3-3热学知识点总结归纳

合集下载

高中物理3-3热学知识点归纳

高中物理3-3热学知识点归纳

分子的数量.n =M N =£V NM p V 1V N =N A V A 1 2•分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。

(2)扩散现象:不同物质能够彼此进入对方的现象。

本质:由物质分子的无规则运动产生的。

(3)布朗运动布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。

布朗运动不是分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。

①实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。

②布朗运动产生的原因大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。

简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。

③影响布朗运动激烈程度的因素固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

④ 能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在错误!未找到引用源。

,这种微粒肉眼是看不到的,必须借助于显微镜。

3.分子间存在着相互作用力(1)分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥力的合力。

分分子质量:分子平均占据的空间大小)分子直径: N 4兀(°)3=V球体模型:A 32I 16V d=31■ 3兀\6V ~ 0-(固体、液体一般用此模型) 选修3-3热学知识点归纳一、分子运动论1•物质是由大量分子组成的(1)分子体积分子体积很小,它的直径数量级是错误!未找到引用源。

(2)分子质量分子质量很小,一般分子质量的数量级是错误!未找到引用源。

(3)阿伏伽德罗常数(宏观世界与微观世界的桥梁)1摩尔的任何物质含有的微粒数相同,这个数的测量值:错误!未找到引用源。

高中物理选修3-3知识复习提纲:第十章 热力学定律(人教版)

高中物理选修3-3知识复习提纲:第十章 热力学定律(人教版)

高中物理选修3-3知识复习提纲:第十章热力学定律(人教版)高中物理选修3-3知识点总结:第十章热力学定律(人教版)冷热变化是最常见的一种物理现象,本章主要将的就是热力学的有关问题,其中热力学的第一和第二定律是比较重要得,对于能量守恒定律必须要深刻的理解。

考试的要求:Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。

Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。

要求Ⅰ:热力学第一定律、能量守恒定律、热力学第二定律、热力学第二定律的微观结构等内容。

要求Ⅱ:这一章这项要求考察比较少。

知识网络:内容详解:一、功、热与内能●绝热过程:不从外界吸热,也不向外界传热的热力学过程称为绝热过程。

●内能:内能是物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量的总和,用字母U表示。

●热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。

●热传递的方式:热传导、对流热、热辐射。

二、热力学第一定律、第二定律●第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。

表达式uWQ符号+-W外界对系统做功系统对外界做功Q系统从外界吸热系统向外界放热u系统内能增加系统内能减少●第二定律的表述:一种表述:热量不能自发的从低温物体传到高温物体。

另一种表述:(开尔文表述)不可能从单一热库吸收热量,将其全部用来转化成功,而不引起其他的影响。

●应用热力学第一定律解题的思路与步骤:一、明确研究对象是哪个物体或者是哪个热力学系统。

二、别列出物体或系统(吸收或放出的热量)外界对物体或系统。

三、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。

3-3热学知识点

3-3热学知识点

热学、气体一、分子动理论1. 分子动理论(1)物质是由大量分子组成的阿伏加德罗常数N A =6.021023/mol ,含义:1摩尔的任何物质含有的微粒数相同,是联系微观物理量和宏观物理量的桥梁。

分子直径的数量级一般是10-10m(2)分子永不停息地做无规则热运动①扩散现象:不同的物质互相接触时,可以彼此进入对方中去.温度越高,扩散越快。

扩散现象并不是外界作用(例如对流、重力作用等)引起的,也不是化学反应的结果,而是物质分子的无规则运动产生的。

(扩散现象是物质分子的迁移)a 从浓度大处向浓度小处扩散;b 扩散快慢除了与物质的状态有关外,还与温度有关,且温度越高扩散越快;c 从微观机理上看,扩散现象说明了物质分子都在做永不停息的无规则运动。

②布朗运动: 1827年,英国植物学家布朗在观察花粉颗粒的运动时发现,悬浮在液体中的小颗粒总在不停地运动.后人把悬浮微粒的这种无规则运动叫布朗运动。

在显微镜下看到的悬浮在液体(或气体)中微小颗粒的无规则运动,是液体分子对微小颗粒撞击作用的不平衡造成的,是液体分子永不停息地无规则运动的宏观反映。

布朗运动不是固体分子的运动,也不是液体分子的运动,而是小颗粒的运动,是液体分子无规则运动的反映,运动轨迹不确定。

悬浮的微粒越小,撞击的不平衡性就越明显,布朗运动越明显,温度越高,布朗运动越明显。

③布朗颗粒:布朗颗粒用肉眼直接看不到,但在显微镜下能看到,因此用肉眼看到的颗粒所做的运动,不能叫做布朗运动。

热运动在微观上是指分子的运动(如扩散现象),在宏观上表现为温度的变化(如摩擦生热,物体的热传递等)。

(3)分子间存在着相互作用力分子间同时存在着引力和斥力,引力和斥力都随分子间距离增大而减小,但斥力的变化比引力的变化快,实际表现出来的是引力和斥力的合力.①r<r 0,f 引<f 斥,F 分子力表现为斥力 r 0≈10-10m②r =r 0,f 引=f 斥,F 分子力=0,E 分子势能=E min (最小值)③r>r 0,f 引>f 斥,F 分子力表现为引力④r>10r 0,f 引=f 斥≈0,F 分子力≈0,E 分子势能≈0分子力做正功,分子势能减小,分子力做负功,分子势能增加。

传热学知识点总结

传热学知识点总结

第一章§ 1-1 “三个W§ 1-2热量传递的三种基本方式§ 1-3传热过程和传热系数要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。

作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。

本章重点:1. 传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法2. 热量传递的三种基本方式(1) .导热:依靠微观粒子的热运动而产生的热量传递。

传热学重点研究的是在宏观温差作用下所发生的热量传递。

傅立叶导热公式:(2) .对流换热:当流体流过物体表面时所发生的热量传递过程。

牛顿冷却公式:(3) .辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。

由于电磁波只育請线传播,所以只有两个物体相互看得见的咅盼才能发生辐射换热。

黑体热辐射公式:实际物体热辐射:3. 传热过程及传热系数:热量从固壁一则的流体通过固壁传向另一侧流体的过程。

最简单的传热过程由三个环节串联组成。

4. 传热学研究的基础傅立叶定律能量守恒定律+牛顿冷却公式+质量动量守恒定律四次方定律本章难点1. 对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。

2. 热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。

思考题:1. 冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。

为什么?2. 试分析室内暖气片的散热过程。

3. 冬天住在新建的居民楼比住旧楼房感觉更冷。

试用传热学观点解释原因。

4. 从教材表1-1给出的几种h数值,你可以得到什么结论?5. 夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。

人教版高中物理选修3-3课件第10章第3节热力学第一定律能量守恒定律

人教版高中物理选修3-3课件第10章第3节热力学第一定律能量守恒定律

A.尾气的温度越低,柴油机越节能
B.尾气的温度越高,柴油机越节能
C.尾气的温度高低与柴油机是否节能无关
D.以上说法均不正确
A
解析:高温高压的燃气推动活塞向下运动,对活塞做功,燃气的内能大部分转化为活塞的机械能, 在做功的过程中,内能转化为活塞的机械能越多,尾气的温度越低,柴油机越节能,故A正确,BCD错误。
『想一想』 有一种所谓“全自动”机械手表,既不需要上发条,也不用任何电源,却能不停地走下去。这是不 是一种永动机?如果不是,你知道维持表针走动的能量是从哪儿来的吗?
答案:不是永动机,手表戴在手上,手运动的能量一部分转化为手表的能量(动能)。
课内互动探究
探究 一
对热力学第一定律的理解
思考讨论 1
C.转动的叶片不断搅动热水,水温升高 D.叶片在热水中吸收的热量一定大于在空气中释放的热量
解析:形状记忆合金进入水后受热形状发生改变而搅动热水,由能量守恒知能量来源于热水,故A、 B、C错;由能量守恒知,叶片吸收的能量一部分转化成叶片的动能,一部分释放于空气中,故D对。
归纳总结
1.能量的存在形式及相互转化
各种运动形式都有对应的能:机械运动有机械能,分子的热运动有内能,还有诸如电磁能、化学能、 原子能等。
各种形式的能,通过做功可以相互转化,例如:利用电炉取暖或烧水,电能转化为内能;煤燃烧, 化学能转化为内能;列车刹车后,轮子温度升高,机械能转化为内能
Hale Waihona Puke 2.守恒条件与某种运动形式对应的能是否守恒是有条件的,例如,物体的机械能守恒,必须是只有重力做功; 而能量守恒定律是没有条件的,它是一切自然界现象都遵守的基本规律。
(3)具有重大实践意义,即彻底粉碎了永动机的幻想。

热学内容知识点总结

热学内容知识点总结

热学内容知识点总结热学的主要内容包括热力学和热传导学。

热力学是热学的基础,它研究热量和功的相互转化过程,以及物质在不同温度下的性质和行为。

热传导学则是研究热量在物体中的传播和传递规律。

此外,热学还涉及到热辐射和相变等内容。

热学在工程技术中有着广泛的应用,如热力机械、制冷空调、火箭发动机等都是依据热学原理来设计和工作的。

在热学的学习过程中,有一些重要的知识点需要我们重点掌握。

下面我们就来总结一下热学的重要知识点。

1. 热力学基本概念热学的基本概念包括热平衡、热容量、热力学系统、热力学过程等。

热平衡是指在相互接触的物体之间,不存在能量的净交换,它们的温度不再发生变化的状态。

热容量是物体对热量的吸收能力的度量,它是指物体温度升高一个度所需的热量。

热力学系统是研究的对象,可以是封闭系统、开放系统或孤立系统。

热力学过程是指系统从一个状态变为另一个状态的过程,包括等容过程、等压过程、等温过程、绝热过程等。

2. 热力学定律热学定律是热学研究的基础,包括热力学第一定律、热力学第二定律、热力学第三定律等。

热力学第一定律是能量守恒定律的推论,它表明热量和功是可以相互转化的。

热力学第二定律是热过程方向性的定律,它表明热量不会自发地从低温物体传到高温物体,也就是热量不会自发地从冷的地方传到热的地方。

热力学第三定律则是介绍了绝对零度的概念,它规定在绝对零度时物体的熵为零。

3. 热力学循环热力学循环是指一个系统在不断地被热源加热和被冷源散热的过程中所经历的一系列热力学过程。

热力学循环包括卡诺循环、斯特林循环、布雷顿循环等。

卡诺循环是一个理想的热力学循环,它由等温膨胀、绝热膨胀、等温压缩、绝热压缩四个过程组成。

卡诺循环具有最高的效率,它为热机的效率提供了理论上的极限。

4. 热力学参数热力学参数是热学研究中的重要内容,包括温度、热量、功、熵等。

温度是物体内能的一种度量,它是物体热平衡状态的一种指标。

热量是热能的转移形式,它是物体之间由于温度差产生的能量交换。

最新人教版高中物理选修3-3:7.4温度和温标 知识点总结及课时练习

最新人教版高中物理选修3-3:7.4温度和温标 知识点总结及课时练习

4温度和温标记一记温度和温标知识体系一个比较——平衡态与热平衡一个定律——热平衡定律一个关系——摄氏温标与热力学温标的关系T=t+273.15 K三个理解——温度、平衡态、热平衡辨一辨1.只要温度不变且处处相等,系统就一定处于平衡态.(×)2.两个系统在接触时它们的状态不发生变化,这两个系统原来的温度是相等的.(√)3.处于热平衡的两个系统的温度一定相等.(√)4.温度变化1 ℃,也就是温度变化1 K.(√)5.摄氏温度与热力学温度都可能取负值.(×)想一想1.平衡态就是热平衡吗?提示:不是,平衡态是一个系统所处的状态,该状态下系统的状态参量如温度、压强等不再发生变化,热平衡是两个系统达到了相同的温度.2.达到热平衡状态的物体每个分子都具有相同的温度吗?提示:不正确,温度是反映分子做无规律运动的剧烈程度,是大量分子热运动的集体表现,对单个分子来说温度没有意义,并非达到热平衡状态的物体每个分子都具有相同的温度.思考感悟:练一练1.两个温度不同的物体相互接触,达到热平衡后,它们具有相同的物理量是()A.质量B.密度C.温度D.重力解析:由热平衡的定义可知,C项正确.答案:C2.(多选)下列有关温度的说法正确的是()A.用摄氏温度和热力学温标表示温度是两种不同的表示方法B.用两种温度表示温度的变化时,两者的数值相等C.1 K就是1 ℃D.当温度变化1 ℃时,也可以说成温度变化274 K解析:温标是用来定量描述温度的方法,常用的温标有摄氏温标和热力学温标,两种温标表示同一温度时,数值不同,但在表示同一温度变化时,数值是相同的.若物体的温度升高1 K,也可以说物体的温度升高1 ℃,但在表示物体的温度时,物体的温度为1 K,而不能说成物体的温度为1 ℃.答案:AB3.关于温度和测量温度的依据,下列说法不正确的是() A.温度宏观上反映物体的冷热程度,我们感觉冷的物体温度低B.当A、B两物体分别与C物体达到热平衡时,则A物体与B物体之间也处于热平衡状态C.当甲、乙两物体达到热平衡时,甲、乙两物体的温度相同D.热平衡是利用温度计测量温度的依据解析:温度宏观上反映物体的冷热程度,但并不是感觉冷的物体温度就低,人体感受的物体冷热程度,一方面取决于被感受的物体的温度,另一方面还与被感受物体单位时间内吸收或放出的热量的多少有关,A项错误;由热平衡定律知道,B项正确;只要两个系统温度相同且不再发生变化,它们就处于热平衡状态,所以C、D两项正确.答案:A4.(多选)关于平衡态和热平衡,下列说法中正确的是() A.只要温度不变且处处相等,系统就一定处于平衡态B.两个系统在接触时它们的状态不发生变化,说明这两个系统原来的温度是相等的C.热平衡就是平衡态D.处于热平衡的几个系统的温度一定相等解析:一般来说,描述系统状态的参量不止一个,仅仅根据温度不变且处处相等,不能得出系统一定处于平衡态的结论,A 项错误;根据热平衡的定义可知B、D两项是正确的;平衡态是针对某一系统而言的,热平衡是两个系统相互影响的最终结果,可见C项错误.答案:BD要点一热力学温标与摄氏温标的关系1.下列关于热力学温度的说法中,不正确的是()A.热力学温度的零度是-273.15 ℃B.热力学温度的每一度的大小和摄氏温度每一度的大小是相同的C.绝对零度是低温的极限,永远达不到D.1 ℃就是1 K解析:由T=t+273.15 K可知选项A、B说法正确;绝对零度只能无限接近,不能达到,C项说法正确;表示变化量时,改变1 ℃就是改变1 K,但是表示温度时,1 ℃与1 K不同,D项说法错误,故选D.答案:D2.(多选)关于热力学温度,下列说法中正确的是()A.-33 ℃与240 K表示同一温度B.温度变化1 ℃,也就是温度变化1 KC.摄氏温度与热力学温度都可能取负值D.温度由t℃升至2t℃,对应的热力学温度升高了273 K+t解析:本题主要考查热力学温度与摄氏温度的关系:T=273 K +t.由此可知-33 ℃与240 K表示同一温度,A、B两项正确;热力学温度初态为273 K+t,末态为273 K+2t,温度变化t K,故D项错误;对于摄氏温度可取负值的范围为-273 ℃至0 ℃,因绝对零度达不到,故热力学温度不可能取负值,故C项错误.答案:AB3.严冬,湖面上结了厚厚的冰,但冰下面鱼儿仍在游动.为了测出冰下水的温度,某同学在冰上打了一个洞,拿来一支实验室温度计,用下列四种方法测水温,其中正确的是() A.用线将温度计拴牢从洞中放入水里,待较长时间后从水中提出,读出示数B.取一塑料饮水瓶,将瓶拴住从洞中放入水里,水灌满瓶后取出,再用温度计测瓶中水的温度C.取一塑料饮水瓶,将温度计悬吊在瓶中,再将瓶拴住从洞中放入水里,水灌满瓶后待较长时间,然后将瓶提出,立即从瓶外观察温度计的示数D.手拿温度计,从洞中将温度计插入水中,可待较长时间后读出示数解析:要测量冰下水的温度,必须使温度计与冰下的水达到热平衡,再读出温度计的示数,可隔着冰又没法直接读数,把温度计取出来,显示的又不是原平衡态下的温度,所以A、D两项不正确,B项做法也失去了原来的热平衡,水瓶提出后,再用温度计测,这时周围空气也参与了热交换,测出的温度不再是冰下水的温度了.只有C项正确.答案:C4.下图是四种测液体温度的方法,其中正确的是()解析:用温度计测量液体温度时,温度计必须置于液体中,而且不能与器壁接触,只有D项正确.答案:D要点二对温度、平衡态、热平衡的理解5.(多选)关于热平衡定律的理解正确的是()A.两系统的温度相同时,才能达到热平衡B.A、B两系统分别与C系统达到热平衡,则A、B两系统热平衡C.甲、乙、丙物体温度不相等,先把甲、乙接触,最终达到热平衡,再将丙与乙接触最终也达到热平衡,则甲、丙也处于热平衡D.热平衡时,两系统的温度相同,压强、体积也一定相同解析:两个系统热平衡的标志是它们温度相同,但压强、体积不一定相同,故A、B两项正确,C、D两项错误.答案:AB6.[2019·榆林高二检测](多选)下列物体中处于平衡态的是()A.冰水混合物处在1 ℃的环境中B.将一铝块放入沸水中加热较长的时间C.冬天刚打开空调的教室内的气体D.用玻璃杯盛着的开水放在室内足够长时间解析:冰水混合物在1 ℃的环境中要吸收热量,温度升高,不是平衡态,A项错误;当铝块放在沸水中足够长的时间,铝块各部分的温度与沸水的温度相同,达到平衡态,B项正确;同理可知D项也正确;冬天刚打开空调的教室内的气体各部分温度不同,不是平衡态,C项错误.答案:BD7.有关热平衡的说法正确的是()A.如果两个系统在某时刻处于热平衡状态,则这两个系统永远处于热平衡状态B.热平衡定律只能研究三个系统的问题C.如果两个系统彼此接触而不发生状态参量的变化,这两个系统又不受外界影响,那么这两个系统一定处于热平衡状态D.两个处于热平衡状态的系统,温度可以有微小的差别解析:本题考查的知识点是热平衡.处于热平衡状态的系统,如果受到外界的影响,状态参量会随之变化,温度也会变化,故A项错误;热平衡定律对多个系统也适用,故B项错误;由热平衡的意义知,C项正确;温度是热平衡的标志,必须相同,故D 项错误.答案:C8.两个处于热平衡状态的系统,由于受外界影响,状态参量发生了变化,则关于它们后来是否能处于热平衡的说法中正确的是()A.不能B.一定能C.要看它们后来的温度是否相同D.取决于除温度外的其他状态参量是否相同解析:由热平衡定律可知,只要两个系统的温度相同,两个系统就处于热平衡状态,而与其他状态参量是否相同无关.答案:C基础达标1.(多选)在热学中,要描述一定质量气体的宏观状态,需要确定下列哪些物理量()A.每个气体分子的运动速率B.压强C.体积D.温度解析:描述系统的宏观状态,其参量是宏观量,每个气体分子的运动速率是微观量,不是气体的宏观状态参量.气体的压强、体积、温度分别是从力学、几何、热学三个角度对气体的性质进行的宏观描述,是确定气体宏观状态的三个状态参量.故B、C、D三项正确.答案:BCD2.(多选)下列关于温标的说法正确的是()A.温标不同,测量时得到的同一系统温度的数值可能是不同的B.不同温标表示的温度数值不同,则说明温度不同C.温标的规定都是人为的,没有什么理论依据D.热力学温标是从理论上规定的解析:根据热量的传播特性可知,热量总是从高温物体传到低温物体,或从物体的高温部分传递到低温部分,因此热量传播方向的决定因素是温度,故D项正确,A、B、C三项错误.答案:D3.(多选)热力学系统的平衡态的特点是()A.定态平衡B.动态平衡C.分子已经不动D.分子仍做无规则运动解析:热平衡是一种动态平衡,是大量分子运动的平均效果,处于热平衡的系统,分子仍在做无规则运动.答案:BD4.如果一个系统达到了平衡态,那么这个系统各处的() A.温度、压强、体积都必须达到稳定的状态不再变化B.温度一定达到了某一稳定值,但压强和体积仍是可以变化的C.温度一定达到了某一稳定值,并且分子不再运动,达到了“凝固”状态D.温度、压强就会变得一样,但体积仍可变化解析:如果一个系统达到了平衡态,系统内各部分的状态参量如温度、压强和体积等不再随时间发生变化,温度达到稳定值,分子仍然是运动的,不可能达到所谓的“凝固”状态.故A项正确,B、C、D三项错误.答案:A5.关于温度与温标,下列说法正确的是()A.温度与温标是一回事,所以热力学温标也称为热力学温度B.摄氏温度与热力学温度都可以取负值C.摄氏温度升高3 ℃,在热力学温标中温度升高276.15 KD.热力学温度每一度的大小与摄氏温度每一度的大小相等解析:温标是温度数值的表示方法,所以温度与温标是不同的概念,用热力学温标表示的温度称为热力学温度,A项错误;摄氏温度可以取负值,但是热力学温度不能取负值,因为热力学温度的零点是低温的极限,故B项错误;摄氏温度的每一度与热力学温度的每一度的大小相等,D项正确;摄氏温度升高3 ℃,也就是热力学温度升高了3 K,故C项错误.答案:D6.(多选)温度计所用测量温度的物质应具备的条件为() A.它必须是液体或气体B.它因冷热而改变的特性要有重复性C.它因冷热所产生的效应相当明显D.当它与其他物体接触后,能在短时间内达到热平衡解析:温度计所用测量温度的物质应该具有以下特性:因冷热而改变的特性要有重复性,因冷热所产生的效应相当明显,当它与其他物体接触后,能在短时间内达到热平衡.至于物质是固态还是液态则没有要求.故选B、C、D三项.答案:BCD7.(多选)下列叙述正确的是()A.若不断冷冻,物体的温度就会不断地下降B.温度是决定一个系统与另一个系统是否达到热平衡状态的物理量C.热力学零度是低温的下限D.任何物体,温度下降到某一点就不能再降了解析:热力学零度是低温的下限,永远不能达到,故A项错误,C、D项正确.温度是决定一个系统与另一个系统是否达到热平衡状态的物理量,故B项正确.答案:BCD8.小明自定一种新温标p,他将冰点与沸点之间的温度等分为200格,且将冰点的温度定为50 p,今小明测量一杯水的温度为150 p时,则该温度用摄氏温度表示时应为()A.30 ℃B.40 ℃C.50 ℃D.60 ℃解析:每格表示的摄氏度为100200℃=0.5 ℃,比冰点高出的温度为(150-50)×0.5 ℃=50 ℃,C项正确,A、B、D三项错误.答案:C9.在25 ℃左右的室内,将一支温度计从酒精中取出,观察它的示数变化情况是()A.上升B.下降C.不变D.先下降后上升解析:室温为25 ℃,温度计在酒精中的示数为25 ℃.将温度计拿出后,附着在温度计上的酒精挥发吸热,使温度计温度降低,挥发结束后,温度计和周围环境达到热平衡,示数再次恢复到25 ℃.答案:D10.荷兰人华伦海特引入了华氏温度,规定水凝固时的温度为32华氏度,标准大气压下水沸腾时的温度为212华氏度.中间分为180等份,每一等份代表1华氏度,今年1月份上海出现了近几年罕见的低温,最低温度接近-10摄氏度,换算成华氏温度为()A.14华氏度B.16华氏度C.18华氏度D.20华氏度解析:设摄氏温度为t时,对应的华氏温度为T,根据题述知,T=1.8t+32,将t=-10 ℃代入得T=14华氏度,故选A项.答案:A11.关于分别以摄氏温度及热力学温度为横、纵坐标所表示的t与T的关系图线说法错误的是()A.为直线B.通过第二象限C.纵截距小于横截距D.斜率为1解析:根据T=273.15 K+t可知t与T的关系图线是一条与纵坐标轴交点坐标为(0,273.15 K)、斜率是1的倾斜直线,故A、B、D三项正确,选C项.答案:C12.目前世界上最大的强子对撞机在法国和瑞士的边境建成并投入使用.加速器工作时,需要注入约1万吨液氮对电路进行冷却,冷却的最低温度可达到零下271摄氏度,则该温度用热力学温标可表示为()A.2 K B.271 KC.4 K D.0.1 K解析:由热力学温标与摄氏温标的关系式T=t+273 K和t=-271 ℃得T=2 K,故A项正确.答案:A能力达标13.(多选)伽利略在1593年制造了世界上第一个温度计——空气温度计,如图所示.一个细长颈的球形瓶倒插在装有红色液体的槽中,细管中的液面清晰可见,如果不考虑外界大气压的变化,就能根据液面的变化测出温度的变化,则()A .该温度计的测温物质是槽中的液体B .该温度计的测温物质是细管中的红色液体C .该温度计的测温物质是球形瓶中的空气D .该温度计是利用测温物质的热胀冷缩性质制成的解析:细管中的红色液体是用来显示球形瓶中空气的体积随温度变化情况的,测温物质是球形瓶中封闭的空气,该温度计是利用它的热胀冷缩的性质制成的,故A 、B 两项错误,C 、D 两项正确.答案:CD14.实验室有一支读数不准确的温度计.在测一标准大气压下冰水混合物的温度时,其读数为20 ℃;在测一标准大气压下沸水的温度时其读数为80 ℃.下面分别是温度计示数为41 ℃时对应的实际温度和实际温度为60 ℃时温度计的示数,其中正确的是( )A .41 ℃、60 ℃B .21 ℃、40 ℃C .35 ℃、56 ℃D .35 ℃、36 ℃解析:此温度计1 ℃表示的实际温度为10080-20℃=53 ℃,当它的示数为41 ℃时,它的示数变化的格数为21格,对应的实际温度应为21×53 ℃=35 ℃;同理,当实际温度为60 ℃时,此温度计的示数应变化6053=36格,即它的示数应为(36+20) ℃=56 ℃,所以C 项正确.答案:C。

高中物理选修3-3热学知识点总结

高中物理选修3-3热学知识点总结

第一章分子动理论1、物质是由大量分子组成的(1)单分子油膜法测量分子直径(2)1mol任何物质含有的微粒数相同N A=6.02x1023mol-1(3)对微观量的估算:分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)利用阿伏伽德罗常数联系宏观量与微观量Ⅰ.微观量:分子体积V0、分子直径d、分子质量m0.Ⅱ.宏观量:物体的体积V、摩尔体积V m,物体的质量m、摩尔质量M、物体的密度ρ.特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的。

分子的体积V0=NA Vm ,仅适用于固体和液体,对气体不适用,仅估算了气体分子所占的空间。

2、对于气体分子,的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离.2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。

可以发生在固体、液体、气体任何两种物质之间(2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察到的。

①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。

(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈3、分子间的相互作用力(1)分子间同时存在引力和斥力,两种力的合力又叫做分子力。

(2)分子之间的引力和斥力都随分子间距离增大而减小,随分子间距离的减小而增大。

但总是斥力变化得较快。

(3)图像:两条虚线分别表示斥力和引力;实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。

r0位置叫做平衡位置,r0的数量级为10-10m。

3-3热学知识点总结归纳

3-3热学知识点总结归纳

第七章:分子动理论内容1、物体是由大量分子组成的内容2、 分子永不停息的做无规则热运动内容3、分子间同时存在相互作用的引力和斥力一、物体是由大量分子组成的阿伏加德罗常数(N A =6.02×1023mol -1:联系微观量与宏观量的桥梁。

微观量: 分子体积v 0、分子直径d 、分子质量m 0 分子总个数N宏观量: 物质体积v 、摩尔体积V 、物质质量m 、摩尔质量M物质密度ρ、物质的量n 。

分子质量m 0=摩尔质量M/阿伏加德罗常数N A 即m 0= M/N A分子质量m 0=物质密度ρ*摩尔体积V/阿伏加德罗常数N A 即m 0= ρV/N A分子质量数量级10-26kg分子体积v 0=摩尔体积V/阿伏加德罗常数N A :v 0=V/N A分子体积v 0=摩尔质量M/物质密度ρ*阿伏加德罗常数N A 即v 0=M/ρN A(对气体,v 0应为气体分子占据的空间大小)分子直径:(数量级10-10m )○1球体模型.V d =3)2(34π (固体、液体一般用此模型) ○2立方体模型.30=V d (气体一般用此模型 固体、液体估算直径也可)(对气体,d 应理解为相邻分子间的平均距离)分子的数量:N=n N A =m/m 0 =v/v 0 n=m/M n=v/V ( n=ρv/M n=m/ρV )(*对气体,v 0应理解为气体分子所占空间体积*)固体、液体分子可估算分子大小(认为分子一个挨一个紧密排列);气体分子不可估算大小,只能估算分子间平均距离、所占空间体积油膜法测油酸分子直径 (利用宏观量求微观量)原理: d= V/Sd: 单分子油膜层厚度v: 1滴油酸酒精溶液中油酸体积=N 滴油酸酒精溶液总体积*浓度/Ns:单分子油膜面积(查格数:多于半格算一个格,少于半格不算)二、 分子永不停息的做无规则热运动分子永不停息的无规则运动叫热运动------(微观运动)1、扩散现象:不同物质彼此进入对方。

最新最全,高中物理选修,3---3《热学》,高考必考知识点,的整体分析

最新最全,高中物理选修,3---3《热学》,高考必考知识点,的整体分析

高中物理选修3…3《热学》整体分析高中物理选修3---3《热学》与选修3---4《光学》在高考中占15分之多,选修3---3相较于选修3---4而言,知识点少,内容条理性强。

目前,相关资料对选修3----3考点的归纳与总结只是单纯地自各个考点本身着手,并没有一个自教材整体的高度来加以综合概括分析。

本文力图将《热学》自四个方面加以整体分析描述,使教材中的各个知识点连成线,便于高三学生在短时间内熟练的掌握各个知识点,从而达到顺利解决高考中热学选考题的目的。

§§第一部分:分子动理论一、 物体是由大量分子组成的。

1、分子模型:①固体与液体分子可以看为球体或正方体模型,分子的体积分别为3030a v d 6v =π=与,其中d(分子直径)与a(正方体边长)均可以看为两个相邻分子之间的距离。

②气体分子只能看为正方体模型,该正方体的体积30a v =,只能说成是气体分子所占据有的空间体积,其中a(正方体的边长)可以看为相邻两气体分子之间的平均距离。

2、油膜法测液体分子的直径: Ⅰ.实验操作的关键点:①一种模型:将油酸分子看为球体模型; ②一种思路:使水面上形成单分子油膜层。

Ⅱ.实验步骤与相应操作的目的:①配制一定浓度的油酸酒精溶液,如向amL 纯油酸中加入酒精,直至溶液总量达到bmL ,则油酸浓度00100ba A ⨯=,(目的:酒精起稀释作用,便于在液面上形成单分子油膜层,避免油酸分子在液面上重叠,导致分子直径的测量值偏大);②将油酸酒精溶液一滴一滴滴入量筒中,记下n 滴溶液的总体积V ,(目的:测大不测小,减小读数产生的偶然误差);③在水面上均匀地撒上痱子粉或石膏粉,(目的:利于看清油膜层边缘的轮廓);④将一滴油酸酒精溶液(令其体积为v 1)滴入水中,则这一滴溶液中的纯油酸体积为ba n v bav v 10⋅=⨯=,(减少纯油酸的量,便于形成单分子油膜);⑤在坐标纸上描出油膜层轮廓的形状,〔目的:求单分子油膜层的面积S ,数格子,多余半格算一格(偏大),少于半格舍去(偏小),整体面积偏差可以忽略不计〕; ⑥令油酸分子的直径为d ,则nbsvas v d 0==。

高中物理选修3-3知识点归纳

高中物理选修3-3知识点归纳

高中物理选修3-3知识点归纳选修3-3物理知识1、晶体与非晶体晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异性。

非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性。

①判断物质是晶体还是非晶体的主要依据是有无固定的熔点。

②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)。

2、单晶体、多晶体如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)。

如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。

3、晶体的微观结构:固体内部,微粒的排列非常紧密,微粒之间的引力较大,绝大多数微粒只能在各自的平衡位置附近做小范围的无规则振动。

晶体内部,微粒按照一定的规律在空间周期性地排列(即晶体的点阵结构),不同方向上微粒的排列情况不同,正由于这个原因,晶体在不同方向上会表现出不同的物理性质(即晶体的各向异性)。

4、表面张力当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力,如露珠。

(1)作用:液体的表面张力使液面具有收缩的趋势。

(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直。

(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大。

5、液晶分子排列有序,光学各向异性,可自由移动,位置无序,具有液体的流动性。

各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的。

6、饱和汽;湿度(1)饱和汽:与液体处于动态平衡的蒸汽.(2)未饱和汽:没有达到饱和状态的蒸汽.(3)饱和汽压①定义:饱和汽所具有的压强。

②特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。

(4)湿度①定义:空气的干湿程度。

②描述湿度的物理量a.绝对湿度:空气中所含水蒸气的压强。

3 3热学知识点总结

3 3热学知识点总结

3 3热学知识点总结1. 热力学定律热力学定律是热学研究的基础,主要包括热力学第一定律和第二定律。

热力学第一定律是能量守恒定律,它表明能量在系统中的转化不会产生净增加或减少,只会在不同形式之间转换。

热力学第二定律则表明热永远不能从低温物体传递到高温物体,即热能不能自发地从低温物体流向高温物体,这被称为卡诺循环定律。

2. 热力学过程热力学过程是指系统内能量的变化过程,主要包括等体过程、等压过程、等温过程和绝热过程。

在等体过程中,系统内部体积不变,而在等压过程中,系统内部压强不变。

等温过程是指系统内温度不变,而绝热过程是指系统内不进行热交换。

对于这些过程,可以通过热力学定律来分析系统内能量的变化。

3. 热容热容是指物体在吸收一定量的热量时所发生的温度变化。

对于理想气体而言,其热容分为定压热容和定容热容。

定压热容是指在恒定压力下吸收一定量的热量时系统的温度变化,而定容热容则是指在恒定体积下吸收一定量的热量时系统的温度变化。

对于固体和液体而言,它们的热容是与压力和温度相关的,可以通过实验来测量。

4. 热传导热传导是指热量在物质中传递的过程,主要通过分子的热运动来实现。

对于导热系数是介质传导热的属性,是介质单位厚度,在单位时间内通过单位横截面积,温度差为1度时的热量,标志为λ,在大气物理学中有显著的意义,地壁斗式热瑞频率通俗的讲是越高越好越高越好,常见的大气分层、席尔梅环等现象都和隔卵系数有较大的关联。

5. 热功率热功率是指单位时间内的热量传递速率,可以通过热传导方程来描述。

对于导热系数是介质传导热的属性,是介质单位厚度,在单位时间内通过单位横截面积,温度差为1度时的热量,标志为λ。

在大气物理学中有显著的意义,地壁斗式热瑞频率通俗的讲是越高越好越高越好,常见的大气分层、席尔梅环等现象都和导热系数有较大的关联。

总之,热学是一门非常重要的物理学分支,它研究了热能转化与物质内部的热运动规律。

上述介绍的知识点只是热学中的一部分,希望能对大家有所帮助。

(完整版)高中物理3-3热学知识点归纳(全面、很好)(最新整理)

(完整版)高中物理3-3热学知识点归纳(全面、很好)(最新整理)

选修3-3热学知识点归纳一、分子运动论1. 物质是由大量分子组成的(1)分子体积分子体积很小,它的直径数量级是10‒10m(2)分子质量分子质量很小,一般分子质量的数量级是10‒26kg(3)阿伏伽德罗常数(宏观世界与微观世界的桥梁)1摩尔的任何物质含有的微粒数相同,这个数的测量值:N A =6.02×1023mol ‒1设微观量为:分子体积V 0、分子直径d 、分子质量m ;宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ.分子质量: m =μN A =ρV 1N A分子体积: (对气体,V 0应为气体分子平均占据的空间大小) V 0=μρN A =V 1N A分子直径:球体模型: (固体、液体一般用此模型)V d N =3A 2(34π303A 6=6=ππV N V d 立方体模型: (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离)30=V d 分子的数量.A 1A 1A A N V V N V M N V N Mn ====ρμρμ2. 分子永不停息地做无规则热运动(1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。

(2)布朗运动布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。

布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。

(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。

(4)布朗运动产生的原因大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。

简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。

(5)影响布朗运动激烈程度的因素固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

物理选修3-3知识点

物理选修3-3知识点

物理选修3-3知识点物理选修3-3通常指的是高中物理课程中的一个选修模块,这个模块主要涉及分子动理论、热力学定律、气体的性质、振动和波等知识点。

以下是物理选修3-3的主要内容概述:1. 分子动理论- 物质是由大量分子组成的,分子在不停地做无规则运动。

- 分子间的相互作用力包括引力和斥力。

- 温度是分子热运动平均动能的标志。

- 扩散现象表明分子在不停地做无规则运动。

2. 热力学定律- 第零定律:如果两个系统分别与第三个系统处于热平衡状态,则这两个系统之间也处于热平衡状态。

- 第一定律:能量守恒定律在热力学中的表现形式,即系统的内能变化等于热量与做功的代数和。

- 第二定律:自然过程中熵总是增加的,或者不可能从单一热源吸热使之完全变为功,而不向其他热源排热。

3. 气体的性质- 理想气体状态方程:\( pV = nRT \),其中\( p \)是压强,\( V \)是体积,\( n \)是摩尔数,\( R \)是气体常数,\( T \)是温度。

- 气体压强的微观意义:大量分子对容器壁的频繁碰撞产生了压强。

- 气体分子的平均速率和根均方速率。

4. 振动和波- 简谐振动的特征和描述,包括位移、回复力、周期和频率。

- 阻尼振动、受迫振动和共振现象。

- 机械波的产生、传播和接收,包括横波和纵波。

- 波速、波长、频率和振幅的关系。

- 声波的特性,包括声速、响度、音调和音色。

5. 光学现象- 光的反射定律和折射定律。

- 平面镜、凹面镜和凸面镜的成像规律。

- 光的干涉、衍射和偏振现象。

- 光的粒子性和波动性,即波粒二象性。

6. 电磁学基础- 静电场的基本概念,包括电场强度、电势和电容。

- 直流电路的基本规律,如欧姆定律和基尔霍夫定律。

- 磁场的基本概念,包括安培力、洛伦兹力和磁通量。

- 电磁感应现象,包括法拉第电磁感应定律和楞次定律。

以上是物理选修3-3的主要知识点概述,每个知识点都需要通过实验、问题解决和理论学习来深入理解。

高中物理选修3-3知识点总结

高中物理选修3-3知识点总结

物理选修3-3 知识点汇总一、宏观量与微观量及相互关系微观量:分子体积V0、分子直径d 、分子质量宏观量:物体的体积V 、摩尔体积V m ,物体的质量m 、摩尔质量M 、物体的密度ρ. 1. 分子的大小:分子直径数量级:-1010m. 2.油膜法测分子直径:d =VS单分子油膜,V 是油滴的体积,S 是水面上形成的 单分子油膜 的面积.3. 宏观量与微观量及相互关系(1)分子数 N =nN A =mMN A4. 宏观量与微观量及相互关系 (2)分子质量的估算方法:每个分子的质量为:m 0=M N A(3)分子体积(所占空间)的估算方法:V 0=V m N A =M ρN A其中ρ是液体或固体的密度 (4)分子直径的估算方法:把固体、液体分子看成球形,则V 0=16πd 3.分子直径d =36V 0π ;把固体、液体分子看成立方体,则d =3V 0. 5. 气体分子微观量的估算方法(1)摩尔数n =V 22.4,V 为气体在标况下的体积.(标况是指0摄氏度、一个标准大气压的条件,V 的单位为升L ,如果 3m )注意:同质量的同一气体,在不同状态下的体积有很大差别,不像液体、固体体积差别不大,所以求气体分子间的距离应说明实际状态.二、分子的热运动1.扩散现象和布朗运动:扩散现象和布朗运动都说明分子做无规则运动.(1)扩散现象:不同物质相互接触时彼此进入对方的现象.温度越高,扩散越快. (2)布朗运动:a.定义:悬浮在液体中的 小颗粒 所做的无规则运动. b .特点 :永不停息;无规则运动;颗粒越小,运动越 剧烈 ;温度越高,运动越 剧烈 ;运动轨迹不确定;肉眼看不到. c .产生的原因:由各个方向的液体分子对微粒碰撞的不平衡引起的.d .布朗颗粒:布朗颗粒用肉眼直接看不到,但在显微镜下能看到,因此用肉眼看到的颗粒所做的运动不能叫做布朗运动.布朗颗粒大小约为10-6 m(包含约1021个分子),而分子直径约为10-10m .布朗颗粒的运动是分子热运动的间接反映。

高三物理3-3热学知识点

高三物理3-3热学知识点

高三物理3-3热学知识点热学是物理学中的重要分支,研究物质热现象及其规律。

在高三物理学习中,热学是一个重要的考点。

本文将介绍高三物理3-3热学的知识点,包括热与能、能量守恒定律、热力学第一定律、热力学第二定律等。

一、热与能热是一种能量的传递方式,是物质内部微观粒子运动的宏观表现。

热能转化通常伴随着温度的升高或降低。

热的传递方式有三种:传导、传热、辐射。

1. 传导:传导是物质内部分子间的热能传递方式。

当两个物体的温度不同时,热量从高温物体传向低温物体。

传导的速率与导热系数、温度差和传热截面积有关。

2. 传热:传热是通过物质的流动实现的热量传递方式。

常见的传热方式有对流传热、辐射传热等。

3. 辐射:辐射是通过电磁波的传播实现的热量传递方式。

辐射的强度与物体的温度相关,与物体的性质、表面形状等有关。

二、能量守恒定律能量守恒定律是研究热学时非常重要的一个定律。

根据能量守恒定律,能量在转化过程中不会凭空产生或消失,只能从一种形式转化为另一种形式,即能量守恒。

在热学中,能量转化的过程受到热量传递的影响。

根据能量守恒定律,热量转化过程中的能量变化可以通过以下公式表示:Q = ΔU + W其中,Q表示吸收或释放的热量,ΔU表示系统内能的变化,W表示对外界做功。

三、热力学第一定律热力学第一定律是热学中的重要定律,也被称为能量守恒定律。

根据热力学第一定律,一个封闭系统的内能变化等于系统吸收热量与对外界做功的代数和。

ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收或释放的热量,W表示对外界做的功。

根据热力学第一定律的公式可以看出,当系统吸收热量时,内能增加;当系统释放热量时,内能减少;当系统对外界做功时,内能减少。

四、热力学第二定律热力学第二定律是热学中的基本定律,主要描述了热现象的不可逆性。

根据热力学第二定律,热量自然地从温度高的物体传递到温度低的物体,不会反过来自发传递。

根据热力学第二定律,一个孤立系统内部的熵总是增加,永远不会减少。

物理选修三热学知识点总结

物理选修三热学知识点总结

物理选修三热学知识点总结一、热力学基本概念1. 温度和热量(1)温度的概念及测量单位温度是物体内部微观粒子的平均动能的度量,是一种物体的热状态。

温度的测量单位是摄氏度(℃)和开尔文(K)。

(2)热力学学说热力学学说是指热力学第一定律和第二定律。

热力学第一定律表明:热量是一种能量形式,在不同物质之间可传递、转换和转化;热力学第二定律则表明:热量自然不会从低温物体传递到高温物体,要使热量从低温物体传递到高温物体,必须借助外界做功。

另外,热力学第二定律还阐述了热机工作的效率问题,即卡诺定理。

2. 热量传递(1)热传递的三种方式热传递是指热量从一个物体传递到另一个物体的过程。

热传递的三种方式包括导热、对流和热辐射。

(2)导热的规律导热是指在固体内部通过物质分子振动和传导热量的方式。

在导热的过程中,热量的传递速率与导热系数、热传递的截面积和温度差有关。

(3)对流传热的规律对流传热是指在流体内部通过流体流动和传热的方式。

在对流传热的过程中,热量的传递速率与传热面积、传热系数、温度差和速度等因素有关。

(4)热辐射的规律热辐射是指通过电磁波辐射传递热量的方式。

根据斯特藩-玻尔兹曼定律和维恩位移定律,热辐射的强度与物体的温度有关,同时,热辐射的频率和波长也与物体的温度有关。

3. 热机(1)热机的工作原理热机是利用热能转化为机械能的装置,其工作原理符合卡诺定理。

热机可分为热力循环和热力过程两种类型,而热力循环又可分为卡诺循环、斯特林循环和某循环。

(2)热机效率热机效率是指热机工作输出的机械能与输入的热量之比,其与热源的温度有关,根据卡诺定理,绝对热机效率的最大值花生系统的热源温度。

以上即是物理选修三热学基本概念的知识点总结,我们了解了温度和热量的概念及其测量单位、热力学学说、热量传递的三种方式和其规律、热机的工作原理和热机效率的计算方法。

接下来我们将对这些知识进行逐一讲解。

二、热力学基本概念的详细讲解1. 温度和热量温度是指反映物体热状态的物理量,是物质内微观粒子平均动能的度量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章:分子动理论内容1、物体是由大量分子组成的内容2、 分子永不停息的做无规则热运动内容3、分子间同时存在相互作用的引力和斥力一、物体是由大量分子组成的阿伏加德罗常数(N A =6.02×1023mol -1:联系微观量与宏观量的桥梁。

微观量: 分子体积v 0、分子直径d 、分子质量m 0 分子总个数N宏观量: 物质体积v 、摩尔体积V 、物质质量m 、摩尔质量M物质密度ρ、物质的量n 。

分子质量m 0=摩尔质量M/阿伏加德罗常数N A 即m 0= M/N A分子质量m 0=物质密度ρ*摩尔体积V/阿伏加德罗常数N A 即m 0= ρV/N A分子质量数量级10-26kg分子体积v 0=摩尔体积V/阿伏加德罗常数N A :v 0=V/N A分子体积v 0=摩尔质量M/物质密度ρ*阿伏加德罗常数N A 即v 0=M/ρN A(对气体,v 0应为气体分子占据的空间大小)分子直径:(数量级10-10m )○1球体模型.V d =3)2(34π (固体、液体一般用此模型) ○2立方体模型.30=V d (气体一般用此模型 固体、液体估算直径也可)(对气体,d 应理解为相邻分子间的平均距离)分子的数量:N=n N A =m/m 0 =v/v 0 n=m/M n=v/V ( n=ρv/M n=m/ρV )(*对气体,v 0应理解为气体分子所占空间体积*)固体、液体分子可估算分子大小(认为分子一个挨一个紧密排列);气体分子不可估算大小,只能估算分子间平均距离、所占空间体积油膜法测油酸分子直径 (利用宏观量求微观量)原理: d= V/Sd: 单分子油膜层厚度v: 1滴油酸酒精溶液中油酸体积=N 滴油酸酒精溶液总体积*浓度/Ns:单分子油膜面积(查格数:多于半格算一个格,少于半格不算)二、 分子永不停息的做无规则热运动分子永不停息的无规则运动叫热运动------(微观运动)1、扩散现象:不同物质彼此进入对方。

温度越高,扩散越快。

(扩散现象由于分子热运动引起的,是宏观现象,不是分子的热运动)应用举例:向半导体材料掺入其它元素扩散现象不是外界作用引起的,是分子无规则运动的直接结果,是分子无规则运动宏观反映间 接 说 明:分子间有间隙2、布朗运动:悬浮在液(气)体中的固体小微粒的无规则运动,要用显微镜来观察. 布朗运动发生的原因是固体小微粒受到周围微粒的 液(气)体分子无规则运动地撞击的不平衡性造成的.因而布朗运动说明了(与固体小微粒接触的液体或气体)分子在永不停息地做无规则运动.(1)布朗运动不是固体微粒中分子的无规则运动.(2)布朗运动不是液体分子的运动.(3)课本中所示的是固体小微粒不同时刻位置连线,不是运动轨迹.(4)微粒越小不平衡性越明显,温度越高,布朗运动越明显. 注意:房间里一缕阳光下的灰尘的运动不是布朗运动.热水里的胡椒粉的运动是由于对流引起的(眼睛能看到)不是布朗运动。

3)扩散现象是分子运动的直接证明但不是分子的热运动;布朗运动间接证明了液体或气体分子的无规则运动 三、 分子间的作用力分子间存在相互作用的引力和斥力分子间有空隙:酒精和水混合体积变小说明分子间有空隙但固体液体很难被压缩,说明有斥力,很难被拉伸,说明有引力破镜难复原,说明分子间有斥力1)分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小(但斥力减小的快),随分子间距离的减小而增大(但斥力增大的快)2)实际表现出来的分子力是分子引力和斥力的合力。

随分子间距离的增大,分子力先变小后变大再变小。

(注意:这是指 r 从小于r 0开始到增大到无穷大)3)分子力的表现及变化,注意r 0(10-10m )与10r 0两个位置。

①当分子间距离为r 0(约为10-10m )时,分子力为零,分子势能最小②当分子间距离r >r 0时,分子力表现为引力。

当分子间距离由r 0增大时,分子力先增大后减小r >10r 0分子力变得很微弱,可忽略,为0③当分子间距离r <r 0时,分子力表现为斥力。

当分子间距离由r 0减小时,分子力不断增大4)注意:压缩气体也需要力,不说明分子间存在斥力作用,压缩气体需要的力是用来反抗大量气体分子频繁撞击容器壁(活塞)时对容器壁(活塞)产生的压力。

温度和温标1、平衡态:在没有外界影响的情况下,只要经过足够长的时间,系统内各部分的状态参量(P 、T )就不在变化,这种情况下我们就说容器内的气体达到平衡态,否则就是非平衡态。

(指的是一个系统的状态)2、热平衡:两个系统相互接触,经过一段时间以后,状态参量就不再变化了,这说明两个系统对于传热来说已经达到了平衡,这种平衡叫做热平衡(指的是两个系统之间的关系)3、热平衡定律:如果两个热力学系统各自与第三个热力学系统处于热平衡,则它们彼此也必处于热平衡。

这一实验结论叫做热平衡定律。

(热平衡定律又叫热力学第零定律)4、温度:反映物体冷热程度的物理量(是一个宏观统计概念),是物体分子热运动平均动能的标志。

(确切的说是物体分子热运动平均平动动能的量度)0 r E P r 0任何相同温度的物体,其分子平均动能相同。

(1)只有大量分子组成的物体才谈得上温度,不能说某几个氧分子的温度是多少多少。

因为这几个分子运动是无规则的,某时刻它们的平均动能可能较大,另一时刻它们的平均动能也可能较小,无稳定的“冷热程度”。

(2)1℃的氧气和1℃的氢气分子平均动能相同,1℃的氧气分子平均速率小于1℃的氢气分子平均速率。

2)热力学温度(T)与摄氏温度(t)的关系为:T=t+273.15(K)说明:①两种温度数值不同,但改变1 K和1℃的温度差相同②0K是低温的极限,只能无限接近,但不可能达到。

(绝对0度不可达到--热力学第三定律)③这两种温度每一单位大小相同,只是计算的起点不同。

摄氏温度把1大气压下冰水混合物的温度规定为0℃,热力学温度把1大气压下冰水混合物的温度规定为273K(即把-273℃规定为0K),所以T=t+273.5、分子动理论是热现象微观理论的基础1)热学包括:研究宏观热现象的热力学、研究微观理论的统计物理学2)统计规律:单个分子的运动都是不规则的、带有偶然性的;大量分子的集体行为受到统计规律的支配3)气体分子运动接特点:分子数密度巨大、分子间频繁碰撞、分子运动杂乱无章,某一时刻向各个方向运动的气体分子数目都相等(有微小差别,可完全忽略)4)气体温度的微观意义:一定温度下分子速率分布:中间多、两头少,温度越高,分子的热运动越激烈(图像右移)内能1)内能是物体内所有分子无规则运动的动能和分子势能的总和,是状态量.改变内能的方法有做功和热传递,它们是等效的.三者的关系可由热力学第一定律得到ΔU=W+Q2)决定所有分子势能的因素:体积(分子间距离)决定所有分子动能的因素:温度(分子总个数、分子平均动能)3)固体、液体的内能与物体所含物质的多少(分子数)、物体的温度(平均动能)和物体的体积(分子势能)都有关气体:一般情况下,气体分子间距离较大,不考虑气体分子势能的变化(即不考虑分子间的相互作用力)4)一个具有机械能的物体,同时也具有内能;一个具有内能的物体不一定具有机械能。

它们之间可转化5)理想气体的内能:理想气体是一种理想化模型,理想气体分子间距很大,不计分子势能,只考虑:所有分子的动能总合。

理想气体的内能微观:分子总个数、平均动能(不计分子势能)宏观:质量、温度由ΔU=W+Q :(1)理想气体与外界做功与否,看体积,体积增大,对外做了功(外界是真空则气体对外不做功属自由扩散)--W取负值,体积减小,则外界对气体做了功--W取负值。

(2)吸热Q取正值、放热Q取负值(3)理想气体内能变化情况看温度。

6)理解内能概念需要注意几点:(1)内能是宏观量,只对大量分子组成的物体有意义,对个别分子无意义。

(2)物体的内能由分子数量(物质的量)、温度(分子平均动能)、体积(分子间势能)决定,与物体的宏观机械运动状态无关.内能与机械能没有必然联系.7)关于分子平均动能和分子势能理解时要注意.(1)温度是分子平均动能大小的标志,温度相同时任何物体的分子平均动能相等,但平均速率一般不等(分子质量不同).(2)分子力做正功分子势能减少,分子力做负功分子势能增加。

(3)分子势能为零一共有两处,一处在无穷远处,另一处小于r 0分子力为零时分子势能最小,而不是零。

(4)理想气体分子间作用力为零,分子势能为零,只有分子动能。

第八章: 气体(分子无规则运动起主要作用)实验定律 理想气体1)探究一定质量理想气体压强p 、体积V 、温度T 之间关系,采用的是控制变量法2)三种变化:玻意耳定律:PV =C 查理定律: P / T =C 盖—吕萨克定律:V/ T =C(或由C T pv = PV =CT=K(P----1/V 图像中) P / T =C/V =K V/ T =C/P=K K 为图像斜率)等温变化图线 等容变化图线 等压变化图线(注意面积代表PV 乘积) (斜率P / T =C/V =K ) (斜率V/ T =C/P=K )提示:①等温变化中的图线为双曲线的一支,等容(压)变化中的图线均为过原点的直线(之所以原点附近为虚线,表示温度太低了,规律不再满足)②图中双线表示同一气体不同状态下的图线,虚线表示判断状态关系的两种方法 ③对等容(压)变化,如果横轴物理量是摄氏温度t ,则交点坐标为-273.15K3)理想气体状态方程理想气体,由于不考虑分子间相互作用力,理想气体的内能仅由温度和分子总数决定 ,与气体的体积无关。

对一定质量的理想气体,有112212p V p V T T =(或C Tpv =) 应用 : 1.注意研究对象x 0 E P r 0 T 1<T 2 p V T 1 T 2 O V 1<V 2 p T V 1 V 2 O p 1<p 2 VT p 1 p 2 O2.注意两个状态下的P V T4)气体压强微观解释:由大量气体分子频繁撞击器壁而产生的,与温度和体积有关。

(1)气体分子的平均动能,从宏观上看由气体的温度决定(2)单位体积内的分子数(分子密集程度n=N/V),从宏观上看由气体的质量体积决定第九章:固体、液体和物态变化一、 晶体和非晶体 晶体的微观结构晶体:石英、云母、明矾、食盐、硫酸铜、蔗糖(粘在一起的糖块是多晶体,单个的是单晶体)、味精等,(雪花是水蒸气凝华形成的六角形图案的晶体、石英晶体:中间六棱柱,两端是六棱锥)非晶体:玻璃、蜂蜡、松香、沥青、橡胶等注:各向同性或异性指:导热或导电性能或光学性质同与不同1)只能用单晶体制作晶体管和集成电路2)具体到某种晶体,它可能只是某种物理性质各向异性较明显。

例:云母片就是导热性明显,方解石则是透光性上明显,方铅矿则在导电性上明显。

相关文档
最新文档