塔吊附墙计算方案另附有附墙拉杆图纸教学教材

合集下载

塔吊附墙方案

塔吊附墙方案
本工程的1#塔吊主要用于主楼和裙楼西侧部分,塔吊的生产厂家为张家港浮山建设机械有限公司生产的QTZ63(FS5013)的塔吊,塔吊的安装高度为45米,塔吊最大臂长为50米;塔吊附墙附于主楼五层(12’-13’×D’)位置的框架梁上,塔吊的具体位置如下:。
3、附壁公司生产,该机为水平臂架,小车变幅,上回转自升式多用途塔机,臂长为50m,最大起重量为6t,建筑物承载最大荷载为12.8t。
Ⅲ级钢:fy=360N/mm2 ;有效高度h0=250-35=215mm
(2)梁所承受荷载计算
查表得
=82.54kN
(3)正截面验算
Mmax=68.07kN·m<M=93.18kN·m
故满足要求。
(4)斜截面验算
,小于4
Vmax<V
=161.2kN
Vmax=82.54kN<Vu=161.2kN故满足要求。
(5)挠度验算
查表得
<
满足要求。
3.2 框架梁承载力验算
3.2.1塔吊布置情况
3.2.2 框架梁基本情况
本工程框架梁砼为C30,为了加快施工进度,附壁支撑预埋,混凝土养护7天后塔吊开始吊运,故混凝土强度采用C15作为参照进行计算。框架梁配筋见下图。
3.2.3 承载力计算
(1)计算简图如下:
C15:fc=7.2N/mm2,fcm=8.5N/mm2
塔吊附墙支撑计算
1、工程概况
金鸡湖大酒店二期8号楼土建工程位于东延路(横三路)以南,已建金鸡湖大酒店以东。总建筑面积34167.46㎡,QTZ63塔吊位于主楼南侧(12’轴~13’轴)×(中K轴~N轴)间,地下1层,地上主楼6层,建筑高度为31.67m,为钢筋混凝土框架结构,基础为桩基承台基础。±0.000相当于黄海标高5.100m,场地自然地面标高约为3.000m(黄海标高)。

塔吊附墙方案

塔吊附墙方案

目录一、工程概况 (2)二、编制依据 (2)三、附墙布置及尺寸 (2)四、支座力计算 (4)五、附着杆内力计算 (6)六、附着杆强度验算 (8)七、附着支座与建筑物构件连接的计算 (8)八、附着设计与施工的注意事项 (9)九、塔吊的附着的安装 (9)一、工程概况仁恒滨海半岛花园(D3地块)住宅工程坐落于珠海市唐家湾新城东部,情侣北路南段,总建筑面积约20.7万平方米(整体地下室、11栋高层及配套),A组团负责19、20、26、27、28、29号楼,B组团负责21、22、23、24、25号楼;建筑楼层地下1层,地上21-37层;建筑物高度67.675-112.675米。

工程桩采用直径为500mm预应力高强度混凝土管桩及800~1200mm冲孔灌注桩;基础为承台基础。

各栋号±0.000相对于绝对标高5.800m。

根据工程需要,安装的QTZ80塔式起重机必须安装附墙才能满足施工高度的要求。

二、编制依据本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)《建筑结构荷载规范》(GB50009-2012)《建筑施工手册》、《钢结构设计规范》(GB50017-2003)《QTZ80塔式起重机说明书》三、附墙布置及尺寸根据工程需要,安装五道附墙装置。

第一道在距塔吊基础平面25米处安装;第二道在距塔吊基础平面40米处安装;第三道在距塔吊基础平面55米处安装,第四道在距塔吊基础平面70米处安装,第五道在距塔吊基础平面85米处安装,第五道以上塔吊自由高度12米,塔吊附墙杆由厂家按现场情况设计制造,厂家提供的塔吊附墙杆采用二根18号槽钢拼成箱型结构,截面积为250*180,中间肋板采用-10*100*200钢板与槽钢焊接,为安全起见,进行需要对附着支座、附着杆等验算。

塔吊附墙平面图19#、20#、21#、22#、23#、26#楼QTZ80塔吊附墙立面图25#、28#楼QTZ80塔吊附墙立面图四、支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。

塔吊附墙长度

塔吊附墙长度

塔吊附墙长度
摘要:
一、塔吊附墙长度的定义和作用
二、塔吊附墙长度的计算方法
三、塔吊附墙长度的注意事项
四、结论
正文:
塔吊附墙长度是指塔吊在建筑物上附着时,从塔吊中心点到建筑物墙面的垂直距离。

这个长度对于塔吊的安全使用和建筑物的结构安全至关重要。

塔吊附墙长度的计算方法主要取决于建筑物的结构、塔吊的类型和施工要求。

一般来说,计算塔吊附墙长度的基本公式为:附墙长度= 建筑物高度- 塔吊顶部离地面高度。

在实际操作中,还需要考虑到塔吊臂的长度、建筑物的形状和尺寸等因素。

在确定塔吊附墙长度时,需要注意以下几点:
1.确保塔吊附墙长度符合相关安全规定和标准,避免因过长或过短而导致的安全事故。

2.考虑建筑物的承载能力,防止因塔吊附墙长度不当导致建筑物结构受损。

3.根据施工进度和实际情况,适时调整塔吊附墙长度,以提高施工效率。

总之,塔吊附墙长度的合理计算和调整对于确保施工安全和提高施工效率具有重要意义。

塔吊附墙计算知识讲解

塔吊附墙计算知识讲解

塔吊附墙计算塔机安装位置至建筑物距离超过使用说明规定,需要增长附着杆或附着杆与建筑物连接的两支座间距改变时,需要进行附着的计算。

主要包括附着杆计算、附着支座计算和锚固(一):支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。

附着式塔机的塔身可以视为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下: W K=W OхµZхµsхβz其中W O——基本风压(Kn/m2),安装《建筑结构荷载规范》(GBJ9)的规定采用:W O=0.75kN/m2;µZ——风荷载高度变化系数,按照《建筑结构荷载规范》(GBJ9)的规定采用:µZ=1.170;µs————风荷载体型系数:µs=0.065;βz——-高度Z处的风振系数,βz =0.70风荷载的水平作用力N W =W KχBχK S其中W K——风荷载水平压力,W K=0.04kN/m2B ——塔吊作用宽度,B=0.00mK s——迎风面积折减系数,K s=0.20经计算得到风荷载的水平作用力q=0.00kN/m风荷载实际取值q=0.03kN/m塔吊的最大倾覆力矩M=2358kN.m风荷载取值q=0.10kN/m塔吊的最大倾覆力矩M=1335kN.m计算结果: Nw=75.351kN(二):附着杆内力计算计算简图:计算单元的平衡方程为:其中:本项目塔吊计算参数为:C=1.60米,b1=8.50米,a2=9.10米(三):第一种工况的计算塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。

将上面的方程组求解,其中从0-360循环,分别取正负两种情况,分别求得各附着最大的轴压力和轴拉力:杆1的最大轴向压力为:259.23 kN杆2的最大轴向压力为:204.32 kN杆3的最大轴向压力为:132.65 kN杆1的最大轴向拉力为:259.23 kN杆2的最大轴向拉力为:204.32 kN杆3的最大轴向拉力为:132.65 kN(四):第二种工况的计算塔机非工作状态,风向顺着起重臂,不考虑扭矩的影响。

塔吊扶墙附着计算书

塔吊扶墙附着计算书

塔机附着验算计算书一、塔机附着杆参数二、风荷载及附着参数附图如下:塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.695×1.206×1.95×0.2×0.35×1.06=0.237kN/m 2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.237×572-1/2×0.237×12.92=365.287kN·m 集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(270+365.287)=571.758kN·m3、附着支座反力计算计算简图剪力图得:R E=77.975kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座4处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。

4、附墙杆内力计算支座4处锚固环的截面扭矩T k(考虑塔机产生的扭矩由支座4处的附墙杆承担),水平内力N w=20.5R E=110.273kN。

计算简图:塔机附着示意图塔机附着平面图α1=arctan(b1/a1)=53.241°α2=arctan(b2/a2)=46.353°α3=arctan(b3/a3)=46.353°α4=arctan(b4/a4)=53.241°β1=arctan((b1-c/2)/(a1+c/2))=46.185°β2=arctan((b2+c/2)/(a2+c/2))=46.185°β3=arctan((b3+c/2)/(a3+c/2))=46.185°β4=arctan((b4-c/2)/(a4+c/2))=46.185°四杆附着属于一次超静定结构,用力法计算,切断T4杆并代以相应多余未知力X1=1。

塔吊附墙计算

塔吊附墙计算

8#(B3)塔吊附墙杆设计1、第三道附墙1.1支座反力计算附着式塔机的塔身可以简化为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:风荷载标准值应按照以下公式计算:ωk=ω0×μz×μs×βz= 0.400×1.170×1.790×0.700 =0.586 kN/m2;其中ω0──基本风压(kN/m2),按照《建筑结构荷载规范》(GBJ9)的规定采用:ω0 = 0.400 kN/m2;μz──风压高度变化系数,按照《建筑结构荷载规范》(GBJ9)的规定采用:μz = 1.790 ;μs──风荷载体型系数:μs = 1.170;βz──高度Z处的风振系数,βz = 0.700;风荷载的水平作用力:q = W k×B×K s = 0.586×1.700×0.200 = 0.199 kN/m;其中 W k──风荷载水平压力,W k= 0.586 kN/m2;B──塔吊作用宽度,B= 1.700 m;K s──迎风面积折减系数,K s= 0.200;实际取风荷载的水平作用力 q = 0.199 kN/m;塔吊的最大倾覆力矩:M = 1743.000 kN·m;弯矩图变形图剪力图计算结果: N w = 121.6407kN ;1.2 附着杆内力计算计算简图:计算单元的平衡方程:ΣF x=0T1cosα1+T2cosα2-T3cosα3=-N w cosθΣF y=0T1sinα1+T2sinα2+T3sinα3=-N w sinθΣM0=0T1[(b1+c/2)cosα1-(α1+c/2)sinα1]+T2[(b1+c/2)c osα2-(α1+c/2)sinα2]+T3[-(b1+c/2) cosα3+(α2-α1-c/2)sinα3]=M w其中:α1=arctan[b1/a1] α2=arctan[b1/(a1+c)] α3=arctan[b1/(a2- a1-c)]第一种工况的计算:塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。

塔式起重机附墙方案[2]

塔式起重机附墙方案[2]

QTZ63(TC5610Z)塔式起重机附墙顶升、加节施工方案一、工程概况:工程名称:文昌市、龙禧湾、一里海7#楼施工单位:海南建设工程机械施工有限公司工程地址:海南省文昌市清澜镇文府路建筑面积:7#楼18层,建筑面积19472.19㎡,建筑高度61.4m。

不在塔吊安装自由高度之内。

7#楼需安装二道附墙满足施工要求。

以下是1#塔吊的附墙方案。

二、编制依据:1、国家颁布的《建设工程安全生产管理条例》和其他现行工程建设方面的有关法律、法规,以及其他相关单位关于工程建设方面的规定;2、国家现行的有关钢筋混凝土施工及质量验收规范、规程和技术标准;3、塔吊的相关操作规程及安装、拆除规范要求和厂家说明书要求4、我公司相关的安全操作规程要求和类似工程的施工和管理经验。

(一)、塔吊安装附墙概况表:为安全起见,实际附墙高度小于厂家提供高度:(二)、根据该工地使用情况和厂家说明书要求,塔吊与塔吊之间的高低差不小于4.5m。

三、预埋件的选用与安装:附墙拉杆与建筑物固定点的预埋板预埋,预埋件选用待预埋点位置的砼硬度达到80%以上后方可进行塔吊附着安装。

塔机附墙杆连接示意图连接铁板图四、附墙架选用:附着架是由三个撑杆和一套环梁等组成,它主要是把塔机固定在建筑物砼墙体上,起着依附作用。

使用时环梁套在标准节上。

三根撑杆中,其中二根撑杆端部有大耳环与建筑物附着处铰接,三根撑杆应保持在同一水平内,本塔机附着架按塔机中心与建筑物距离为 3.5m 设计的,撑杆与建筑物的连接方式可以根据实际情况而定。

五、附墙的安装工具和防护用品见下表:六、塔吊附墙、安全技术要点及安全措施:1、塔式起重机的附墙、必须由取得专业队队伍进行,并应有技术和安全人员在场进行监督和监护。

2、参加作业人员必须戴好安全帽、系好安全带、穿软底鞋,工具装入工具袋内。

使用前必须进行检查,不合格必须更换。

3、工作前应检查电气的完好性、液压系统是否正常、液压油是否能满足要求、液压油管的完好性。

塔吊附着方案(计算书参考版本,不同塔吊是不同的)

塔吊附着方案(计算书参考版本,不同塔吊是不同的)

一、计算书塔机附着验算(32层)计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《钢结构设计规范》GB50017-2003一、塔机附着杆参数二、风荷载及附着参数第2次附着40 15 0.832 1.95 1.95 1.763 1.801 0.308 0.471 第3次附着55 15 0.922 1.95 1.95 1.755 1.792 0.339 0.52 第4次附着70 15 1.008 1.95 1.95 1.733 1.766 0.366 0.56 第5次附着85 15 1.087 1.95 1.95 1.708 1.746 0.389 0.597 第6次附着100 15 1.16 1.95 1.95 1.699 1.734 0.413 0.633 悬臂端121 21 1.254 1.95 1.95 1.686 1.728 0.443 0.681 附图如下:塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.686×1.254×1.95×0.2×0.35×1.06=0.245kN/m2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.245×562-1/2×0.245×12.92=363.775kN·m集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(269.3+363.775)=569.768kN·m3、附着支座反力计算计算简图剪力图得:R E=146.645kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座7处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。

QTZ5513塔吊附墙计算方案另附有附墙拉杆图纸

QTZ5513塔吊附墙计算方案另附有附墙拉杆图纸

QTZ5513塔吊附着计算一、塔吊情况:塔吊采用广西建工集团建筑机械制造有限公司生产的QTZ80(QTZ5513)型塔吊。

该塔吊标准节中心与建筑物附着点的距离为6.76米,根据建筑物的实际结构现初步确定附墙的附着方案,该方案采用3根拉杆对塔吊进行附着,附着杆与建筑物梁面上的连接钢板(厚20)用双面贴角焊缝焊接,焊缝高度hf=10,焊缝长度320,联接钢板通过8根Φ22钢筋固定在建筑物上,其附着位置参见下图。

二、编制依据:《QTZ80塔式起重机说明书》广西建工集团建筑机械制造有限责任公司;《塔式起重机设计规范》(GB/T13752-1992);《建筑结构荷载规范》(GB50009-2001);《建筑安全检查标准》(JGJ59-99);《建筑施工手册》;《钢结构设计规范》(GB50017-2003)等编制。

三、塔吊附墙杆结构图1、拉杆1结构图:2、拉杆2结构图:3、拉杆3结构图:四、附墙杆内力计算1、支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。

附着式塔机的塔身可以视为一个带悬臂的刚性支撑连续梁,其支座反力计算结果如下:①、工作状态:水平力 Nw=190.276 kN,扭矩 Mw=129 kN∙m②、非工作状态:水平力 Nw=205.526 kN2、附墙杆内力力计算①、计算简图:②、计算单元的平衡方程为:T1[(b1 +c/2)cosα1-(a1+c/2)sinα1]+ T2[(b2 +c/2)cosα2- (a2+c/2)sinα2]+ T3[- (b3 +c/2)cosα3+ (a3 -a1 -c/2)sinα3]=M w其中:α1=60°,α2=52°,α3=60°③、工作状态计算塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。

将上面的方程组求解,其中从0-360循环,分别取正负两种情况,分别求得各附着杆最大的轴压力和轴拉力:杆1的最大轴向压力为:262 kN杆2的最大轴向压力为:189.6 kN杆3的最大轴向压力为:216.2 kN杆1的最大轴向拉力为:262 kN杆2的最大轴向拉力为:189.6 kN杆3的最大轴向拉力为:216.2 kN④、非工作状态计算塔机非工作状态,风向顺着起重臂,不考虑扭矩的影响。

塔吊附墙方案

塔吊附墙方案

塔吊附墙方案塔吊是一种用于吊装和运输重型物件的机械设备,广泛应用于建筑工地、港口码头等场所。

在进行建筑工程时,塔吊通常需要附墙安装,以提高其稳定性和吊装效果。

以下是塔吊附墙的一个方案,供参考:首先,需要进行塔吊附墙的设计。

根据建筑工地的具体情况和塔吊的参数,确定塔吊与墙壁之间的距离、高度和角度等参数。

同时,还需要计算墙体的承重能力,以确保塔吊的安全性。

接下来,选择适当的附墙材料。

常见的附墙材料有钢梁、钢板和混凝土等。

根据具体情况选择合适的材料,并进行加固处理,以保证塔吊的稳定性和承重能力。

然后,进行墙体的施工和安装。

根据设计方案,首先需要进行墙体的基础施工,以确保墙体的稳定性和承重能力。

然后,进行墙体的搭设和固定。

根据附墙材料的种类,采用不同的施工方法,如焊接、铆接和浇筑混凝土等。

在墙体的施工过程中,要严格按照设计方案和相关安全规范进行操作,确保施工质量和安全。

最后,进行塔吊的安装和调试。

根据设计方案,将塔吊的基础和附墙部件进行固定和连接。

然后,根据塔吊的使用需求,进行相应的调试和调整,以确保其正常运行和吊装效果。

除了以上的基本方案,还需要注意以下几点:1. 根据具体情况和需要,选择合适的附墙方案。

不同的建筑工地和塔吊参数可能需要不同的附墙方案,要根据实际情况进行调整和选择。

2. 进行严格的安全措施。

在进行塔吊的附墙工作时,要注意安全。

在施工过程中,必须进行安全防护措施,如设置护栏、安装安全网等,确保工人的安全。

3. 进行定期检查和维护。

塔吊附墙后,要进行定期的检查和维护工作,确保附墙的稳定性和塔吊的正常运行。

如发现问题,及时进行修复和处理。

总之,塔吊附墙方案是塔吊在建筑工地中必不可少的一项工作。

选择合适的附墙方案,根据实际情况进行施工和安装,确保塔吊的安全运行和吊装效果。

同时,还需要注意安全措施和定期检查维护,以确保塔吊附墙的稳定性和可靠性。

QTZ80塔机附墙撑杆计算书

QTZ80塔机附墙撑杆计算书

QTZ80塔机附墙撑杆计算书附墙撑杆计算说明:1、将附墙撑杆支座简化为铰支座。

2、整个附墙撑杆的自重在垂直方向作为均布载荷处理。

3、撑杆水平方向考虑作用均布风载荷。

4、根据水平与垂直两个方向所产生的弯矩,取最大弯矩值验算撑杆整体稳定性。

一、设计参数附墙撑杆轴向力 N 1800Kg撑杆自重 W=4*G1*L+4*G2*L1*n 171.10 KgG1 0.05 Kg/cmG2 0.01 Kg/cm 撑杆主弦杆长度 L 677.6 cm 撑杆缀条长度 L1 54.5 cmn 13.5二、载荷计算撑杆均布载荷 q G=W/L 0.25 Kg/cm 撑杆自重引起的弯矩 M y= q G*L2/2 57969.66 Kg.cm 标准风压值qⅡ0.0025 Kg/cm2撑杆风压高度修正系数 K h 1撑杆风载体形系数 c 1.4撑杆高宽 h 24 cm 撑杆轮廓面积 F=Fx=Fy=ΦL*h 6504.96 cm2撑杆挡风系数Φ0.4风载荷 W f= qⅡ*K h*c*F 22.76736 Kg撑杆风载荷 q f=W f/L 0.0336 Kg/cm 作用在撑杆上的风载荷引起的弯矩Mx=q f*L2/2 7713.582 Kg.cm 三、撑杆截面参数撑杆主弦杆为L63*5角钢,由表查得:主弦杆面积 A1 6.14 cm2主弦杆总面积 A=4* A1 24.57 cm2单肢惯性矩 I x0 23.17 cm4i x 1.94 cmi y0 1.25 cmz0 1.74 cm撑杆缀条为L30*3角钢,由表查得:缀条面积 A1 1.749 cm2主弦杆总面积 A=4*A1 6.996 cm2单肢惯性矩 I x0 1.46 cm4i x 0.91 cmi y0 0.59 cmz0 0.85cm撑杆横截面几何特性I x=I y=4*﹝I x0+A1*(h/2-z0)2﹞2679.32cm4I r=(I x/A)1/2 10.44cm四、撑杆稳定性计算按垂直方向验算撑杆整体稳定性撑杆长细比λx=L/r 64.89〔λ〕 120.00λx<〔λ〕 OK四肢格构构件换算长细比λhx=λhy=〔λx2+40*(A/A1x)〕1/2 67.02偏心率ε1=(M y/N)*(A*(h/2+z0)/I y) 0.30由表查偏心受压构件的稳定系数Φpg 0.50撑杆整体稳定性验算σ=N/Φpg*A 1465.08Kg/cm2〔σ〕 1700Kg/cm2σ<〔σ〕 OK五、单肢稳定性验算省略计算注:QTZ63塔机附墙撑杆计算书(四撑杆)因与QTZ80差别不大且小于QTZ80,故计算略。

塔吊附墙计算书

塔吊附墙计算书

二、塔吊附墙杆受力计算(一)、塔吊附墙内力计算,将对以下两种最不利受力情况进行:1、塔机满载工作,起重臂顺塔身x-x轴或y-y轴,风向垂直于起重臂(见图1);2、塔机处于非工作状态,起重臂处于塔身对角线,风向由起重臂吹向平衡臂(见图2)。

对于第一种受力状态,塔身附墙承担吊臂制动和风力产生的扭矩和附墙以上自由高度下塔身产生的水平剪力。

对于第二种受力状态,塔身附墙仅承受附墙以上自由高度下塔身产生的水平剪力。

以下分别对不同受力情况进行计算:(二)、对第一种受力状态,附墙上口塔身段面内力为:弯矩:M=164.83(T.m)剪力:V=3.013(T)扭矩:T=12(T.m),则:1、当剪力沿x-x轴时(见图a),由∑M B=0,得T+V*L1 -L B0’*N1=0即:N1=(T+ V*L1)/ L B0’=(12+3.013*3.65)/5.932=3.88(T)通过三角函数关系,得支座A反力为:R AY= N1*sin52.3426=3.88*sin52.3426=2.84(T)R Ax= N1*cos52.3426=3.88* cos52.3426=2.64(T)由∑M C=0,得N3*L G0’+T+V*0.8=0即:N3=-(T+ V*0.8)/ L G0’=-(12+3.013*0.8)/0.966=-14.92(T)由∑M0’=0,得N2*L C0’-(T+V*L6)=0即:N2 =(T+ V*L6)/ L C 0’=(12+3.013*0.027)/0.98=12.33(T)由力平衡公式∑N i=0,得R AY+R BY=0和-R AX-R BX +V =0,故R BY= -R AY =-2.84(T)(负值表示力方向与图示相反,以下同) R BX = -R AX +V =-2.64+12.33=9.48(T)2、当剪力沿y-y轴时(见图b),由∑M B=0,得T-(V*L4+L B0’*N1)=0即:N1=(T-V*L4)/ L B0’=(12-3.013*4.5)/5.932=-0.263(T)通过三角函数关系,得支座A反力为:R AY= N1*sin52.3426=-0.263*sin52.3426=-0.171(T)R Ax= N1*cos52.3426=-0.263* cos52.3426=-0.2(T)由∑M C=0,得N3*L C0’+T+V*0.8=0即:N3=-(T+ V*0.8)/ L C0’=-(12+3.013*0.8)/0.98=-14.91(T)由∑M0’=0,得N2*L C0’-(T+V*L5)=0即:N2 =(T+ V*L5)/ L G 0’=(12+3.013*0.2)/0.966=13.05(T)由静力平衡公式∑N i=0,得R AY +R BY+V =0和R AX+ R BX =0,故R BY= -(R AY +V)=-(-3.16+12)=-8.84(T)R BX = -R AX =2.93(T)(二)、对第二种受力状态(非工作状态),附墙上口塔身段面内力为:弯矩:M=191.603(T.m)剪力:V=10.036(T),剪力沿塔身横截面对角线,对图c,由∑M B=0,得V*L BH +L B0’*N1=0即:N1=-V*L BH/ L B0’=-10.036*0.6/5.932=-1.015(T)通过三角函数关系,得支座A反力为:R AY= -N1*sin52.3426=-1.015*sin52.3426=-0.8(T)R Ax= -N1*cos52.3426=-1.015* cos52.3426=-0.62(T)由∑M C=0,得N3*L0’C+ V* L C0=0即:N3=- V* L C0/ L C0’=-10.036*1.132/0.98=-11.6(T)由∑M0’=0,得N2*L C0’-V*L7=0即:N2 = V*L7/ L C 0’=10.036*0.17/0.98=1.74(T)由力平衡公式∑N i=0,得R AY +R BY+V*cos450=0和-R AX-R BX +V*sin450 =0,故R BY= -R AY- V*cos450 =0.8-10.036*cos450=-6.3(T)R BX = -R AX +V* sin450 ==0.62+10.036*sin450=7.79(T)对图d,由∑M B=0,得V*L BG +L B0’*N1=0即:N1=-V*L BG/ L B0’=-10.036*5.67/5.932=-9.6(T)由∑M C =0,得N3*0+ V* L C0=0,即N3=0通过三角函数关系,得支座A 反力为:R AY = N 1*sin52.3426=-9.6*sin52.3426=-7.6(T )R Ax = -N 1*cos52.3426=-9.6* cos52.3426=-5.87(T ) 由静力平衡公式,得R AY +R BY +V*sin450=0和R AX +R BX +V*cos450 =0,故R BY =-R AY -V*sin450=7.6-10.036*cos450=0.5(T )R BX =-R AX -V*sin450=-5.87-10.036*sin450=-13(T )根据如上计算,附墙杆件和支座受力最大值见下表: AB 杆 BC 杆 BD 杆 A 支座B 支座 R AXR AY R BX R BY N1=-9.6t N2=13.05t N3=-14.92t7.6t5.87t -13t 0.5t 由于外力方向可向相反方向进行,故以上数值可正可负,均按压杆进行设计。

塔吊1#-1附墙方案

塔吊1#-1附墙方案

1#—1楼塔吊附墙方案一、塔吊附墙概况1#-1楼总高度86。

7米,塔吊安装总高度95米;本工程采用QTZ60自升塔吊起重机。

该机这水平臂架、小车变幅、上回转自升式,其臂长为50米,最大起重量为4吨,额定起重力矩600KN.m,最大起重力矩为600KN。

m。

由于结构条件和地形条件的限制,1#-1楼塔吊布置在1#—1楼北侧位置,该塔吊的直接附墙距离为3。

2米。

采取穿墙栓连接座预埋件。

根据说明QTZ60塔吊附着式的最大起升高度可达120米。

附着式起重机的塔身可直接安装在建筑物上或建筑物附近的旁的砼基础上,为了减小塔身计算长度以保持其设计起重能力,设有七套附着装置。

第一附着装置距基础面15.4米,第二附着装置距离第一附着装置是14.5米,第三附着装置距离第二附着装置是11。

6米,第四附着装置距离第三附着装置是11.6米,第五附着装置距离第四附着装置是11.6米,第六附着装置距离第五附着装置是11.6米,第七附着装置距离第六附着装置是11.6米,可允许现场根据楼层的高度做适当的调整.塔机独立固定式工作,最大起升高度为30米。

二、附墙要求为满足1#-1楼塔机对施工楼层的需要,根据塔机的出厂许用条件及建筑物楼层的实际情况现对于1#-1塔机扶墙作如下布置: 错误!第一道塔机扶墙高度+15。

4m,第二道为+14.5m,第三道为+11。

6m,第四道为+11。

6m,第五道为+11。

6m,第六道为+11.6m,第七道为+11。

6m。

错误!墙面附着点中心距离 3950mm错误!采用穿墙螺栓连接座预埋件错误!根据塔机使用说明书扶墙点以上悬臂最大高度不超过20米。

错误!附着架是由四个撑杆和一套环梁等组成,安装时调节螺栓,调整撑杆长度,使塔身轴线垂直,用经纬仪检测,误差控制在H/1000以内.○6附墙部位的墙板、梁钢筋的配筋,附墙件侧边各附加2根Φ14钢筋。

三、塔式起重机附着式工作状态的安装与拆卸3.1、工作状况QTZ60塔式起重机附着工作时最大起升高度为120米,附着工作时,要求塔身中心距建筑物4m ,爬时应使得吊臂方向与建筑物平行。

塔吊附墙方案(附图)(1)修改-5

塔吊附墙方案(附图)(1)修改-5

目录1 概述 (2)2 附墙拉杆形式 (2)3 附墙基座的形式 (2)4 附墙数量及标高尺寸 (2)5 附墙拉杆选用的材料及结构形式 (3)6 附墙体系传递给建筑物的受力情况 (3)7 塔吊顶升步骤 (3)8 顶升安全注意事项 (4)9 附墙平面示意 (4)10 附墙杆与连墙示意 (6)11 附墙立面示意 (7)保利名苑(一期1#~6#,S2#、S3#)塔式起重机附墙方案1 概述本工地位于顺德伦教105国道东侧,为一组团式建筑物,共有6栋建筑物(楼高13--28层,标准层高3米),为满足施工面的需要,共安装3台塔式起重机(自编号为1#-3#)。

均采用长沙中联重科生产的TC6013A-6型塔式起重机(起重臂长:3#机为55m,1#、2#机为60m),分别安装在2#楼,3#楼及5#楼外侧。

1#塔吊基础砼面标高为-5.2m,2#塔吊基础砼面标高为-8.5m、3#塔吊基础砼面标高为-4.4m。

2 附墙拉杆形式1#-3#塔吊均采用四条附墙拉杆,塔吊附墙拉杆的一端用Φ50的销轴固定在塔身附墙框架的四个角的销孔中,另一端则通过附墙基座固定在建筑物的结构梁和异形柱的交接处(两点位置)。

1#塔吊附墙点分别位于2-4轴与2-B轴交接的结构梁与异形柱上以及2-11轴与2-C轴交接的异形柱上;2#塔吊附墙点分别位于3-11轴与3-N轴交接的结构梁与异形柱上以及3-7轴与3-N轴交接的异形柱上;3#塔吊附墙点分别位于5-B′轴与5-5′轴交接的异形柱上以及5-H′轴与5-5′轴交接的异形柱上;详见附墙拉杆连接平面示意图。

3 附墙基座的形式采用在砼结构上预留孔洞使用直径Φ30的穿墙螺栓的方法现场固定附墙基座。

4 附墙数量及标高尺寸根据本建筑物标准层结构的情况和各塔楼结构天面最大高度(51.5-95.4m)及塔机对附墙间距的技术要求,定出3台塔吊所需安装附墙装置,其标高分别如下(此标高为建筑物标高):1#塔吊 2#塔吊 3#塔吊第一道附墙: +26.0m +20.7m +23.0m8楼面下 7楼面下 7楼面下第二道附墙: +44.0m +38.7m +35.0m14楼面下 13楼面下 11楼面下第三道附墙: +62.0m +56.7 m20楼面下 19楼面下第四道附墙: +77.0m +74.7 m25楼面下 25楼面下第五道附墙: +83.7m28楼面下臂底总高度: +105.40米 +110.5米 +61.4米最顶部附墙以上: 9节 8节 8节结构最大高度: +85.7米 +95.4米 +51.5米说明:每次安装附墙时均应先将塔身调直,控制塔身标准节垂直度偏差满足附墙架以上≤4‰;附墙架以下≤2‰的要求。

塔吊附墙计算书.

塔吊附墙计算书.

塔吊附墙计算书.编制人:审核人:编制时刻:目录【一】塔吊附墙概况【二】塔吊附墙杆受力计算【三】结构柱抗剪切验算【四】附墙杆截面设计和稳定性强度验算【一】塔吊附墙概况本工程结构高度53.4m,另加桅杆15米,总高度68.4米。

本工程采纳FO/23B塔吊,塔吊采纳固定式现浇砼基础,基础埋设深度-5.35m,塔身设两道附墙与结构柱拉结:塔身升到12标准节时,设第一道附墙于第6标准节〔结构标高23.47米〕,塔吊升到第17标准节时,设第二道附墙于第14标准节〔结构标高42.8米〕,然后加到第23标准节为止。

在加第二道附墙之前,第一道附墙以上有17-6=11个标准节,而第二道附墙以上塔身标准节数最多为23-14=9节,因此,第二道附墙设置之前第一道附墙受力最大。

本计算书将对第一道附墙进行受力计算和构造设计。

为简化计算和偏于安全考虑,第二道附墙将采纳与第一道附墙相同旳构造形式。

本工程打算使用金环项目使用过旳塔吊附墙杆。

依照塔吊与结构旳位置关系,附墙杆夹角较小,附墙杆与结构柱连接旳予埋件分别采纳不同旳形式。

本计算书要紧包括四个方面内容:附墙杆及支座受力计算,结构柱抗剪切及局部受压验算,附墙杆予埋件锚筋设计,附墙杆型号选用。

【二】塔吊附墙杆受力计算〔一〕、塔吊附墙内力计算,将对以下两种最不利受力情况进行:1、塔机满载工作,起重臂顺塔身x-x轴或y-y轴,风向垂直于起重臂〔见图1〕;2、塔机处于非工作状态,起重臂处于塔身对角线,风向由起重臂吹向平衡臂〔见图2〕。

关于第一种受力状态,塔身附墙承担吊臂制动和风力产生旳扭矩和附墙以上自由高度下塔身产生旳水平剪力。

关于第二种受力状态,塔身附墙仅承受附墙以上自由高度下塔身产生旳水平剪力。

以下分别对不同受力情况进行计算:〔二〕、对第一种受力状态,附墙上口塔身段面内力为:弯矩:M=164.83〔T.m〕剪力:V=3.013〔T〕扭矩:T=12〔T.m〕,那么:1、当剪力沿x-x轴时(见图a),由∑M B=0,得T+V*L1-L B0’*N1=0即:N1=〔T+V*L1〕/L B0’=〔12+3.013*3.65〕/5.932=3.88〔T〕通过三角函数关系,得支座A反力为:R AY=N1*sin52.3426=3.88*sin52.3426=2.84〔T〕R Ax=N1*cos52.3426=3.88*cos52.3426=2.64〔T〕由∑M C=0,得N3*L G0’+T+V*0.8=0即:N3=-〔T+V*0.8〕/L G0’=-〔12+3.013*0.8〕/0.966=-14.92〔T〕由∑M0’=0,得N2*L C0’-(T+V*L6)=0即:N2=〔T+V*L6〕/L C0’=〔12+3.013*0.027〕/0.98=12.33〔T〕由力平衡公式∑N i=0,得R AY+R BY=0和-R AX-R BX+V=0,故R BY=-R AY=-2.84〔T〕(负值表示力方向与图示相反,以下同)R BX=-R AX+V=-2.64+12.33=9.48〔T〕2、当剪力沿y-y轴时(见图b),由∑M B=0,得T-〔V*L4+L B0’*N1〕=0即:N1=〔T-V*L4〕/L B0’=〔12-3.013*4.5〕/5.932=-0.263〔T〕通过三角函数关系,得支座A反力为:R AY=N1*sin52.3426=-0.263*sin52.3426=-0.171〔T〕R Ax=N1*cos52.3426=-0.263*cos52.3426=-0.2〔T〕由∑M C=0,得N3*L C0’+T+V*0.8=0即:N3=-〔T+V*0.8〕/L C0’=-〔12+3.013*0.8〕/0.98=-14.91〔T〕由∑M0’=0,得N2*L C0’-(T+V*L5)=0即:N2=〔T+V*L5〕/L G0’=〔12+3.013*0.2〕/0.966=13.05〔T〕由静力平衡公式∑N i=0,得R AY+R BY+V=0和R AX+R BX=0,故R BY=-(R AY+V)=-(-3.16+12)=-8.84〔T〕R BX=-R AX=2.93〔T〕〔二〕、对第二种受力状态(非工作状态),附墙上口塔身段面内力为:弯矩:M=191.603〔T.m〕剪力:V=10.036〔T〕,剪力沿塔身横截面对角线,对图c,由∑M B=0,得V*L BH+L B0’*N1=0即:N1=-V*L BH/L B0’=-10.036*0.6/5.932=-1.015〔T〕通过三角函数关系,得支座A反力为:R AY=-N1*sin52.3426=-1.015*sin52.3426=-0.8〔T〕R Ax=-N1*cos52.3426=-1.015*cos52.3426=-0.62〔T〕由∑M C=0,得N3*L0’C+V*L C0=0即:N3=-V*L C0/L C0’=-10.036*1.132/0.98=-11.6〔T〕由∑M0’=0,得N2*L C0’-V*L7=0即:N2=V*L7/L C0’=10.036*0.17/0.98=1.74〔T〕由力平衡公式∑N i=0,得R AY+R BY+V*cos450=0和-R AX-R BX+V*sin450=0,故R BY=-R AY-V*cos450=0.8-10.036*cos450=-6.3〔T〕R BX=-R AX+V*sin450==0.62+10.036*sin450=7.79〔T〕对图d,由∑M B=0,得V*L BG+L B0’*N1=0即:N 1=-V*L BG /L B0’=-10.036*5.67/5.932=-9.6〔T 〕由∑M C =0,得N3*0+V*L C0=0,即N3=0通过三角函数关系,得支座A 反力为:R AY =N 1*sin52.3426=-9.6*sin52.3426=-7.6〔T 〕R Ax =-N 1*cos52.3426=-9.6*cos52.3426=-5.87〔T 〕由静力平衡公式,得R AY +R BY +V*sin450=0和R AX +R BX +V*cos450=0,故R BY =-R AY -V*sin450=7.6-10.036*cos450=0.5〔T 〕R BX =-R AX -V*sin450=-5.87-10.036*sin450=-13〔T 〕依照如上计算,附墙杆件和支座受力最大值见下表:【三】结构柱抗剪切和局部压力强度验算附墙埋件受力面积为470×470,锚固深度按450计算,最小柱断面为700×700,柱子箍筋为φ10@200,由上面旳计算结果可知,支座最大拉力〔压力〕为〔R BX 2+R BY 2〕1/2=〔132+0.52〕1/2=13.01T=130.1KN 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塔吊Q T Z80(T C T5512)塔吊附着方案编制单位:广西建工集团建筑机械制造有限责任公司目录一、工程概况: 01、工程项目情况: 02、参建单位概况: 03、塔吊情况: 0二、编制依据: (1)三、塔吊附墙杆结构图 (2)1、拉杆1结构图: (2)2、拉杆2结构图: (3)3、拉杆3结构图: (4)四、附墙杆内力计算 (5)1、支座力计算 (5)2、附墙杆内力力计算 (5)五、附墙杆强度及稳定性验算 (7)1、附墙杆1验算 (7)2、附墙杆2验算 (8)3、附墙杆3验算 (9)4、附墙杆对接焊缝强度验算 (10)5、附墙杆连接耳板焊缝强度验算 (11)六、塔吊附墙杆连接强度计算 (11)七、附着设计与施工的注意事项 (13)一、工程概况:1、工程项目情况:XX工程总建筑面积约为㎡(其中地上建筑面积为㎡,地下建筑面积为㎡)地下层,地上共有个单体, F- F;建筑高度为 m- m。

本工程为民用二类建筑,其它为民用二类建筑,钢筋混凝土框剪结构。

质量标准为合格,且不少于市优质工程。

本工程共使用台塔吊,选用安装的塔吊为广西建工集团建筑机械制造有限责任公司生产出厂的QTZ80型(部)和QTZ6015型(部)塔吊塔式起重机。

#塔吊QTZ80塔身中心到建筑物距离约米。

2、参建单位概况:工地名称:XX建设单位:XX勘查单位:XX设计单位:XX监理单位:XX施工单位: XX工地地址:XX3、塔吊情况:#塔吊采用广西建工集团建筑机械制造有限公司生产的QTZ80(TCT5512)型塔吊。

该塔吊标准节中心与建筑物附着点的距离为,根据建筑物的实际结构现初步确定附墙的附着方案,该方案采用3根拉杆对塔吊进行附着,附着杆与建筑物梁面上的连接钢板(厚20)用双面贴角焊缝焊接,焊缝高度h f=12,焊缝长度350,联接钢板通过8根Φ22钢筋固定在建筑物上,其附着位置参见下图。

2#塔吊附墙示意图二、编制依据:《QTZ80(外套)塔式起重机说明书》广西建工集团建筑机械制造有限责任公司;《塔式起重机设计规范》(GB/T13752-1992);《建筑结构荷载规范》(GB50009-2001);《建筑安全检查标准》(JGJ59-99);《建筑施工手册》;《钢结构设计规范》(GB50017-2003)等编制。

三、塔吊附墙杆结构图1、拉杆1结构图:2#塔吊附墙计算简图αα四、附墙杆内力计算1、支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。

附着式塔机的塔身可以视为一个带悬臂的刚性支撑连续梁,其支座反力计算结果如下: ①、工作状态:水平力 Nw=190.276 kN ,扭矩 Mw=129 kN ∙m ②、非工作状态:水平力 Nw=205.526 kN2、附墙杆内力力计算①、计算简图:②、计算单元的平衡方程为:T1[(b1 +c/2)cosα1-(a1+c/2)sinα1]+ T2[(b2 +c/2)cosα2- (a2+c/2)sinα2]+ T3[- (b3 +c/2)cosα3+ (a3 -a1 -c/2)sinα3]=M w其中:α1=59°,α2=51°,α3=60°③、工作状态计算塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。

将上面的方程组求解,其中从0-360循环,分别取正负两种情况,分别求得各附着杆最大的轴压力和轴拉力:杆1的最大轴向压力为:262 kN杆2的最大轴向压力为:189.6 kN杆3的最大轴向压力为:216.2 kN杆1的最大轴向拉力为:262 kN杆2的最大轴向拉力为:189.6 kN杆3的最大轴向拉力为:216.2 kN④、非工作状态计算塔机非工作状态,风向顺着起重臂,不考虑扭矩的影响。

将上面的方程组求解,其中=45,135,225,315, Mw=0,分别求得各附着杆最大的轴压力和轴拉力:杆1的最大轴向压力为:163.5 kN杆2的最大轴向压力为:65.9 kN杆3的最大轴向压力为:219.9 kN杆1的最大轴向拉力为:163.5 kN杆2的最大轴向拉力为:65.9 kN杆3的最大轴向拉力为:219.9 kN由以上两种工况的计算结果可知,验算3根附墙杆强度及稳定性时,应取下列载荷值进行计算。

杆1的最大轴向压力为:262 kN杆2的最大轴向压力为:189.6 kN杆3的最大轴向压力为:219.9 kN杆1的最大轴向拉力为:262 kN杆2的最大轴向拉力为:189.6 kN杆3的最大轴向拉力为:219.9 kN五、附墙杆强度及稳定性验算1、附墙杆1验算杆1受力:F=262KN;杆1长:l=4.8m;现对其进行验算:①、附墙杆1强度验算验算公式:=N/An≤f其中──为杆件的受压应力;N──为杆件的最大轴向压力,取 N=262kN;f──为杆件的许用压应力,查表得f=215N/mm2。

经计算,杆件的最大压应力=262×1000/5032.4=50.06N/mm2。

最大截面应力不大于拉杆的允许应力215N/mm2,满足要求!②、附墙杆1轴心受压稳定性验算验算公式:=N/An≤f其中──为杆件的受压应力;N──为杆件的轴向压力,取N=262kN;An──为杆件的的截面面积, 查表得An=5032.4mm2;──为杆件的受压稳定系数,是根据查表计算得,取 =0.595;──杆件长细比,取 =94。

经计算,杆件的最大受压应力=262×1000/5032.4/0.595=84.13N/mm2。

最大压应力不大于拉杆的允许压应力215N/mm2,满足要求!2、附墙杆2验算杆2受力:F=189.6KN;杆2长:l=5.6m;现对其进行验算:①、附墙杆2强度验算验算公式:=N/An≤f其中──为杆件的受压应力;N──为杆件的最大轴向压力,取 N=189.6kN;f──为杆件的许用压应力,查表得f=215N/mm2。

经计算,杆件的最大压应力=189.6×1000/5032.4=37.68N/mm2。

最大截面应力不大于拉杆的允许应力215N/mm2,满足要求!②、附墙杆2轴心受压稳定性验算验算公式:=N/An≤f其中──为杆件的受压应力;N──为杆件的轴向压力,取N=189.6kN;An──为杆件的的截面面积, 查表得An=5032.4mm2;──为杆件的受压稳定系数,是根据查表计算得,取 =0.493;──杆件长细比,取 =110。

经计算,杆件的最大受压应力=189.6×1000/5032.4/0.493=76.43N/mm2。

最大压应力不大于拉杆的允许压应力215N/mm2,满足要求!3、附墙杆3验算杆3受力:F=219.9KN;杆3长:l=5.06m;现对其进行验算:①、附墙杆3强度验算验算公式:=N/An≤f其中──为杆件的受压应力;N──为杆件的最大轴向压力,取 N=219.9kN;f──为杆件的许用压应力,查表得f=215N/mm2。

经计算,杆件的最大压应力=219.9×1000/5032.4=43.70N/mm2。

最大截面应力不大于拉杆的允许应力215N/mm2,满足要求!②、附墙杆3轴心受压稳定性验算验算公式:=N/An≤f其中──为杆件的受压应力;N──为杆件的轴向压力,取N=219.9kN;An──为杆件的的截面面积, 查表得An=5032.4mm2;──为杆件的受压稳定系数,是根据查表计算得,取 =0.555;──杆件长细比,取 =99。

经计算,杆件的最大受压应力=219.9×1000/5032.4/0.555=78.74N/mm2。

最大压应力不大于拉杆的允许压应力215N/mm2,满足要求!从以上计算可知3根附墙杆的值均小于150,所以刚度满足要求。

综上所述,3根附墙杆的强度及稳定性满足要求。

4、附墙杆对接焊缝强度验算附着杆如果采用焊接方式加长,对接焊缝强度计算公式如下:其中,N为附着杆最大拉力或压力,取 N=262 kN;Lw——为附着杆的周长,取580mm;T——为焊缝有效厚度,t=7mm;ft或fc——为对接焊缝的抗拉或抗压强度,取 185 N/mm2;经计算,焊缝应力 = 262×1000/(580×7) = 64.53 N/mm2;计算应力均小于许用应力,对接焊缝的抗拉或抗压强度计算满足要求。

5、附墙杆连接耳板焊缝强度验算附墙杆与附着框采用双耳板销轴连接,耳板与附墙板采用双面贴角焊缝焊接,焊缝高度h f=12,焊缝长度160。

验算时取3根附墙杆中受力最大的杆1的轴力N=262KN。

耳板处角焊缝应力为:σf=N/(0.7h f lw)/4=262000/[0.7×12×(160-24)]/4=57.34 Mpa小于许用抗拉、抗压和抗剪许用应力160Mpa,满足要求。

六、塔吊附墙杆连接强度计算附墙杆与建筑物梁面上的连接钢板(厚20)用双面贴角焊缝焊接,焊缝高度h f=12,焊缝长度350。

联接钢板通过8根Φ22钢筋固定在建筑物楼板上。

验算时取3根附墙杆中受力最大的杆1的轴力N=262KN;偏心弯矩为M=Nh/2=262×0.16/2=20.96 KN·m①焊缝验算附着杆与建筑物预埋板用双面贴角焊缝焊接,焊缝高度h f=12,焊缝长度350,现计算焊缝的剪切应力为:τf=F/(0.7h f lw)/2=262000/[0.7×12×(350-24)]/2=47.84 Mpaσf=M/(0.7h f lw2/6)/2=20960/[0.7×12×(350-24)2×10-3/6]/2=70.44 Mpa计算组合应力:(τf2+σf2) 1/2=(47.482+70.442) 1/2=84.95 Mpa小于许用抗拉、抗压和抗剪许用应力160Mpa,满足要求。

②钢筋验算联接钢板通过8根Φ22钢筋固定在建筑物楼板上,前后排间距Z=200mm f y=215MPa ,f c=14.3MpaV=F=262KNαr=1(两层)αv=(4-0.08d)(f c/ f y)1/21/2=(4-0.08×22)(14.3/ 215)=0.58αb=0.6+0.25t/d=0.6+0.25×20/22=0.8A s=V/(αrαv f y)+ M/(1.3αrαb f y Z)= 262000/(1×0.58×215)+ 20960/(1.3×1×0.8×215×0.2)=2101+469=2570mm2A s= M/(0.4αrαb f y Z)= 20960/(0.4×1×0.8×215×0.2)=1523 mm28根Φ22螺栓A= nπd2/4=8×π×222/4=3041 mm2> A s=2570mm2满足要求。

相关文档
最新文档