《平行四边形的判定》导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.1.2 平行四边形的判定(二)
学习目标:
1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的四种判定方法和性质来证明问题.
3、使学生熟练掌握平行四边形判定的五种方法,并通过定理,习题的证明提高学生的逻辑思维能力;进一步掌握平行四边形性质
与判定之间的区别与联系。
教学过程
第一步:课堂引入
1.平行四边形的性质;
2.平行四边形的判定方法;
3.【探究】取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?
结论:一组对边平行且相等的四边形是平行四边形.
第二步:应用举例:
例1、已知:如图,ABCD中,E、F分别是AD、
BC的中点,
求证:BE=DF.
分别是AC上两点,且BE⊥AC于E,
DF⊥AC于F.
求证:四边形BEDF是平行四边形.
例3、已知:如图,E、F是平行四边形ABCD对角线AC上两点,且
(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠
D
(C)AB=CD,AD=BC (D)AB=AD,CB=CD
2.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,
找出图中的平行四边形,并说明理由.
3.已知:如图,在ABCD 中,AE 、CF 分别是∠DAB 、∠BCD 的平分线.
求证:四边形AFCE 是平行四边形.
4、. 如图,平行四边形ABCD 中,BE =DF ,AG =CH 。 求证:四边形GEHF 是平行四边形。
5.判断题:
(1)相邻的两个角都互补的四边形是平行四边形; (2)两组对角分别相等的四边形是平行四边形; (3)一组对边平行,另一组对边相等的四边形是平行四边形; (4)一组对边平行且相等的四边形是平行四边形; (5)对角线相等的四边形是平行四边形; (6)对角线互相平分的四边形是平行四边形. 6.延长△ABC 的中线AD 至E 使DE=AD .求证:四边形ABEC 是平行四边形.
7.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.
第四步:课堂小结
学生掌握平行四边形的四个(或五个)判定方法,这些判定的方法是:从边看:①的四边形是平行四边形;
②的四边形是平行四边形;
③的四边形是平行四边形.
从对角线看:的四边形是平行四边形.
从角看:的四边形是平行四边形.
课后反思: