高中物理带电粒子在磁场中的运动试题经典含解析
高中物理带电粒子在磁场中的运动试题(有答案和解析)及解析
高中物理带电粒子在磁场中的运动试题(有答案和解析)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅===有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a2.如图所示,一匀强磁场磁感应强度为B ;方向向里,其边界是半径为R 的圆,AB 为圆的一直径.在A 点有一粒子源向圆平面内的各个方向发射质量m 、电量-q 的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A点,则该粒子的速度为多大?(3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).【答案】(1)(2)(3)【解析】【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.【详解】(1)由得r1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=. r 2=R tanβ=R 由得(3)粒子的轨道半径r 3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr 32+2×π(2r 3)2−r 32=9.0×10-4m 2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.3.如图所示,在两块长为3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos d R a R L ≥+= ;min 0(632)3L T v π= 【解析】 【分析】【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则012qv B m v R =由几何关系:222113()()2L L R R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan 3yv v α== 则=3πα0023sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=, 解得23L R =右侧磁场沿初速度方向的宽度应该满足的条件为223cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得() min6323L Tvπ+=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.4.如图,圆心为O、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。
高考物理带电粒子在磁场中的运动题20套(带答案)含解析
高考物理带电粒子在磁场中的运动题20套(带答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
高考物理带电粒子在磁场中的运动基础练习题及解析
高考物理带电粒子在磁场中的运动基础练习题及解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBLv m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
带电粒子在电磁场中的运动(含答案)
带电粒子在电磁场中的运动1、回旋加速器是加速带电粒子的装置,其主体部分是两个D 形金属盒,两金属盒处在垂直于盒底的匀强磁场中,与高频交流电源相连接后,使粒子每次经过两盒间的狭缝时都能得到加速,如图所示。
现要增大带电粒子从回旋加速器射出时的动能,下列方法可行的是A.仅减小磁场的磁感应强度B.仅减小狭缝间的距离C.仅增大高频交流电压D.仅增大金属盒的半径2、速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S 0A=S 0C,则下列相关说法中正确的是A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S 0的带电粒子的速率等于D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶23、为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计。
该装置由绝缘材料制成,长、宽、高分别为a 、b 、c,左右两端开口。
在垂直于上下底面方向加磁感应强度大小为B 的匀强磁场,在前后两个内侧面分别固定有金属板作为电极。
污水充满管口从左向右流经该装置时,接在M 、N 两端间的电压表将显示两个电极间的电压U 。
若用Q 表示污水流量(单位时间内排出的污水体积),下列说法中正确的是A.N 端的电势比M 端的高B.若污水中正、负离子数相同,则前后表面的电势差为零C.电压表的示数U 跟a 和b 都成正比,跟c 无关D.电压表的示数U 跟污水的流量Q 成正比 4、如图(甲)所示,两块水平放置的平行金属板,板长L=1.4m,板距d=30cm 。
两板间有B=1.25T,垂直于纸面向里的匀强磁场。
在两板上加如图(乙)所示的脉冲电压。
在t=0时,质量m=2×10-15kg ,电量为q=1×10-10C 的正离子,以速度为4×103m/s 从两板中间水平射入。
试求:粒子在板间做什么运动?画出其轨迹。
5、如图所示,足够大的平行挡板A 1、A 2竖直放置,间距6L 。
高考物理带电粒子在磁场中的运动解题技巧及练习题及解析
高考物理带电粒子在磁场中的运动解题技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】22B qLE m=;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有20v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m=且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=3.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm = 又:1mv R Be=解得:00U t B dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=4.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g所以()(00tan 22H x x x y y θ=-=g 由数学知识可知,当(022x y y = 4.5y cm =时H 有最大值,所以max 9H cm =5.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-6.如图所示,虚线OL与y轴的夹角θ=450,在OL上侧有平行于OL向下的匀强电场,在OL下侧有垂直纸面向外的匀强磁场,一质量为m、电荷量为q(q>0)的粒子以速率v0从y轴上的M(OM=d)点垂直于y轴射入匀强电场,该粒子恰好能够垂直于OL进入匀强磁场,不计粒子重力。
高考物理带电粒子在磁场中的运动专题训练答案及解析
高考物理带电粒子在磁场中的运动专题训练答案及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围; (2)若离子速率大小02BqRv m=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。
高中物理带电粒子在磁场中的运动试题(有答案和解析)及解析
O、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为 H= 7 R;整个装置处 2
于真空中,忽略粒子间的相互作用及相对论效应。
(1)试求质子束经过加速电场加速后(未进入磁场)的速度 ν 和磁场磁感应强度 B;
圆半径方向射出磁场;从
x
轴射出点的横坐标: xC
xA
R tan 53
xC 0.1425m .
由几何关系,过 A 点的粒子经 x 轴后进入磁场由 B 点沿 x 轴正向运动.
综上所述,粒子经过磁场后第二次打在 x 轴上的范围为: x 0.1425m
5.如图,平面直角坐标系中,在,y>0 及 y<- 3 L 区域存在场强大小相同,方向相反均平 2
(1)求第 I 象限内磁场的磁感应强度 B1;
(2)计算说明速率为 5v、9v 的粒子能否到达接收器;
(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁
场的磁感应强度 B2 的大小和方向.
【答案】(1)
B1
mv qL
(2)故速率为 v
的粒子被吸收,速率为 9v
的粒子不能被吸收
速度偏转角的正切值均为: tan vy 37 v0
cos 37 v0 v
v 1106 m/s
即:所有的粒子射出极板时速度的大小和方向均相同.
qvB m v2 R
R r 0.03m
由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点 B 离开磁场.
由几何关系,恰好经 N 板右边缘的粒子经 x 轴后沿磁场圆半径方向射入磁场,一定沿磁场
带电粒子在磁场中偏转历年高考题详解
7.〔08四川卷〕24.如图,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上。
整个空间存在匀强磁场,磁感应强度方向竖直向下。
一电荷量为q 〔q >0〕、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ’。
球心O到该圆周上任一点的连线与竖直方向的夹角为θ〔0<θ<)2π。
为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P 相应的速率。
重力加速度为g 。
解析:据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O ’。
P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率。
洛仑兹力f 的方向指向O ’。
根据牛顿第二定律0cos =-mg N θ ②θsin sin 2R v m N f =- ③ 由①②③式得0cos sin sin 22=+-θθθqR v m qBR v ④ 由于v 是实数,必须满足 θθθcos sin 4sin 22gR m qBR -⎪⎭⎫ ⎝⎛=∆≥0 ⑤ 由此得B ≥θcos 2R g q m⑥ 可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为 θcos 2min R g q mB =⑦ 此时,带电小球做匀速圆周运动的速率为mR qB v 2sin min θ= ⑧ 由⑦⑧式得θθsin cos gR v = ⑨ 8.〔08重庆卷〕25.题25题为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM=d.现有一正离子束以小发散角〔纸面内〕从C 射出,这些离子在CM 方向上的分速度均为v 0.假设该离子束中比荷为q m的离子都能会聚到D ,试求: 〔1〕磁感应强度的大小和方向〔提示:可考虑沿CM 方向运动的离子为研究对象〕; 〔2〕离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间; 〔3〕线段CM 的长度.解析:〔1〕设沿CM 方向运动的离子在磁场中做圆周运动的轨道半径为R由12R '=200mv qv B R = R=d得B =0mv qd磁场方向垂直纸面向外〔2〕设沿CN 运动的离子速度大小为v ,在磁场中的轨道半径为R ′,运动时间为t 由v cos θ=v 0得v =0cos v θR ′=mv qB=cos d θ 方法一:设弧长为st =s vs=2(θ+α)×R ′ t =02v R '⨯+)(αθ 〔09年全国卷Ⅰ〕26〔21分〕如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于xy 平面向外。
带电粒子在匀强磁场中的运动典型例题精解
带电粒子在匀强磁场中的运动题型一洛伦兹力大小的计算与方向判断1.如图所示,一个带正电的小球沿光滑的水平绝缘桌面向右运动,速度的方向垂直于一个水平方向的匀强磁场,小球飞离桌子边缘落到地板上.设其飞行时间为t1,水平射程为s1,落地速率为v1.撤去磁场,其余条件不变时,小球飞行时间为t2,水平射程为s2,落地速率为v2,则()A.t1.>t2B.S1>S2C. S1<S2D. V1>V22.摆长为L的单摆在匀强磁场中摆动,摆动平面与磁场方向垂直,如图所示,球在最高点A时,摆线与竖直角度为且摆动中摆线始终绷紧,若摆球带正电,电量为q,质量为m,磁感应强度为B,当球从最高处摆到最低处时,摆线上的拉力F多大?题型二带电粒子在有界磁场中的运动问题3.带电粒子的质量m=1.7×10-27kg,电荷量q=1.6×10-19C,以速度v=3.2×106m/s沿着垂直于磁场方向又垂直磁场边界的方向进入匀强磁场,磁场的磁感应强度为B=0.17T,磁场宽度为L=10cm,求:(不计重力).(1)带电粒子离开磁场时的偏转角多大?(2)带电粒子在磁场中运动的时间是多少?(3)带电粒子在离开磁场时偏离入射方向的距离d多大?4.如图1,圆形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B,现有一电荷量为q,质量为m的正离子从a点沿圆形区域的直径入射,设正离子射出磁场区域方向与入射方向的夹角为,求此离子在磁场区域内飞行的时间。
题型三“对称法”在带电粒子圆周运动中的应用5.如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进人磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是()6.如右图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B=0.10 T,磁场区域半径r= m,左侧区圆心为O1,磁场向里,右侧区圆心为O2,磁场向外.两区域切点为 C.今有质量m=3.2×10-26kg.带电荷量q=1.6×10-19 C的某种离子,从左侧区边缘的A点以速度v=106 m/s正对O1的方向垂直磁场射入,它将穿越C点后再从右侧区穿出.求:(1)该离子通过两磁场区域所用的时间.(2)离子离开右侧区域的出射点偏离最初入射方向的侧移距离为多大?(侧移距离指垂直初速度方向上移动的距离)题型四复杂轨迹的圆周运动问题如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向垂直于纸面向里,且B1>B2。
高中物理带电粒子在磁场中的运动题20套(带答案)含解析
高中物理带电粒子在磁场中的运动题20套(带答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)22e eUv v m=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=neI t求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】(1)对电子经 CA 间的电场加速时,由动能定理得221122e e U mv mv =- 解得:22e eUv v m=+(2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =ne I t224d dNn N a aππ==⨯解得4altN edπ=(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为B .设此轨迹圆的半径为 r ,则222(2)a r r a -=+2v Bev m r=解得:43mvB ae=2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=;(2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m= 222mL mt L qE q ϕ== 22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos x v v α=1cos 2α=060α∴=3.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
带电粒子在匀强磁场中的运动练习题及答案解析
带电粒子在匀强磁场中的运动练习题及答案解析(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除带电粒子在匀强磁场中的运动1.电子在匀强磁场中做匀速圆周运动.下列说法正确的是()A.速率越大,周期越大 B.速率越小,周期越大C.速度方向与磁场方向平行 D.速度方向与磁场方向垂直解析:由带电粒子在匀强磁场中做匀速圆周运动T=2πmqB可知T与v无关,故A、B错;当v与B平行时,粒子不受洛伦兹力作用,故粒子不可能做圆周运动,只有v⊥B时,粒子才受到与v和B都垂直的洛伦兹力,故C错、D 对.2.1998年发射的“月球勘探者号”空间探测器,运用最新科技手段对月球进行近距离勘探,在研究月球磁场分布方面取得了新的成果.月球上的磁场极其微弱,探测器通过测量电子在月球磁场中的轨迹来推算磁场强弱的分布,图中是探测器通过月球A、B、C、D四个位置时,电子运动的轨迹照片.设电子速率相同,且与磁场方向垂直,其中磁场最强的位置是()解析:选A.由粒子轨道半径公式r=mvqB可知,磁场越强的地方,电子运动的轨道半径越小.3. 如图,a和b带电荷量相同,以相同动能从A点射入匀强磁场,做圆周运动的半径r a=2r b,则(重力不计)() A.两粒子都带正电,质量比m a/m b=4 B.两粒子都带负电,质量比m a/m b=4C.两粒子都带正电,质量比m a/m b=1/4 D.两粒子都带负电,质量比m a/m b=1/4解析:选B.由于q a=q b、E k a=E k b,动能E k=12mv2和粒子旋转半径r=mvqB,可得m=r2q2B22E k,可见m与半径r的平方成正比,故m a∶m b=4∶1,再根据左手定则判知粒子应带负电,故B正确.4.下图是质谱议的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述正确的是() X k b 1 . c o mA.质谱仪是分析同位素的重要工具 B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于E/B D.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小解析:选ABC.因同位素原子的化学性质完全相同,无法用化学方法进行分析,故质谱仪就成为同位素分析的重要工具,A正确.在速度选择器中,带电粒子所受电场力和洛伦兹力在粒子沿直线运动时应等大反向,结合左手定则可知B正确.再由qE=qvB有v=E/B,C正确.在匀强磁场B0中R=mvqB,所以qm=vBR,D错误.5. 如下左图所示,在x轴上方有匀强电场,场强为E,在x轴下方有匀强磁场,磁感应强度为B,方向如图所示.在x轴上有一点M,离O点距离为L,现有一带电荷量为+q、质量为m的粒子,从静止开始释放后能经过M 点,如果此粒子放在y轴上,其坐标应满足什么关系(重力不计)左图右图解析:由于此粒子从静止开始释放,又不计重力,要能经过M点,其起始位置只能在匀强电场区域,其过程如下:先在电场中由y轴向下做加速运动,进入匀强磁场中运动半个圆周再进入电场做减速运动,速度为零后又回头进入磁场,其轨迹如上右图所示(没有画出电场和磁场方向),故有:L=2nR(n=1,2,3,…)①又因在电场中,粒子进入磁场时的速度为v,则有:qE·y=12mv2②在磁场中,又有:Bqv=mv2R③由①②③得y=B 2qL 28n 2mE (n =1,2,3……).练习题一、选择题1.一个带电粒子以初速度v 0垂直于电场方向向右射入匀强电场区域,穿出电场后接着又进入匀强磁场区域.设电场和磁场区域有明确的分界线,且分界线与电场强度方向平行,如图中的虚线所示.在下图所示的几种情况中,可能出现的是( )解析:选、C 选项中粒子在电场中向下偏转,所以粒子带正电,再进入磁场后,A 图中粒子应逆时针转,正确;C图中粒子应顺时针转,错误.同理可以判断B 错、D 对.2.如图所示,一电子以与磁场方向垂直的速度v 从P 处沿PQ 方向进入长为d 、宽为h 的匀强磁场区域,从N 处离开磁场,若电子质量为m ,带电荷量为e ,磁感应强度为B ,则( )A .电子在磁场中运动的时间t =d /vB .电子在磁场中运动的时间t =h /vC .洛伦兹力对电子做的功为BevhD .电子在N 处的速度大小也是v解析:洛伦兹力不做功,所以电子在N 处速度大小也为v ,D 正确、C 错,电子在磁场中的运动时间t =弧长v ≠d v≠h v ,A 、B 均错.3. 在图中,水平导线中有电流I 通过,导线正下方的电子初速度的方向与电流I 的方向相同,则电子将( )A .沿路径a 运动,轨迹是圆B .沿路径a 运动,轨迹半径越来越大C .沿路径a 运动,轨迹半径越来越小D .沿路径b 运动,轨迹半径越来越小解析:选B.电流下方的磁场方向垂直纸面向外,且越向下B 越小,由左手定则知电子沿a 路径运动,由r =mv qB 知,轨迹半径越来越大.4. 一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定( )A .粒子从a 到b ,带正电B .粒子从a 到b ,带负电C .粒子从b 到a ,带正电D .粒子从b 到a ,带负电解析:选C.垂直于磁场方向射入匀强磁场的带电粒子受洛伦兹力作用,使粒子做匀速圆周运动,半径R =mv /qB .由于带电粒子使沿途的空气电离,粒子的能量减小,磁感应强度B 、带电荷量不变.又据E k =12mv 2知,v 在减小,故R减小,可判定粒子从b 向a 运动;另据左手定则,可判定粒子带正电,C 选项正确.5.如图是某离子速度选择器的原理示意图,在一半径R =10 cm 的圆柱形筒内有B =1×10-4 T 的匀强磁场,方向平行于轴线.在圆柱形筒上某一直径两端开有小孔a 、b 分别作为入射孔和出射孔.现有一束比荷为q m =2×1011 C/kg 的正离子,以不同角度α入射,最后有不同速度的离子束射出.其中入射角α=30°,且不经碰撞而直接从出射孔射出的离子的速度v 大小是( )A .4×105 m/sB .2×105 m/sC .4×106 m/sD .2×106 m/s答案:C6. 如下左图所示,有界匀强磁场边界线SP ∥MN ,速率不同的同种带电粒子从S 点沿SP 方向同时射入磁场.其中穿过a 点的粒子速度v 1与MN 垂直;穿过b 点的粒子速度v 2与MN 成60°角,设二粒子从S 到a 、b 所需时间分别为t 1和t 2,则t 1∶t 2为(重力不计)( )A .1∶3B .4∶3C .1∶1D .3∶2解析:选D.如上右图所示,可求出从a 点射出的粒子对应的圆心角为90°.从b 点射出的粒子对应的圆心角为60°.由t =α2π T ,可得:t 1∶t 2=90°∶60°=3∶2,故D 正确.7. 目前世界上正研究的一种新型发电机叫磁流体发电机,如图表示它的发电原理:将一束等离子体(即高温下电离的气体,含有大量带正电和带负电的微粒,而从整体来说呈中性)沿图所示方向喷射入磁场,磁场中有两块金属板A 、B ,这时金属板上就聚集了电荷.在磁极配置如图中所示的情况下,下列说法正确的是( )A .A 板带正电B .有电流从b 经用电器流向aC .金属板A 、B 间的电场方向向下D .等离子体发生偏转的原因是离子所受洛伦兹力大于所受静电力解析:选BD.等离子体射入磁场后,由左手定则知正离子受到向下的洛伦兹力向B 板偏转,故B 板带正电,B 板电势高,电流方向从b 流向a ,电场的方向由B 板指向A 板,A 、C 错,B 对;当Bvq >Eq 时离子发生偏转,故D 对.8.带正电粒子(不计重力)以水平向右的初速度v 0,先通过匀强电场E ,后通过匀强磁场B ,如图甲所示,电场和磁场对该粒子做功为W 1.若把该电场和磁场正交叠加,如图乙所示,再让该带电粒子仍以水平向右的初速度v 0(v 0<E B )穿过叠加场区,在这个过程中电场和磁场对粒子做功为W 2,则( )A .W 1<W 2B .W 1=W 2C .W 1>W 2D .无法判断解析:选C.电场力做的功W =Eqy ,其中y 为粒子沿电场方向偏转的位移,因图乙中洛伦兹力方向向上,故图乙中粒子向下偏转的位移y 较小,W 1>W 2,故C 正确.9. MN 板两侧都是磁感强度为B 的匀强磁场,方向如图所示,带电粒子从a 位置以垂直磁场方向的速度开始运动,依次通过小孔b 、c 、d ,已知ab =bc =cd ,粒子从a 运动到d 的时间为t ,则粒子的比荷为( )解析:粒子从a 运动到d 依次经过小孔b 、c 、d ,经历的时间t 为3个T 2,由t =3×T 2和T =2πm Bq .可得:q m =3πtB ,A对.二、计算题10.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U ,静止质子经电场加速后,进入D 形盒,其最大轨道半径为R ,磁场的磁感应强度为B ,质子质量为m .求:(1)质子最初进入D 形盒的动能多大(2)质子经回旋加速器最后得到的动能多大(3)交流电源的频率是什么解析:(1)粒子在电场中加速,由动能定理得:eU =E k -0,解得E k =eU .(2)粒子在回旋加速器的磁场中绕行的最大半径为R ,由牛顿第二定律得:evB =m v 2R ① 质子的最大动能:E km =12mv 2② 解①②式得:E km =e 2B 2R 22m .(3)f =1T =eB 2πm .11.质量为m 、电荷量为q 的带负电粒子自静止开始释放,经M 、N 板间的电场加速后,从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,该粒子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.已知M 、N 两板间的电压为U ,粒子的重力不计.求:匀强磁场的磁感应强度B .解析:作粒子经电场和磁场中的轨迹图,如图所示.设粒子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:qU =12mv 2①粒子进入磁场后做匀速圆周运动,设其半径为r ,则:qvB =m v 2r ②由几何关系得:r 2=(r -L )2+d 2③联立求解①②③式得:磁感应强度B =2L L 2+d 22mU q . 12. 如图所示,有界匀强磁场的磁感应强度B =2×10-3T ;磁场右边是宽度L = m 、场强E =40 V/m 、方向向左的匀强电场.一带电粒子电荷量q =-×10-19 C ,质量m =×10-27 kg ,以v =4×104 m/s 的速度沿OO ′垂直射入磁场,在磁场中偏转后进入右侧的电场,最后从电场右边界射出.(不计重力)求:(1)大致画出带电粒子的运动轨迹;带电粒子在磁场中运动的轨道半径;(3)带电粒子飞出电场时的动能E k .解析:(1)轨迹如图(2)带电粒子在磁场中运动时,由牛顿运动定律,有qvB =m v 2RR =mv qB =错误! m = m(3)E k =EqL +12mv 2=40××10-19× J +12××10-27×(4×104)2 J =×10-18 J.。
高中物理带电粒子在磁场中的运动题20套(带答案)
高中物理带电粒子在磁场中的运动题20套(带答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB 间射出如图,由几何关系可得临界时 要不从AB 边界射出,应满足得考点:本题考查带电粒子在磁场中的运动2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBLv m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos x v v α=1cos 2α=060α∴=4.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小【答案】(1) 222202e B R mc v mh h =+,22202e B R E m = ;(2) 20e B U mπ ;(3)02sin B R n dπ【解析】 【详解】解:(1)正、负电子在回旋加速器中磁场里则有:200mv evB R= 解得正、负电子离开回旋加速器时的速度为:00eB Rv m=正、负电子进入对撞机时分别具有的能量:222200122e B R E mv m==正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=正、负电子对撞湮灭后产生的光子频率:222202e B R mc v mh h=+(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:2012neU mv =解得:2202eB R n mU=正、负电子在磁场中运动的周期为:02mT eB π=正、负电子在磁场中运动的时间为:2022B R nt T Uπ==D 型盒间的电场对电子做功的平均功率:20e B UW E P t t mπ===(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin2dr nπ=解得:2sind r nπ=根据洛伦磁力提供向心力可得:200mv ev B r=电磁铁内匀强磁场的磁感应强度B 大小:02sinB R n B dπ=5.如图所示,同轴圆形区域内、外半径分别为R 1=1 m 、R 2=3m ,半径为R 1的圆内分布着B 1=2.0 T 的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B 2=0.5 T 的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d =3cm ,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P 点由静止释放,经加速后通过右板小孔Q ,垂直进入环形磁场区域.已知点P 、Q 、O 在同一水平线上,粒子比荷4×107C /kg ,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件? (2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O ,则加速电压为多大?(3) 从P 点出发开始计时,在满足第(2)问的条件下,粒子到达O 点的时刻. 【答案】(1) r 1<1m . (2) U =3×107V . (3) t=(6.1×10-8+12.2×10-8k)s (k =0,1,2,3,…) 【解析】 【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mv qB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2m qB π故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).6.如图所示,在竖直面内半径为R的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B,在圆形磁场区域内水平直径上有一点P,P到圆心O的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m,电荷量均为q,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围;(2)若离子速率大小02BqRvm=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。
带电粒子在磁场中运动解题方法及经典例题
带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。
求3〕〕匀强磁场的磁感应强度B和射出点的坐标。
〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。
高三物理粒子在有界磁场中运动试题答案及解析
高三物理粒子在有界磁场中运动试题答案及解析1.一个重力不计的带电粒子垂直进入匀强磁场,在与磁场垂直的平面内做匀速圆周运动.则下列能表示运动周期 T 与半径R之间的图像是()【答案】D【解析】带电粒子在磁场中做匀速圆周运动,根据,,联立可求粒子做圆周运动的周期为,周期与轨道半径r无关,所以A、B、C错误;D正确。
【考点】本题考查带电粒子在磁场中的运动2.如图所示,在xOy平面内存在着磁感应强度大小为B的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P(- L,0)、Q(0,-L)为坐标轴上的两个点.现有一电子从P点沿PQ方向射出,不计电子的重力,则.A.若电子从P点出发恰好经原点O第一次射出磁场分界线,则电子运动的路程一定为B.若电子从P点出发经原点O到达Q点,则电子运动的路程一定为πLC.若电子从P点出发经原点O到达Q点,则电子运动的路程可能为2πLD.若电子从P点出发经原点O到达Q点,则nπL(n为任意正整数)都有可能是电子运动的路程【答案】AC【解析】若电子从P点出发恰好经原点O第一次射出磁场分界线,则有运动轨迹如图所示,由几何关系知:半径R=L,则微粒运动的路程为圆周的,即为,A正确;若电子从P点出发经原点O到达Q点,运动轨迹可能如图所示,因此则微粒运动的路程可能为πL,也可能为2πL,BD错误C正确;【考点】本题考查带电粒子在磁场中的运动。
3.如图是某离子速度选择器的原理示意图,在一半径为R 的绝缘圆柱形筒内有磁感应强度为B的匀强磁场,方向平行于轴线.在圆柱形筒上某一直径两端开有小孔M、N,现有一束速率不同、比荷均为k的正、负离子,从M孔以α角入射,一些具有特定速度的离子未与筒壁碰撞而直接从N孔射出(不考虑离子间的作用力和重力).则从N孔射出的离子()A.是正离子,速率为kBR/cos αB.是正离子,速率为kBR/sin αC.是负离子,速率为kBR/sin αD.是负离子,速率为kBR/cos α【答案】B【解析】因为离子向下偏,根据左手定则,离子带正电,运动轨迹如图,由几何关系可知r=,由qvB=m可得v=,故B正确.4.(8分)在真空中,半径的圆形区域内有匀强磁场,方向如图所示,磁感应强度B="0.2" T,一个带正电的粒子以初速度从磁场边界上直径ab的一端a射入磁场,已知该粒子的比荷,不计粒子重力.(1)求粒子在磁场中做匀速圆周运动的半径;(2)若要使粒子飞离磁场时有最大偏转角,求入射时与ab的夹角及粒子的最大偏转角.【答案】(1)(2)最大偏转角【解析】(1)粒子射入磁场后,由于不计重力,所以洛伦兹力提供圆周运动需要的向心力,根据牛顿第二定律有.(2)粒子在圆形磁场区域运动轨迹为一段半径R=5cm的圆弧,半径一定要使偏转角最大,就要求这段圆弧对应的弦最长,即为图形区域的直径,粒子运动轨迹的圆心在ab弦的中垂线上,如图所示.由几何关系可知最大偏转角【考点】带电粒子在圆形匀强磁场区域的运动5.如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴平行于x轴正方向射入磁场,上的点a(0,L)。
带电粒子在匀强磁场中的运动(12道经典例题)
方法概述3:
带电粒子垂直进入圆形区域的匀强磁场中,只受洛伦兹
力作用的运动轨迹有以下规律:
1、沿半径方向入射的粒子一定沿另一半径方向射出.
证明:如图所示,连接OO′和OB.
因为AO=BO,OO′为两三角形的公共边,AO′=BO′
所以△AOO′≌△BOO′
所以O′B⊥OB
即OB为 AB 的切线,
电荷射出的方向得证.
三、双边界问题
例3.如图所示,宽度为d的有界匀强磁场,其磁感应强度为B, MM′和NN′是它的两条边界线.现有质量为m、电荷量为q的带
负电粒子沿图示方向垂直磁场方向射入,要使粒子不能从边 界NN′射出,则粒子入射速率v的最大值是( )
A. qBd m
B. 2+ 2 qBd
m
C. qBd 2m
解:(1)由左手定则可知物块带负电荷. (2)当物块离开斜面时,物块对斜面压力为0,受力如
图所示,则:qvB-mgcos30°=0,解得v=3.46 m/s. (3)由动能定理得:mgsin30°·L= mv2,解得物块
在斜面上滑行的最大距离L=1.2 m.
七、带电体在洛伦兹力作用下的直线运动
例9.如图所示,匀强电场方向水平向右,匀强磁场方向垂直 于纸面向里,一质量为m、带电荷量为q的微粒以速度v与磁 场方向垂直,与电场成45°角射入复合场中,恰能做匀速 直线运动,求电场强度E和磁感应强度B的大小.
分析:本题已知轨迹上两点的速度方向即轨迹的切线方
向,就可以确定圆心的位置,再由此解出半径.
解:因为速度方向改变30°,因此此段轨迹所对应的圆
心角为30°,如图所示,由几何关系可得:
半径 R=2dBiblioteka 再由半径公式 R = mv
高中物理带电粒子在磁场中的运动题20套(带答案)
1 2
mv02
可得 v0
2eU m
电子从 Q 点到 M 点,做类平抛运动,
x 轴方向做匀速直线运动, t L L m
v0
2eU
y 轴方向做匀加速直线运动, L 1 eE t2 2 2m
由以上各式可得: E 2U L
电子运动至 M 点时: vM
v02
(
Ee m
t)2
即: vM 2
eU m
设 vM 的方向与 x 轴的夹角为 θ,
cos v0 2 vM 2
解得:θ=45°。 (2)如图甲所示,电子从 M 点到 A 点,做匀速圆周运动,因 O2M=O2A,O1M=O1A, 且 O2A∥MO1,所以四边形 MO1AO2 为菱形,即 R=L
由洛伦兹力提供向心力可得:
evM
B
m
vM2 R
即 B mvM 2 mv eR L e
E
点的试卷比下方粒子中第一个达到
C
的时间滞后 Δt
l0 t0
上方最后的一个粒子从 E 点到达 D 点所需时间为
t
R
Rsin
π 3
1 6
2πR
6
2π
3
3R
2v0
2v0
12v0
要使两质子束相碰,其运动时间满足 t t t
联立解得 l0
π
3 3 12
6
4.如图甲所示,在直角坐标系中的 0≤x≤L 区域内有沿 y 轴正方向的匀强电场,右侧有以点 (2L,0)为圆心、半径为 L 的圆形区域,与 x 轴的交点分别为 M、N,在 xOy 平面内,从 电离室产生的质量为 m、带电荷量为 e 的电子以几乎为零的初速度从 P 点飘入电势差为 U 的加速电场中,加速后经过右侧极板上的小孔 Q 点沿 x 轴正方向进入匀强电场,已知 O、
高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析
高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。
P是圆外一点,OP=3r。
一质量为m、电荷量为q(q>0)的粒子从P点在纸面内垂直于OP射出。
己知粒子运动轨迹经过圆心O,不计重力。
求(1)粒子在磁场中做圆周运动的半径;(2)粒子第一次在圆形区域内运动所用的时间。
【答案】(1)(2)【解析】【分析】本题考查在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力。
【详解】(1)找圆心,画轨迹,求半径。
设粒子在磁场中运动半径为R,由几何关系得:①易得:②(2)设进入磁场时速度的大小为v,由洛伦兹力公式和牛顿第二定律有③进入圆形区域,带电粒子做匀速直线运动,则④联立②③④解得2.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R2=3m,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mvqB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2mqBπ故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).3.在水平桌面上有一个边长为L的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P点(P为正方形框架对角线AC与圆盘的交点)以初速度v0水平射入磁场区,小球刚好以平行于BC边的速度从圆盘上的Q点离开该磁场区(图中Q点未画出),如图甲所示.现撤去磁场,小球仍从P点以相同的初速度v0水平入射,为使其仍从Q点离开,可将整个装置以CD边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g.求:(1)小球两次在圆盘上运动的时间之比;(2)框架以CD为轴抬起后,AB边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x =r =v 0t 2, 运动时间:t 2=22L v , 则:t1:t 2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r =2212at ,解得,加速度:a =222v L,对小球,由牛顿第二定律得:a =mgsin mθ=g sinθ, AB 边距离桌面的高度:h =L sinθ=222v g;4.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L (不计粒子重力),求:(1)粒子到达P 2点时的速度大小和方向; (2)EB; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【答案】(1)53v 0,与x 成53°角;(2)043v ;(3)2L ;(4)()04053760L v π+.【解析】 【详解】(1)如图,粒子从P 1到P 2做类平抛运动,设到达P 2时的y 方向的速度为v y ,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB=m2vR解得:B=mvqR=5352m vq L⨯⨯=023mvqL解得:043vEB=;(3)粒子在磁场中做圆周运动的圆心为O′,在图中,过P2做v的垂线交y=-32L直线与Q′点,可得:P2O′=3253Lcos o=52L=r故粒子在磁场中做圆周运动的圆心为O′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y=-32L直线从M点穿出磁场,由几何关系知M的坐标x=32L+(r-r cos37°)=2L;(4)粒子运动一个周期的轨迹如上图,粒子从P1到P2做类平抛运动:t1=32Lv在磁场中由P2到M动时间:t2=372 360rvπ︒⨯o=37120Lvπ从M运动到N,a=qEm=289vL则t3=va=158Lv则一个周期的时间T=2(t1+t2+t3)=()4053760Lvπ+.5.如图所示,坐标原点O左侧2m处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V的加速电场,经加速后沿x轴正方向运动,O点右侧有以O1点为圆心、r=0.20m为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T的匀强磁场(图中未画出)圆的左端跟y轴相切于直角坐标系原点O,右端与一个足够大的荧光屏MN相切于x轴上的A点,粒子重力不计。
带电粒子在电场和磁场中的运动(含答案)
带电粒子在电场和磁场中的运动1.如图所示,在以坐标原点O 为圆心、半径为R 的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B ,磁场方向垂直于xOy 平面向里。
一带正电的粒子(不计重力)从O 点沿y 轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t 0时间从P 点射出。
(1)求电场强度的大小和方向。
(2)若仅撤去磁场,带电粒子仍从O 点以相同的速度射入,经t 0/2时间恰从半圆形区域的边界射出。
求粒子运动加速度的大小。
(3)若仅撤去电场,带电粒子仍从O 点射入,且速度为原来的4倍,求粒子在磁场中运动的时间。
【解析】(1)设带电粒子的质量为m ,电荷量为q ,初速度为v ,电场强度为E 。
可判断出粒子受到的洛伦磁力沿x 轴负方向,于是可知电场强度沿x 轴正方向 且有:qE =qvB ,又R =vt 0,则E =BR t 0(2)仅有电场时,带电粒子在匀强电场中作类平抛运动 在y 方向位移:y =v t 22,则y =R2设在水平方向位移为x ,因射出位置在半圆形区域边界上,于是x =32R , 又有:x =12a (t 02)2,得a =43Rt 02(3)仅有磁场时,入射速度v′=4v ,带电粒子在匀强磁场中作匀速圆周运动,设轨道半径为r ,由牛顿第二定律有qv′B =m v′2r ,又qE =ma ,联立解得:r =33R ,由几何关系:sin α=R 2r ,即sin α=32,α=π3,带电粒子在磁场中运动周期:T =2πm qB ,则带电粒子在磁场中运动时间t R =2α2πT ,所以t R =3π18t 02.在平面直角坐标系xOy 中,第1象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B 。
一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于Y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于Y 轴射出磁场,如图所示。
(完整版)高中物理带电粒子在磁场中的运动(提纲、例题、练习、解析)
带电粒子在磁场中的运动【学习目标】1.掌握带电粒子在匀强磁场中做匀速圆周运动的特点和解决此类运动的方法2.理解质谱仪和回旋加速器的工作原理和作用【要点梳理】要点一:带电粒子在匀强磁场中的运动要点诠释:1.运动轨迹带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中:(1)当v∥B时,带电粒子将做匀速直线运动;(2)当v⊥B时,带电粒子将做匀速圆周运动;(3)当v与B的夹角为θ(θ≠0°,90°,180°)时,带电粒子将做等螺距的螺旋线运动.说明:电场和磁场都能对带电粒子施加影响,带电粒子在匀强电场中只在电场力作用下,可能做匀变速直线运动,也可能做匀变速曲线运动,但不可能做匀速直线运动;在匀强磁场中,只在磁场力作用下可以做曲线运动.但不可能做变速直线运动.2.带电粒子在匀强磁场中的圆周运动如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q.(1)轨道半径:由于洛伦兹力提供向心力,则有2vqvB mr=,得到轨道半径mvrqB=.(2)周期:由轨道半径与周期之间的关系2rTvπ=可得周期2mTqBπ=.说明:(1)由公式mvrqB=知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率成正比.(2)由公式2mTqBπ=知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率均无关,而与比荷qm成反比.注意:mvrqB=与2mTqBπ=是两个重要的表达式,每年的高考都会考查.但应用时应注意在计算说明题中,两公式不能直接当原理式使用.要点二:带电粒子在匀强磁场中做圆周运动的问题分析要点诠释:1.分析方法/Bq 或时间”的基本方法和规律,具体分析为: (1)圆心的确定带电粒子进入一个有界磁场后的轨道是一段圆弧,如何确定圆心是解决问题的前提,也是解题的关键.首先,应有一个最基本的思路:即圆心一定在与速度方向垂直的直线上.通常有两种确定方法:①已知入射方向和出射方向时,可以通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,图中P 为入射点,M 为出射点,O 为轨道圆心).②已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点,O 为轨道圆心).(2)运动半径的确定:作入射点、出射点对应的半径,并作出相应的辅助三角形,利用三角形的解析方法或其他几何方法,求解出半径的大小,并与半径公式mvr Bq=联立求解. (3)运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:360t T α=︒(或2t T απ=).可见粒子转过的圆心角越大,所用时间越长. 2.有界磁场(1)磁场边界的类型如图所示(2)与磁场边界的关系①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长. ③当速率v 变化时,圆周角越大的,运动的时间越长. (3)有界磁场中运动的对称性①从某一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角相等; ②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出. 3.解题步骤带电粒子在匀强磁场中做匀速圆周运动的解题方法——三步法: (1)画轨迹:即确定圆心,几何方法求半径并画出轨迹.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角运动时间相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.注意:道PM 对应的圆心角α,即αϕ=,如图所示.(2)圆弧轨道PM 所对圆心角α等于PM 弦与切线的夹角(弦切角)θ的2倍,即2αθ=,如图所示. 要点三:质谱仪要点诠释: (1)构造质谱仪由粒子注入器、加速电场、速度选择器、偏转电场和照相底片组成,如图所示.(2)工作原理 ①加速:212qU mv =, ②偏转:2v qvB m r=,由以上两式得:粒子在磁场中作匀速圆周运动的半径12mur B q=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间T 2 r 2 m ; v qB
带正电的粒子在磁场中运动的时间为: t1
3T 4
5.9 104 s
;
带负电的粒子在磁场中运动的时间为: t2
1T 4
2.0 104 s
带电粒子在 AC 两点射入电场的时间差为 t t1 t2 3.9 104 s
粒子在磁场中做匀速圆周运动: qvB m v2 r
由几何关系可知 r 2 L 2
解得 B=1.6×10-2T
(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速
圆周运动,带正电的粒子转过的圆心角为 3 ,带负电的粒子转过的圆心角为 ;两带电
2
2
粒子在 AC 两点进入电场的时间差就是两粒子在磁场中的时间差;
n d N dN 2 2a 4 a
解得 N 4 alt ed
(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为
B .设此轨迹圆的半径为 r ,则
(2a r)2 r2 a2 Bev m v2
r 解得: B 4mv
3ae
3.如图,平面直角坐标系中,在,y>0 及 y<- 3 L 区域存在场强大小相同,方向相反均平 2
点,可得:
3L 5
P2O′=
= L =r
2cos53 2
故粒子在磁场中做圆周运动的圆心为 O′,因粒子在磁场中的轨迹所对圆心角 α=37°,故粒
子将垂直于 y=- 3 L 2
直线从 M 点穿出磁场,由几何关系知 M 的坐标 x= 3 L+(r-rcos37°)=2L; 2
3L (4)粒子运动一个周期的轨迹如上图,粒子从 P1 到 P2 做类平抛运动:t1= 2v0
15 2 4
3R
5.如图甲所示,在直角坐标系 0≤x≤L 区域内有沿 y 轴正方向的匀强电场,右侧有一个以点 (3L,0)为圆心、半径为 L 的圆形区域,圆形区域与 x 轴的交点分别为 M、N.现有一质 量为 m、带电量为 e 的电子,从 y 轴上的 A 点以速度 v0 沿 x 轴正方向射入电场,飞出电场 后从 M 点进入圆形区域,此时速度方向与 x 轴正方向的夹角为 30°.不考虑电子所受的重 力.
2.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为 d 的狭缝.D 为绝缘外 壳,整个装置处于真空中,半径为 a 的金属圆柱 A 可沿半径向外均匀发射速率为 v 的电 子;与 A 同轴放置的金属网 C 的半径为 2a.不考虑 A、C 的静电感应电荷对电子的作用和电 子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为 m,电荷量为 e.
子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求
解 B.
【详解】
(1)对电子经 CA 间的电场加速时,由动能定理得
Ue
1 2
mve2
1 2
mv 2
解得: ve
2eU v2 m
(2)设时间 t 从 A 中发射的电子数为 N,由 M 口射出的电子数为 n, 则
I ne t
2
2
(不计粒子重力),求:
(1)粒子到达 P2 点时的速度大小和方向;
(2) E ; B
(3)粒子第一次从磁场下边界穿出位置的横坐标;
(4)粒子从 P1 点出发后做周期性运动的周期.
【答案】(1)
5
v0,与
x
成
53°角;(2)
4v0
405 37 L
;(3)2L;(4)
.
3
3
60v0
【解析】
【详解】
磁场。在左侧虚线上紧靠 M 的上方取点 A,一比荷 q =5×105C/kg 的带正电粒子,从 A 点 m
以 v0=2×103m/s 的速度沿平行 MN 方向射入电场,该粒子恰好从 P 点离开电场,经过磁场 的作用后恰好从 Q 点回到电场。已知 MN、PQ 的长度均为 L=0.5m,不考虑重力对带电粒 子的影响,不考虑相对论效应。
6.如图,第一象限内存在沿 y 轴负方向的匀强电场,电场强度大小为 E,第二、三、四象 限存在方向垂直 xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为 B,第三、 四象限磁感应强度大小相等,一带正电的粒子,从 P(-d,0)点沿与 x 轴正方向成 α=60° 角平行 xOy 平面入射,经第二象限后恰好由 y 轴上的 Q 点(图中未画出)垂直 y 轴进入第 一象限,之后经第四、三象限重新回到 P 点,回到 P 点时速度方向与入射方时相同,不计 粒子重力,求:
在磁场中由
P2 到
M
动时间:t2= 37 360
2 r v
37 L = 120v0
从 M 运动到 N,a= qE = 8v02 m 9L
则
t3=
v a
=
15L 8v0
405 37 L
则一个周期的时间 T=2(t1+t2+t3)=
60v0
.
4.如图所示,在竖直面内半径为 R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感
【答案】(1) ve
2eU v2 (2) N 4 alt (3) B 4mv
m
ed
3ae
ห้องสมุดไป่ตู้
【解析】 【分析】
(1)根据动能定理求解求电子通过金属网 C 发射出来的速度大小;(2)根据 I ne 求解 t
圆柱体 A 在时间 t 内发射电子的数量 N;(3)使由 A 发射的电子不从金属网 C 射出,则电
(2)若离子速率大小 v0
BqR 2m
,则离子可以经过的磁场的区域的最高点与最低点的高度
差是多少。
【答案】(1) v BqR (2) 15 2 3 R
4m
4
【解析】
【详解】
(1)粒子在磁场中做匀速圆周运动,有: Bqv m v2 r
如图所示,若所有离子均不能射出圆形磁场区域,则 r R 4
(1)如图,粒子从 P1 到 P2 做类平抛运动,设到达 P2 时的 y 方向的速度为 vy,
由运动学规律知 3 L=v0t1, 2
L= vy t1 2
可得
t1=
3L 2v0
,vy=
4 3
v0
故粒子在 P2 的速度为 v=
v02
vy2
5
=
3
v0
设 v 与 x 成 β 角,则 tanβ= vy = 4 ,即 β=53°; v0 3
根据牛顿第二定律:
解得:
根据几何关系得电子穿出圆形区域时位置坐标为( ,- ) (3)电子在在磁场中最简单的情景如图 2 所示.
在磁场变化的前三分之一个周期内,电子的偏转角为 60°,设电子运动的轨道半径为 r, 运动的 T0,粒子在 x 轴方向上的位移恰好等于 r1; 在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期 T′=2T0,故粒子的 偏转角度仍为 60°,电子运动的轨道半径变为 2r,粒子在 x 轴方向上的位移恰好等于 2r. 综合上述分析,则电子能到达 N 点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)
故 v BqR 4m
(2)当离子速率大小 v0
BqR 2m
时,由(1)式可知此时离子圆周运动的轨道半径 r
R 2
离子经过最高点和最低点的运动轨迹如图,
由几何关系知:
h12
R 4
2
R2
得
h1
15 R 4
由几何关系知: h2
R 2
R sin 60 2
2 4
3R
故最高点与最低点的高度差 h h1 h2
(1)求电场强度 E 的大小;
(2)求磁感应强度 B 的大小;
(3)在左侧虚线上 M 点的下方取一点 C,且 CM=0.5m,带负电的粒子从 C 点沿平行 MN 方向
射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。若两带电粒子经过
磁场后同时分别运动到 Q 点和 P 点,求两带电粒子在 A、C 两点射入电场的时间差。
应强度大小为 B,在圆形磁场区域内水平直径上有一点 P,P 到圆心 O 的距离为 R ,在 P 2
点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不 同的正离子. 已知离子的质量均为 m,电荷量均为 q,不计离子重力及离子间相互作用力, 求:
(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围;
【答案】(1) 16N / C (2) 1.6102T (3) 3.9104 s
【解析】
【详解】
(1)带正电的粒子在电场中做类平抛运动,有:L=v0t
L 1 qE t2 2 2m
解得 E=16N/C
(2)设带正电的粒子从
P 点射出电场时与虚线的夹角为
θ,则: tan
v0 qE
t
m
可得 θ=450 粒子射入磁场时的速度大小为 v= 2 v0
根据 qv0B
mv02 r
得 v0
2
3qBd 3m
粒子在第一象限中做类平抛运动,则有(r 1 cos60) qE t2 ; tan vy qEt
2m
v0 mv0
联立解得
v0
E 3B
(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为 x 和 y,根据粒子在第 三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与 x 轴正方向的夹角等于 α.
(1)粒子从 P 点入射时的速度 v0; (2)第三、四象限磁感应强度的大小 B/;
【答案】(1) E (2)2.4B 3B
【解析】试题分析:(1)粒子从 P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子