 A. 2012
B.-20112
C.2012 D.-2012
第1讲┃ 归类示例
[2012·自贡] 若x是不等于1的实数,我们把1-1 x称
为x的差倒数,如2的差倒数是
1 1-2
=-1,-1的差倒数为
1-1-1=12,现已知,x1=-13
,x2是x1的差倒数,x3是x2的 3
差倒数,x4是x3的差倒数…依次类推,则x2012=___4_____.
名称 数轴 相反数 倒数
定义
性质
规定了__原__点___、 __正__方__向_、_单__位__长__度_的
直线
只有__符__号__不同的两个 数互为相反数
数轴上的点与实数一 一对应
若a、b互为相反数, 则有a+b=0,|a|=
|b|.0的相反数是0
___乘__积___为1的两个数 0没有倒数,倒数等于
图形序号之间的关系为
1 3
n-1,(4)再看
线段的条数,根据轴对
称只看左边,图形(2)有两条,图形③有8条,图形④有32条,
第1讲 实数的有关概念 第2讲 实数的运算及实数的大小比较 第3讲 整式及因式分解 第4讲 分式 第5讲 数的开方与二次根式
第1讲┃ 实数的有关概念
第1讲┃ 考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类:
有理数 实数
整数
正整数 零 负整数
分数
正分数 负分数
有限小数或 无限循环小数
左起第一个非零数字前 所有零的个数
近似数
一个近似数四舍五入到哪一位,那么就说这个近似数精确到哪一
位.对于带计数单位的近似数,由近似数的位数和后面的单位 共同确定.如3.618万,数字8实际上是十位上的数字,即精确到 十位
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.科学记数法:把一个数写成 的形式,这种记数法叫做科学记数法。(其中 )
(1)当原数的绝对值大于或等于1时,n等于原数的整数位数减1;
(2)当原数的绝对值小于1时,n是负整数,它的绝对值等于原数中前零的个数。
6.近似数与有效数字:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。一个近似数,从左边的数字起,到止,所有的数字都叫做这个数的有效数字。
第1课时实数的有关概念
[目标导航]
1、理解实数有关概念
2、了解近似数及有效数字概念,会用科学记数法表示数
3、掌握有理数加、减、乘、除、乘方运算法则及简单的混合运算
[考点聚焦]
一、实数的概念及分类
1、按定义分类
2、按正负分类
二、实数的有关概念
1.数轴:规定了、、的直线叫数轴,数轴上的点与一一对应。
2.相反数:只有不同的两个数互为相反数。
7.若 则 .
8.在函数 中,自变量 的取值范围是_____.
9.按照下图所示的操作步骤,若输入x的值为-3,则输出的值为
10.计算: + .
11.计算: =
12.比较下列各组数的大小
(1) ;(2) ;(3) ;(4) ;(5) 。
13.计算
(1)
(2)
(3)
14.已知 , , , 。
(1)请化简这四个数;
A.5或-5 B.5 C.-5 D.2.5或-2.5
7.在实数 、 、 、 中,无理数是()
A. B. C. D.
8.若 ,则 的值为()
A.- 4B.- 1C.0 D.4
9. 的平方根是
10.数据0.0000916用科学记数法可表示为,它的有个数字
11.计算:
=; =; =; =。
12.计算:
13.若a,b互为相反数,c,d互为倒数,x的绝对值为1,试求 的值。
2、两个正数,绝对值大的较大;两个负数,绝对值大的反而。
3、数轴比较法:在数轴上表示的两个数,边的点表示的数总是大于边的点表示的数,表示在同一点的两数相等。
[当堂检测]
1.计算 的结果是()
A. B. C. D.
2.若a<c<0<b,则abc与0的大小关系是()
A.abc<0 B.abc=0 C.abc>0 D.无法确定
第2课时实数的运算与实数大小比较
[目标导航]
1、掌握实数的运算及简单混合运算,会比较实数的大小
2、运用实数的运算解决简单的实际问题
[考点聚焦]
一、实数的运算
1.实数的运算法则
(1)加法;(2)减法;(3)乘法;(4)除法;
(5)乘方:求几个相同因式积的运算叫乘方。正数的n次方是数,负数的偶数次方是数,负数的奇数次方是数。
=; =;
=; =。
4.整式的乘法
(1)单项式与单项式相乘:
(2)单项式与多项式相乘:
(3)多项式与多项式相乘:
5.整式的除法
把除号改为分数线,化除法为分式的约分
6.乘法公式
(1)平方差公式
两个数的和与这两个数的差的积,等于这两个数的平方差。
(2)完全平方公式
两数和(差)的平方,等于它们的平方和加上(减去)它们积的2倍。
(2)根据化简结果,列式表示这四个数中“有理数的和”与“无理数的积”的差,然后计算结果。
第3课时整式及其运算
[目标导航]
1、熟练掌握用字母表示数,列代数式,求代数式的值;
2、了解整式的有关概念,会计算简单的整式的加、减、乘运算;
3、掌握去括号、添括号法则;
4、掌握幂的运算性质,乘法公式及其运算。
[考点聚焦]
A.2 B.-2 C.2℃D.-2℃
3.-8的立方根是()
A.2 B.-2 C. D.-
4.估算 的值()
A.在1和2之间B.在2和3之间
C.在3和4之间D.在4和5之间
5.有理数a、b在数轴上的位置如图所示,则a+b的值()
A.大于0 B.小于0 C.小于a D.大于b
6.数轴上点A到原点的距离是5,则点A表示的数是()
(6)零指数幂:
(7)负整数指数幂:
2.运算律
加法交换律:
加法结合律:
乘法交换律:
乘法结合律:
乘法分配律:
[点拨]有理数的运算法则与运算律都适用于实数运算。
3.实数的运算顺序
先算,再算,最后算,有括号的要先算括号内的,若没有括号,在同一级运算中,要从至依次进行运算。
二、实数大小的比较
1、正数零,负数零,正数一切负数;
[点拨](1)若a、b互为相反数,则有;(2)相反数等于它本身的数是零,即若a=-a,则a=0。
3.倒数:是1的两个数互为倒数。零是唯一没有倒数的数,倒数等于本身的数是1和-1.
4.绝对值:(几何意义)数轴上表示一个实数 的点与原点的,记作 。
(代数意义)正数的绝对值等于它
零的绝对值等于
负数的绝对值等于它的
二、同类项、合并同类项
1.同类项:所含字母,并且相同字母的指数也分别的项叫做同类项,几个常数项是同类项。
2.合并同类项:多项式中同类项可以合并成一项,只要把同类项的相加,和不变。
三、整式的运算
1.整式的加减:实质是
2.去括号、添括号法则
去(添)正括号,各项不变号;去(添)负括号,各项都变号。
3.幂的运算
3.对于实数a、b,给出以下三个判断:
(1)若 ,则
(2)若 ,则
(3)若 ,则
其中正确的判断的个数是()
A.3 B.2 C.1 D.0
4.下列计算正确的是()
A. B.
C. D.
5.估计68的立方根的大小在( )
A.2与3之间B.3与4之间
C.4与5之间D.5与6之间
6.若 ,将 、 、 按大小顺序排列后是
三、非负数
和统称为非负数。
1、常见的非负数的形式: , , ;
2、非负数的性质:几个非负数之和为0,则每一个非负数都为0.
[当堂检测]
1.下列说法正确的是()
A.无限小数是无理数B.无理数的相反数还是无理数
C.不循环小数是无理数D.两个无理数的和还是无理数
2.零上13℃记作+13℃,零下2℃可记作()
一、整式的概念
1.单项式:对于数与字母只进行了(包括乘方)运算,这样的代数式叫做单项式,单独的一个数或一个字母也是单项式。
2.多项式:几个单项式的叫做多项式。
3.整式:习惯上把和统称为整式。
4.单项式的次数:一个单项式中,所有字母的叫做这个单项式的次数。
5.多项式的次数:一个多项式中,的项的次数,叫做这个多项式的次数。
[当堂检测]
1.如果 与 是同类项,则m和n的取值是()
A.3和-2 B.-3和2 C.3和2 D.-3和-2
2.化简 的结果是()
A.-110
相关文档
最新文档