2018年全国高考四川省数学(理)试卷及答案【精校版】

合集下载

2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。

【精品】四川省近两年(2018,2019)高考理科数学试卷以及答案(word解析版)

【精品】四川省近两年(2018,2019)高考理科数学试卷以及答案(word解析版)

绝密★启用前四川省2018年高考理科数学试卷本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y = D .3y = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B .30C .29D .257.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+B .2i i =+C .3i i =+D .4i i =+ 开始0,0N T ==1i =100i <1是否8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A .50- B .0 C .2 D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23 B .12 C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

2018四川高考理科数学试题与解析

2018四川高考理科数学试题与解析

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={ x | x -1≥0 },B={ 0, 1, 2 }, 则A∩B=A.{0} B.{1} C.{1,2} D.{0,1,2}【答案】C【解析】A={ x | x -1≥0 }={ x | x≥1 },B={ 0, 1, 2 }, 于是A∩B={1,2}【点评】求交集就是求它们的公共元素所组成的集合。

方法是先化简后联立解之。

本题是考察集合的运算,属于基础题,难度系数小,易错点在于审题不清。

2.( 1 + i )( 2-i ) =A.-3 -i B.-3 + i C.3-i D.3 + i【答案】D【解析】原式=( 1 + i )( 2-i ) = 2-i + 2i-i2 = 2 + i-i2 = 3 + i ,所以选D。

【点评】求复数之积的基本方法是按多项式乘法先展开,然后合并同类项,注意复数的核心知识点:i2 = -1。

记性好的同学可直接按乘法公式进行计算。

本题是考察复数的基本运算,属于基础题,难度系数小,易错点在于不知道i2 = -1或计算错误。

叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。

若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A B .C . D【答案】 A【解析】 因为带卯眼的木构件咬合成长方体,从俯视方向看榫头,它在带卯眼的木构件的左侧底部中间内嵌位置,所以榫头在俯视图中呈虚线状态,故选A 。

2018四川省高考数学试题及答案(理数)

2018四川省高考数学试题及答案(理数)

2018年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B?球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1-C、iD、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B C D5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a b a b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2018年全国高考理科数学(全国一卷)试题及参考答案(2021年整理)

2018年全国高考理科数学(全国一卷)试题及参考答案(2021年整理)

(完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改)的全部内容。

2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。

) 1、设z=,则∣z ∣=()A 。

0B.C.1D.2、已知集合A={x|x 2-x —2>0},则A =()A 、{x |-1〈x 〈2}B 、{x |—1≤x ≤2}C 、{x |x<-1}∪{x |x>2}D 、{x|x ≤-1}∪{x |x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=()建设前经济收入构成比例 建设后经济收入构成比例A、—12B、—10C、10D、125、设函数f(x)=x3+(a—1)x2+ax。

2018四川高考理科数学真题及答案

2018四川高考理科数学真题及答案

2018四川高考理科数学真题及答案注意事项:1. 答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 项是符合题目要求的。

1.已知集合Ax|x 1 £ >0 , B0 , 1, 2,则 AI BA.B. 1C. 1, 2D. 0 , 1 , 22. 1 i 2 iA. 3 iB. 3 iC. 3 iD. 3 i3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图 中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长 方体,则咬合时带卯眼的木构件的俯视图可以是14.右 sin §,则 cos2A. 89B. 7 9C.79D. 895x2 2x 5的叶式中x 4的系数为xA. 10B. 20C. 40D. 806 .直线x y 2 0分别与x 轴,y 轴交于A, B 两点,点 P 在圆x 2 2y 22上,贝U△ ABP 面积的取值范围是俯视方向T2211 .设F I , F 2是双曲线C:号 卡1 (a 0 , b 0)的左,右焦点,O 是坐标原点.过 F 2作C 的一条渐近线的垂线,垂足为 P.若PF 1 ^6|OP ,则C 的离心率为7. 函数yx 4 x 2 2的图像大致为8. 某群体中的每位成员使用移动支付的概率都为该群体的10位成员中使用移动支付的人数, A. 0.7B. 0.69. △ ABC 的内角A , B, C 的对边分别为C.挪,3/2D. 2择,峪DXC. 2.4 , P X 4 P X 6 ,0.4D. 0.3c ,若△ ABC 的面积为-一b一C -4D.610.设A , B, C , D 是同一个半径为 4的球的球面上四点,△ ABC 为等边三角形且其面积为叫3,贝U 三棱锥D ABC 体积的最大值为A. 12 3B. 18.3C. 24 3D. 54 3各成员的支付方式相互独立,设C.3B. 212.设a log().2 0.3 , b log2 0.3,则A. a b ab 0B. ab a b 0C. a b 0 abD. ab 0 a b二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国一卷理科数学答案及解析

2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试题,每小题5分,共60分。
1、设z= ,则|z|=
A、0
B、
C、1
D、
【答案】C
【解析】由题可得 ,所以|z|=1
【考点定位】复数
2、已知集合A={x|x2-x-2>0},则 A=
A、{x|-1<x<2}
B、{x|-1 x 2}
D.[1,+∞)
【答案】C
【解析】
根据题意:f(x)+x+a=0有两个解。令M(x)=-a,
N(x)=f(x)+x =
分段求导:N‘(x)=f(x)+x = 说明分段是增函数。考虑极限位置,图形如下:
M(x)=-a在区间(-∞,+1]上有2个交点。
∴a的取值范围是C.[-1,+∞)
【考点定位】分段函数、函数的导数、分离参数法
【解析】
S1=2a1+1=a1∴a1=-1
n>1时,Sn=2an+1,Sn-1=2an-1+1 两式相减:Sn-Sn-1= an=2an-2an-1∴an=2an-1
an=a1×2n-1= (-1)×2n-1
则下面结论中不正确的是:
A、新农村建设后,种植收入减少。
B、新农村建设后,其他收入增加了一倍以上。
C、新农村建设后,养殖收入增加了一倍。
D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A
【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,
【考点定位】简单统计
M、N的坐标(1,2),(4,4)
则 · =(0,2)·(3,4)=0*3+2*4=8

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0 B .12 C .1 D .22.已知集合2{|20}A x x x =-->,则A =R ðA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->UD .{|1}{|2}x x x x -U ≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uu u r uuu r B .1344AB AC -uuu r uuu rC .3144AB AC +uu u r uuu rD .1344AB AC +uuu r uuu r7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN?uuu r uuu r A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :-=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN = A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。

2018年四川省高考理科数学试卷及答案

2018年四川省高考理科数学试卷及答案

D C AE B 2018年普通高等学校招生全国统一考试(四川卷) 数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式()()()P A B P A P B 24S R如果事件相互独立,那么 其中R 表示球的半径()()()P A B P A P B 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k k n k n n P k C p p k n …第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i -=( )A 、1B 、1-C 、iD 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=() A 、31010 B 、1010 C 、510 D 、5155、函数1(0,1)x y a a a a =->≠的图象可能是( )6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行。

2018年高考(四川省)真题数学(理)试题及答案解析

2018年高考(四川省)真题数学(理)试题及答案解析

2018年普通高等学校招生全国统一考试理科(四川卷)参考答案第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-【答案】A2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10【答案】C3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A4.若0a b >>,0c d <<,则一定有A .a b c d > B .a b c d < C .a b d c > D .a b d c< 【答案】D5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3【答案】C6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种【答案】B7.平面向量a=(1,2), b=(4,2), c=ma+b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2【答案】D8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。

设点P 在线段。

2018四川省高考数学试卷(理科数学)

2018四川省高考数学试卷(理科数学)

2018年全国高等学校招生统一考试四川卷(理数)1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上2.本部分共12小题,每小题5分,共60分.一、选择题:本大题共l2小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l[31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是 (A)16 (B)13 (C)12 (D )232.复数1i i -+=(A)2i - (B )12i (C )0 (D )2i 3.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A)12l l ⊥,23l l ⊥13l l ⇒P(B )12l l ⊥,23l l P ⇒13l l ⊥(C)233l l l P P ⇒ 1l ,2l ,3l 共面(D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面4如图,正六边形ABCDEF 中,BA CD EF ++u u u r u u u r u u u r =(A)0 (B)BE u u u r (C)AD u u u r (D)CF uuu r5函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的(A)充分而不必要的条件 (B)必要而不充分的条件 (C)充要条件 (D)既不充分也不必要的条件6.在∆ABC 中.222sin sin sin sin sin B C B C ≤+-.则A 的取值范围是(A)(0,6π] (B)[ 6π,π) (c)(0,3π] (D) [ 3π,π) 7.已知()f x 是R 上的奇函数,且当0x f 时,1()()12x f x =+,则()f x 的反函数的图像大致是8.数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈ .若则32b =-,1012b =,则8a = (A )0 (B )3 (C )8 (D )119.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车虚满载且只运送一次.拍用的每吨甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划党团派用两类卡车的车辆数,可得最大利润(A )4650元 (B )4700元 (C )4900元 (D )5000元10.在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-11.已知定义在[)0,+∞上的函数()f x 满足()3(2)f x f x =+,当[)0,2x ∈时,2()2f x x x =-+.设()f x 在[)22,2n n -上的最大值为(*)n a n N ∈,且{}n a 的前n 项和为n S ,则lim n n S →∞= (A )3 (B )52 (C )2 (D )3212.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = (A )415 (B )13 (C )25 (D )23注意事项:1. 必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷上无效.2. 本部分共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分.13.计算121(lg lg 25)100=4--÷ . 14.双曲线22x y =1P 46436-上一点到双曲线右焦点的距离是,那么点P 到左准线的距离是 .15.如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大是,求的表面积与改圆柱的侧面积之差是 .16.函数f x ()的定义域为A ,若1212x x A f x =f x ∈,且()()时总有12x =x f x ,则称()为单函数.例如,函数f x ()=2x+1(x R ∈)是单函数.下列命题:① 函数f x ()=2x (x ∈R )是单函数; ② 若f x ()为单函数,121212x x A x x f x f x ∈≠≠,且,则()();③ 若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象;④ 函数f (x )在某区间上具有单调性,则f (x )一定是单函数.其中的真命题是 .(写出所有真命题的编号)19.(本小题共l2分)如图,在直三棱柱AB-A 1B 1C 1中.∠ BAC=90°,AB=AC=AA 1 =1.D 是棱CC 1上的一 P 是AD 的延长线与A 1C 1的延长线的交点,且PB 1∥平面BDA .(I)求证:CD=C 1D :(II)求二面角A-A 1D-B 的平面角的余弦值;(Ⅲ)求点C 到平面B 1DP 的距离.20.(本小题共12分)设d 为非零实数,a n = 1n [C 1n d+2C n 2d 2+…+(n—1)C n n-1d n-1+nC n n d n ](n ∈N *). (I) 写出a 1,a 2,a 3并判断{a n }是否为等比数列。

四川省高考理科数学答案解析

四川省高考理科数学答案解析

2018年普通高等学校招生全国统一考试(四川卷)数学(理工农医类)第Ⅰ卷一、选择题:(1)i 是虚数单位,计算23i i i ++=(A )-1 (B )1 (C )i - (D )i 解:原式11i i =--=-故选A(2)下列四个图像所表示的函数,在点0x =处连续的是(A ) (B ) (C ) (D ) 解:由图显然选D(8)已知数列{}n a 的首项10a ≠,其前n 项的和为n S ,且112n n S S a +=+,则limnn na S →∞=(A )0 (B )12(C ) 1 (D )2 解:由已知可得1{}n s a +是以12a 为首项,2为公比的等比数列,1111112222n n n n n s a a a s a a -∴+=⋅=⇒=-1112n n n n a s s a --∴=-=⋅,11111211lim lim 12222n n n n n nn a a s a a -→∞→∞-===--,故选B(9)椭圆22221()x y a b a b+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是解:连接BM 、BN ,则,B M A C B N A D ⊥⊥,由三角形的面积相等,得,AB BC AB BD BM BNAC AD ⋅==,得到B M R =,222165AM R AN ==,2229cos 210AC AD CD CAD AC AD +-∠==⋅,222162cos 25MN AM AN AM AN MAN =+-⋅∠=22217cos 225OM ON MN MON OM ON +-∠==⋅,那么M 、N 两点间的球面距离是17arccos 25R(12)设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是(A )2 (B )4 (C ) (D )5解:原式22121025()a ac cb a b =+-+-,22()()24b a b a b a b +--≤=(当且仅当b a b =-)∴原式2222222442102525104a ac c a a c ac a a=+-+=+++-≥(当且仅当222425a c a ==)∴选B 第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)6(2的展开式中的第四项是 . (17)(本小题满分12分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料。

2018年全国高考理科数学试题及答案-四川卷

2018年全国高考理科数学试题及答案-四川卷

2018年全国⾼考理科数学试题及答案-四川卷2018年普通⾼等学校招⽣全国统⼀考试<四川卷)数学<理⼯类)本试题卷分第Ⅰ卷<选择题)和第Ⅱ卷<⾮选择题)。

第Ⅰ卷1⾄2页,第Ⅱ卷3⾄4页,共4页。

考⽣作答时,须将答案答在答题卡上,在本试题卷、草稿纸上⼤题⽆效。

满分150分。

考试时间120分钟。

考试结束后,将本试题卷和答题卡上⼀并交回。

XgjSVA4evw 第Ⅰ卷 <选择题共50分)注意事项:必须使⽤2B 铅笔在答题卡上将所选答案对应的标号涂⿊。

⼀、选择题:本⼤题共10⼩题,每⼩题5分,共50分。

在每⼩题给出的四个选项中,只有⼀个是符合题⽬要求的。

XgjSVA4evw 1、设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =I < )2、如图,在复平⾯内,点A 表⽰复数z ,则图中表⽰z 的共轭复数的点是< )yxDBA OC4、设x Z ∈,集合A 是奇数集,集合B 是偶数集。

若命题:,2p x A x B ?∈∈,则< )2f x x ππω?ω?=+>-<<的部分图象如图所⽰,则,ω?的值分别是< )π-π-π-π6、抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是< )327、函数331x x y =-的图象⼤致是< )8、从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为,a b ,共可得到lg lg a b -的不同值的个数是< )yx-π35π122-2OXgjSVA4evw10、设函数()f x =a R ∈,e 为⾃然对数的底数)。

若曲线sin y x =上存在点00(,)x y 使00(())f f y y =,则a 的取值范围是< )1[1,1]e e --+第⼆部分 <⾮选择题共100分)注意事项:必须使⽤0.5毫M ⿊⾊签字笔在答题卡上题⽬所指⽰的答题区域内作答。

2018年(全国卷Ⅲ)高考数学理真题试题含答案

2018年(全国卷Ⅲ)高考数学理真题试题含答案

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-=A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos 2α=A .B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与轴,轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.3 9.ABC △的内角A B C ,,的对边分别为,,,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .543 11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 15.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为的直线与C 交于A ,B 两点.若 90AMB =︒∠,则k =________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥ 0.050 0.0100.0013.8416.635 10.82819.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AM D ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为的直线与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差. 21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求.(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(为参数),过点()02-,且倾斜角为α的直线与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 23.选修4—5:不等式选讲](10分)设函数()211f x x x =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b +≤,求a b +的最小值.参考答案:1 2 3 4 5 6 7 8 9 10 11 12 CDABCADBCBCB13.1214.3- 15. 16.2 17.(12分)解:(1)设{}n a 的公比为,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-,此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m=,解得6m =. 综上,6m =.18.(12分)解:(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.19.(12分) 解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又 BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为CD 的中点.由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M ,(2,1,1),(0,2,0),(2,0,0)AM AB DA =-== 设(,,)x y z =n 是平面MAB 的法向量,则 0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n , 25sin ,5DA =n , 所以面MAB 与面MCD 所成二面角的正弦值是255. 20.(12分)解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x y m ++==,于是 34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是222211111||(1)(1)3(1)242x x FA x x y =-+=-+-=-.同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB =+,即||,||,||FA FP FB 成等差数列.设该数列的公差为d ,则1122212112||||||||||()422FB FA x x x x x x d =-=-=+-.② 将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得321||28d =.所以该数列的公差为32128或32128-. 21.(12分)解:(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1xf x x x'=+-+. 设函数()()ln(1)1x g x f x x x '==+-+,则2()(1)xg x x '=+. 当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.学#又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >. (2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax==+-++++. 由于当1||min{1,}||x a <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点. 2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++. 如果610a +>,则当6104a x a +<<-,且1||min{1,}||x a <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且1||min{1,}||x a <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-.22.选修4—4:坐标系与参数方程](10分)【解析】(1)O 的直角坐标方程为221x y +=.当2απ=时,与O 交于两点. 当2απ≠时,记tan k α=,则的方程为2y kx =-.与O 交于两点当且仅当22||11k<+,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈.综上,α的取值范围是(,)44π3π.(2)的参数方程为cos ,(2sin x t t y t αα=⎧⎪⎨=-+⎪⎩为参数,44απ3π<<.设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A B P t tt +=,且A t ,B t 满足222sin 10t t α-+=.于是22sin A B t t α+=,2sin P t α=.又点P 的坐标(,)x y 满足cos ,2sin .P P x t y t αα=⎧⎪⎨=-+⎪⎩ 所以点P 的轨迹的参数方程是2sin 2,222cos 222x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α为参数,44απ3π<<.23.选修4—5:不等式选讲](10分)【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b +的最小值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试理科(四川卷)
参考答案
第I 卷(选择题 共50分)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=
A .{1,0,1,2}-
B .{2,1,0,1}--
C .{0,1}
D .{1,0}-
【答案】A
2.在6(1)x x +的展开式中,含3x 项的系数为
A .30
B .20
C .15
D .10
【答案】C
3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点
A .向左平行移动12个单位长度
B .向右平行移动12
个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度
【答案】A
4.若0a b >>,0c d <<,则一定有
A .
a b c d > B .a b c d
< C .a b d c > D .a b d c < 【答案】D
5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为
A .0
B .1
C .2
D .3
【答案】C
6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有
A .192种
B .216种
C .240种
D .288种
【答案】B
7.平面向量a=(1,2), b=(4,2), c=ma+b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =
A .2-
B .1-
C .1
D .2。

相关文档
最新文档