波形产生电路
波形发生电路
❖ 9.1 正弦波振荡电路的分析方法
➢ 9.1.1 产生正弦波振荡的条件 ➢ 9.1.2 正弦波振荡电路的组成 ➢ 9.1.3 正弦振荡电路的分析步骤
❖ 9.2 RC正弦波振荡电路
➢ 9.2.1 RC串并联网络振荡电路 ➢ 9.2.2 其他形式的RC振荡电路
❖ 9.3 LC正弦波振荡电路
振荡频率:f0 =
1 2√3 πRC
三节RC电路的移相范围0 ~ 2700
起振条件: RF >12R
至少要用三节RC电路
四、 双T选频网络振荡电路
R3 应略小于R /2
R
R
RF
C
C
A
U·o
R3
+ 2C R´
ω低
+
C1
U·
R1
+
-
R2 C2
U·f -
(a)RC串并联电路
当ω 较高时
1/ωC1 << R1 1/ωC2 << R2 可忽略R2和1/ωC1 U&f 相位滞后于U& ω高
+
C1
U·
-
R2
U+·-f
(b) 低频等效电路
+
R1
U·
-
C2
U+·-f
(c) 高频等效电路
+
C1
U·
R1 Z1
+
-
R2
C2
(2)起振条件 A·F· > 1
F·
=
1 3
A· > 3
R1 C1
RF
A
U·o
+
R´
C2
R2
波形发生电路(自激振荡电路)
负反馈放大器中,为了改善电路的性能,引入的是负反馈,即
(U U ' U i f i
)
' U U o U i i f
(深度负反馈的条件)
一旦在多级放大电路的低频或高频段上,附加相移 A F (2n 1) (n 1.12 )
使
U U ' 0 U i f i
得到振荡信号等效电路 ① 电路突出的特点:管子的 三个电极分接回路的三条引线; 反馈电压取自 L1 和 L2 的分压。 暧时极性法判断: A
U U i f
,取自 L2 两端,故称电感三点式。
F 正反馈,满足相位平衡条件。
f0 1 2 LC ( L L1 L2 2M )
于振荡频率的串联谐振回路流看作短路; ——将恒流源、大电阻、大电感,固有频率等于振荡频率的并联谐振回路;固有频率 远离振频率的串联谐振回路流看作是开路; ②根据等效电路或电路组成判断相位条件。 ③根据等效电路估算振荡频率和振荡条件。 *LC 振荡器与 RC 振荡器的区别。 ① 由 电 感 和 电 容 组 成 选 频 网 络 的 LC 振 荡 器 , 适 用 于 振 荡 频 率 较 高 的 场 合 。
C1 C 2 C 时)
1
F
32 (WCR
1 2 ) WCR
讨论:当
W CR
1 1 0 W Wo W CR RC 时,
模有最大值,
F
1 3 ,相角为0, arctgo 0
arctg
WCR 3
1 WCR
W Wo W Wo 时,模值都下降,相角不为0
实际上,振荡不需要上述假设就可建立起来。 接通电源的瞬间,总会有通电瞬间的电冲击、电干扰、晶体管的热噪声等,尽管这些噪 声很微弱,也不是单一频率的正弦波,但却是由许多不同频率的正弦波叠加组合而成的。在 不断放大→反馈→选频→放大→反馈→选频„的过程中, 振荡就可以自行建立起来。 这个过 程可简述为; 电干扰→放大→选频→正反馈→放大→选频→正反馈→„ 显然,建立过程中,每一次反馈回来的信号都比前一次大。那么,振荡输出会不会无休 止的增长呢? 晶体管是一个非线性元件,只有在线性区才会有放大作用。开始振荡时,信号较小,工 作在线性区,
一节几种常用脉冲波形产生和整形电路
锯齿波产生电路
锯齿波产生电路通常由一个运算放大器和两个电容组成。输入信号通过一个电容加到运算放大器的反 相输入端,输出信号通过另一个电容反馈到运算放大器的同相输入端。通过调整电容的充放电时间, 可以获得不同频率和幅度的锯齿波。
多谐振荡器
总结词
多谐振荡器是一种能够产生方波或近似方波的脉冲整 形电路,其输出频率和占空比可以通过电路参数进行 调整。
详细描述
多谐振荡器由两个反相器串联而成,每个反相器都有 一个电容和电阻并联。当输入信号为高电平时,多谐 振荡器的输出信号为低电平;当输入信号为低电平时 ,多谐振荡器的输出信号为高电平。由于电容的作用 ,多谐振荡器的输出信号频率和占空比可以通过调整 电阻和电容的值来改变。多谐振荡器在数字电路、通 信系统和控制系统中有着广泛的应用。
脉冲幅度解调(PAD)
定义
脉冲幅度解调是将脉冲幅度调制信号还原为原始模拟信号 的过程。通过检测脉冲的幅度并将其转换为相应的模拟信 号值。
工作原理
在PAD中,输入的PAM信号被检测并转换为相应的模拟信 号。通过比较每个脉冲的幅度与预设阈值,可以还原出原 始的模拟信号波形。
应用
PAD广泛应用于数字通信、雷达、测距等领域的接收端, 用于将传输的PAM信号还原为原始的模拟信号。
应用
PFM电路广泛应用于通信、测量和控制等领域。例如,在无线电广播中,PFM用于将音频信号传输到听 众的收音机中。
脉冲频率解调(DFM)
01
定义
脉冲频率解调是一种将已调制的脉冲信号还原为原始信号的过程。在
DFM中,通过测量脉冲信号的频率来恢复原始信号。
波形产生电路实验报告
波形产生电路实验报告一、实验目的本实验旨在探究波形产生电路的基本原理和实现方法,并通过实验操作,了解不同电路参数对波形产生的影响。
二、实验器材1.示波器2.函数信号发生器3.电阻、电容等元器件4.万用表三、实验原理1.基本原理:波形产生电路是指能够产生各种规定形状的周期性信号的电路。
其中,常见的信号有正弦波、方波、三角波等。
2.具体实现:通过改变元器件参数或改变连接方式,可以得到不同形状和频率的周期性信号。
例如,正弦波可以通过RC滤波电路产生;方波可以通过比较器电路和反相放大器电路产生;三角波可以通过积分放大器电路和反相放大器电路产生。
四、实验步骤及结果分析1.正弦波产生电路:(1)将函数信号发生器输出连接至RC滤波电路输入端;(2)调节函数信号发生器输出频率为1000Hz;(3)调节RC滤波电路中的R值和C值,观察示波器上输出的正弦波形状,并记录下所使用的元器件参数;(4)重复以上步骤,改变RC电路中的R和C值,观察输出波形的变化情况。
实验结果:通过调节RC电路中的R和C值,可以得到不同频率和振幅的正弦波。
2.方波产生电路:(1)将函数信号发生器输出连接至比较器电路输入端;(2)设置比较器电路阈值电压为0V;(3)调节函数信号发生器输出频率为1000Hz;(4)观察示波器上输出的方波形状,并记录下所使用的元器件参数;(5)重复以上步骤,改变比较器电路阈值电压和函数信号发生器输出频率,观察输出波形的变化情况。
实验结果:通过调节比较器电路阈值电压和函数信号发生器输出频率,可以得到不同占空比和频率的方波。
3.三角波产生电路:(1)将函数信号发生器输出连接至积分放大器电路输入端;(2)将积分放大器电路输出连接至反相放大器输入端;(3)调节函数信号发生器输出频率为1000Hz;(4)观察示波器上输出的三角波形状,并记录下所使用的元器件参数;(5)重复以上步骤,改变积分放大器电路中的R和C值,观察输出波形的变化情况。
波形发生电路原理
波形发生电路原理波形发生电路是一种电子电路,用于产生特定形状和频率的电压或电流波形。
它通常由活动元件(例如晶体管、集成电路)和被动元件(例如电阻、电容)组成。
波形发生电路的原理基于信号的周期性。
一般来说,波形发生电路需要一个参考信号(例如时钟信号、振荡器信号),根据参考信号的周期和幅值来产生期望的波形。
具体的原理取决于所采用的电路拓扑和元件类型。
常见的波形发生电路包括正弦波发生器、方波发生器、矩形波发生器和三角波发生器等。
下面以正弦波发生器为例,介绍其工作原理:1. 整体思路:正弦波发生器的核心思想是利用反馈机制,将一个信号通过放大和滤波处理后再输入到自身,形成一个稳定的正弦波输出。
2. 振荡器电路:正弦波发生器的关键是振荡器电路,它负责产生频率恒定的振荡信号。
常见的振荡器电路包括LC振荡器、晶体振荡器、RC振荡器等。
以LC振荡器为例,它由电感(L)和电容(C)构成,并配合放大元件组成正反馈网络。
3. 放大器电路:振荡器电路生成的振荡信号较弱,需要经过放大器电路放大后才能得到理想的输出。
这里可以采用放大器电路,如共射放大电路或运算放大器等。
4. 滤波器电路:放大器电路放大信号后,仍然会存在一些杂散信号或高频成分。
因此,需要使用滤波器电路,如低通滤波器或带通滤波器,将不需要的信号滤除,只保留所需的正弦波信号。
通过以上的电路组合,正弦波发生器可以实现将一个参考信号转换成期望频率和幅度的正弦波输出。
实际设计时,需要根据具体要求选择合适的元件和电路拓扑,以实现所需的波形。
需要注意的是,不同类型的波形发生器可能有不同的电路原理和参数设置,本文所述仅作为示例,具体应用需根据实际情况进行调整和优化。
波形产生电路实验报告
波形产生电路实验报告波形产生电路实验报告引言:波形产生电路是电子工程领域中的重要实验之一,它可以产生不同形式的电信号,用于各种电子设备和系统的测试和调试。
本实验旨在通过搭建和调试波形产生电路,了解其工作原理和应用。
实验目的:1. 理解波形产生电路的基本原理和工作方式。
2. 学会使用电子元器件搭建波形产生电路。
3. 掌握波形产生电路的调试方法和技巧。
实验器材:1. 功率放大器电路板2. 信号发生器3. 示波器4. 电阻、电容、电感等基本电子元器件实验步骤:1. 将信号发生器的输出端连接到功率放大器电路板的输入端。
2. 根据实验要求选择合适的电阻、电容和电感,并将其连接到电路板上。
3. 将示波器的探头连接到电路板的输出端。
4. 打开信号发生器和示波器,设置合适的频率和幅度。
5. 通过调整电阻、电容和电感的数值,观察并记录波形的变化。
6. 根据实验结果分析波形产生电路的特点和性能。
实验结果与分析:在实验过程中,我们通过调整电阻、电容和电感的数值,成功产生了不同形式的电信号。
当电容和电感的数值较小时,输出信号呈现出较为平缓的正弦波形。
随着电容和电感数值的增大,输出信号的频率也相应增加,呈现出更加复杂的波形,如方波、三角波等。
此外,通过调整信号发生器的频率和幅度,我们还可以实现信号的调制和变换。
在实验过程中,我们还观察到了一些现象和问题。
例如,当电容或电感的数值过大时,输出信号可能会失真或产生幅度不稳定的情况。
此时,我们可以通过适当调整电路参数或增加补偿电路来解决问题。
同时,我们还发现在实验中,电子元器件的质量和连接方式对波形产生电路的性能有着重要影响,因此在实际应用中需要选择合适的元器件和搭建方式。
实验总结:通过本次实验,我们深入了解了波形产生电路的原理和应用。
通过调试和观察波形的变化,我们掌握了波形产生电路的调试方法和技巧。
同时,我们也意识到了电子元器件的选择和搭建方式对电路性能的影响,这对于我们今后的电子工程实践具有重要意义。
波形产生电路与变换电路
通常定义矩形波为高电平的时间T2与周期T之比为占空 比D, 即
D T2 T
第八章 波形产生电路与变换电路
R
RW
RW′
图
VD2
8–5
△
uC
- ∞ Ro
+
占
C
+
uo
空 比
可
调
R3 VDz3
R2
VDz4
±Uz
电 路
D T2 RW' rd1 R T RW rd1 rd2 2R
第八章 波形产生电路与变换电路
8.1.3 锯齿波产生电路
R3
△ △
R2
- ∞ Ro A1 +
uo1
+
VDz3
C VD1
RW′
RW VD2
-∞
A2 + +
uo
R′
VDz4
±Uz
R″
图 8 – 8 锯齿波产生电路
第八章 波形产生电路与变换电路
uo uo1
Uz
R2 R3
U
z
O
R2 R3
Uz
-Uz
T1
T2
第八章 波形产生电路与变换电路
8.1.2 三角波产生电路
R3
R2
C
△ △
- ∞ Ro A1 +
uo1 R
-∞
+ VDz1
A2 + +
uo
R′
±Uz
VDz2
R″
图 8 – 6 三角波产生电路
第八章 波形产生电路与变换电路
1. 工作原理
uo1
+Uz
O
t
-Uz
三角波、方波、正弦波发生电路
波形【2 】产生电路请求:设计并制造用分立元件和集成运算放大器构成的能产生方波.三角波和正弦波的波形产生器.指标:输出频率分离为:102H Z.103H Z和104Hz;方波的输出电压峰峰值V PP≥20V(1)计划的提出计划一:1.由文氏桥振荡产生一个正弦波旌旗灯号.2.把文氏桥产生的正弦波经由过程一个过零比较器从而把正弦波转换成方波.3.把方波旌旗灯号经由过程一个积分器.转换成三角波.计划二:1.由滞回比较器和积分器构成方波三角波产生电路.2.然后经由过程低通滤波把三角波转换成正弦波旌旗灯号.计划三:1.由比较器和积分器构成方波三角波产生电路.2.用折线法把三角波转换成正弦波.(2)计划的比较与肯定计划一:文氏桥的振荡道理:正反馈RC收集与反馈歧路构成桥式反馈电路.当时,F=1/3.Au=3.然而,起振前提为Au略大于3.现实操作时, R1=R2.C1=C2.即f=f假如要知足振荡前提R4/R3=2时,起振很慢.假如R4/R3大于2时,正弦波旌旗灯号顶部掉真.调试艰苦.RC串.并联选频电路的幅频特征不对称,且选择性较差.是以废弃计划一.计划二:把滞回比较器和积分比较器首尾相接形成正反馈闭环体系,就构成三角波产生器和方波产生器.比较器输出的方波经积分可得到三角波.三角波又触发比较器主动翻转形成方波,如许即可构成三角波和方波产生器.经由过程低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化规模很小的情形下应用.然而,指标请求输出频率分离为102H Z.103H Z和104Hz.是以不知足应用低通滤波的前提.废弃计划二.计划三:方波.三角波产生器道理如同计划二.比较三角波和正弦波的波形可以发明,在正弦波从零逐渐增大到峰值的进程中,与三角波的差别越来越大;即零邻近的差别最小,峰值邻近差别最大.是以,依据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形.并且折线法不受频率规模的限制.分解以上三种计划的优缺陷,最终选择计划三来完成本次课程设计.(3)工作道理:1.方波.三角波产生电路道理该电路由滞回比较器和积分器构成.图中滞回比较器的输出电压u01=Uz ±,它的输入电压就是积分电路的输出电压u02.则U1A 的同相输入端的电位:101202up=1212R u R u R R R R +++,令up=un=0,则阀值电压:1022R Ut u Uz R ±==±;积分电路的输入电压是滞回比较器的输出电压u01,并且不是+Uz,就是-Uz,所以输出电压的表达式为:01(10)0202(0)82u t t u u t R C -=-+;设初态时u01正好从-Uz 跃变到+Uz,则:(10)0282Uz t t u Ut R C -=-+,积分电路反向积分,u02随时光的增加线性降低,一旦u02=-Ut,在稍减小,u01将从+Uz 跃变为-Uz,使式变为:(21)0282Uz t t u Ut R C -=-,积分电路正向积分,u02随时光增加线性增大,一旦u02=+Ut,再稍微增大,uo1将从-Uz 跃变为+Uz,回到初态.电路反复上述进程,因而产生自激振荡.由上剖析,u01是方波,且占空比为50%,幅值为Uz ±;u02是三角波,幅值为Ut ±.取正向积分进程,正向积分的肇端值-Ut,终了值+Ut,积分时光为T/2,代入(21)0282Uz t t u Ut R C -=-,得282Uz T Ut Ut R C +=-,式中12R Ut Uz R =,整顿可得:24812R f R R C =. 2.正弦波产生电路道理折线法是用多段直线逼近正弦波的一种办法.其根本思绪是将三角波分成若干段,分离按不同比例衰减,所获得的波形就近似为正弦波.下丹青出了波形的1/4周期,用四段折线逼近正弦波的情形.图中UImax 为输入三角波电压幅值.依据上述思绪,可以采用增益主动调节的运算电路实现.应用二极管开关和电阻构成反馈通路,跟着输入电压的数值不同而转变电路的增益.在ωt=0°~25°段,输出的“正弦波”用此段三角波近似(二者重合),是以,此段放大电路的电压增益为1.因为ωt=25°时,标准正弦波的值为sin25°≈0.423,这里uO=uI=25/90UImax≈0.278UImax ,所以,在ωt=90°时,输出的“正弦波”的值应为uO=0.278/0.423UImax≈0.657UImax .在ωt=50°时,输入三角波的值为uI=50/90UImax≈0.556UImax,请求输出电压uO=0.657UImax×sin50°≈0.503UImax,可得在25°~50°段,电路的增益应为ΔuO/ΔuI=(0.503−0.278)/(0.556−0.278)=0.809.在ωt=70°时,输入三角波的值为uI=70/90UImax≈0.778UImax,请求输出电压uO=0.657UImax×sin70°≈0.617UImax,可得在50°~70°段,电路的增益应为ΔuO/ΔuI=(0617−0.503)/(0.778−0.556)=0.514.在ωt=90°时,输入三角波的值为uI=UImax,请求输出电压uO≈0.657UImax,可得在70°~90°段,电路的增益应为ΔuO/ΔuI=(0.657−0.617)/(1−0.778)=0.180. 下页图所示是实现上述思绪的反相放大电路.图中二极管D3~D5及响应的电阻用于调节输出电压u03>0时的增益,二极管D6~D8及响应的电阻用于调节输出电压u03<0时的增益.电路的工作道理剖析如下.当输入电压uI <0.278UImax时,增益为1,请求图中所有二极管均不导通,所以反馈电阻Rf=R11.据此可以选定Rf=R11=R6的阻值均为1kΩ.当ωt=25°~50°时,电压增益为0.809,请求D1导通,则应知足:13//110.8096R R R =,解出R13=4.236k Ω.因为在ωt=25°这一点,D1开端导通,所以,此时二极管D1正极电位应等于二极管的阈值电压Vth .由图可得:03141314u VEE Vth VEE R R R --=+,式中u03是ωt=25°时输出电压的值,即为0.278UImax .取UImax=10V ,Uth=0.7V ,则有100.278(15)14(15)0.74.23614R R ⨯--+-=+解出R14=31.97k Ω.电阻取标准值,则R13=4.22k Ω,R14=31.6k Ω.其余剖析如上.须要解释,为使各二极管可以或许工作在开关状况,对输入三角波的幅度有必定的请求,假如输入三角波的幅渡过小,输出电压的值不足以使各二极管依次导通,电路将无法正常工作,所以上述电路采用比列可调节的比例运算电路(U3A 模块)将输出的三角波的幅值调至10V ±.(4)元件选择:①选择集成运算放大器因为方波前后沿与用作开关的器件U1A 的转换速度SR 有关,是以当输出方波的反复频率较高时,集成运算放大器A1 应选用高速运算放大器.集成运算放大器U2B 的选择:积分运算电路的积分误差除了与积分电容的质量有关外,重要事集成放大器参数非幻想所致.是以为了减小积分误差,应选用输入掉调参数(VI0.Ii0.△Vi0/△T.△Ii0/△T )小,开环增益高.输入电阻高,开环带较宽的运算放大器.反比拟例运算放大器请求放大不掉真.是以选择信噪比低,转换速度SR 高的运算放大器.经由芯片材料的查询,TL082 双运算放大转换速度SR=14V/us.相符各项指标请求.②选择稳压二极管稳压二极管Dz 的感化是限制和肯定方波的幅度,是以要依据设计所请求的方波幅度来选稳压管电压Dz.为了得到对称的方波输出,平日应选用高精度的双向稳压管③电阻为1/4W的金属薄膜电阻,电位器为周详电位器.④电容为通俗瓷片电容与电解电容.(5)仿真与调试按如下电路图衔接衔接完成后仿真,仿真组图如下仿真完成后开端焊接电路,焊接完成后开端调试,调试组图如下:.(5)总结该设计完整知足指标请求.第一:下限频率较高:70hz.原因剖析:电位器最大阻值和相干电阻阻值的参数不准确.改良:用阻值周详电位器和电阻.第二:正弦波在10000HZ时,波形已变坏.原因剖析:折线法中各电阻阻值不精准,TL082CD不知足参数请求.改良:采用精准电阻,用NE5532代替TL082CD..(6)心得领会“掉败乃成功之母”.从始时的调试到最后完成课程设计阅历了多次掉败.不能半途而废,永不废弃的精力在本身选择的道路上保持走下去!在此次设计进程中,表现出本身单独设计的才能以及分解应用常识的才能,领会了学乃至用.并且从设计中发明本身日常平凡进修的不足和薄弱环节,从而加以填补.时,此次模仿电子课程设计也让我熟悉到以前所学常识的不深刻,基本不够扎实,乃至于此次在设计电路图的时刻,须要反复翻阅教材的常识.我深深知道了常识连贯应用的重要性.(7)参考书目:1.童诗白.华成英,《模仿电子技巧基本》2.吴慎山,《电子技巧基本试验》3.周誉昌.蒋力立,《电工电子技巧试验》4.广东工业大学试验教授教养部,《Multisim电路与电子技巧仿真试验》(8)元件清单。
波形发生电路
波形发⽣电路实验⼗波形发⽣电路⼀、实验⽬的:1、掌握波形发⽣电路的结构特点和分析、计算、测试⽅法。
2、熟悉波形发⽣器的设计⽅法。
⼆、实验仪器:1、双踪⽰波器2、信号发⽣器3、数字万⽤表4、交流毫伏表5、直流电源三、实验原理及测量⽅法:⾮正弦波产⽣电路,⼀般由电⼦开关(电压⽐较强),外加反馈⽹络构成闭环电路形成。
常⽤的波形发⽣电路有⽅波、三⾓波、锯齿波发⽣器等。
1、⽅波发⽣器电路如图1所⽰,集成运放和电阻R 2、R 3、R 4构成滞回电压⽐较器,作为电⼦开关使⽤,R 1、C 相串联作为具有延迟作⽤的反馈⽹络,整个电路是⼀个闭环电路。
设电路刚加电时,Uc =0,且滞回⽐较器的输出电压为Uz ,则集成运放同相输⼊端此时的电位为223()Z R U U R R +=+⽽同时Uz 通过R 1向C 充电,Uc 由零逐渐上升,当Uc>U +时,Uo 从Uz 跳变为-Uz ,则223()Z R U U R R +=-+同时,电容C 通过R 1放电,使Uc 逐渐下降,⼩于U +时,Uo ⼜跳变为Uz ,回到初始状态,如此周⽽复始,产⽣振荡,输出⽅波。
图1 ⽅波发⽣器该⽅波发⽣器输出的⽅波振荡周期21322ln(1)R T R C R =+2、占空⽐可调的矩形波发⽣电路通常将矩形波⾼电平的时间与周期时间之⽐称为占空⽐。
⽅波的占空⽐为50%。
如果需要产⽣占空⽐⼩于或⼤于50%的矩形波,则应设法使⽅波发⽣电路中电容的充电时间常数与放电时间常数不相等。
图2电路中利⽤⼆极管的单向导电性可以构成占空⽐可调的矩形波发⽣电路。
C1100nF图2 占空⽐可调的矩形波发⽣电路该电路发⽣的矩形波振荡周期2132(2)ln(1)w R T R R C R =++占空⽐'1112w w R R T T R R +=+ 调节电位器Rw 可使输出矩形波的占空⽐变化。
3、三⾓波发⽣电路上述⽅波发⽣器中Uc 的波形近似三⾓形,但其线性度⽐较差。
模拟电路9章节波形产生电路
当RC电路或RLC电路达到谐振状态时,会产 生振荡,从而形成尖峰波。
电路组成
主要由电阻、电容和电感等元件组成。
应用
尖峰波产生电路广泛应用于信号发生器、电 子乐器和脉冲雷达等领域。
调制波产生电路
调制波产生电路
通过调制信号对载波信号进行调制,产生具有所需波形和参数的调制 波。
电路组成
主要由调制信号源、载波信号源和调制器组成。
任意波形发生器
总结词
任意波形发生器是一种能够产生任意形状的波形信号的电路,其波形形状可以通 过编程或外部控制实现。
详细描述
任意波形发生器通常由数字信号处理器(DSP)或现场可编程门阵列(FPGA)等可 编程器件组成。通过编程或外部控制,可以生成任意形状的波形,并由DAC转换为 模拟信号输出。
08
模拟电路9章节波形产 生电路
目录 CONTENT
• 引言 • 正弦波产生电路 • 方波产生电路 • 三角波产生电路 • 锯齿波产生电路
目录 CONTENT
• 脉冲波产生电路 • 多波形产生电路 • 波形产生电路的应用 • 波形产生电路的展望
01
引言
目的和背景
研究波形产生电路的目的
波形产生电路是模拟电路中的重要组成部分 ,其目的是为了产生各种所需波形,如正弦 波、方波、三角波等。通过对波形产生电路 的研究,可以深入了解电路的基本原理、性 能指标以及实际应用。
工作原理
调制信号源产生的调制信号作为输入信号,载波信号源产生的载波信 号作为载波信号,通过调制器进行调制,从而形成调制波。
应用
调制波产生电路广泛应用于通信、广播、电视和雷达等领域。
07
多波形产生电路
函数信号发生器
波形产生电路实验报告
波形产生电路实验报告1. 背景波形产生电路是电子工程中的一种基础电路,用于产生各种形状和频率的电信号。
在实际应用中,波形产生电路常被用于信号发生器、音频设备、通信系统等。
本实验旨在通过设计和搭建一个简单的波形产生电路,掌握波形产生电路的基本原理和操作方法,并通过实验验证其性能。
2. 设计与分析2.1 电路结构本实验采用了经典的RC低通滤波器作为波形产生电路的核心部分。
该滤波器由一个电阻R和一个电容C组成,输入信号通过该滤波器后,输出信号将会被滤除高频成分,从而得到所需的波形。
2.2 参数选择为了得到稳定且正弦波形的输出信号,我们需要合理选择RC值。
根据经验公式:f c=1 2πRC其中f c表示截止频率。
我们可以根据需要选择截止频率来确定RC值。
一般情况下,我们可以选择f c为所需信号频率的十分之一。
2.3 电路实现根据以上分析,我们可以设计出以下波形产生电路:其中,R1和C1为滤波器的参数,Vin为输入信号源。
3. 实验步骤3.1 实验材料•电阻R1•电容C1•示波器•函数发生器•连接线等3.2 实验步骤1.按照电路图连接上述元件。
2.将函数发生器的输出连接到滤波器的输入端。
3.打开函数发生器和示波器,并调整函数发生器的频率和幅度。
4.观察示波器上输出信号的波形,并记录相关数据。
4. 实验结果与分析根据实验步骤得到的数据,我们可以绘制出输入信号和输出信号的波形图,并进行分析。
以下是实验结果:输入频率(Hz)输出幅度(V)1000 52000 45000 2通过观察实验结果,可以看出输出信号的幅度随着输入频率的增加而减小。
这是因为滤波器对高频成分进行了滤除,使得输出信号的幅度降低。
5. 实验建议在进行本实验时,我们可以尝试调整电阻和电容的取值,观察它们对输出信号的影响。
此外,我们还可以尝试使用不同形状的输入信号,并比较它们在滤波器中的表现。
为了得到更准确的实验结果,我们还可以提高示波器的采样率,并使用更精确的测量工具来测量电阻和电容的值。
波形发生电路知识点总结
波形发生电路知识点总结1. 波形类型常见的波形类型有以下几种:正弦波:具有周期性和连续性的波形,是最基本的波形之一。
在交流电路中经常使用。
方波:由高电平和低电平组成的矩形波,具有快速上升和下降的特点。
适用于数字信号传输和逻辑电路输出。
三角波:呈现出线性上升和下降的波形,广泛应用于音频设备、振荡器等领域。
锯齿波:呈现出线性上升和垂直下降的波形,适用于音频合成、频率分割等领域。
2. 基本波形发生电路基本波形发生电路可以通过适当的组件连接和操作产生所需的波形信号。
其中常用的波形发生电路包括:正弦波发生电路:通过RC振荡电路或晶体管振荡电路可以实现正弦波发生。
振荡电路的频率和幅度可以通过调节电路元件来实现。
方波发生电路:使用运放、比较器、多谐振荡器等电路可以实现方波波形的发生。
三角波发生电路:利用多谐振荡器、反相积分电路等可以产生三角波波形。
锯齿波发生电路:通过简单的积分电路和反相放大电路可以实现锯齿波波形的发生。
3. 信号发生电路信号发生电路是指利用电子元器件产生特定频率和幅度的波形信号。
信号发生电路被广泛应用于音频、视频设备、通信系统中。
常见的信号发生电路包括:电压控制振荡器(VCO)、频率合成器、数字信号发生器等。
VCO是一种基于电压控制的振荡电路,可以通过改变输入电压来调节输出频率。
VCO广泛应用于频率调制解调、PLL锁相环等领域。
频率合成器是一种将基础的频率信号合成成其他频率信号的电路。
频率合成器可以通过相位锁定环(PLL)等原理实现。
数字信号发生器是一种通过数字信号处理技术产生特定波形信号的设备。
数字信号发生器可以产生各种波形,实现高精度的信号发生。
4. 波形发生电路中的限制条件波形发生电路在工作过程中需要满足一定的限制条件,以确保电路正常工作。
常见的限制条件包括:稳定性:波形发生电路需要保持稳定的工作状态,不受外部环境的影响。
频率范围:不同类型的波形发生电路有不同的工作频率范围,需要符合设计要求。
波形产生电路
课程信息师资力量电子教案助学课件实验教学教学录像教学资源扩展课程实验一 波形产生电路一、实验目的通过实验,学会用集成运放组成各种波形发生电路,并掌握电路的调整及测量。
二、实验原理根据自激振荡原理,采用正、负反馈相结合,将一些线性的和非线性的元件与集成运放进行不同组合,就能产生各种波形。
本实验仅限于对最基本的波形发生电路进行研究。
1. 正弦波发生器= =则R F =2R 4。
由于实际运放的开环增益是有限值,因此必须略大于R 4的两倍。
同样,考虑到实际运放输入电阻R i (这里是同相端的)和输出电阻的影响,正弦波的频率为f 0 = (3-1-2)当取C 1=C 2=C , R 1=R 2=R ,且满足R i >> R >> R o 时通常,电路元件值的确定,可按下列步骤进行:(1)根据所需要的振荡频率计算RC 值。
(2)由R i >>R >> R o ,选取合适的R ,然后再确定C 。
(3)为了减小偏置电流影响,尽量满足R F ∥R 4=R ,同时由反馈系数要求,即可确定R F 和R 4的大小。
(4)当需要振荡频率较高时,必须选用G ·BW 较高的集成运放。
实验电路中采用了匹配对接的两只二极管作为稳幅电路,其上并接R3是用于适当削弱二极管的非线性影响,以改善波形失真。
2.方波发生器电路如图3.1.2所示。
由图可见,由R1、R2组成了正反馈网络。
当有输出电压v o时,则反馈同相端的电压v+ =。
而负反馈网络是由R、C组成的充、放电回路,运放在此仅起着比较器的作用。
它利用电容两端电压v C和v+比较,决定着v o的极性是正或是负,v o的极性又决定着通过电容的电流是充电(使v C增加)还是放电(使v C减小),而v C的图3.1.2 方波发生器高低,再次和v + 比较决定v o 的极性,如此不断反复,就在输出端产生周期性的方波。
可以证明方波的频率为(3-1-3)由此可知,方波频率不仅与RC 有关,还与正反馈网络的R 1、R 2比值有关,调节电位器R w 以改变R 值,从而改变方波信号的频率。
实验三:波形产生电路
四、 实验内容
2) 对图 3.5.4 电路进行修改,使之变成矩形 波和锯齿波振荡电路,即 vO1为矩形波, vO2 为锯齿波。要求锯齿波的逆程(电压 下降段)时间大约是正程(电压上升段) 时间的20%左右。观测vO1、vO2的波形, 记录它们的幅度、周期(频率)等参数。
下次实验内容
题目:晶体管输出特性测试电路:
1)电阻R3= R4=10K,测出下面情况时vo 的波形 电位器RW阻值依次为0 , 10K, 15K, 20K
2) 调整电位器RW使vo 为正弦波(不能失真)且 幅值最大,用示波器测出vo 的频率和峰值。并 测出电位器 RW 的阻值,分析电路的振荡条件。 3)将两个二极管断开,观察输出波形有什么变化。
实验三 波形产生电路
一 、 实验目的
1.
通过实验掌握由运放构成的正弦波振荡 电路的原理与设计方法。 2. 通过实验掌握由运放构成的方波(矩形 波)和三角波(锯齿波)振荡电路的原理 与设计方法。 3*.了解运放摆率对振荡波形跳变沿的影 响。
二、 实验任务
正弦波、三角波及脉冲方波的产生。 实验要求: (1)正弦波振荡电路的内容, 起评分70分 ( 2 )在( 1 )的基础上另作多谐振荡电路的方波 及三角波的产生 起评分85分 (3)在(2)的基础上另作多谐振荡电路的矩形 波及锯齿波的产生 起评分100分
三、实验电路在实验性上的位置
实验用元件为两只A741,已经插在实验向上。
四、 实验内容
1. RC桥氏正弦振荡电路
R2 16k R1 16k C2 0.01F D1 D2
vf
C1 0.01F
+ A
-
vo
a
R3 10k
RW b 47k
R4 10k
波形产生电路
反馈式正弦波振荡器是由放大器和反馈网络组成的一个闭合环路,
如图6-1所示。图6-1中,
分别是反馈电压、输入电压
和放大器输出电压,均代表复数。
上一页 下一页 返回
6.1 正弦波振荡器
要想使一个没有外加激励的放大器能产生一定频率和幅度的正 弦输出信号,就要求自激振荡只能在某一个频率上产生,因此在图 6-1所示的闭合环路中必须含有选频网络,选频网络可以包含在放大 器内,也可在反馈网络内。 而任何一个具有正反馈的放大器都必须满足一定的条件才能自 激振荡。下面我们就分析正弦波振荡器的起振条件(保证接通电源 后能逐步建立起振荡)和平衡条件(保证进入维持等幅持续振荡的 平衡状态)。
成负反馈支路,它与运算放大器A组成一个同相输入比例运算放大器,
其电压增益为
A u=1+
R,t 所以,只要
R1
Au =1+RR31t,即Rt 2R1
就能满足振幅起振条件,产生自激振荡,振荡频率为:
f
=
o
1 2πRC
4. 稳幅过程
为了满足振幅平衡和稳定条件,在图6-5所示振荡器的负反馈
支路上采用了具有负温度系数的热敏电阻Rt来改善振荡波形,实现
任务一:设置元器件编辑器的工作 环境
一、加载元件库编辑器
1、首先在设计数据库管理器界面下,执行菜单 命令File→New,系统将弹出新建文件对话框。 从对话框中选择原理图元件库编辑器图标,如下 图所示。
2、双击图标或者单击OK按钮,系统便在当前设计 数据管理器中创建一个新原理图元件库文档 “Schlib1.Lib”,如下图所示,此时用户可以修改 文档名。
2. RC桥式振荡器的组成
将RC串并联网络和放大器结合起来即可构成RC振荡器,由RC串 并使联振网荡络器的满选足频相特位性 条可 件知∑,φ=在2nfπ=f,o=要2π求1R放C 大器时的,相其移相移A也为为零,要
波形产生电路
VR:门限电压
当VR=0时,即输入端电压和 零电平比较,称为过零比较器
过零比较器的波形变换作用:
-
为了使电压比较器的输出与后面电路的电平配合, 可在比较器的输出回路接一个由限流电阻R3 与双向稳压 管DZ 组成的限幅电路---限幅比较器。
同相输入有限幅的过零比较器
反相输入有限幅的过零比较器
2.迟滞比较器 迟滞比较器:单限比 较器的输出端通过电阻R4 引回到同相输入端构成
其门限电平VT由VR和vo共同决定
当输出为高电平时,vo=+ VZ,此时同相输入端的电压 称为上限门限电平VT+,当输出为低电平时,vo=- VZ,此 时同相输入端的电压称为下限门限电平VT-,
VT VT
R4 R2 VR VZ R2 R4 R2 R4 R4 R2 VR (VZ ) R2 R4 R2 R4
1 令: 0 f 2RC
F
1 f0 f 3 j( ) f0 f
当 f = f0
1 F 3
即:当 f = f0 时,RC串并联电路为正反馈选频网络。
Z1 当 f = f0
1 F 3
Z2
根据起振条件, AF 1
须
A 3
Rf R1
根据同相比例放大电路的增益 A 1 得电感L的作Fra bibliotek:为增大频率范围
变容二极管结电容-电压变化关系曲线
第五章小结: 1. 正弦波振荡器由放大电路、 正反馈网络和选频电路、稳 幅环节组成 2.振荡平衡条件:振幅平衡条件和相位平衡条件 _振幅平衡条件 AF 1
A F 2n(n为整数) _相位平衡条件(正反馈)
2.迟滞比较器
波形产生电路与变换电路
波形产生电路与变换电路波形产生电路:产生各种周期性的波形。
波形变换电路:将输入信号的波形变换成为另一种形状。
§1 非正弦波产生电路矩形波、锯齿波、三角波等非正弦波,实质是脉冲波形。
产生这些波形一般是利用惰性元件电容C和电感L的充放电来实现的,由于电容使用起来方便,所以实际中主要用电容。
一、利用电容器充放电产生脉冲波形(产生脉冲波形的基本原理)电路如下图,如果开关K在位置1,且稳定,突然将开关K扳向位置2,则电源U CC通过R对电容C充电,将产生暂态过程。
τ-时间常数,它的大小反映了过渡过程(暂态过程)的进展速度,τ越大,过渡过程的进展越慢。
τ近似地反映了充放电的时间。
u c(0+)—响应的初始值u c(∞)—响应的稳态值对于充电,三要素的值分别为:u c(0+)=0 u c(∞)=U CCτ充=RC稳定后,再将开关K由位置2扳向位置1,则电容器将通过电阻放电,这又是一个暂态过程,其中三要素为u c(0+)=U CC u c(∞)=0 τ放=RC改变充放电时间,可得到不同的波形。
如果τ充=τ放=RC<<T,可得到近似的矩形波形;如果τ充=τ放=RC>>T,可得到近似的三角波形;如果τ充> >τ放,且τ充>>T,可得到近似的锯齿波形。
将开关周期性性地在1和2之间来回扳动,则可产生周期性的波形。
在具体的脉冲电路里,开关由电子开关完成,如半导体三极管来完成,电压比较器也可作为开关。
我们讨论用电压比较器的积分电路组成的非正弦波产生电路。
二、矩形波产生电路1. 基本原理利用积分电路(RC电路的充放电时的电容器的电压)产生三角波,用电压比较器(滞回)(作为开关)将其转换为矩形波。
2. 工作原理电路如图充电放电3. 振荡周期的计算,其中:,,代入上式得:同理求得:则周期为:从前面我们可知,矩形波的占空比为占空比可调电路如图所示:可求出占空比:占空比:三、三角波产生电路1.电路组成从矩形波产生电路中的电容器上的输出电压,可得到一个近似的三角波信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
修改电路图2,使之成为矩形波-锯齿波发生电路。要求锯齿波的逆程(电压下降)时间大约是正程时间的20%,记录2Vo1、Vo2的幅度、周期。
3
3.1
3.2
3.3
3.4
黑框中为改动部分。
3.5
3.5.1
电路见上图正弦波产生电路所示。其中R1、C1,R2、C2是选频网络,构成正反馈,产生正弦自激振荡。R3,Rw,R4是负反馈网络,通过调节Rw调节负反馈系数,从而调节电压增益,使之满足振荡的幅度条件。二极管D1和D2是限幅原件,改善输出波形。
6)由运放组成的多些振荡器电路,其输出波形(方波或矩形波)的跳变沿主要决定于什么?如果要缩短其上升时间和下降时间(使波形变陡),可采取哪些办法?
答:跳变沿主要决定于运放U1的转换速率(摆率)。要算缩短跳变沿,可以使用高速管替代运放U1。
分析讨论Vo1的上升时间和下降时间是由什么因素引起的
影响Vo1的上升时间和下降时间的因素有:
1.运放A1的摆率;2。增益;3。稳压二极管Dz翻转。
这里运放的摆率起主要作用:在Multisim模拟仿真中使用的运放uA741的摆率大约是0.6V/us,电路中Vom=13.06V,由于上升沿是从10%Vom到90%Vom,所以∆T=80%*Vom/0.5=17.4us≈测量的16.95us。由于实际运放不是理想运放,限幅区中间相隔的有线性放大区,故运放的摆率会影响上升下降时间。选择摆率更大的运放可改善波形的上升沿和下降沿。
(1)RC串并联选频网络的选频特性
主要的运算关系如下所示:
(2)起振条件与振荡频率
此时如果负反馈的增益Avf〉3,满足AvF〉1的起振条件。起振后,经过反复放大,输出电压的振荡幅度自动稳定下来,Avf过渡到Avf=3的幅度平衡状态。这里 (略大于3)就满足起振条件。由图3.5.1可知,调节Rw使(Rw+R4)/R3略大于2即可。
则当t〉0时,Vo1通过R9以恒流Vz/R4给电容C充电,Vo2线性下降。当Vo2下降到Vth2时,施密特触发器翻转,Vo1跳变为-Vz。于是,电容开始以Vz/R4放电。Vo2开始线性上升。当Vo2上升到Vth1时,施密特触发器输出状态又翻转,Vo1跳变到Vz。又回到Vo2=Vz的状态,如此循环,产生多谐振荡波形,其中Vo1是方波,Vo2是上升时间和下降时间一样的三角波。注意到,由于电容充放电的时间常数相等(主要是这时的充放电回路是一样的,从这里也可以考虑输出锯齿波的方法应该是改变充放电的时间常数,即改变充放电回路)。
比如,输出端并联了正负两个方向的二极管,很好的改善了输出特性。实验中我们也验证了,如果没有这两个二极管在输出端进行限幅,输出电压会很大,而且很容易失真;接上这两个二极管之后,由于二极管有动态电阻,并联在R4两端,使得Avf减小,使输出电压幅度基本保持稳定。
8
1)电位器调到什么位置最好?
答:经仿真,Rw约为22%(10.34千欧)时,就可以起振,而超过34%时容易失真;在此范围内,Rw越大,输出幅度越大。电位器应该在小于失真值的情况下尽可能大些,便于测量。
5.上下切顶(Rw更大时)
2)去掉二极管之后,波形严重失真。
Rw=9kOhm时恰好开始起振,当Rw=9.33kOhm时已出现眼中的失真,最后随着Rw的增大失真严重,可以输出正常正弦波的Rw的范围非常的小。
5.2
1)滞回比较器
输出电压:5.95V(峰峰11.8V)
滞回比较器的阈值电压
UT1
3.00V
UT2
4)多谐振荡电路中Vo2的幅度由哪些参数决定?如何提高它的幅度?
答:Vom2=2R2Vz/R1.所以要提高它的幅度,只需要提高R2与R1的电阻比,或者改用更高的稳压管即可。
5)修改多谐振荡电路,使之变成矩形波和锯齿波振荡电路,可以采取哪些办法?
答:如3.3中自设计电路所示,可以利用二极管与电阻串联来控制电容在正半周期和负半周期的充电速率,使之变成矩形波和锯齿波振荡电路。同理,可以利用两个不同向的二极管与不同大小的电容串联代替图中电容位置,改变电容在正半周期和负半周期的充电速率。
7
这次实验是我们电子技术实验除了考核之外最后一次实验,内容本身比较简单,只要认真做好预习整个过程是比较顺利且快的。一开始搭接好正弦波振荡电路,我怎么测输出失真都非常严重,仔细检查后发现是有一个二极管接错了位置,插在了旁边的一个点上,纠正之后就比较顺利了。
虽然实验本身没什么难度,但是实验书上设计的电路图还是比较精巧的,学习之后,感到很有收获。
输出电压的幅度为:Vom1=2Vz(pp),Vom2=2R1/R2*Vz(pp)
充电时间为:T/2=2×R2×R4×C/R1,
所以T=4×R2×R4×C/R1。
提高实验部分,改进电路。原多谐振荡电路电路中R5控制着电容C1的充放电时间,R5越大,充放电电流越小,充放电越慢。为了控制锯齿波正程和逆程的时间比,需要让电容充电时和放电时速度不同,这就令人想到了二极管。利用二极管的单向导通性,在正程和逆程上分别串入不同的电阻即可。经计算,t正:t逆=R5/R4=5:1.
3.5.2
见上图多谐振荡电路所示。运放A1和R1,R2构成同相输入的施密特触发器,运放与R4,C构成积分电路。Vo1=Vz或-Vz。运放A1输出状态翻转就是Vp=Vn=0时,由Vp与Vo1、Vo2的关系可以得到两个阈值电压:Vth1=R2/R1×Vz,Vth2=-R2/R1Vz。不妨设t=0时,Vo1=Vz,电容上的电压为0即Vo2=0。
Vo=3V+
由于虚短,V-=V+=Vo/3,有R3=R5,所以R5右端为2V-=2Vo/3,所以对于二极管两端来说,有
Vo-2Vo/3=Vth=0.7(V)
Vo=2.1V
仿真结果验证了这个结论,如红框所示:
如果要增大输出电压幅度,可以将每一个二极管改为两个管同向串联。如图
经仿真,电压幅度确实增加了近一倍,达到了4V以上。
于是我更换了二极管(1BH62型),测出最大不失真时的Rw为17.7千欧。可见,确实是二极管的参数影响了仿真结果。
关于起振电压的大小,主要是在起振的地方电压变化非常的快,也比较难判断究竟什么情况算是严格意义上的起振,因此实际数据比仿真数据大一些,主要是实际试验中我是等到输出的电压比较稳定时才判断其为起振。
3.6
另外,
4
主要仪器有:数字万用表,SS7804示波器,电子技术学习机。
主要元器件有:导线,以及电子技术学习机上所用电路部分的已有各电路元器件,包括可变电阻,固定值电阻预习计算与仿真数据整理
5
方正数据详见仿真报告
预习计算:
对正弦波振荡电路:
, .
震荡频率
滞回比较起的输出电压VO1的峰峰值VOm1= 2UZ,
3)如将多谐振荡电路中A2的输出接至A1的反向输入端,电阻R2接地,电路能否正常工作?为什么?
答:不能,波形如下
具体分析,若A2输出端为VOL,则A1输出恒为VOH,进一步导致VO2=VOL,达到了稳定平衡;若A2输出端为VOH,则A1输出恒为VOL,进一步导致VO2=VOH,达到了稳定平衡。所以电路再也无法正常工作了。仿真结果说明了这一点。
-3.00V
2)
波形形状
电压峰峰值/V
T/ms
上升时间/us
下降时间/us
Vo1
矩形波
12.58
0.425
15.9
15.3
Vo2
三角波
6.60
0.425
/
/
3)提高实验
正程
0.420ms
逆程
0.085ms
T
0.505ms
Vo1矩形波峰峰值
11.45V
Vo2锯齿波峰峰值
7.10V
6
实测数据和仿真几乎相同,只在测量最大不失真幅度时,仿真得到的Rw值为16千欧,而实测为17.3千欧。造成这一点是由于仿真模型和实际器件的差异造成的,具体我认为是仿真中的二极管是虚拟二极r是和R4并联之后与Rw相连的,由于r比R4小很多,所以并联总电阻约等于r,那么r的不同会直接影响Rw的最大值。
③将两个二极管断开,观察RW从小到大变化时输出波形的变化情况。
方波-三角波发生电路,实验电路见图2。
①首先测试用A1等元件组成的滞回比较器的传输特性。
提示:断开图2中A2输出端与R1的连线,选择合适的测试信号作为电压比较器的输入电压,用示波器X-Y方式观测电压传输特性。
②观测电路图2 Vo1、Vo2波形的幅度、周期以及Vo1的上升和下降时间。
集成运放A1同相输入端电位UP1=R1/(R1+R2)VO2+R2/(R1+R2)VO1,
令UP1=UN1=0,则阈值电压UT=±R2UZ/R1
对锯齿波振荡电路:
, ,
5.1
1)
Rw/kOhm
波形形状
电压峰峰值/V
T/ms
f/kHz
0
直线
/
/
/
10
直线
/
/
/
14.95
正弦,刚好起振
8.30
1.02
0.980
2)设正弦振荡电路中的两个并联二极管的导通电压约为0.7V,其他元件参数如图,请估算在刚进入稳定振荡时输出电压的幅度。如果想增大输出电压幅度,应采取什么办法?
答:刚进入稳定振荡时Rw略大于10kOhm,此时输出电压幅度约为2.1V。分析如下,变量已经用黑框标出。
由书上对于R1、R2、C1、C2四个元件组成的选频网络的分析知,
另外,上升沿和下降沿的区别是因为示波器测量不准确造成的,不具有太大的误差分析价值。
最后,在实验的过程中我又发现如果将改进电路部分的充放电用一个滑动变阻器来实现(如下图),则可以很方便地通过调节滑动变阻器来调整锯齿波的正程与逆程之比,虽然在周期上会有一些变化(由电阻的大小决定的),但调整锯齿波会变得非常的方便。