浅谈汽轮机的热膨胀和胀差

合集下载

汽轮机运行中胀差的分析和控制

汽轮机运行中胀差的分析和控制

汽轮机运行中胀差的分析和控制当汽轮机在启动加热、停机冷却过程中,或在运行中工况变化时,汽缸和转子会产生热膨胀或冷却收缩,由于转子的受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大,因此,在相同的条件下,转子的温度变化比汽缸快,使得转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言的,把转子与汽缸之间热膨胀的差值称为相对膨胀差,简称胀差。

当转子轴向膨胀大于汽缸的轴向膨胀时,称为正膨胀;反之若转子轴向膨胀小于汽缸的轴向膨胀时,称为负膨胀。

一.汽轮机胀差的产生汽缸和转子之间出现胀差的主要原因是它们的结构和工作条件不同。

由于转子与汽缸之间存在温差,各自受热状况不一样,转子质量小但接触蒸汽的面积大,温升和热膨胀较快,而汽缸质量大,温升和热膨胀就比较慢,因此在转子和汽缸热膨胀还没有达到稳定前,他们之间就有较大的胀差。

同理,由于转子比汽缸体积小,转子的冷却收缩也比汽缸的冷却收缩快,这时它们之间也会产生较大胀差。

汽轮机启动加热,从冷态变为热态,汽缸受热发生热膨胀,汽缸向高压侧或低压侧伸长。

同样转子也因受热发生热膨胀。

转子膨胀大于汽缸,其相对膨胀差被称为正胀差。

汽轮机带负荷后,转子和汽缸受热面逐渐于稳定,热膨胀逐渐区于饱和,它们之间的相对膨胀差也逐渐减小,最后达到某一稳定。

二.胀差过大的危害胀差的大小意味着汽轮机动静轴向间隙相对于静止时的变化,正胀差表示自喷嘴至动叶间隙增大;反之,负胀差表示该轴向间隙减小。

汽轮机轴封和动静叶片之间的轴向间隙都很小,若汽轮机启停或运行中胀差变化过大,超过了轴封以及动静叶片间正常的轴向间隙时,就会使轴向间隙消失,导致动静部件之间发生摩擦,引起机组振动,以至造成机组损坏事故。

因此,汽轮机都规定有胀差允许的极限值,它是根据动静叶片或轴封轴向最小间隙来确定的。

当转子与汽缸间隙相对膨胀差值达到极限值时,动静叶片或轴封轴向最小间隙仍留有一定的合理间隙。

不同容量的汽轮机组胀差允许极限值不同。

机组胀差浅析

机组胀差浅析

机组胀差浅析(华能营口电厂师永胜 2011.08.17)摘要:汽轮机在启停过程中,转子与汽缸的热交换条件不同,造成它们在轴向的膨胀不一致,即出现相对膨胀。

汽轮机转子与汽缸的相对膨胀通常也称为胀差。

胀差的大小表明了汽轮机轴向动静间隙的变化情况。

转子的相对胀差过大,会使动、静轴向间隙消失而产生摩擦,造成转子弯曲,引起机组振动,甚至出现重大事故。

合理的胀差变化是评价启动方式的重要指标。

关键词:正胀差、负胀差、温升、升速率引言:华能营口电厂一期工程两台汽轮机是前苏联哈尔科夫汽轮机厂制造的K—320—23.5—4型、超临界参数、非调节抽汽、一次中间再热、单轴三缸双排汽凝汽式汽轮机。

启动过程中经常出现胀差值过大,影响机组安全。

一、胀差的影响因素:转子的受热面积比汽缸大,质量比对应的汽缸小,因此转子比汽缸传热速度的快。

习惯上转子膨胀大于汽缸膨胀时的胀差值为正胀差,转子膨胀小于汽缸膨胀时的胀差值为负胀差。

1、轴封供汽温度和供汽时间的影响:在汽轮机冲转前向轴封供汽时,由于冷态启动时轴封供汽温度高于转子温度,转子局部受热而伸长,出现正胀差,可能出现轴封摩擦现象。

在热态启动时,为防止轴封供汽后出现负值,轴封供汽应选用高温汽源,并且一定要先向轴封供汽,后抽真空。

应尽量缩短冲转前轴封供汽时间。

2、真空的影响:在升速暖机的过程中,真空变化会引起涨差值改变。

当真空降低时,为了保持机组转速不变,必须增加进汽量,摩擦鼓风损失增大,使高压转子受热膨胀,其涨差值随之增加。

当真空提高时,则反之。

使高压转子胀差减少。

但真空高低对中、低压缸通流部分的胀差影响与高压转子相反。

3、进汽参数影响:当进汽参数发生变化时,首先对转子受热状态发生影响,而对汽缸的影响要滞后一段时间,这样也会引起胀差变化,而且参数变化速度越快,影响越大。

因此,在汽轮机启停过程中,控制蒸汽温度和流量变化速度,就可以达到控制差胀的目的。

4、汽缸和法兰加热的影响:汽缸水平法兰在升速过程中温度比汽缸要低,阻碍汽缸膨胀,引起胀差增加。

浅谈汽轮机胀差超标原因分析及处理

浅谈汽轮机胀差超标原因分析及处理

浅谈汽轮机胀差超标原因分析及处理摘要:本文首先对汽轮机机组滑销系统结构进行简单介绍,重点分析汽轮机胀差超标原因,在此基础上深入研究某海外机组热态极热态启动中胀差超标的处理措施,希望通过本文的研究能够更加全面的汽轮机胀差的基本情况及超标的根本原因,也为后期更好的保障汽轮机胀差提供参考。

关键词:汽轮机;胀差超标;滑销系统1引言汽轮机是发电机组运行中的一种重要设备,汽轮机的正常运行直接关系到发电机组运行效率和发电功率。

近年来在对发电机组观察研究中发现,许多汽轮机都存在严重的胀差超标现象,严重影响电厂发电效应及系统运行安全,因此在现阶段加强对于汽轮机胀差超标原因分析及处理研究具有重要的现实意义,能够更加全面的掌握机组滑销系统的基本结构,掌握汽轮机胀差超标的主要原因并制定合理的处理措施,从而有效降低汽轮机出现胀差的可能,保证汽轮机的正常运行。

2机组滑销系统结构汽轮机的膨胀主要分为三个方向的,分别是横向、纵向和垂直方向,基本是借助滑销系统完成相应的膨胀,分别由不同的键进行引导。

其中横向膨胀主要是以汽缸前部和后汽缸侧基架下面的两个横键进行引导,纵向的膨胀则是由汽轮机前轴承箱下面的纵向轴进行引导,在垂直方向利用立键进行引导,在前轴承箱和汽缸前面以及后汽缸和后基架之间分别有三个立键。

通过三个方向上三种不同的键的引导,能够有效保证汽轮机在膨胀的时候能够沿着标准方向移动,避免出现异常膨胀。

在汽缸发生膨胀以后,汽缸侧基架下面的横键和纵向键会在凝汽器的中心线处成为交叉死点,汽轮机启动以后会向汽轮机机头的方向发生膨胀。

汽轮机内部转子也会发生膨胀,膨胀方向为电机侧,一般会发生在汽轮机启动的时候。

3汽轮机胀差超标原因分析此文着重分析海外某65MW高温高压机组为东方汽轮机厂生产的机组,机组在热态及极热态状态启动、停运过程中多次出现高压缸膨胀、收缩受阻的现象。

通过查询汽轮机组的历史记录曲线发现:从汽轮机组热态及极热态状态启动0转至3000rpm之间,汽轮机的胀差值会发生较大的变化,当汽轮机转速逐渐递增时,尤其暖机升速后在短时间内胀差值快速增大,800rpm升高到2300rpm时,汽轮机的胀差会由-0.06mm达到-1.2mm ,汽轮机继续升速,当转速达到2800rpm时,胀差增加到-1.4mm,胀差保护动作。

汽轮机胀差大的原因

汽轮机胀差大的原因

汽轮机胀差大的原因汽轮机是一种利用燃烧热能转化为机械能的设备,在工业生产和发电领域广泛应用。

而汽轮机的胀差是指在运行过程中,由于不同部件受热膨胀程度不同而引起的尺寸变化差异。

胀差的存在会对汽轮机的正常运行和性能产生一定的影响,下面将从几个方面探讨造成汽轮机胀差大的原因。

温度变化是导致汽轮机胀差的主要原因之一。

在汽轮机运行过程中,各个部件会受到高温蒸汽的冲击和热辐射,从而导致局部温度升高。

由于不同部件的材料性质和结构特点不同,其热膨胀系数也会有所差异。

因此,在温度变化过程中,不同部件的尺寸会发生不同程度的变化,从而产生胀差现象。

材料的热膨胀性能是影响汽轮机胀差的关键因素。

不同材料具有不同的热膨胀特性,有些材料的热膨胀系数较大,而有些材料的热膨胀系数较小。

在汽轮机中,各个部件多采用不同的材料,如铁、钢、铜、铝等。

由于材料的热膨胀系数不同,当汽轮机在运行过程中受到热膨胀影响时,不同材料的部件会产生不同程度的胀差。

汽轮机的结构设计也会影响到胀差的大小。

在汽轮机的设计中,需要考虑到部件的热膨胀特性以及运行时受到的温度变化,合理安排各个部件的间距和连接方式,以减小胀差的影响。

如果结构设计不合理,部件之间的连接方式不牢固,容易受到温度变化的影响,从而导致胀差增大。

汽轮机运行过程中的热应力也是导致胀差的重要因素。

由于汽轮机在运行过程中会受到高温蒸汽的冲击,各个部件会承受不同程度的热应力。

当热应力超过材料的承受范围时,就会导致部件的变形和破坏,进而增大胀差。

总结起来,汽轮机胀差大的原因主要包括温度变化、材料的热膨胀性能、结构设计和热应力等因素。

为了减小汽轮机胀差的影响,可以采取以下措施:合理选择材料,尽量使用热膨胀系数较小的材料;优化结构设计,合理安排部件间的间距和连接方式;加强温度控制,减小温度变化范围;加强材料性能测试和质量控制,确保部件的承受能力符合要求。

通过这些措施的实施,可以有效减小汽轮机胀差,提高其运行效率和可靠性。

汽轮发电机低压缸胀差大原因分析及处理

汽轮发电机低压缸胀差大原因分析及处理

汽轮发电机低压缸胀差大原因分析及处理汽轮发电机是一种利用汽轮机转动发电机发电的装置。

汽轮发电机的低压缸胀差是指在使用过程中,低压缸前后缸衬之间的胀差变大,导致压力泄漏增加,功率减弱,工作效率下降的问题。

下面将对汽轮发电机低压缸胀差大的原因进行分析,并提供相应的解决方法。

1.低压缸衬材质问题:低压缸衬材质选择不合适,导致其抗热胀性能不足,容易在工作温度下产生较大胀差。

解决方法是更换高性能的衬套材料,如高温合金。

2.温度控制问题:在汽轮发电机运行中,由于管路、冷却系统等问题,导致低压缸温度控制不良,超过了设计要求,造成衬套过度膨胀,胀差增大。

解决方法是优化冷却系统,确保低压缸温度在可控范围内。

3.衬套密封不良:低压缸衬套与缸体之间的密封不良导致压力泄漏,增加了压力差,使得衬套产生较大胀差。

解决方法是检查并修复衬套密封问题,确保衬套与缸体之间的紧密连接。

4.衬材磨损问题:低压缸衬套长时间使用后,由于磨损、疲劳等原因,失去了原有的密封性能,导致胀差增大。

解决方法是定期检查衬套磨损情况,及时更换磨损严重的衬套,延长发电机使用寿命。

5.运行过程中的振动问题:汽轮发电机在运行过程中受到振动的影响,振动过大会导致低压缸衬套松动,增加了胀差。

解决方法是加强对汽轮发电机的振动监测和控制,有效减小振动对衬套的影响。

综上所述,汽轮发电机低压缸胀差大的原因可能是多方面的,包括材料、温度控制、密封、磨损和振动等问题。

针对这些原因,需要进行相应的处理方法,如更换衬套材料、优化温度控制系统、修复密封问题、定期更换磨损的衬套以及加强振动监测和控制。

通过这些措施,可以有效降低低压缸胀差,提高汽轮发电机的运行效率和使用寿命。

汽轮机的热应力、热变形、热膨胀分析

汽轮机的热应力、热变形、热膨胀分析

汽轮机的热应力、热变形、热膨胀主要内容:主要介绍汽轮机的热应力、热膨胀和热变形;汽轮机寿命及如何进行汽轮机的寿命管理。

Ⅰ汽轮机的受热特点一、汽缸壁的受热特点汽轮机启停过程是运行中最复杂的工况。

在启停过程中,由于温度剧烈变化,各零部件中及它们之间形成较大的温差。

导致零部件产生较大的热应力,同时还引起热膨胀和热变形。

当应力达到一定水平时,会使高温部件遭受损伤,最终导致部件损坏。

1.汽缸的受热特点(1)启动时,蒸汽的热量以对流方式传给汽缸内壁,再以导热方式传向外壁,最后经保温层散向大气,汽缸内外壁存在温差,内壁温度高于外壁温度,停机过程则产生相反温差。

(2)影响内外壁温差的主要因素:①汽缸壁厚度δ,汽缸壁越厚,内外温差越大。

②材料的导热性能;③蒸汽对内壁的加热强弱。

加热急剧:温度分布为双曲线型,温差大部分集中在内壁一侧,热冲击时;加热稳定:温度分布为直线型,温差分布均匀,汽轮机稳定运行工况;缓慢加热:温度分布为抛物线型,内壁温差较大,实际启动过程中;2.转子的受热特点蒸汽的热量以对流方式传给转子外表面,再以导热方式传到中心孔,通过中心孔散给周围环境,在转子外表面和中心孔产生温差,温差取决于转子的结构、材料的特性及蒸汽对转子的加热程度。

Ⅱ汽轮机的热应力一、热应力热应力概念:当物体温度变化时,热变形受到其它物体约束或物体内部各部分之间的相互约束所产生的应力。

①温度变化时,物体内部各点温度均匀,变形不受约束,则物体产生热变形而没有热应力。

当变形受到约束时,则在内部产生热应力。

②物体各处温度不均匀时,即使没有外界约束条件,也将产生热应力;在温度高的一侧产生热压应力,在温度低的一侧产生热拉应力。

二、汽缸壁的热应力1.启动时,汽缸内壁为热压应力,外壁为热拉应力,且内外壁表面的热压和热拉应力均大于沿壁厚其他各处的热应力。

内壁;t E i ∆⋅-⋅-=μασ132 外壁:t E ∆⋅-⋅-=μασ1310 在停机过程中,内壁表面热拉应力,外壁表面热压应力。

汽轮机的缸胀和胀差

汽轮机的缸胀和胀差

汽轮机的缸胀和胀差缸胀:汽轮机汽缸的绝对膨胀。

汽轮机启动过程是对汽缸、转子及每个零部件的加热过程。

在启动过程中,缸胀逐渐增大;停机时,汽轮机各部金属温度下降,汽缸逐渐收缩,缸胀减小。

差胀(又称胀差):汽轮机转子与汽缸沿轴向膨胀的差值。

汽轮机启动或停机时,汽缸与转子均会受热膨胀,受冷收缩。

由于汽缸与转子质量上的差异,受热条件不相同,转子的膨胀及收缩较汽缸快。

差胀为正值时,说明转子的轴向膨胀量大于汽缸的膨胀量;差胀为负值时,说明转子的轴向膨胀量小于汽缸膨胀量。

当汽轮机启动时,转子受热较快,一般都为正值;汽轮机停机或甩负荷时,差胀较容易出现负值。

汽轮机在启动、停机及运行过程中,差胀的大小与下列因素有关:⑴启动机组时,汽缸与法兰加热装置投用不当,加热汽量过大或过小。

⑵暖机过程中,升速率太快或暖机时间过短。

⑶正常停机或滑参数停机时,汽温下降太快。

⑷增负荷速度太快。

⑸甩负荷后,空负荷或低负荷运行时间过长。

⑹汽轮机发生水冲击。

⑺正常运行过程中,蒸汽参数变化速度过快。

当发现汽机胀差指示异常时:(1)应核对有关表记指示正确,确认胀差指示异常;(2)检查汽缸上、下温差,超过规定值时应停止汽机运行;(3)控制锅炉负荷不发生大的波动;(4)检查主、再热蒸汽温度不应有太大的波动,检查减温水调节门动作是否正常;(5)机组启动过程中,保持主、再热蒸汽温度与汽缸温度相匹配;(6)发现汽缸胀差异常时应对各种参数进行综合分析,及时发现问题;(7)汽缸胀差异常时,应尽量停止负荷的变化,使胀差不会发生太大的变化趋势;(8)低压差胀:正向增大时,可临时有限降低真空,提高排汽缸温度;负向增大时,投入低压缸喷水,降低排汽缸温度。

(9)当胀差有太大的变化时,应到就地听机组声音,发现有金属摩擦声音时应停止汽机运行,破坏真空。

(10)机组启动时,根据汽缸温度选择轴封汽源,使轴封温度与金属温度相匹配;在热态启动时,防止负差胀增大,尽快升负荷至对应缸温下的负荷。

核电厂汽轮机膨胀差浅议

核电厂汽轮机膨胀差浅议

核电厂汽轮机膨胀差浅议摘要:借鉴实际经验,主要分析了汽轮机胀差产生的原因,探讨其在运行当中胀差的控制措施,以期对相关工作有所助益。

关键词:转子;膨胀差;滑销;泊桑效应一、汽轮机膨胀差定义蒸汽进入汽轮机后,转子及汽缸均要受热膨胀,由于转子质量相对汽缸较小,温升较快,膨胀比汽缸更为迅速。

转子与汽缸沿轴向膨胀的差值称为胀差。

当汽轮机启动加热或停机冷却以及负荷变化时,汽缸和转子都会产生热膨胀或冷却收缩。

由于转子的受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大,因此在相同的条件下,转子的温度变化比汽缸快,使转子与汽缸之间存在膨胀差。

膨胀差可以分为正胀差和负胀差。

正胀差:在机组启动加热时,转子的膨胀大于汽缸,其相对膨胀差值被称为正胀差。

负胀差:而当汽轮机停机冷却时,转子冷却较快,其收缩亦比汽缸快,产生负胀差。

二、汽轮机膨胀差产生的原因以某核电厂汽轮机共有两个低压缸一个高压缸举例。

在机组加热(或冷却)过程中,转子以推力盘为基准面向两侧自由膨胀。

而汽缸死点在低压2缸纵销和横销中心线的交点上,高压缸、低压1汽缸、低压2汽侧半段缸向汽机端膨胀,低压2缸后段向发电机侧膨胀。

在高压、低压1、低压2汽缸部分,该部分转子向汽机端膨胀。

转动部分和静止部分在运行过程中高压缸(汽端),低压1、2汽缸(汽端)动静部件间隙值减小,而电机端间隙值有所增大。

在低压2缸(电机侧),低压静叶随汽缸向发电机端膨胀,而转子也向发电机端膨胀,由于转子在该部位伸长量较大(沿轴向膨胀尺寸逐渐加大,但由于转子已经处于低温蒸汽区域,其膨胀值相应的较高压转子小,但是绝对值大,产生正胀差。

转子和汽缸膨胀的结果,会使低压静叶和动叶(进汽侧)之间的轴向间隙减小(汽轮机侧),而使本级动叶与下级静叶之间轴向间隙增大,低压缸(发电机侧)动叶与静叶之间的动静间隙值正好相反。

图一、汽轮机胀差示意图三、汽轮机胀差的影响因素汽轮机胀差的影响因素较多,根据机组实际运行状况,概括起来主要有以下点。

汽轮机启动时胀差大的原因

汽轮机启动时胀差大的原因

汽轮机启动时胀差大的原因胀差是指在汽轮机启动过程中,由于热胀冷缩的不均匀性导致的零部件间的间隙变化。

在汽轮机启动初期,由于机组处于冷态,各个零部件的温度不均匀,热胀冷缩不一致,从而引起胀差现象。

汽轮机启动时胀差大会对机组运行安全和可靠性产生不利影响。

本文将从几个方面探讨汽轮机启动时胀差大的原因。

汽轮机启动时胀差大的原因之一是机组处于冷态,各个零部件的温度差异较大。

在长时间停机后重新启动汽轮机时,由于机组内部温度下降,各个零部件的温度差异较大,导致热胀冷缩不均匀。

例如,汽轮机的叶片、轴承等零部件冷却后会收缩,而轴、壳体等零部件由于处于低温下,胀缩程度较小。

这样就会导致零部件之间的配合间隙变大,出现胀差现象。

汽轮机启动时胀差大的原因还与机组内部的温度分布不均匀有关。

在汽轮机启动初期,由于各个零部件的热容量和传导能力不同,热量分布不均匀。

例如,汽轮机的叶片、轴承等零部件会因为受到高温蒸汽的冲击而迅速升温,而壳体等零部件由于热容量大、传导能力差,升温较慢。

这样就会导致零部件之间的温差较大,引起胀差现象。

汽轮机启动时胀差大的原因还与机组内的热应力有关。

在汽轮机启动过程中,由于温度变化较大,零部件会产生相应的热应力。

例如,汽轮机的叶片由于受到高温蒸汽的冲击,会产生较大的热应力。

而壳体等零部件由于热容量大、传导能力差,温度变化较小,热应力较小。

这样就会导致不同零部件之间的热应力差异较大,引起胀差现象。

汽轮机启动时胀差大的原因还与机组内的材料性质有关。

不同材料的热胀冷缩系数不同,热胀系数大的材料在温度变化时胀缩程度较大,而热胀系数小的材料胀缩程度较小。

在汽轮机启动初期,由于机组内部的温度变化较大,不同材料之间的胀缩程度差异较大,从而引起胀差现象。

汽轮机启动时胀差大的原因主要包括机组处于冷态、机组内部温度分布不均匀、机组内的热应力以及材料性质等因素。

为了减少汽轮机启动时的胀差现象,可以采取一些措施。

例如,在汽轮机启动前可以进行预热,提高机组的温度,减少温度差异;在设计和制造过程中,可以优化零部件的配合间隙,减少胀差现象的发生;在运行过程中,可以合理控制汽轮机的启动速度,减少温度变化的幅度。

汽轮机胀差、轴向位移的产生原因

汽轮机胀差、轴向位移的产生原因

当凝汽器真空升高时,排汽温度降低,可能导致负胀差增大 ;反之,真空降低时,胀差可能增大。
轴封供汽温度的影响
轴封供汽温度过高或过低会影响轴封的间隙大小,进而影 响汽轮机的热膨胀。
若轴封供汽温度与汽缸温度不匹配,可能导致胀差异常波 动。
02 汽轮机轴向位移的产生原因
CHAPTER
推力轴承故障
推力轴承损坏或磨损
机组负荷的快速变化
负荷突增或突减
汽轮机在运行过程中,如果机组负荷发生突增或突减,会导致汽缸和转子受到的蒸汽作用力发生变化,从而引起 轴向位移。
甩负荷
甩负荷是指汽轮机突然失去负荷的情况,如电网故障导致负荷突然消失。甩负荷过程中,汽轮机内部的蒸汽压力 和流量会发生剧烈波动,导致轴向位移的发生。
03 汽轮机胀差和轴向位移的关联性
快速响应蒸汽参数和机组负荷的变化
01
快速响应蒸汽参数和机组负荷的变化也是预防汽轮机胀差和轴向位移的重要措 施之一。蒸汽参数和机组负荷的快速变化可能导致转子热弯曲和动静摩擦等问 题。
02
应加强蒸汽参数和机组负荷的监测和控制,确保在出现异常情况时能够及时发 现并处理。同时,应优化控制系统的算法,提高其对蒸汽参数和机组负荷变化 的响应速度。
CHAPTER
胀差与轴向位移的关系
胀差是指汽轮机转子相对于汽缸发生的膨胀或收缩,而轴向位移是指转子轴心的位 置相对于汽缸的变化。
在汽轮机运行过程中,胀差和轴向位移的变化通常是相互关联的。当转子受热膨胀 时,轴向位移也会随之增大,反之亦然。
胀差和轴向位移的变化通常受到多种因素的影响,如蒸汽参数、机组负荷、润滑油 系统等。
推力轴承是汽轮机的重要部件,负责 承受转子的轴向推力。如果推力轴承 出现故障,如磨损或损坏,会导致轴 向位移的发生。

汽轮机的热应力、热变形、热膨胀分析

汽轮机的热应力、热变形、热膨胀分析

汽轮机的热应力、热变形、热膨胀主要内容:主要介绍汽轮机的热应力、热膨胀和热变形;汽轮机寿命及如何进行汽轮机的寿命管理。

Ⅰ汽轮机的受热特点一、汽缸壁的受热特点汽轮机启停过程是运行中最复杂的工况。

在启停过程中,由于温度剧烈变化,各零部件中及它们之间形成较大的温差。

导致零部件产生较大的热应力,同时还引起热膨胀和热变形。

当应力达到一定水平时,会使高温部件遭受损伤,最终导致部件损坏。

1.汽缸的受热特点(1)启动时,蒸汽的热量以对流方式传给汽缸内壁,再以导热方式传向外壁,最后经保温层散向大气,汽缸内外壁存在温差,内壁温度高于外壁温度,停机过程则产生相反温差。

(2)影响内外壁温差的主要因素:①汽缸壁厚度δ,汽缸壁越厚,内外温差越大。

②材料的导热性能;③蒸汽对内壁的加热强弱。

加热急剧:温度分布为双曲线型,温差大部分集中在内壁一侧,热冲击时;加热稳定:温度分布为直线型,温差分布均匀,汽轮机稳定运行工况;缓慢加热:温度分布为抛物线型,内壁温差较大,实际启动过程中;2.转子的受热特点蒸汽的热量以对流方式传给转子外表面,再以导热方式传到中心孔,通过中心孔散给周围环境,在转子外表面和中心孔产生温差,温差取决于转子的结构、材料的特性及蒸汽对转子的加热程度。

Ⅱ汽轮机的热应力一、热应力热应力概念:当物体温度变化时,热变形受到其它物体约束或物体内部各部分之间的相互约束所产生的应力。

①温度变化时,物体内部各点温度均匀,变形不受约束,则物体产生热变形而没有热应力。

当变形受到约束时,则在内部产生热应力。

②物体各处温度不均匀时,即使没有外界约束条件,也将产生热应力;在温度高的一侧产生热压应力,在温度低的一侧产生热拉应力。

二、汽缸壁的热应力1.启动时,汽缸内壁为热压应力,外壁为热拉应力,且内外壁表面的热压和热拉应力均大于沿壁厚其他各处的热应力。

内壁;t E i ∆⋅-⋅-=μασ132 外壁:t E ∆⋅-⋅-=μασ1310 在停机过程中,内壁表面热拉应力,外壁表面热压应力。

试论汽轮机胀差过大危害及预防

试论汽轮机胀差过大危害及预防

试论汽轮机胀差过大危害及预防引言汽轮机是一种热能转换装备,广泛应用于发电厂、工业生产、船舶等领域。

然而,汽轮机胀差过大是一种常见的故障现象,如果不及时处理,会对汽轮机的安全运行和性能造成严重影响。

本文将通过分析汽轮机胀差过大的危害以及预防措施,旨在提高汽轮机的可靠性和运行效率。

危害分析汽轮机胀差过大会引发以下危害:1. 设备受损当汽轮机存在胀差过大的情况时,由于受到了额外的热应力和机械应力,易导致汽轮机的设备受损。

比如,轴承过热、叶片过热、轴轴向弯曲等都是常见的设备受损情况。

2. 运行效率降低汽轮机胀差过大会导致叶片与固定轴套之间的间隙减小,进而使得气流流通受阻。

这将导致汽轮机的效率降低,影响发电厂和工业生产的运行效率。

3. 安全风险汽轮机胀差过大可能引发更严重的故障,如叶片脱落、叶片断裂等。

这些故障带来的碎片飞出可能对周围设备和人员造成严重伤害,甚至导致事故发生。

规范预防措施为了降低汽轮机胀差过大的风险,以下是一些规范的预防措施:1. 定期检测和监测定期进行汽轮机的检测和监测,以便及时发现和排除胀差过大的问题。

监测可以通过震动、温度和压力传感器等设备来实现,确保及时发现胀差问题。

2. 合理设计和安装在汽轮机的设计和安装过程中,应考虑胀差的影响,并采取相应的措施来缓解热应力和机械应力,减少胀差过大的风险。

例如,合理设置轴套间隙,采用合适的材料和制造工艺等。

3. 定期维护和保养定期维护和保养是汽轮机正常运行的关键。

这包括清洁叶片、检查和更换轴承和密封件、调整轴套间隙等。

通过定期维护,可以减少汽轮机胀差过大的风险。

4. 考虑环境因素汽轮机的胀差问题受到环境因素的影响,如温度、湿度等。

在设计和操作中,应考虑这些因素,采取相应的措施来缓解胀差过大的风险,如合理的隔热和降温措施。

5. 培训和意识提高通过定期培训和提高员工对汽轮机胀差过大危害的意识,可以提高其对问题的敏感性,并能够及时采取应对措施。

员工应了解如何识别和处理胀差过大的情况,以确保设备的安全运行。

浅谈汽轮机的热膨胀和胀差

浅谈汽轮机的热膨胀和胀差

浅谈汽轮机的热膨胀和胀差一、轴向位移和胀差的概念轴位移指的是轴的位移量而胀差则指的是轴相对于汽缸的相对膨胀量,一般轴向位移变化时其数值较小。

轴向位移为正值时,大轴向发电机方向移,若此时汽缸膨胀远小于轴的膨胀,胀差不一定向正值方向变化;如果机组参数不变,负荷稳定,胀差与轴向位移不发生变化。

机组启停过程中及蒸汽参数变化时,胀差将会发生变化,由于负荷的变化而轴向位移也一定发生变化。

运行中轴向位移变化,必然引起胀差的变化。

汽轮机的转子膨胀大于汽缸膨胀的胀差值称为正胀差,当汽缸膨胀大于转子膨胀时的胀差值称为负胀差。

胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣,避免动静部分发生碰撞,损坏设备。

启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依靠汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。

启动时胀差一般向正方向发展。

汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。

汽轮发电机中,由于蒸汽在动叶中做功,以及隔板汽封间隙中的漏汽等原因,使动叶前后的蒸汽压力有一个压降。

这个压降使汽轮机转子顺着蒸汽流动方向形成一个轴向的推力,从而产生轴向位移。

如果轴向位移大于汽轮机动静部分的最小间隙就会使汽轮机静、转子相碰而损坏。

轴向位移增大,会使推力瓦温度开高,乌金烧毁,机组还会出现剧烈振动,故必须紧急停机,否则将带来严重后果。

差胀保护是指汽轮机转子和汽缺之间的相对膨胀差。

在机组启、停过程中,由于转子相对汽缸来说很小,热容量小,温度变化快,膨胀速度快。

若不采取措施加以控制升温速度,将使机组转子与汽缸摩擦造成损坏。

故运行中差胀不能超过允许值。

汽轮机转子停止转动后,负胀差有可能会更加发展,因此应当维持一定温度的轴封蒸汽,以免造成恶果。

二、轴向位移和胀差产生的原因(影响机组胀差的因素)使胀差向正值增大的主要因素简述如下:1)启动时暖机时间太短,升速太快或升负荷太快。

汽轮机运行中胀差的分析和控制

汽轮机运行中胀差的分析和控制

汽轮机运行中胀差的分析和控制摘要:汽轮机为发电厂当中的常用机械之一,其运转情况的好坏直接影响到了电量制造的效率。

本次研究当中将针对某发电厂的汽轮机在运转过程当中产生的胀差现象进行研究,对其产生的原因进行分析,对有可能由此引发的危害提出解决措施与建议。

关键词:发电厂汽轮机胀差控制汽轮机在启动与停机的转换过程当中,或是在平常的运行当中产生节奏改变时,气缸以及转子会相应产生热涨冷缩的现象。

在这种现象当中,转子的受热面积明显大于气缸,同时由于转子的质量与气缸相比较小,以及转子表面受到的蒸汽放热系数与气缸相比较大,因此转子在温度变化方面与气缸相比尤为明显,这就有可能导致转子与气缸之间产生胀差现象[1]。

这种差值的产生指的是转子与气缸之间的差异而言,因此两者之间由热作用而产生的膨胀差即为胀差,又称相对膨胀差。

两者在轴向膨胀的条件下进行对照比较时,若转子大于气缸,则称为正膨胀;若转子小于气缸,则称为负膨胀。

1 胀差的形成原因转子与气缸之间产生胀差的主要原因是由于两者的组织结构以及工作条件存在明显的差异[2]。

在单缸汽轮机当中,排气口中心附近存在着明显的气缸死点,而转子与气缸之间也存在着一个明显的死点,位置在推力轴的承推面。

在汽轮机正常的运转当中,转子与气缸之间必然存在着明显的温度差异,受热程度差较为显著,转子质量虽然与气缸相比较小,但是受到蒸汽热作用的面积较大,因此将在短时间内提升至很高的温度,气缸与转子相比质量较大,因此其受热与膨胀的速度较慢。

两者同样在受热后发生了膨胀的现象,但是在膨胀稳定之前,两者之间必然存在着明显的胀差。

在冷却当中同样如此,转子质量较小,因此冷却收缩的时间与气缸相比较短,胀差情况也会更加明显。

汽轮机在正常的运行当中,逐渐从冷形态向热形态进行转变,气缸受热后逐渐产生热膨胀的现象,但是其膨胀方向却受到了滑销系统死点位置的限制,只能向高压或低压侧膨胀。

转子也随着汽轮机的运行会发生膨胀现象,而膨胀方向也随着推力轴承的约束只能向低压侧膨胀。

【精华整理】汽轮机的热膨胀和胀差2

【精华整理】汽轮机的热膨胀和胀差2

汽轮机的胀差控制 (1)汽轮机的胀差控制 (4)汽轮机胀差产生机理及“质”“量”控制法 (6)汽轮机胀差问题概述 (15)汽轮机的胀差控制汽轮机在启停过程中,转子与汽缸的热交换条件不同。

因此,造成它们在轴向的膨胀也不一致,即出现相对膨胀。

汽轮机转子与汽缸的相对膨胀通常也称为胀差。

胀差的大小表明了汽轮机轴向消息间隙的变化情况。

习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,汽缸膨胀大于转子膨胀时的胀差值为负胀差。

胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。

转子的相对胀差过大,会使动、静轴向间隙消失而产生摩擦,造成转子弯曲,引起机组振动,甚至出现重大事故。

一、分析胀差时,需考虑的因素:轴封供汽温度和供汽时间的影响:在汽轮机冲转前向轴封供汽时,由于冷态启动时轴封供汽温度高于转子温度,转子局部受热而伸长,出现正胀差,可能出现轴封摩擦现象。

在热态启动时,为防止轴封供汽后出现负值,轴封供汽应选用高温汽源,并且一定要先向轴封供汽,后抽真空。

应尽量缩短冲转前轴封供汽时间。

真空的影响:在升速热机的过程中,真空变化会引起涨差值改变。

认真空降低时,为了保持机组转速不变,必须增加进汽量,摩擦鼓风损失增大,使高压转子受热膨胀,其涨差值随之增加。

认真空进步时,则反之。

使高压转子胀差减少。

但真空高低对中、低压缸通流部分的胀差影响与高压转子相反。

进汽参数影响:当进汽参数发生变化时,首先对转子受热状态发生影响,而对汽缸的影响要滞后一段时间,这样也会引起胀差变化,而且参数变化速度越快,影响越大。

因此,在汽轮机启停过程中,控制蒸汽温度和流量变化速度,就可以达到控制差胀的目的。

汽缸和法兰加热的影响:汽缸水平法兰在升速过程中温度比汽缸要低,阻碍汽缸膨胀,引起胀差增加。

转速影响:泊桑效应也就是汽轮机的轴在转速增加的时候,受到离心力的作用,而变粗,变短.转速减小的时候,而变细,变长滑销系统影响:在运行中,必须加强对汽缸尽对膨胀的监视,防止左右侧膨胀不均以及卡涩造成的消息部分摩擦事故。

试论汽轮机胀差过大的危害及预防

试论汽轮机胀差过大的危害及预防

试论汽轮机胀差过大的危害及预防汽轮机给人们的生活和生产提供了很大的便利,但是一旦汽轮机出现问题,就会严重影响人们的生活。

本文系统地分析了汽轮机组停止工作的原因,对运行的转子和汽缸膨胀所产生的胀差进行分析,探讨胀差过大产生的影响,并且提出了一些预防措施,提出在实际操作中应注意的一些事项,对汽轮机的生产运行具有较大的意义。

在汽轮机正常运行过程中,转子与汽缸坚持大致相同的轴向膨胀速度是很重要的。

膨胀值反映的是转子和汽缸膨胀或在轴向位置相对变化的值,是一个非常重要的参数,胀差太大或太小都会使机组轴向间隙消失,导致动态和静态摩擦,这样对设备的损坏是十分严重的,工作人员进行操作时应严格监视胀差的变化。

为了能够更好的指导生产操作,必须要对胀差过大产生的原因进行有效分析,探讨其变化规律,形成一套科学有效的预防控制措施,这对操作人员是大有帮助的。

1.汽轮机胀差过大的影响因素1.1.负载变化率太大当负荷发生变化时,各级涡轮机的蒸汽流量也会死随之发生变化,特别是在低负荷的范围内,蒸汽温度变化越大,负荷的增长速度就会越大,蒸汽温度上升得就更快。

当与金属表面之间的温度差较大时,汽缸的温度上升就会推动转子加快速度。

负荷增加的速度加快,胀差就会增大;相反状况就会出现负胀差,如果是单位的负荷运行稳定的时候,胀差将随时间的变化而变化,最后稳定在一个定值。

1.2.蒸汽温度上升速度的影响机组正常启动时,蒸汽温度的变化是正常的。

它将影响所有等级的蒸汽温度,主蒸汽温度上升越快的话,汽缸和转子之间的胀差就会越大,而且有时候会出现负胀差,这样会严重影响汽轮机的运行。

1.3.轴封供汽温度的影响密封体嵌入在汽轮机汽缸的两端,在汽缸的轴向长度几乎没有影响,但是当转子轴封段的发展影响了转子的膨胀时,就会造成膨胀差。

由于轴密封部分的转子长度比较短,所以对膨胀产生比较小的影响,但密封胀差比较大的地方就会产生胀差过大的影响。

如果蒸汽温度太高就会密封,轴向间隙就会消失,随之出现静态和动态摩擦。

汽机胀差定义

汽机胀差定义

汽机胀差定义【汽机胀差定义】**开场白**你有没有在坐火车或者汽车的时候,听到过一些奇怪的声音,或者感觉到车辆在行驶中有些异样的震动?其实,在大型的发电厂里,那些巨大的汽轮机组也会有类似的“反应”。

今天咱们就来聊聊跟汽轮机组有关的一个重要概念——汽机胀差。

**什么是汽机胀差?**简单来说,汽机胀差就是指汽轮机在运转过程中,转子和汽缸沿轴向的相对膨胀量之差。

想象一下,就好比两个人一起跑步,一个跑得快,一个跑得慢,他们之间的距离差就是胀差。

在我们的日常生活中,热胀冷缩的现象很常见。

比如,夏天的时候,铁轨会因为受热变长;冬天的时候,塑料水管可能会因为受冷收缩。

汽机胀差也是类似的原理,只不过是发生在汽轮机这个大家伙身上。

但要注意,有些人可能会错误地认为胀差只是简单的膨胀量,而忽略了“差”这个关键。

实际上,重点在于转子和汽缸膨胀量的相对差值。

**关键点解析**3.1 核心特征或要素首先,汽机胀差的大小是一个关键要素。

胀差过大或过小都会影响汽轮机的正常运行。

比如说,胀差过大可能会导致动静部件之间的摩擦碰撞,就像两个齿轮没有对准就强行咬合,会造成严重损坏。

其次,胀差的变化速度也很重要。

如果胀差变化太快,就像汽车急刹车或急加速一样,会给机组带来很大的冲击。

还有,胀差的方向也不能忽视。

分为正胀差和负胀差。

正胀差表示转子的膨胀量大于汽缸,负胀差则相反。

3.2 容易混淆的概念汽机胀差和轴向位移是两个容易混淆的概念。

轴向位移是指转子沿轴向的移动距离,而汽机胀差是转子和汽缸膨胀量的差值。

打个比方,轴向位移就像是一个人沿着直线往前走了多远,而胀差是两个人在同一条路上走,一个走得多,一个走得少,两者之间的差距。

**起源与发展**汽机胀差这个概念的出现,伴随着汽轮机技术的不断发展。

早期的汽轮机功率较小,对胀差的控制要求相对较低。

但随着工业的进步,汽轮机的功率越来越大,转速越来越高,对胀差的控制就变得至关重要。

在当下,精确控制汽机胀差对于提高发电厂的效率、保障机组的安全稳定运行具有极其重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈汽轮机的热膨胀和胀差一、轴向位移和胀差的概念轴位移指的是轴的位移量而胀差则指的是轴相对于汽缸的相对膨胀量,一般轴向位移变化时其数值较小。

轴向位移为正值时,大轴向发电机方向移,若此时汽缸膨胀远小于轴的膨胀,胀差不一定向正值方向变化;如果机组参数不变,负荷稳定,胀差与轴向位移不发生变化。

机组启停过程中及蒸汽参数变化时,胀差将会发生变化,由于负荷的变化而轴向位移也一定发生变化。

运行中轴向位移变化,必然引起胀差的变化。

汽轮机的转子膨胀大于汽缸膨胀的胀差值称为正胀差,当汽缸膨胀大于转子膨胀时的胀差值称为负胀差。

胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣,避免动静部分发生碰撞,损坏设备。

启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依靠汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。

启动时胀差一般向正方向发展。

汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。

汽轮发电机中,由于蒸汽在动叶中做功,以及隔板汽封间隙中的漏汽等原因,使动叶前后的蒸汽压力有一个压降。

这个压降使汽轮机转子顺着蒸汽流动方向形成一个轴向的推力,从而产生轴向位移。

如果轴向位移大于汽轮机动静部分的最小间隙就会使汽轮机静、转子相碰而损坏。

轴向位移增大,会使推力瓦温度开高,乌金烧毁,机组还会出现剧烈振动,故必须紧急停机,否则将带来严重后果。

差胀保护是指汽轮机转子和汽缺之间的相对膨胀差。

在机组启、停过程中,由于转子相对汽缸来说很小,热容量小,温度变化快,膨胀速度快。

若不采取措施加以控制升温速度,将使机组转子与汽缸摩擦造成损坏。

故运行中差胀不能超过允许值。

汽轮机转子停止转动后,负胀差有可能会更加发展,因此应当维持一定温度的轴封蒸汽,以免造成恶果。

二、轴向位移和胀差产生的原因(影响机组胀差的因素)使胀差向正值增大的主要因素简述如下:1)启动时暖机时间太短,升速太快或升负荷太快。

2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。

3)滑销系统或轴承台板的滑动性能差,易卡涩,汽缸胀不出。

4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。

5)机组启动时,进汽压力、温度、流量等参数过高。

6)推力轴承工作面、非工作面受力增大并磨损,轴向位移增大。

7)汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风。

8)双层缸的夹层中流入冷汽(或冷水)。

9)胀差指示器零点不准或触点磨损,引起数字偏差。

10)多转子机组,相邻转子胀差变化带来的互相影响。

11)真空变化的影响(真空降低,引起进入汽轮机的蒸汽流量增大)。

12)转速变化的影响(转速降低)。

13)各级抽汽量变化的影响,若一级抽汽停用,则影响高差很明显。

14)轴承油温太高。

15)机组停机惰走过程中由于“泊桑效应”的影响。

16)差胀指示表不准,或频率,电压变化影响。

使胀差向负值增大的主要原因:1)负荷迅速下降或突然甩负荷。

2)主汽温骤减或启动时的进汽温度低于金属温度。

3)水冲击。

4)轴承油温太低。

5)轴封汽温度太低。

6)轴向位移变化。

7)真空过高,相应排汽室温降低而影响。

8)启动进转速突升,由于转子在离心力的作用下轴向尺寸缩小,尤其低差变化明显。

9)双层汽缸夹层中流入高温蒸汽,可能来自汽加热装置,也可能来自进汽套管的漏汽或者轴封漏汽。

10)汽缸夹层加热装置汽温太高或流量较大,引起加热过度。

11)滑销系统或轴承台板滑动卡涩,汽缸不缩回。

12)差胀值示表不准,或频率,电压变化影响。

正胀差影响因素主要有:(1)蒸汽温升或温降速度大(2)负价苛变化速度的影响(3)轴封供汽温度的影响(4)凝汽器真空的影响(5)环境温度的影响(6)摩擦鼓风的影响(7)其它:汽缸法兰螺栓加热装置的影响1.蒸汽温升或温降速度大启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依*汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。

启动时胀差一般向正方向发展。

汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。

汽轮机转子停止转动后,负胀差可能会更加发展,为此应当维持一定温度的轴封蒸汽,以免造成恶果。

2.负价苛变化速度的影响当负荷变化时,各级蒸汽流量发生变化,特别是在低负荷范围内,各级蒸汽温度的变化较大,负荷增长速度愈快,蒸汽的温升速度也愈快.与金属表向降负荷速度加快,汽缸和转子温升速度的差别愈大。

负荷增加速度加快,正胀差增大;降负荷速度加快,正胀差缩小,以致出现负胀差。

3.轴封供气温度的影响轴封供气对转子的轴封段和轴封体加热,由于轴封体是嵌在汽缸两端,其膨胀对汽缸轴同长度几乎没有影响,但转子轴封段的膨胀却影响转子的长度,因而使正胀差加大。

由于轴封段占转子长度的比例较小,故对总胀差影响较小,可是轴封处的局部胀差却比较大。

若轴封供气温度过高,则出现正胀差过大;反之,负胀差过大。

一般规定轴封气温度略高于轴封金属温度。

4.真空对低压胀差的影响真空降低,一方面排气温度升高,低压缸排气口压力升高,缸体内外压差减少,两者促进低压缸缸体膨胀,从而减少低压胀差。

另一方面,若轴封气压不变,低压缸轴封段轴封气量减少,转子加热减弱,也使低压胀差减少。

5.环境温度的影响低压胀差对环境温度较敏感。

环境温度升高,低压胀差变小,环境温度降低,低压胀差升高。

主要原因一方面是环境温度降低,低压缸冷却加剧(低压缸保温不完善);另一方面是循环水温度降低使真空升高,排气温度降低,缸温下降。

经观察,在不同负荷下,变化规律是一样的。

在同一负荷下,冬季跟夏季低压胀差相差15%。

6.摩擦鼓风的影响在机组启动和低负荷阶段,蒸汽流量较小,而高中低压级内产生较大的鼓风摩擦损失(与转速三次方成正比),损失产生的热量被蒸汽吸收,使其温度升高。

由于叶轮直接与蒸汽相摩擦,因此转子温度比汽缸温度高,故出现正胀差。

随着转速升高,转子摩擦鼓风损失产生的热量相应加大,但此时由于流量增加,使产生的鼓风损失的级数相应减少,因此每千克蒸汽吸收摩擦鼓风损失产生的热量先随转速升高而增大,使高中低压缸正胀差增大,后又随转速升高而相应减少,对胀差的影响逐渐减少。

三、轴向位移和胀差的危害1.泊桑效应影响机组低压胀差约10%,所以开机冲转前,低压胀差应保证10%以上。

在停机过程中尽量减少低压胀差(最好控制在90%以下),当低压胀差超过110%,必须紧急停机,这时随着转速下降,低压胀差会超过120%,在低转速区可能会有动静摩擦。

2.在冬季低压胀差过高时,要注意轴封气母管压力,若压力过高可适当调低,也可用降低真空方法来减少低压胀差。

冬季减少开窗的地方,这是冬季减少低压胀差有效措施。

3.极热态启动时,轴封供气尽量选择高温气源,辅气作为气源时,必须保证其温度控制在270℃左右,若温度太低,将造成高压轴封段大轴急剧冷却收缩,有可能导致前几级动静摩擦。

4.冷态启动时,轴封气源高于大轴金属温度,大轴将局部受热伸长,出现较大的正胀差。

因此要选择与轴封金属温度相匹配的气源,不拖延启动时间。

低压胀差过大,可采用降低真空来调节,尽量提前冲转升速。

机组启动阶段低压正胀差超过限值时,可破坏真空停轴封气,待胀差正常后重新启动。

5.机组倒缸前,主蒸汽气温至少比高压缸金属温度高50℃以上,倒缸前应考虑轴向位移对高压胀差影响。

6.机组启停阶段胀差变化幅度大,影响因素多,调整难度大,因此要严格按规程操作,根据汽缸金属温度选择适当的冲转参数,适当的升温升压曲线,确定合适升温速度,控制升速和暖机时间,带负荷后根据具体情况,及时分析和采取有效方法,才能有效控制胀差。

四、机组启动时胀差变化的分析与控制汽轮机在启停过程中,转子与汽缸的热交换条件不同。

因此,造成他们在轴向的膨胀也不一致,即出现相对膨胀。

相对膨胀通常也称为胀差。

胀差的大小表明了汽轮机轴向动静间隙的变化情况。

监视胀差是机组启停过程中的一项重要任务。

为避免轴向间隙变化而使动静部分发生摩擦,不仅应对胀差进行严格的监视,而且对胀差对汽轮机运行的影响应该有足够的认识。

受热后汽缸是从“死点”向机头方向膨胀的,所以,胀差的信号发生器一般安装在汽缸相对基础的“死点”位置。

胀差发信器安装在前轴承箱座上。

机组的启动按启动前汽轮机金属温度水平分为:冷态启动(金属温度<150℃)温态启动(150℃—300℃)热态启动(300℃—400℃)极热态启动(400℃以上)。

现仅就常见的冷态启动和热态启动时机组胀差的变化与控制进行简单分析:在机组冷态启动过程中,胀差的变化和对胀差的控制大致分为以下几个阶段:1、汽封供汽抽真空阶段。

从汽封供汽抽真空到转子冲转前胀差值是一直向正方向变化的。

因为在加热或冷却过程中,转子温度升高或降低的速度都要比汽缸快,相应的膨胀或收缩的速度也要比汽缸快。

在我们投入轴封供汽时,汽封套受热后向两侧膨胀,对整个汽缸的膨胀影响不大。

而与汽封相对应的转子主轴段受热后则使转子伸长。

汽封供热对转子伸长值的影响是由供汽温度来决定的,但加热时间也有影响。

所以,冷态启动时轴封供气压力不宜过高,一般应保持在0.1MPA以下,而温度则应在200℃左右。

当抽气系统投入并开始抽真空后,如果胀差向正值变化过快,可以采取降低轴封供汽压力或适当提升凝汽器真空的方法,因为通过提升真空可以减少蒸汽在汽封中的滞留时间。

总体上来说,冷态开机,温度和压力应该低一些,真空应该提升的快一点,在确保安全的前提下尽早达到冲转的条件。

2、暖机升速阶段。

从冲转到定速,胀差基本上继续上升。

在这一阶段,蒸汽流量小,蒸汽主要在调节级内做功。

中速暖机以后再升速时,胀差值才会有减小的趋势。

这主要是因为随着转速的升高,离心力增大,轴向的分力也增大了,而使转子变粗缩短。

同时汽缸温度逐渐上升,气缸的膨胀速度也在上升,相对迟滞了转子的膨胀值。

在冲转过程当中要密切注意缸温的变化,此时如果胀差正值过高应稳定转速,或者降低真空,让蒸汽在汽缸中的滞留时间长一些,充分暖机。

有时在暖机升速过程中,如果汽缸本体疏水调节不当也会影响到胀差,所以,启机时应当注意控制汽缸本体疏水。

为了防止胀差表数据失真,我们还应当密切观察机组热膨胀和轴向位移的变化,通过热膨胀,轴向位移的对比来进一步判断胀差变化。

同时严密监视机组振动情况,特别是过临界转速时更为重要。

3、定速和并列带负荷阶段。

由于从升速到定速的时间较短,蒸汽温度和流量几乎不变化,对胀差的影响在定速后才能反映出来。

定速后,胀差增加的幅度较大,持续的时间较长,特别是在发电机并网以后。

相关文档
最新文档