集合练习题及答案有详解

合集下载

集合练习题带答案

集合练习题带答案

集合练习题带答案集合是数学中的基本概念,它描述了一组对象的全体。

以下是一些集合的练习题以及相应的答案,供学生练习和参考。

练习题1:判断下列集合是否正确,并给出理由。

- A = {1, 2, 3, 4}- B = {x | x是偶数}- C = {x | x是小于10的质数}答案1:- A集合正确,因为它包含了四个元素:1, 2, 3, 4。

- B集合正确,它表示所有偶数的集合,满足集合的定义。

- C集合正确,它包含了小于10的所有质数:2, 3, 5, 7。

练习题2:给定集合 A = {1, 2, 3, 4, 5},求以下集合运算的结果。

- A ∩ {2, 4, 6, 8} (A与{2, 4, 6, 8}的交集)- A ∪ {2, 4, 6, 8} (A与{2, 4, 6, 8}的并集)- A - {3, 5} (A与{3, 5}的差集)答案2:- A ∩ {2, 4, 6, 8} = {2, 4},交集包含了A和{2, 4, 6, 8}共有的元素。

- A ∪ {2, 4, 6, 8} = {1, 2, 3, 4, 5, 6, 8},并没有重复元素。

- A - {3, 5} = {1, 2, 4},差集包含了A中除去{3, 5}后剩余的元素。

练习题3:给定集合P = {x | x是大于10的整数},Q = {x | x是小于20的整数},求P ∩ Q。

答案3:P ∩ Q = {x | 10 < x < 20},交集包含了P和Q共有的元素,即大于10且小于20的所有整数。

练习题4:给定集合R = {x | x是偶数},S = {x | x是大于5的整数},求R ∩ S。

答案4:R ∩ S = {6, 8, 10, 12, ..., 18},交集包含了R和S共有的元素,即大于5的所有偶数。

练习题5:给定集合T = {x | x是小于100的质数},求T的元素个数。

答案5:T的元素个数是25,因为小于100的质数有:2, 3, 5, 7, 11,13, ..., 97。

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案集合是数学中一个非常重要的概念,它描述了一组元素的总体。

下面是一些集合的简单练习题以及它们的答案。

练习题1:判断下列集合是否相等。

A = {1, 2, 3}B = {3, 2, 1}C = {1, 2, 1}答案1:集合A和集合B相等,因为集合中的元素是无序的,只考虑元素的种类和数量。

集合C和A不相等,因为集合中的元素不允许重复。

练习题2:求集合A和集合B的并集。

A = {1, 2, 3}B = {2, 3, 4}答案2: A和B的并集是A ∪ B = {1, 2, 3, 4}。

练习题3:求集合A和集合B的交集。

A = {1, 2, 3}B = {2, 3, 4}答案3: A和B的交集是A ∩ B = {2, 3}。

练习题4:求集合A和集合B的差集。

A = {1, 2, 3, 4}B = {2, 3}答案4: A和B的差集是A - B = {1, 4}。

练习题5:判断下列集合是否为子集。

A = {1, 2}B = {1, 2, 3, 4}答案5:集合A是集合B的子集,因为A中的所有元素都在B中。

练习题6:求集合A和集合B的补集。

A = {1, 2, 3}B = {2, 3, 4}假设全集U = {1, 2, 3, 4, 5}答案6: A的补集是A' = {4, 5},B的补集是B' = {1, 5}。

练习题7:判断下列集合是否为幂集。

A = {1}B = {1, 2}C = {1, 2, 3}答案7:集合A的幂集是{∅, {1}}。

集合B的幂集是{∅, {1}, {2}, {1, 2}}。

集合C的幂集包含更多的子集,包括空集和所有可能的元素组合。

练习题8:求集合A和集合B的笛卡尔积。

A = {1, 2}B = {3, 4}答案8: A和B的笛卡尔积是A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}。

练习题9:求集合A的对称差集与集合B。

(完整版)高考数学《集合》专项练习(选择题含答案)

(完整版)高考数学《集合》专项练习(选择题含答案)

《集合》专项练习参考答案1.(2016全国Ⅰ卷,文1,5分)设集合,,则A ∩B =( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【解析】集合A 与集合B 的公共元素有3,5,故}5,3{=B A I ,故选B .2.(2016全国Ⅱ卷,文1,5分)已知集合,则A ∩B =( ) (A ) (B ) (C ) (D )【解析】由29x <得33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =I ,故选D .3.(2016全国Ⅲ卷,文1,5分)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【解析】由补集的概念,得{0,2,6,10}A B =ð,故选C .4.(2016全国Ⅰ卷,理1,5分)设集合,,则A ∩B =( )(A ) (B ) (C ) (D )【解析】对于集合A :解方程x 2-4x +3=0得,x 1=1,x 2=3,所以A ={x |1<x <3}(大于取两边,小于取中间).对于集合B :2x -3>0,解得x >23.3{|3}2A B x x ∴=<<I .选D .5.2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, 【解析】要使复数z 对应的点在第四象限,应满足3010m m +>⎧⎨-<⎩,解得31m -<<,故选A .6.(2016全国Ⅲ卷,理1,5分)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=>,则S ∩T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞)(C) [3,+∞) (D)(0,2]U [3,+∞)7.(2016北京,文1,5分)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B =I ( )(A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或【解析】画数轴得,,所以,故选C .8.(2016北京,理1,5分)已知集合,,则( )(A )(B )(C )(D )【解析一】对于集合A :(解绝对值不等的常用方法是两边同时平方)|x |<2,两边同时平方{1,3,5,7}A ={|25}B x x =≤≤{123}A =,,,2{|9}B x x =<{210123}--,,,,,{21012}--,,,,{123},,{12},2{|430}A x x x =-+<{|230}B x x =->3(3,)2--3(3,)2-3(1,)23(,3)2(2,3)A B =I {|||2}A x x =<{1,0,1,2,3}B =-A B =I {0,1}{0,1,2}{1,0,1}-{1,0,1,2}-得x 2<4,解方程x 2=4得,x 1=-2,x 2=2,所以A ={x |-2<x <2}(大于取两边,小于取中间).所以A ∩B ={-1,0,1}.故选C .【解析二】对于集合A :(绝对值不等式解法二:|x |<2⇔-2<x <2).A ={x |-2<x <2}.所以A ∩B ={-1,0,1}.故选C .9.(2016上海,文理1,5分)设x ∈R ,则不等式31x -<的解集为_______.【答案】(24),【解析】试题分析:421311|3|<<⇔<-<-⇔<-x x x ,故不等式1|3|<-x 的解集为)4,2(.【解析一】对不等式31x -<:(解绝对值不等的常用方法是两边同时平方)|x -3|<1,两边同时平方得(x -3)2<1,解方程(x -3)2=1得,x 1=2,x 2=4,所以A ={x |2<x <4}.【解析二】对于集合A :(绝对值不等式解法二:|x -3|<1⇔-1<x -3<1,解得2<x <4).A ={x |2<x <4}.10.(2016山东,文1,5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð=(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}【答案】A11.(2016山东,理2,5分)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A ∪B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C【解析】对于集合A :∵y =2x >0,∴A ={y |y >0}.对于集合B :∵x 2-1=0,解得x =±1,∴B ={x |-1<x <1}(大于取两边,小于取中间).∴A ∪B =(1,)-+∞12.(2016四川,文2,5分)设集合A ={x |1≤x ≤5},Z 为整数集,则集合A∩Z 中元素的个数是(A)6 (B)5 (C)4 (D)3【答案】B【解析】{1,2,3,4,5}A =Z I ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A Z I 中元素的个数为5,选B .13.(2016四川,理1,5分)设集合{|22}A x x =-≤≤,Z 为整数集,则A I Z 中元素的个数是( )(A )3(B )4(C )5(D )6【答案】C【解析】由题意,知{2,1,0,1,2}A =--Z I ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A I Z 中元素的个数为5,选C .14.(2016天津,文1,5分)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则A B I = (A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{ 【答案】A【解析】∵},12|{A x x y y B ∈-==,∴当x =1时,y =2×1-1=1;当x =2时,y =2×2-1=3;当x =3时,y =2×3-1=5.∴{1,3,5},{1,3}B A B ==I .选A .15.(2016天津,理1,5分)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A I (A )}{1 (B )}{4 (C )}{3,1 (D )}{4,1 【答案】D 【解析】∵}{A x x y y B ∈-==,23,∴当x =1时,y =3×1-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =4×3-2=10.∴{14710}{14}B =A B =I ,,,,,.选D .16.(2016浙江,文1,5分)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U PQ U ()ð=( ) A .{1} B .{3,5} C .{1,2,4,6} D .{1,2,3,4,5}【答案】C17.(2016浙江,理1,5分)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(C R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(−∞,−2]∪[1,+∞)【答案】B【解析】对于集合Q :∵x 2=4,解得x =±2,∴B ={x |x ≤-2或x ≥2}(大于取两边,小于取中间).18.(2016江苏,文理1,5分)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B I _______.【答案】{}1,2-【解析】{}{}{}1,2,3,6231,2A B x x =--<<=-I I .故答案应填:{}1,2-19.(2015全国Ⅰ卷,文1,5分)已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A∩B 中元素的个数为( )A .5B .4C .3D .2【答案】D【解析】由已知得A ={2,5,8,11,14,17,…},又B ={6,8,10,12,14},所以A∩B ={8,14}.20.(2015全国Ⅱ卷,文1,5分)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B =( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3)【答案】A【解析】因为A =(-1,2),B =(0,3),所以A ∪B =(-1,3),故选A .21.(2014全国Ⅰ卷,文1,5分)已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)【答案】B【解析】M∩N ={x |-1<x <3}∩{x |-2<x <1}={x |-1<x <1}.22.(2014全国Ⅱ卷,文1,5分)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A∩B =( )A .∅B .{2}C .{0}D .{-2}【答案】B【解析】∵集合A ={-2,0,2},B ={x |x 2-x -2=0}={2,-1},∴A∩B ={2},故选B .23.(2013全国Ⅰ卷,文1,5分)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A},则A∩B=( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A【解析】∵B ={x |x =n 2,n ∈A}={1,4,9,16},∴A∩B ={1,4},故选A .24.(2013全国Ⅱ卷,文1,5分)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1}【答案】C【解析】由题意得M∩N ={-2,-1,0}.选C .25.(2012全国卷,文1,5分)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A =B (D )A∩B =∅【答案】B【解析】A ={x |-1<x <2},B ={x |-1<x <1},则B ⊂≠A ,故选B .26.(2011全国卷,文1,5分)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个【答案】B【解析】由题意得P =M∩N ={1,3},∴P 的子集为⌀,{1},{3},{1,3},共4个.27.(2010全国卷,文1,5分)已知集合,则 (A )(0,2)(B )[0,2](C )|0,2|(D )|0,1,2|【解析】,,选D28.(2009全国卷,文2,5分)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集,则集合中的元素共有( )(A)3个 (B )4个 (C )5个 (D )6个【解析】,.故选A .29.(2008全国卷,文1,5分)已知集合M ={x |(x +2)(x -1)<0},N ={x |x +1<0},则M∩N =( )A.(-1,1)B.(-2,1)C.(-2,-1)D.(1,2)【答案】C【解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-I M N x x30.(2007全国卷,文1,5分)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂=A .∅B .1{|}2x x <C .5{|}3x x >D .15{|}23x x -<< 【答案】D .2,,4,|A x x x R B x x Z =≤∈=∈A B =I {}|22,{0,1,2}A x x B =-≤≤={}0,1,2A B =I U A B =U ()U A B I ð{3,4,5,7,8,9}A B =U {4,7,9}(){3,5,8}U A B A B =∴=I I ð。

关于集合的练习题及答案解析

关于集合的练习题及答案解析

关于集合的练习题及答案解析1.若集合M={a,b,c}中元素是△ABC的三边长,则△ABC 一定不是A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形2.定义集合运算:A*B={ z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为 A.0 B. C. D.63.已知集合A={2,3,4},B={2,4,6,8},C={| x∈A,y∈B,且logxy∈N+},则C中元素的个数是A.9B.8C. D.44.满足{-1,0} M?{-1,0,1,2,3}的集合M的个数是A.4个 B.个 C.7个D.8个5.已知集合A={-1,1},B{x|ax+1=0},若B?A,则实数a的所有可能取值的集合为A.{-1} B.{1} C.{-1,1}D.{-1,0,1}6.已知全集U={1,2,3,4,5,6},集合A={1,2,5},?UB ={4,5,6},则集合A∩B=A.{1,2} B.{5} C.{1,2,3} D.{3,4,6}7.设全集U={1,3,5,6,8},A={1,6},B={5,6,8},则∩B=A.{6}B.{5,8}C.{6,8} D.{3,5,6,8}2-x8.若A={x∈Z|2≤1},则A∩的元素个数为A.0 B.1 C.2D.319.设U=R, M={x|x2-x≤0},函数f的定义域为N,则M∩ x-1A.[0,1)B. C.[0,1] D.{1}10.设U=R,集合A={y|y=x-1,x≥1},B={x∈Z|x2-4≤0},则下列结论正确的是A.A∩B={-2,-1} B.∪B=C.A∪B=[0,+∞)D.∩B={-2,-1}11.非空集合G关于运算?满足:①对于任意a、b∈G,都有a?b∈G;②存在e∈G,使得对一切a∈G,都有a?e=e?a=a,则称G关于运算?为融洽集,现有下列集合运算: G={非负整数},?为整数的加法;G={偶数},?为整数的乘法;G={平面向量},?为平面向量的加法;G={二次三项式},?为多项式的加法;其中G关于运算?的融洽集有________.12.设集合A={1,2,a},B={1,a2-a},若A?B,则实数a的值为________.13.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.214.已知集合A={ x|x-5x+6=0},B={ x|mx+1=0},且A∪B=A,求实数m的值组成的集合.x-a15.记关于x的不等式若a=3,求P;若Q?P,求正数a的取值范围.116.已知由实数组成的集合A满足:若x∈AA. 1-x 设A中含有3个元素,且2∈A,求A;A能否是仅含一个元素的单元素集,试说明理由.1.解析:根据集合中元素的互异性知a≠b≠c,故选D.2.解析:依题意得A*B={ z|z=xy,x∈A,y∈B}={0,2,4},因此集合A*B 的所有元素之和为6,故选D. 3.解析:C={| x∈A,y∈B,且logxy∈N+}={,,,},故选D.4.解析:依题意知集合M除含有元素-1,0之外,必须还含有1,2,3中的一个,或多个.因3而问题转化为求含有3个元素的集合所含的非空子集的个数问题,故有2-1=7个.故选C.5.D.A7.解析:由于U={1,3,5,6,8},A={1,6} ∴?UA={3,5,8},∴∩B={5,8}.答案:B12-x8.解析:A={x∈Z|2≤1}={x|x>2或0 ∴ A∩={0,1},其中的元素个数为2,选C.9.C10.D11.12.解析:∵A?B,∴a2-a=2或a2-a=a.若a2-a=2,得a=2或a=-1,根据集合A中元素的互异性,知:a≠2,∴a=-1.若a2-a=a,得a=0或a=2,经检验知,只有a=0符合要求.综上所述,a=-1或a=0.答案:-1或013.解析:∵3∈B,∴a+2=3,∴a=1.答案:1214.解析:∵A={ x|x-5x+6=0}={2,3},A∪B =A,∴B?A.①m=0时,B=?,B?A;1②m≠0时,由mx+1=0,得x. m111∵B?A,∴-A,∴-2=3, mmm11?11?得m=-或-.所以符合题意的m的集合为?0,-23.3??x-315.解析:由Q={x||x-1|≤1 }={x|0≤x≤}.由a>0,得P={x|-12,即a的取值范围是.116.解析:∵2∈A,∴A,即-1∈A, 1-2 1?11?∴∈AA,∴A=?2,-1,2.??1-?-1?1假设A中仅含一个元素,不妨设为a, 则a∈A,有A,又A中只有一个元素, 1-a1∴a,即a2-a+1=0,但此方程Δ ∴不存在这样的实数a.故A不可能是单元素集合.集合练习题一.选择题1.满足条件{1,2,3}??M??{1,2,3,4,5,6}的集合M的个数是A、8B、C、6D、52.若集合A??x|x2,则下列结论中正确的是 A、A=0B、0?A C、A?? D、??A 3.下列五个写法中①?00,1,2?,②0,③?0,1,21,2,0?,④0??,⑤0??,错误的写法个数是A、1个B、2个C、3个D、4个4.方程组?xy11的解集是?x?y?A ?x?0,y?1? B?0,1?C ?? D?|x?0或y?1?.设A、B是全集U的两个子集,且A?B,则下列式子成立的是 A)CUA?CUB CUA?CUB=U A?CUB=?CUA?B=?6.已知全集Ma|6?5?a?N且a?Z?,则M= A、{2,3} B、{1,2,3,4}C、{1,2,3,6} D、{-1,2,3,4}7.集合M?{xx22xa0,xR},且M ,则实数a的范围是 A、a??1B、a?1C、a??1D、a?18. 设集合P、S满足P?S=P,则必有; P?S;;S=P。

数学集合练习题答案

数学集合练习题答案

数学集合练习题答案一、选择题1. 答案:C解析:集合的定义是由若干个确定的元素组成,可以用大写字母表示。

2. 答案:B解析:空集是不包含任何元素的集合。

3. 答案:A解析:一个集合除了包含自身的元素外,也可以包含其他集合。

4. 答案:D解析:一个集合的子集是指该集合中的元素组成的一个集合。

5. 答案:B解析:并集是指两个集合中所有的元素的集合。

二、填空题1. 答案:{1, 2, 3, 4, 5}解析:按照集合的定义,列举出所有的元素即可。

2. 答案:{1, 2, 3, 4}解析:按照集合的定义,列举出所有满足条件的元素即可。

3. 答案:{1, 2, 3}解析:按照集合的定义,列举出所有满足条件的元素即可。

4. 答案:{3, 4}解析:按照集合的定义,列举出所有满足条件的元素即可。

5. 答案:{1, 2, 3, 4, 5}解析:按照集合的定义,列举出所有满足条件的元素即可。

三、解答题1. 答案:集合A的元素个数为7个。

解析:集合A中的元素有1, 2, 3, 4, 5, 6, 7,共7个元素。

2. 答案:集合B的元素个数为8个。

解析:集合B中的元素有1, 2, 3, 4, 5, 6, 7, 8,共8个元素。

3. 答案:集合A与集合B的交集为{2, 4, 6}。

解析:集合A与集合B的交集为两个集合中共有的元素组成的集合。

4. 答案:集合A与集合B的并集为{1, 2, 3, 4, 5, 6, 7, 8}。

解析:集合A与集合B的并集是指两个集合中所有的元素的集合。

5. 答案:集合A与集合B的差集为{1, 3, 5, 7}。

解析:集合A与集合B的差集是指在集合A中但不在集合B中的元素组成的集合。

总结:通过本次数学集合练习题,我们复习了集合的基本概念和运算。

集合是由若干个确定的元素组成,可以用大写字母表示。

空集是不包含任何元素的集合。

一个集合的子集是指该集合中的元素组成的一个集合。

并集是指两个集合中所有的元素的集合。

集合间的关系练习题及答案知识讲解

集合间的关系练习题及答案知识讲解

集合间的关系练习题及答案【补充练习】1.判断正误:(1)空集没有子集. ( )(2)空集是任何一个集合的真子集. ( )(3)任一集合必有两个或两个以上子集. ( )(4)若B⊆A,那么凡不属于集合A的元素,则必不属于B. ( )分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有(4)是正确的,其余全错.对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.对于(4)来讲,当x∈B时必有x∈A,则x∉A时也必有x∉B.2.集合A={x|-1<x<3,x∈Z},写出A的真子集.分析:区分子集与真子集的概念,空集是任一非空集合的真子集,一个含有n个元素的子集有2n个,真子集有2n-1个,则该题先找该集合元素,后找真子集.解:因-1<x<3,x∈Z,故x=0,1,2,即a={x|-1<x<3,x∈Z}={0,1,2}.真子集:∅、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个.3.(1)下列命题正确的是 ( )A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为 ( )①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}⊆{1,0,2}④∅∈{0,1,2} ⑤∅∈{0}A.5B.2C.3D.4(3)M={x|3<x<4},a=π,则下列关系正确的是 ( )A.a MB.a∉MC.{a}∈MD.{a}M分析:(1)该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于∅只有一个子集,即它本身,排除B;由于1不是质数,排除D.(2)该题涉及到的是元素与集合,集合与集合的关系.①应是{1}⊆{0,1,2},④应是∅⊆{0,1,2},⑤应是∅⊆{0}.故错误的有①④⑤.(3)M={x|3<x<4},a=π.因3<a<4,故a是M的一个元素.{a}是{x|3<x<4}的子集,那么{a}M.答案:(1)C (2)C (3)D4.判断如下集合A与B之间有怎样的包含或相等关系:(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};(2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.解:(1)因A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},故A、B都是由奇数构成的,即A=B. (2)因A={x|x=2m,m∈Z},B={x|x=4n,n∈Z},又x=4n=2·2n, 在x=2m 中,m 可以取奇数,也可以取偶数;而在x=4n 中,2n 只能是偶数.故集合A 、B 的元素都是偶数.但B 中元素是由A 中部分元素构成,则有B A.点评:此题是集合中较抽象的题目.要注意其元素的合理寻求.5.已知集合P={x|x 2+x-6=0},Q ={x|ax+1=0}满足Q P,求a 所取的一切值.解:因P={x|x 2+x-6=0}={2,-3},当a=0时,Q ={x|ax+1=0}=∅,Q P 成立.又当a≠0时,Q ={x|ax+1=0}={a 1-},要Q P 成立,则有a 1-=2或a 1-=-3,a=21-或a=31. 综上所述,a=0或a=21-或a=31. 点评:这类题目给的条件中含有字母,一般需分类讨论.本题易漏掉a=0,ax+1=0无解,即Q 为空集的情况,而当Q =∅时,满足Q P.6.已知集合A={x ∈R |x 2-3x+4=0},B={x ∈R |(x+1)(x 2+3x-4)=0},要使AP ⊆B,求满足条件的集合P.解:由A={x ∈R|x 2-3x+4=0}=∅,B={x ∈R |(x+1)(x 2+3x-4)=0}={-1,1,-4},由A P ⊆B 知集合P 非空,且其元素全属于B,即有满足条件的集合P 为{1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}.点评:要解决该题,必须确定满足条件的集合P 的元素,而做到这点,必须明确A 、B,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.7.设A={0,1},B={x|x ⊆A},则A 与B 应具有何种关系?解:因A={0,1},B={x|x ⊆A},故x 为∅,{0},{1},{0,1},即{0,1}是B 中一元素.故A ∈B.点评:注意该题的特殊性,一集合是另一集合的元素.8.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m -1},(1)若B ⊆A,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.解:(1)当m+1>2m-1即m<2时,B=∅满足B ⊆A.当m+1≤2m -1即m≥2时,要使B ⊆A 成立, 需⎩⎨⎧>+-≥+51,121m m m 可得2≤m≤3.综上所得实数m 的取值范围m≤3. (2)当x ∈Z 时,A={-2,-1,0,1,2,3,4,5},所以,A 的非空真子集个数为2上标8-2=254.(3)∵x ∈R ,且A={x|-2≤x≤5},B={x|m+1≤x≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立. 则①若B≠∅即m+1>2m-1,得m<2时满足条件;②若B≠∅,则要满足条件有:⎩⎨⎧>+-≤+51,121m m m 或⎩⎨⎧-<--≤+212,121m m m 解之,得m>4. 综上有m<2或m>4.点评:此问题解决要注意:不应忽略∅;找A 中的元素;分类讨论思想的运用.。

集合经典习题集含答案

集合经典习题集含答案

集合经典习题集含答案标题:集合经典习题集含答案一、基础练习题1. 设A={1,2,3,4},B={3,4,5,6},求A与B的交集。

解析:两个集合的交集是指同时存在于两个集合中的元素。

所以A与B的交集为{3,4}。

2. 如果集合A与集合B的并集是整数集Z,那么集合A与集合B的关系是什么?解析:如果集合A与集合B的并集是整数集Z,那么说明集合A和集合B的元素的取值范围覆盖了整数集Z中的所有元素。

因此,可以说集合A与集合B的关系是包含关系。

3. 设A={x|x是大于等于0小于10的实数},B={x|x是大于等于5小于15的实数},求A与B的交集。

解析:根据题目给出的条件,可以得出A={0,1,2,3,4,5,6,7,8,9},B={5,6,7,8,9,10,11,12,13,14}。

所以A与B的交集为{5,6,7,8,9}。

4. 设A={a,b,c,d},B={c,d,e,f},C={d,e,f,g},求(A∩B)∪C。

解析:首先求A与B的交集:A∩B={c,d}。

然后将交集与C求并集:(A∩B)∪C={c,d,e,f,g}。

5. 设A={3,4,5},B={4,5,6},C={5,6,7},求(A∪B)∩C。

解析:首先求A与B的并集:A∪B={3,4,5,6}。

然后将并集与C求交集:(A∪B)∩C={5}。

二、进阶练习题1. 设A={x|x是集合R中的一个奇数},B={x|x是集合R 中的一个负数},C={x|x是集合R中的一个素数},求(A∪B)∩C。

解析:集合R中的奇数为{-3,-1,1,3,5,...},负数为{-∞,-1,-2,-3,...},素数为{2,3,5,7,11,...}。

将A与B的并集求出:A∪B={-∞,-3,-2,-1,1,3,5,...}。

然后将并集与C 求交集:(A∪B)∩C={3,5,7,11,...}。

2. 设集合A={1,2,3,...,10},B={3,5,7,9},C={2,6,10},求(A∩B)∪C。

高考数学专题《集合》习题含答案解析

高考数学专题《集合》习题含答案解析
【解析】
分析:由题意首先求得 CR B ,然后进行交集运算即可求得最终结果.
详解:由题意可得: CR B x | x 1 ,
结合交集的定义可得: A CR B 0 x 1 .
本题选择 B 选项.
8.(2017·全国高考真题(理))已知集合 A={x|x<1},B={x| 3x 1 },则(
故选:C
8.(2019·北京临川学校高二期末(文))已知集合 = { ―1,3}, = {2,2},若 ∪ = { ―1,3,2,9},则实数

的值为(
A. ± 1
B. ± 3
C. ― 1
D.3
【答案】B
【解析】
∵ 集合 = { ―1,3}, = {2,2},且 ∪ = { ―1,3,2,9}, ∴ 2 = 9,因此, =± 3,
对③: {0,1, 2} 是集合, {1, 2, 0} 也是集合,由于一个集合的本身也是该集合的子集,故③正确.
对④: 0 是元素, 是不含任何元素的空集,所以 0 ,故④错误.
对⑤: 0 是元素, 是不含任何元素的空集,所以两者不能进行取交集运算,故⑤错误.
故选:C.
3.(2021·浙江高一期末)已知集合 M 0,1, 2,3, 4 , N 2, 4, 6 , P M N ,则满足条件的 P 的非
则集合 A B 的所有元素之和为(
A.16
B.18

C.14
D.8
【答案】A
【解析】
由题设,列举法写出集合 A B ,根据所得集合,加总所有元素即可.
【详解】
由题设知: A B {1, 2,3, 4, 6} ,
∴所有元素之和 1 2 3 4 6 16 .

集合及其表示方法练习题(含解析)

集合及其表示方法练习题(含解析)

集合及其表⽰⽅法练习题(含解析)集合及其表⽰⽅法练习题(含解析)基础题⼀、选择题1.已知集合S={a,b,c}中的三个元素是△ABC的三边长,那么△ABC⼀定不是()A.锐⾓三⾓形B.直⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形解析因为集合S={a,b,c}中的元素是△ABC的三边长,由集合元素的互异性可知a,b,c互不相等,所以△ABC⼀定不是等腰三⾓形.故选D.2.下列集合的表⽰⽅法正确的是()A.第⼆、四象限内的点集可表⽰为{(x,y)|xy≤0,x∈R,y∈R}B.不等式x-1<4的解集为{x<5}C.{全体整数}D.实数集可表⽰为R解析A中应是xy<0;B中的本意是想⽤描述法表⽰,但不符合描述法的规范格式,缺少了竖线和竖线前⾯的代表元素x,应为{x|x<5};C中的“{}”与“全体”意思重复.故选D.3.下列集合恰有两个元素的是()A.{x2-x=0} B.{x|y=x2-x}C.{y|y2-y=0} D.{y|y=x2-x}解析A为⼀个⽅程集,只有⼀个元素;B为⽅程y=x2-x的定义域,有⽆数个元素;C为⽅程y2-y=0的解,有0,1两个元素;D为函数y=x2-x的值域,有⽆数个元素.故选C.4.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1 B.3C.5 D.9解析根据已知条件,列表如下:根据集合中元素的互异性,由上表可知B={0,-1,-2,1,2},因此集合B中共含有5个元素.故选C.5.若2?{x|x-a>0},则实数a的取值范围是()A.a≠2 B.a>2 C.a≥2 D.a=2解析因为2?{x|x-a>0},所以2不满⾜不等式x-a>0,即满⾜不等式x-a≤0,所以2-a≤0,即a≥2,故选C.⼆、填空题6.若A={-2,2,3,4},B={x|x=t2,t∈A},则⽤列举法表⽰B=________.解析由题意,A={-2,2,3,4},B={x|x=t2,t∈A},依次计算出B中元素,⽤列举法表⽰可得B ={4,9,16},故答案为{4,9,16}.7.已知集合A={x|ax2-3x-4=0,x∈R},若A中⾄多有⼀个元素,则实数a的取值范围是________.解析当a=0时,A={x|x=-43};当a≠0时,关于x的⽅程ax2-3x-4=0应有两个相等的实数根或⽆实数根,所以Δ=9+16a≤0,即a≤-916.故所求的a的取值范围是a=0或a≤-916.8.已知集合A中的元素均为整数,对于k∈A,如果k-1?A且k+1?A,那么称k是A的⼀个“孤⽴元”.给定集合S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤⽴元”的集合共有________个.解析根据“孤⽴元”的定义,由S的3个元素构成的所有集合中,不含“孤⽴元”的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共有6个.故答案为6.三、解答题9.⽤适当的⽅法表⽰下列集合:(1)绝对值不⼤于3的偶数的集合;(2)被3除余1的正整数的集合;(3)⼀次函数y=2x-3图像上所有点的集合;(4)⽅程组x+y=1,x-y=-1的解集.解(1){-2,0,2}.(2){m|m=3n+1,n∈N}.(3){(x,y)|y=2x-3}.(4){(0,1)}.10.已知集合A={a+3,(a+1)2,a2+2a+2},若1∈A,求实数a的值.解①若a+3=1,则a=-2,此时A={1,1,2},不符合集合中元素的互异性,舍去.②若(a+1)2=1,则a=0或a=-2.当a=0时,A={3,1,2},满⾜题意;当a=-2时,由①知不符合条件,故舍去.③若a2+2a+2=1,则a=-1,此时A={2,0,1},满⾜题意.综上所述,实数a的值为-1或0.提⾼题1.已知集合A={x|x=3n+1,n∈Z},B={x|x=3n+2,n∈Z},M={x|x=6n+3,n∈Z}.(1)若m∈M,则是否存在a∈A,b∈B,使m=a+b成⽴?(2)对于任意a∈A,b∈B,是否⼀定存在m∈M,使a+b=m?证明你的结论.解(1)设m=6k+3=3k+1+3k+2(k∈Z),令a=3k+1,b=3k+2,则m=a+b.故若m∈M,则存在a∈A,b∈B,使m=a+b成⽴.(2)不⼀定.证明如下:设a=3k+1,b=3l+2,k,l∈Z,则a+b=3(k+l)+3.当k+l=2p(p∈Z)时,a+b=6p+3∈M,此时存在m∈M,使a+b=m成⽴;当k+l=2p+1(p∈Z)时,a+b=6p+6?M,此时不存在m∈M,使a+b=m成⽴.故对于任意a∈A,b∈B,不⼀定存在m∈M,使a+b=m.2.设实数集S是满⾜下⾯两个条件的集合:①1?S;②若a∈S,则11-a∈S.(1)求证:若a∈S,则1-1a∈S;(2)若2∈S,则S中必含有其他的两个数,试求出这两个数;(3)求证:集合S中⾄少有三个不同的元素.解(1)证明:∵1?S,∴0?S,即a≠0.由a∈S,则11-a∈S可得11-11-a∈S,即11-11-a=1-a1-a-1=1-1a∈S.故若a∈S,则1-1a∈S.(2)由2∈S,知11-2=-1∈S;由-1∈S,知11-(-1)=12∈S,当12∈S时,11-12=2∈S,因此当2∈S时,S中必含有-1和1 2.(3)证明:由(1),知a∈S,11-a∈S,1-1a∈S.下证:a,11-a,1-1a三者两两互不相等.①若a=11-a,则a2-a+1=0,⽆实数解,∴a≠11-a;②若a =1-1a ,则a 2-a +1=0,⽆实数解,∴a ≠1-1a;③若11-a =1-1a ,则a 2-a +1=0,⽆实数解,∴11-a≠1-1a .综上所述,集合S 中⾄少有三个不同的元素.。

集合的表示方法练习题(内含详细答案)

集合的表示方法练习题(内含详细答案)

集合的表示方法练习题(内含详细答案)学校:___________姓名:___________班级:___________考号:___________一、单选题 1.方程组的解构成的集合是( )A .B .C .D .2.设集合{}1,0A =-,{},B t t y x x A y A ==-∈∈且,则A B ⋂=( ) A .{}1 B .{}1-C .{}1,1-D .{}1,0-3.如果全集,,则( )A .B .C .D .4.用列举法表示集合,正确的是( )A .,B .C .D .5.集合,,则集合中的所有元素之积为( )A .36B .54C .72D .108 6.一次函数 和的交点组成的集合是( ) A .B .C .D .7.对于集合M ,定义函数fM(x)=对于两个集合A ,B ,定义集合A△B={x|fA(x)·fB(x)=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A△B 的结果为( ) A .{1,6,10,12} B .{2,4,8} C .{2,8,10,12} D .{12,46} 8.集合{(x ,y)|y =2x -1}表示( )B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图像上的所有点组成的集合9.已知集合和集合,则等于()A.B.C.D.10.集合M={(1,2),(2,1)}中元素的个数是A.1 B.2 C.3 D.411.若A=,则()A.A=B B.A C.A D.B二、填空题12.用列举法写出集合______13.若集合Z中有且只有一个元素,则正实数的取值范围是________三、解答题14.已知,用列举法表示集合.15.若P={0,2,5},Q={1,2,6},定义集合P+Q={a+b|a∈P,b∈Q},用列举法表示集合P+Q.答案一、单选题 1.方程组的解构成的集合是( )A .B .C .D .【答案】C 【解析】 【分析】求出二元一次方程组的解,然后用集合表示出来. 【详解】 ∵∴∴方程组的解构成的集合是{(1,1)}故选:C . 【点睛】本题考查集合的表示法:注意集合的元素是点时,一定要以数对形式写. 2.设集合{}1,0A =-,{},B t t y x x A y A ==-∈∈且,则A B ⋂=( ) A .{}1 B .{}1-C .{}1,1-D .{}1,0-【答案】D 【解析】 【分析】由题意首先求得集合B ,然后进行交集运算即可. 【详解】由于:()()101,011,11000--=---=---=-=,故由题意可知:{}101B =-,,,结合交集的定义可知:{}1,0A B =-.【点睛】本题主要考查集合的表示方法,交集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.3.如果全集,,则()A.B.C.D.【答案】C【解析】【分析】首先确定集合U,然后求解补集即可.【详解】由题意可得:,结合补集的定义可知.本题选择C选项.【点睛】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.4.用列举法表示集合,正确的是()A.,B.C.D.【答案】B【解析】【分析】解方程组解得,再根据集合的表示方法,列举即可得到答案。

集合的基本关系练习题(含答案解析)

集合的基本关系练习题(含答案解析)

一、选择题1.下列四个结论中,正确的是( )A.0={0}B.0∈{0}C.0⊆{0}D.0∈{∅}【解析】选B.{0}是含有1个元素0的集合,故0∈{0}.2.如果M={x|x+1>0},则( )A.∅∈MB.∅=MC.{0}∈MD.{0}⊆M【解析】选D.M={x|x+1>0}={x|x>-1},所以{0}⊆M.3.下列四个集合中,是空集的是( )A.{x|x+3=3}B.{(x,y)|y2=-x2,x,y∈R}C.{x|x2≤0}D.{x|x2-x+1=0,x∈R}【解析】选 D.对A,{x|x+3=3}={0};对B,{(x,y)|y2=-x2,x,y∈R}={(0,0)};对C,{x|x2≤0}={0};对D,由于Δ=(-1)2-4=-3<0,即方程x2-x+1=0无解,故{x|x2-x+1=0,x∈R}=∅.4.已知集合A={x|3≤x2≤5,x∈Z},则集合A的真子集个数为( )A.1个B.2个C.3个D.4个【解析】选C.由题意知,x=-2,2,即A={-2,2},故其真子集有3个. 【误区警示】本题易忽视真子集这一条件而误选D.5.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是( )A.M PB.P MC.M=PD.M,P互不包含【解析】选D.由于两集合代表元素不同,即M表示数集,P表示点集,因此M与P互不包含,故选D.【误区警示】解答本题易忽视集合的属性而误选C.6.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是( )【解析】选B.由N={x|x2+x=0}={-1,0},得N M.7.设集合S={x|x≥2},T={x|x≤5},则S∩T= ( )A.{x|x≤5}B.{x|x≥2}C.{x|2<x<5}D.{x|2≤x≤5}【解析】选D.依题意计算得S∩T=,故选D.8.已知集合A={-2,0,2},B={x|x2-x-2=0},则A∪B= ( )A.∅B.{2}C.{0,-1,2}D.{-2,-1,0,2}【解析】选D.因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∪B= {-2,-1,0,2}.9.设集合A={x∈N|1≤x≤10},B={x∈R︱x2+ x-6=0},则图中阴影表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}【解析】选A.A={1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A∩B={2}.【补偿训练】若集合A={x|-2≤x≤3},B={x|x<-1或x>4},则集合A ∩B等于( )A.{x|x≤3或x>4}B.{x|-1<x≤3}C.{x|3≤x<4}D.{x|-2≤x<-1}【解析】选D.将集合A,B表示在数轴上,由数轴可得A∩B={x|-2≤x<-1},故选D.10.在集合{a,b,c,d}上定义两种运算⊕和⊗如下:那么d⊗(a⊕c)的运算结果为( )A.aB.bC.cD.d【解题指南】先计算(a⊕c)的结果,再计算d⊗(a⊕c)的值.【解析】选A.由上表可知:(a⊕c)=c,故d⊗(a⊕c)=d⊗c=a.11.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1B.3C.4D.8【解题指南】由并集中的元素可知集合B中至少含有一个元素3,由此分类求解.【解析】选C.因为A={1,2},A∪B={1,2,3},所以B={3}或{1,3}或{2,3}或{1,2,3},故选C.12.集合A={2n+1|n∈Z},集合B={4k±1|k∈Z},则A与B间的关系是( )A.A∈BB.A BC.A∉BD.A=B二、填空题1.已知集合A={x|x2-3x+2=0},B={1,2},C={x|x<8,x∈N},用适当符号填空:A B,A C,{2} C,2 C.【解析】A={1,2},B={1,2},C={0,1,2,3,4,5,6,7},所以A=B,A C,{2}C,2∈C.答案:= ∈2.已知集合A={x|-2≤x≤3},B={x|x≥m},若A⊆B,则实数m的取值范围为.【解题指南】根据集合间的关系,借助数轴求解.【解析】将集合A,B表示在数轴上,如图所示,所以m≤-2.答案:m≤-23.设x,y∈R,A={(x,y)|y=x},B=,则A,B的关系是.【解析】因为B=={(x,y)|y=x,且x≠0},故B A.答案:B A【误区警示】解答本题易忽视集合B中x≠0而误认为A=B.4.设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B= .【解题指南】由交集求出a,b,再求并集.【解析】因为A∩B={2},所以2∈A,故a+1=2,a=1,即A={5,2};又2∈B,所以b=2,即B={1,2},所以A∪B={1,2,5}.答案:{1,2,5}三、解答题1.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.【解析】因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)}, {(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.2.若集合A={x|(k+1)x2+x-k=0}有且仅有两个子集,求实数k的值. 【解析】集合A有且仅有两个子集说明A中仅有一个元素,那么对于方程(k+1)x2+x-k=0,若k+1=0,即k=-1,方程即为x+1=0,x=-1,此时A={-1},满足题意;若k+1≠0,则需Δ=0,即12-4(k+1)(-k)=0,解得k=-,此时A={-1},满足题意.所以实数k的值为-1或-.3.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y ∈M},求A∩B和A∪B.【解析】因为A={(1,2),(1,1)},B={(1,1),(2,1)}.所以A∩B={(1,1)},A∪B={(1,1),(1,2),(2,1)}.【误区警示】本题易忽视集合A,B是点集而致错.4.已知A={1,x,-1},B={-1,1-x}.(1)若A∩B={1,-1},求x.(2)若A∪B={1,-1,},求A∩B.(3)若B⊆A,求A∪B.【解析】(1)由条件知1∈B,所以1-x=1,所以x=0.(2)由条件知x=,所以A=,B=,所以A∩B=.(3)因为B⊆A,所以1-x=1或1-x=x,所以x=0或,当x=0时,A∪B={1,0,-1},当x=时,A∪B=.。

高一数学必修一集合练习题及单元测试(含答案及解析)

高一数学必修一集合练习题及单元测试(含答案及解析)

题习集合练1.设集合A={x|2 ≤x<4} ,B={x|3x -7≥8-2x} ,则A∪B 等于( )A.{x|x ≥3} B.{x|x ≥2} C .{x|2 ≤x<3} D .{x|x ≥4}2.已知集合A={1,3,5,7,9} ,B={0,3,6,9,12} ,则A∩B=( )A.{3,5} B .{3,6} C .{3,7} D .{3,9}3. 已知集合A={x|x>0} ,B={x| -1≤x≤2} ,则A∪B=( )A.{x|x ≥-1} B .{x|x ≤2 } C .{x|0<x ≤2} D .{x| -1≤x≤2} 4. 满足M?{ ,,,} ,且M∩{ ,,} ={ ,} 的集合M的个数是( ) A.1 B .2 C .3 D .45.集合A={0,2 ,a} ,B={1 ,} .若A∪B={0,1,2,4,16} ,则 a 的值为()A.0 B .1 C .2 D .46.设S={x|2x +1>0} ,T={x|3x -5<0} ,则S∩T=( )A.? B .{x|x< -1/2} C .{x|x>5/3} D .{x| -1/2<x<5/3}7.50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30 名,参加乙项的学生有25 名,则仅参加了一项活动的学生人数为________.8.满足{1,3} ∪A={1,3,5} 的所有集合 A 的个数是________.9.已知集合A={x|x ≤1} ,B={x|x ≥a} ,且A∪B=R,则实数 a 的取值范围是________.10. 已知集合A={ -4,2a -1,} ,B={a -5,1 -a,9} ,若A∩B={9} ,求a 的值.11.已知集合A={1,3,5} ,B={1,2 ,-1} ,若A∪B={1,2,3,5} ,求x 及A∩B. 12.已知A={x|2a ≤x≤a+3} ,B={x|x< -1 或x>5} ,若A∩B=? ,求 a 的取值范围.13.(10 分) 某班有36 名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13 ,同时参加数学和物理小组人?的有 6 人,同时参加物理和化学小组的有 4 人,则同时参加数学和化学小组的有多少试集合测大题共10 小题,每小题 5 分,共50 分。

(完整版)集合练习题及答案有详解(最新整理)

(完整版)集合练习题及答案有详解(最新整理)
圆梦教育中心资料
圆梦教育中心资料
若 x2-1=5,则 x=± 6; 综上,x=±2 或± 6.
当 x=±2 时,B={1,2,3},此时 A∩B={1,3}; 当 x=± 6时,B={1,2,5},此时 A∩B={1,5}. 8.已知 A={x|2a≤x≤a+3},B={x|x<-1 或 x>5},若 A∩B=Ø,求 a 的取值范围. 【解析】 由 A∩B=Ø, (1)若 A=Ø, 有 2a>a+3,∴a>3. (2)若 A≠Ø, 如图:
2
3
23
【答案】 D
3.已知集合 A={x|x>0},B={x|-1≤x≤2},则 A∪B=( )
A.{x|x≥-1} B.{x|x≤2}
C.{x|0<x≤2} D.{x|-1≤x≤2}
【解析】 集合 A、B 用数轴表示如图,
A∪B={x|x≥-1}.故选 A.
【答案】 A 4.满足 M⊆{a1,a2,a3,a4},且 M∩{a1,a2,a3}={a1,a2}的集合 M 的个数是( ) A.1 B.2 C.3 D.4 【解析】 集合 M 必须含有元素 a1,a2,并且不能含有元素 a3,故 M={a1,a2}或 M={a1,a2,a4}.故选 B. 【答案】 B 二、填空题(每小题 5 分,共 10 分) 5.已知集合 A={x|x≤1},B={x|x≥a},且 A∪B=R,则实数 a 的取值范围是________. 【解析】 A=(-∞,1],B=[a,+∞),要使 A∪B=R,只需 a≤1. 【答案】 a≤1 6.满足{1,3}∪A={1,3,5}的所有集合 A 的个数是________. 【解析】 由于{1,3}∪A={1,3,5},则 A⊆{1,3,5},且 A 中至少有一个元素为 5,从而 A 中其余元素可以是集 合{1,3}的子集的元素,而{1,3}有 4 个子集,因此满足条件的 A 的个数是 4.它们分别是{5},{1,5},{3,5},{1,3,5}. 【答案】 4 三、解答题(每小题 10 分,共 20 分) 7.已知集合 A={1,3,5},B={1,2,x2-1},若 A∪B={1,2,3,5},求 x 及 A∩B. 【解析】 由 A∪B={1,2,3,5},B={1,2,x2-1}得 x2-1=3 或 x2-1=5. 若 x2-1=3 则 x=±2;

集合练习题(附答案)

集合练习题(附答案)

成才教育集合1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅ 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭1013 3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==,一、选择题1.已知全集U =R ,集合A ={x |1≤x <7},B ={x |x 2-7x +10<0},则A ∩(∁R B ) = ( ) A .(1,2)∪(5,7) B .[1,2]∪[5,7) C .(1,2)∪(5,7]D .(1,2]∪(5,7)2.(2010∙广东模拟精选题)已知集合A ={x |y =1x -},B ={y |y =lg(x 2+10)},则A ∪R B =( ) A .∅B .[10,+∞)C .[1,+∞)D .R3.已知集合{1,0,1},{|,,}M N x x ab a b M a b =-==∈≠且,则集合M 与集合N 的关系是( )A .M=NB .M N ØC .M N ÙD .M N =∅4.设全集{0,1,2,3,4}U =,集合{0,1,2}A =,集合{2,3}B =,则()U C A B( )A .∅B .{1,2,3,4}C .{0,1,2,3,4}D .{2,3,4}5.已知全集=⋃≤=≤==)(},12|{},0lg |{,B A C x B x x A R U U x 则集合 ( )A .)1,(-∞B .),1(+∞C .]1,(-∞D .),1[+∞6.集合2{0,2,},{1,},{0,1,2,4,16}A a B a A B ==⋃=若,则a 的值为( )A .0B .1C .2D .47.集合{5|<∈+x Nx }的另一种表示法是( )A .{0,1,2,3,4} B.{1,2,3,4} C.{0,1,2,3,4,5} D.{1,2,3,4,5} 8.集合3{=A ,6,8}的真子集的个数为A .6B .7C .8D .99.设全集U=R ,A={x ∈N ︱1≤x ≤10},B={ x ∈R ︱x 2+ x -6=0},则下图中阴影表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}10.当x ∈R ,下列四个集合中是空集的是( ) A. {x|x 2-3x+2=0} B. {x|x 2<x} C. {x|x 2-2x+3=0} C. {x|sinx+cosx=65}11.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则 ( )A .B A U ⋃= B . B AC U U ⋃=)( C .)(B C A U U ⋃=D .)()(B C A C U U U ⋃=12.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .}01|{2=+-x x x二、填空题1.(2009∙江苏泰州)已知全集U ={1,2,3,4,5},A ={1,2},B ={1,2,4},则∁U (A ∪B )=________.2.设全集U =Z ,A ={1,3,5,7,9},B ={1,2,3,4,5,6},则右图中阴影部分表示的集合是________.3.(2010∙山东临沂期中考试) 若集合A ={x |x ≤2},B ={x |x ≥a },满足A ∩B ={2},则实数 a =________.4.(江苏泰兴市重点中学2011届)已知集合{}{}N x x Q x x x P ∈=<--=/,032/2,则=⋂Q P5.已知集合A={}4,3,2,1,那么A 的真子集的个数是 .6.满足{}0,1,2{0,1,2,3,4,5}A ⊆的集合A 的个数是_______个.7.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B .集合练习题参考答案一. 选择题1.B2.A3.C4.D5.B6.D7.B8.B9.A 10.C 11.C 12D 二.填空题1.}{3,52.}{2,4,63. 24. }{0,1,25. 156. 77.}{4,9,16。

高中集合练习题及讲解及答案

高中集合练习题及讲解及答案

高中集合练习题及讲解及答案集合是数学中的基本概念之一,它涉及到元素和集合之间的关系。

以下是一些高中集合练习题,以及相应的讲解和答案。

练习题1:已知集合A = {x | x > 3},B = {x | x < 5},求A∪B。

讲解:A∪B表示集合A和集合B的并集,即包含在A或B中的所有元素的集合。

答案:A∪B = {x | x < 5 或 x > 3},由于x > 3已经包含了x < 5的所有情况,所以A∪B = R,即所有实数。

练习题2:设集合C = {y | y = x^2, x ∈ Z},求C中所有元素的和。

讲解:集合C由所有整数的平方组成。

我们需要找出所有整数的平方并将它们相加。

答案:C = {0, 1, 4, 9, 16, ...},即所有整数的平方。

由于整数是无限的,它们的平方之和也是无限的,所以这个问题没有具体的数值答案。

练习题3:给定集合D = {1, 2, 3, 4, 5},E = {x | x ∈ D 且 x > 2},求D∩E。

讲解:D∩E表示集合D和集合E的交集,即同时属于D和E的所有元素的集合。

答案:E = {3, 4, 5},因此D∩E = {3, 4, 5}。

练习题4:集合F = {x | x^2 - 5x + 6 = 0},求F的元素。

讲解:要找出集合F的元素,我们需要解这个二次方程。

答案:x^2 - 5x + 6 = 0,分解因式得 (x - 2)(x - 3) = 0,所以x = 2 或x = 3。

因此,F = {2, 3}。

练习题5:已知集合G = {x | x 是质数},求G中小于20的所有元素。

讲解:质数是指只能被1和它本身整除的大于1的自然数。

答案:G中小于20的质数有:2, 3, 5, 7, 11, 13, 17, 19。

这些练习题涵盖了集合的基本操作,如并集、交集、元素的求法等,是高中数学课程中常见的题目。

通过解决这些问题,学生可以加深对集合概念的理解。

1.2 集合的基本概念练习题(含答案)

1.2 集合的基本概念练习题(含答案)

集合的基本概念练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.集合M={(x,y)|xy>0,x+y<0,x∈R,y∈R}是()A.第一象限的点集B.第二象限的点集C.第三象限的点集D.第四象限的点集【答案】C【分析】利用不等式的性质可得x<0,y<0,进而判断出集合的意义.【详解】由xy>0,x+y<0⇔x<0,y<0,故集合M={(x,y)|xy>0,x+y<0,x∈R,y∈R}是第三象限的点集.故选:C.2.集合{x∈N|x−2<2}用列举法表示是()A.{1,2,3}B.{1,2,3,4}C.{0,1,2,3,4}D.{0,1,2,3}【答案】D【分析】解不等式x−2<2,结合列举法可得结果.【详解】{x∈N|x−2<2}={x∈N|x<4}={0,1,2,3}.故选:D.3.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.4【答案】A【分析】根据x,y为整数,分析所有可能的情况求解即可【详解】当x=−1时,y2≤2,得y=−1,0,1,当x=0时,y2≤3,得y=−1,0,1当x=1时,y2≤2,得y=−1,0,1即集合A中元素有9个,故选:A.4.已知集合M={x∣x2+x=0},则()A.{0}∈M B.∅∈M C.−1∉M D.−1∈M 【答案】D【分析】先求得集合M,再根据元素与集合的关系,集合与集合的关系可得选项.【详解】因为集合M={x∣x2+x=0}={0,−1},所以−1∈M,故选:D.5.已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}【答案】D【分析】根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可【详解】由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D6.若集合A={1,m2},集合B={2,4},若A∪B={1,2,4},则实数m的取值集合为()A.{−√2,√2}B.{2,√2}C.{−2,2}D.{−2,2,−√2,√2}【答案】D【分析】由题中条件可得m2=2或m2=4,解方程即可.【详解】因为A={1,m2},B={2,4},A∪B={1,2,4},所以m2=2或m2=4,解得m=±√2或m=±2,所以实数m的取值集合为{−2,2,−√2,√2}.故选:D.二、多选题7.下列结论不正确的是()A.1∈N B.√2∈Q C.0∈N∗D.−3∈Z【答案】BC【分析】根据N、Q、N∗、Z表示的数集,结合元素与集合之间的关系即可做出判断.【详解】由N表示自然数集,知1∈N,故A正确;由√2为无理数且Q表示有理数集,知√2∉Q,故B错;由N∗表示正整数集,知0∉N∗,故C错;由Z表示整数集,知−3∈Z,故D正确.故选:BC.8.已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆A B.A⊆B C.0∉A D.1∈A【答案】ACD【解析】求出集合A,利用元素与集合、集合与集合的包含关系可得出结论.【详解】∵A={y|y=x2+1}={y|y≥1},B={x|x>2},所以,B⊆A,0∉A,1∈A.故选:ACD.三、填空题9.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]= {5n+k|n∈Z},k=0,1,2,3,4;给出下列四个结论:①2015∈[0];①−3∈[3];①Z=[0]∪[1]∪[2]∪[3]∪[4];①“整数a,b属于同一‘类’”的充要条件是“a−b∈[0]”.其中,正确结论的个数..是_______.【答案】3【分析】根据2015被5除的余数为0,可判断①;将−3=−5+2,可判断①;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断①;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明①的真假.【详解】①由2015÷5=403,所以2015∈[0],故①正确;①由−3=5×(−1)+2,所以−3∉[3],故①错误;①整数集就是由被5除所得余数为0,1,2,3,4的整数构成,故①正确;①假设a=5n1+m1,b=5n2+m2,a−b=5(n1−n2)+m1−m2,a,b要是同类.则m1=m2,即m1−m2=0,所以a−b∈[0],反之若a−b∈[0],即m1−m2=0,所以m1=m2,则a,b是同类,①正确;故答案为:3【点睛】本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理,属中档题.10.已知集合A={12,a2+4a,a−2},且−3∈A,则a=_________.【答案】-3【分析】由集合A={12,a2+4a,a−2},且−3∈A,得a2+4a=−3或a−2=−3,由此能求出结果.【详解】解:∵集合A={12,a2+4a,a−2},且−3∈A,∴a2+4a=−3或a−2=−3,解得a=−1,或a=−3,当a=−1时,A={12,−3,−3},不合题意,当a=−3时,A={12,−3,−5},符合题意.综上,a=−3.故答案为:−3.11.用∈或∉填空:0________N【答案】∈【解析】可知0是自然数,即可得出.【详解】∵0是自然数,∴0∈N.故答案为:∈.12.集合{2a,a2−a}中实数a的取值范围是________【答案】{a|a≠0且a≠3}【分析】由2a≠a2−a得结论.【详解】由题意2a≠a2−a,a≠0且a≠3,故答案为{a|a≠0且a≠3}.【点睛】本题考查集合中元素的性质:互异性,属于基础题.四、解答题13.已知集合A={x|x=m+√6n,其中m,n∈Q}.(1)试分别判断x1=−√6,x2=√2−√3√2+√3与集合A的关系;(2)若x1,x2∈A,则x1x2是否一定为集合A的元素?请说明你的理由.14.试分别用描述法和列举法表示下列集合:(1)方程x2−2=0的所有实数根组成的集合A;(2)由大于10且小于20的所有整数组成的集合B.{11,12,13,14,15,16,17,18,19}.【解析】(1)用描述法表示集合A,再解方程求出对应根,用列举法表示即可;(2)用描述法表示集合B,再列举出大于10且小于20的所有整数,用列举法表示集合B即可.【详解】(1)设x∈A,则x是一个实数,且x2−2=0.因此,用描述法表示为A={x∈R|x2−2=0}.方程x2−2=0有两个实数根√2,−√2,因此,用列举法表示为A={√2,−√2}.(2)设x∈B,则x是一个整数,即x∈Z,且10<x<20.因此,用描述法表示为B={x∈Z|10<x<20}.大于10且小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.【点睛】本题主要考查了用描述法以及列举法表示集合,属于基础题.15.已知集合A={x∈R|ax2−3x+1=0,a∈R}.(1)若1∈A,求实数a的值;(2)若集合A中仅含有一个元素,求实数a的值;(3)若集合A中仅含有两个元素,求实数a的取值范围.【答案】(1)a=2(2)a=0或a=94,a≠0}(3){a|a<94【分析】(1)将x=1代入方程求解即可;(2)分a=0、a≠0两种情况求解即可;(3)由条件可得a≠0,且Δ=(−3)2−4a>0,解出即可.(1)①1∈A,①a×12−3×1+1=0,①a=2;(2)当a=0时,x=13,符合题意;当a≠0时,Δ=(−3)2−4a=0,①a=94.综上,a=0或a=94;(3)集合A中含有两个元素,即关于x的方程ax2−3x+1=0有两个不相等的实数解,①a≠0,且Δ=(−3)2−4a>0,解得a<94且a≠0,①实数a的取值范围为{a|a<94,a≠0}.16.用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(x+1)(x2−4)=0的所有实数根组成的集合;(3)一次函数y=2x与y=x+1的图象的交点组成的集合.【答案】(1){0,2,4,6,8,10};(2){−2,−1,2}(3){(1,2)}【分析】(1)根据偶数的定义即可列举所有的偶数,(2)求出方程的根,即可写出集合,(3)联立方程求交点,进而可求集合.(1)11以内的非负偶数有0,2,4,6,8,10,所以构成的集合为{0,2,4,6,8,10},(2)(x+1)(x2−4)=0的根为x1=−1,x2=2,x3=−2,所以所有实数根组成的集合为{−2,−1,2},(3)联立y=x+1和y=2x,解得{x=1y=2,所以两个函数图象的交点为(1,2),构成的集合为{(1,2)}。

集合练习题含答案

集合练习题含答案

集合练习题含答案1. 定义题:什么是集合?请给出集合的三个基本性质。

- 答案:集合是由一些确定的、不同的元素所组成的整体。

集合的三个基本性质包括:确定性(集合中的元素是明确的)、互异性(集合中不会有重复的元素)、无序性(元素的排列顺序不影响集合的确定性)。

2. 列举题:列举出集合{1, 2, 3, 4, 5}的所有子集。

- 答案:集合{1, 2, 3, 4, 5}的所有子集包括空集∅和所有可能的元素组合,共32个子集。

3. 运算题:设集合A={1, 2, 3},B={2, 3, 4},求A∪B和A∩B。

- 答案:A∪B={1, 2, 3, 4},表示A和B中所有元素的集合。

A∩B={2, 3},表示A和B中共有的元素集合。

4. 关系题:如果集合C={x | x是偶数},D={x | x是小于10的正整数},判断C和D的关系。

- 答案:C是D的子集,因为C中的所有元素都是偶数,而D包含了所有小于10的正整数,包括了C中的所有元素。

5. 证明题:证明对于任意集合A,A⊆A。

- 答案:根据子集的定义,如果集合A中的每一个元素都是集合A的元素,则A是A的子集。

因为集合A中的元素自然属于A本身,所以A⊆A。

6. 应用题:某班级有30名学生,其中15名喜欢数学,12名喜欢物理,8名既喜欢数学又喜欢物理。

求至少喜欢一门科目的学生人数。

- 答案:设喜欢数学的学生集合为M,喜欢物理的学生集合为P。

根据集合的并集公式,至少喜欢一门科目的学生人数为|M∪P| = |M|+ |P| - |M∩P| = 15 + 12 - 8 = 19。

7. 推理题:如果A={x | x是大于10的整数},B={x | x是小于20的整数},C={x | x是奇数},判断A∩(B∪C)是否为空集。

- 答案:A∩(B∪C)不为空集。

因为B∪C包含了所有小于20的整数,而A包含了所有大于10的整数,所以它们有交集,即11, 13, 15, 17, 19。

集合的概念练习题(内含详细答案)

集合的概念练习题(内含详细答案)

集合的概念练习题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.下列选项中,表示同一集合的是()A.A={0,1},B={(0,1)}B.A={2,3},B={3,2}C.A={x|–1<x≤1,x∈N},B={1}D.A=∅,2.下列各项中,不能组成集合的是()A.所有的正数B.所有的老人C.不等于0的数D.我国古代四大发明3.下列对象能构成集合的是( )①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④4.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.是不大于3的自然数组成的集合C.集合和表示同一集合D.数1,0,5,,,,组成的集合有7个元素5.下列关于集合的命题正确的有()①很小的整数可以构成集合②集合{y|y=2x2+1}与集合{(x,y) |y=2x2+1}是同一个集合;③1,2,|-|,0.5,这些数组成的集合有5个元素④空集是任何集合的子集A.0个B.1个C.2个D.3个x+=的实数解”中,能够表6.在“①个子较高的人;②所有的正方形;③方程260示成集合的是( )A .②B .③C .①②③D .②③评卷人得分 二、填空题7.已知集合A ={x ,,1},B ={x 2,x +y ,0},若A =B ,则x 2017+y 2018=______.8.定义集合A -B ={x|x∈A,且x ∉B},若集合A ={x|2x +1>0},集合B ={x|<0},则集合A -B =____________.9.在数集{}0,1,2x -中,实数x 不能取的值是______. 10.下列对象:①方程x 2=2的正实根,②我校高一年级聪明的同学,③大于3小于12的所有整数,④函数y =2x 的图像上的点.能构成集合的个数为___________________________________.评卷人得分 三、解答题11.已知集合,是否存在这样的实数,使得集合有且仅有两个子集?若存在,求出所有的的值组成的集合;若不存在,请说明理由.答案1.下列选项中,表示同一集合的是A .A={0,1},B={(0,1)}B .A={2,3},B={3,2}C .A={x|–1<x≤1,x∈N},B={1}D .A=∅,【答案】B【解析】【分析】利用集合相等的定义直接求解.【详解】在A中,A={0,1}是数集,B={(0,1)}是点集,二者不表示同一集合,故A错误;在B中,A={2,3},B={3,2},集合中的元素具有无序性,所以两个集合相等,表示同一集合,故B正确;在C中,A={x|–1<x≤1,x∈N}={0,1},B={1},二者不相等,不表示同一集合,故C错误;在D中,A=∅,={0},二者不相等,不表示同一集合,故D错误.故选B.【点睛】本题考查集合相等的判断,考查集合相等的定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.下列各项中,不能组成集合的是A.所有的正数B.所有的老人C.不等于0的数D.我国古代四大发明【答案】B【解析】【分析】根据集合的三要素:确定性、互异性、无序性得到选项.【详解】集合中的元素具有确定性,老人的标准不确定,元素不能确定,故所有的老人不能构成集合,故选B.【点睛】本题考查集合中元素满足的三要素:确定性、互异性、无序性.3.下列对象能构成集合的是( )①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④【答案】D【解析】由集合中元素的确定性知,①中“优秀的篮球运动员”和⑤中“聪明的学生”不确定,所以不能构成集合.选D4.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.是不大于3的自然数组成的集合C.集合和表示同一集合D.数1,0,5,,,,组成的集合有7个元素【答案】C【解析】【分析】根据集合的含义逐一分析判断即可得到答案【详解】选项A,不满足确定性,故错误选项B,不大于3的自然数组成的集合是,故错误选项C,满足集合的互异性,无序性和确定性,故正确选项D,数1,0,5,,,,组成的集合有5个元素,故错误故选C【点睛】本题考查了集合的含义,利用其确定性、无序性、互异性进行判断,属于基础题。

高一数学集合练习题附答案

高一数学集合练习题附答案

高一数学集合练习题附答案一、单选题1.已知集合{}0,1,2,3A =,集合{}11B x x =-≤,则A B 等于( )A .{}3B .{}0,1,2C .{}1,2D .{}0,1,2,3 2.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B ⋂=( )A .(,1)-∞B .[)1,+∞C .(]2,0-D .(0,1) 3.设S 是整数集Z 的非空子集,如果任意的,a b S ∈,有ab S ∈,则称S 关于数的乘法是封闭的.若T 、V 是Z 的两个没有公共元素的非空子集,T V ⋃=Z .若任意的,,a b c T ∈,有abc T ∈,同时,任意的,,x y z V ∈,有xyz V ∈,则下列结论恒成立的是( ) A .T 、V 中至少有一个关于乘法是封闭的B .T 、V 中至多有一个关于乘法是封闭的C .T 、V 中有且只有一个关于乘法是封闭的D .T 、V 中每一个关于乘法都是封闭的4.已知集合{}0,1,2,3,4,5A =,{}1,3,6,9B =,{}3,7,8C =,则 ()A B C ⋂⋃=( ) A .{}3 B .{}3,7,8 C .{}1,3,7,8 D .{}1,3,6,7,8 5.设集合{}0,1S =,{}0,3T =,则S T ⋃=( )A .{}0B .{}1,3C .{}0,1,3D .{}0,1,0,36.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( )A .{}1B .{}0,1,2C .1,0,1,2D .{}1,1,2- 7.设集合{}Z 22M x x =∈-<,则集合M 的子集个数为( )A .16B .15C .8D .78.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8}B .{2,3,6,8}C .{2}D .{2,6,8}9.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()U A B ⋂=( ) A .[0,4] B .(,4]-∞ C .(,0)-∞ D .[0,)+∞ 10.已知集合{}(5)0A x x x =-<,{}14B x x =-,则A B ⋃=( )A .[1,0)-B .[4,5)C .(0,4]D .[1,5)- 11.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( ) A .P B .Q C .∅ D .U 12.设全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,则下图中的阴影部分表示的集合为( )A .{}4B .{}5C .{}1,2D .{}3,5 13.如图,已知集合A={-8,1},B={-8,-5,0,1,3},则Venn 图中阴影部分表示的集合为( )A .{-5,0,3}B .{-5,1,3}C .{0,3}D .{1,3}14.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( )A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥ 15.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1,2-D .{}1,2二、填空题16.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______.17.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.18.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},则a =_______;已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},U B ={-1, 0, 2},则B =_____.19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.已知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭在2,43ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω的取值范围为______.21.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.若集合{}23,21,4A a a a =---,且3A -∈,则实数=a ___________.24.写出集合{1,1}-的所有子集______.25.已知全集{}1,2,3,4,5,6U =,集合{}{}1,2,2,3,4A B ==,则A B ⋃=___________三、解答题26.已知集合{}{}24121A x x B x m x m =-≤≤=-+≤≤-,.(1)若2m =,求R ,()A B A B ⋃⋂;(2)若A B A ⋃=,求m 的取值范围.27.设集合{|16}A x x =-≤≤,{|121}B x m x m =-≤≤+,且B A ⊆.(1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.28.已知集合11{|}A x a x a =-≤≤+,5|03x B x x -⎧⎫=≤⎨⎬+⎩⎭. (1)若3a =-,求A B ;(2)在①A B =∅,②()R B A R ⋃=,③A B B ⋃=,这三个条件中任选一个作为已知条件,求实数a 的取值范围.29.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .30.判断下列每对集合之间的关系: (1){}2,N A x x k k ==∈,{}4,N B y y m m ==∈;(2){}1,2,3,4C =,D {x x 是12的约数}; (3){}32,N E x x x +=-<∈,{}1,2,3,4,5F =.【参考答案】一、单选题1.B【解析】【分析】由交集运算求解即可.【详解】{}{}{}1102,0,1,2B x x x x A B =-=≤≤∴⋂=∣ 故选:B2.B 【解析】【分析】求出集合A 的补集,化简集合B ,再根据交集的概念可求出结果.【详解】因为{}21A x x =-<<,所以R (,2][1,)A =-∞-+∞,又{}lg B x y x ==(0,)=+∞,所以()R A B ⋂=[1,)+∞.故选:B3.A【解析】【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z 拆分成两个互不相交的非空子集T 、V 的并集,如T 为奇数集,V 为偶数集,或T 为负整数集,V 为非负整数集进行分析排除即可.【详解】若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ; 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D ;从而可得T 、V 中至少有一个关于乘法是封闭的,A 正确.故选:A .4.C【分析】先求A B ,再求()A B C ⋂⋃.【详解】{}1,3A B =,(){}1,3,7,8A B C ⋂⋃=.故选:C5.C【解析】【分析】由并集的概念运算【详解】S T ⋃={}0,1,3故选:C6.C【解析】【分析】首先用列举法表示集合A ,再根据并集的定义计算可得;【详解】 解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C7.C【解析】【分析】利用公式法解绝对值不等式,再根据集合子集个数公式进行求解即可.【详解】 因为2222204x x x -<⇒-<-<⇒<<,所以{}1,2,3M =,因此集合M 的子集个数为328=,故选:C8.A【解析】【分析】由已知,先有集合U 和集合A 求解出U A ,再根据集合B 求解出()U A B ⋂即可. 【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8U A =,又因为{}2,6,8B =,所以(){}6,8U A B =.故选:A.9.D【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解.【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<,所以()U A B ⋂={|0}x x ≥,即()U A B ⋂[0,)=+∞.故选:D10.D【解析】【分析】由一元二次不等式的解法求出集合A ,再根据并集的定义即可求解.【详解】 解:因为集合{}{}(5)005A x x x x x =-<=<<,{}14B x x =-, 所以{}{}[05141,5)A B x x x x ⋃=<<⋃-=-.故选:D.11.B【解析】【分析】依题意可得U P Q ⊆,即可得到U Q P ⊆,从而即可判断; 【详解】解:因为U ()P Q P =∩,所以U P Q ⊆,所以U Q P ⊆,所以U ()P Q Q =∩; 故选:B12.D【解析】【分析】图中阴影部分表示()U A B ⋂,再根据交集和补集的定义即可得出答案.【详解】解:图中阴影部分表示()U A B ⋂,因为{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,所以{}3,5,6U A =,所以(){}3,5U A B =.故选:D.13.A【解析】【分析】由已知,结合给出的Venn 图可判断阴影部分为∁BA , 根据给到的集合A 和集合B ,可直接进【详解】因为集合A={-8,1},B={-8,-5,0,1,3},Venn 图中阴影部分表示的集合为∁BA={-5,0,3}.故选:A.14.A【解析】【分析】由交集运算直接求出两集合的交集即可.【详解】 由集合{}13A x x =≤≤,集合{}24B x x =≤≤则{}|23A B x x =≤≤故选:A15.B【解析】【分析】利用交集概念及运算,即可得到结果.【详解】∵集合{}1,0,1,2A =-,{}12B x x =-<<,∴{}0,1A B =,故选:B二、填空题16.±【解析】【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案.【详解】解:因为A ={2|x x -ax +2=0}的子集有两个,所以集合A 中仅有一个元素,所以方程220x ax -+=只有一个解,所以280a ∆=-=,解得a =±故答案为:±17.2【解析】【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解.因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =. 故答案为:2.18. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8};若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},故{1,3,4}U U A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},故{1,0,1,2,4}U U A A =⋃=-,U B ={-1, 0, 2},故B ={1, 4} 故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4}19.5,66ππ⎛⎫ ⎪⎝⎭【解析】【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭. 20.9[1,]8【解析】【分析】 由()()sin()04f x x πωω=+>的单调递减区间包含2,43ππ⎡⎤⎢⎥⎣⎦可计算ω 的取值范围. 【详解】()()sin()04f x x πωω=+> 在2,43ππ⎡⎤⎢⎥⎣⎦ 上单调递减 令(),42x k k Z ππωπ+=+∈ 得14ππωω=+k x 令(),4x k k Z πωππ+=+∈得234k x ππωω=+ 23,+,4344k k ππππππωωωω⎡⎤⎡⎤∴⊂+⎢⎥⎢⎥⎣⎦⎣⎦442334k k πππωωπππωω⎧+≤⎪⎪∴⎨⎪≤+⎪⎩ 419382k k ωω⎧≥+⎪∴⎨≤+⎪⎩ 93110041082420k k k k Z k ω>∴<+<+∴-<<∈∴=ω∴∈9[1,]8故答案为:9[1,]821.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.22.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.0或1.【解析】【分析】根据题意,分33a -=-、213a -=-和243a -=-,三种情况讨论,结合元素的互异性,即可求解.【详解】由题意,集合{}23,21,4A a a a =---,且3A -∈,若33a -=-时,可得0a =,此时集合{}3,1,4A =---,符合题意; 若213a -=-时,可得1a =-,此时243a -=-,不满足集合元素的互异性,舍去; 若243a -=-时,可得1a =或1a =-(舍去),当1a =时,集合{}2,1,3A =--,符合题意,综上可得,实数a 的值为0或1.故答案为:0或1.24.∅,{}1-,{1},{1,1}-【解析】【分析】利用子集的定义写出所有子集即可.【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.25.5,6##{}6,5【解析】【分析】先求出A B ,再进行补集运算及即可求解.【详解】因为集合{}{}1,2,2,3,4A B ==,所以{}1,2,3,4A B =, 因为{}1,2,3,4,5,6U =,所以{}5,6A B ⋃=,故答案为:5,6.三、解答题26.(1){}|24A B x x =-≤≤,{R ()|21A B x x ⋂=-≤<-或}34x <≤ (2)52⎛⎤-∞ ⎥⎝⎦, 【解析】【分析】(1)根据交集、并集和补集的定义即可得解; (2)A B A ⋃=,即B A ⊆,分B =∅和B ≠∅两种情况讨论,从而可得出答案.(1)解:若2m =,则{}13B x x =-≤≤, 所以{}24A B x x ⋃=-≤≤,{R 1B x x =<-或}3x >,所以{R ()|21A B x x ⋂=-≤<-或}34x <≤;(2)解:因为A B A ⋃=,所以B A ⊆,当B =∅时,则211m m -<-+,解得23m <,此时B A ⊆,符合题意,当B ≠∅时, 则12112214m m m m -+≤-⎧⎪-+≥-⎨⎪-≤⎩,解得2532m ≤≤, 综上所述52m ≤, 所以若A B A ⋃=,m 的取值范围为52⎛⎤-∞ ⎥⎝⎦,. 27.(1){|2m m <-或502m ≤≤} (2)128【解析】【分析】 (1)按照集合B 是空集和不是空集分类讨论求解; (2)确定集合A 中元素(个数),然后可得子集个数.(1)当121m m ->+即2m <-时,B =∅,符合题意;当B ≠∅时,有12111216m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得502m ≤≤.综上实数m 的取值范围是{|2m m <-或50}2m ≤≤;(2)当x ∈N 时,{0,1,2,3,4,5,6}A =,所以集合A 的子集个数为72128=个. 28.(1){|45}A B x x ⋃=-≤≤(2)答案见解析【解析】【分析】(1)分别求出集合A 和集合B ,求并集即可; (2)选①,根据集合A 和集合B 的位置在数轴上确定端点的关系,列出不等式组即可求解,选②,先求出R A ,再根据条件在数轴确定端点位置关系列出不等式组即可求解, 选③,得到A B ⊆,根据数轴端点位置关系列出不等式组即可求解.(1)因为3a =-,所以{|42}A x x =-≤≤-,又因为{|35}B x x =-<≤,所以{|45}A B x x ⋃=-≤≤.(2)若选①A B =∅:则满足15a ->或13a +≤-, 所以a 的取值范围为{|4a a ≤-或6}a >. 若选②()R B A R ⋃=:所以{|1R A x x a =<-或1}x a >+, 则满足1315a a ->-⎧⎨+≤⎩,所以a 的取值范围为{|24}a a -<≤. 若选③A B B ⋃=: 由题意得A B ⊆,则满足1315a a ->-⎧⎨+≤⎩所以a 的取值范围为{|24}a a -<≤29.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<< {}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<< 30.(1)B A(2)C D(3)E F【解析】【分析】(1)分析A ,B 集合中元素的关系,即得解; (2)列举法表示集合D ,即得解;(3)列举法表示集合E ,即得解(1)由题意,任取4y m B =∈,有2(2),2y m m N =⨯∈,故y A且6,6A B ∈∉,故B A(2)由于D {x x 是12的约数}{1,2,3,4,6,12}= 故C D(3) 由于{}32,N E x x x +=-<∈{|5,}{1,2,3,4}x x x N +=<∈= 故E F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆梦教育中心集合例题详解1•已知A = {x|3 —3x>0},则下列各式正确的是()A . 3€ AB . 1 € AC. 0€ AD. —1?A【解析】集合A表示不等式3—3x>0的解集. 显然3,1不满足不等式,而0,- -1满足不等:故选C.【答案】C2•下列四个集合中,不同于另外三个的是( )A. {y|y = 2}B. {x = 2}C. {2}2D. {x|x —4x + 4= 0}【解析】{x = 2}表示的是由一个等式组成的集合.故选 B.【答案】B3•下列关系中,正确的个数为①* R;②.2?Q;③| —3|?N*;④|—3|€ Q.【解析】本题考查常用数集及元素与集合的关系•.显然1尹R,①正确;2?Q ,②正确;I—3|= 3€ N* 3|= . 3?Q,③、④不正确.【答案】24.已知集合 A = {1 , x, x2—x}, B = {1,2 , x},若集合A与集合B相等,求x的值. 【解析】因为集合A与集合B相等,所以x2—x= 2. A x = 2 或x=— 1.当x = 2时,与集合元素的互异性矛盾.当x = —1时,符合题意.x=— 1.一、选择题(每小题5分,共20分)1.下列命题中正确的( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x —1)2(x —2)= 0的所有解的集合可表示为{1,1,2};④集合{x|4vx<5}可以用列举法表示.A •只有①和④B •只有②和③C.只有②D.以上语句都不对【解析】{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示•故选 C.【答案】 C2 .用列举法表示集合{x|x 2—2x + 1= 0}为()A • {1,1} B. {1}C. {x = 1} D . {x2—2x + 1= 0}【解析】集合{x|x 2—2x+ 1 = 0}实质是方程x2—2x + 1 = 0的解集,此方程有两相等实根,为1,故可表示为{1} •故选B.【答案】 B3•已知集合 A = {x € N*| —. 5< x< 5},则必有()A • — 1 € AB • 0€ AC. 3€ A D • 1 € A【解析】T x € N*, —. 5< x < . 5,二x= 1,2,即 A = {1,2},二 1 € A.故选 D.【答案】 D4•定义集合运算:A*B = {z|z = xy , x € A , y€ B} •设 A = {1,2} , B= {0,2},则集合A*B 的所有元素之和为()A • 0 B. 2C. 3D. 6【解析】依题意,A*B = {0,2,4},其所有元素之和为6,故选D.【答案】 D二、填空题(每小题5分,共10分)5•已知集合A = {1 , a2},实数a不能取的值的集合是_____________ .【解析】由互异性知a2工1,即a^±,故实数a 不能取的值的集合是{1 , - 1}. 【答案】{1 , - 1}6•已知P = {x|2 v x v a , x € N },已知集合P 中恰有3个元素,则整数 a = ____________ .【解析】 用数轴分析可知a = 6时,集合P 中恰有3个元素3,4,5. 【答案】6三、解答题(每小题10分,共20分)7•选择适当的方法表示下列集合集.(1) 由方程x(x 2- 2x - 3) = 0的所有实数根组成的集合; (2) 大于2且小于6的有理数;(3) 由直线y = — x + 4上的横坐标和纵坐标都是自然数的点组成的集合.【解析】(1)方程的实数根为一1,0,3,故可以用列举法表示为{ - 1,0,3},当然也可以用描述 法表示为{x|x(x 2- 2x - 3) = 0},有限集.(2) 由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表 示该集合为{x € Q |2vx<6},无限集.(3) 用描述法表示该集合为M = {(x , y)|y = - x + 4, x € N , y € N }或用列举法表示该集合为 {(0,4) , (1,3), (2,2), (3,1), (4,0)} • 8•设A 表示集合{a 2+ 2a - 3,2,3}, B 表示集合 {2 , |a + 3|},已知 5€ A 且 5?B ,求 a 的值.【解析】 因为5€ A ,所以a 2 + 2a -3 = 5, 解得a = 2或a =- 4.当a = 2时,|a + 3|= 5,不符合题意,应舍去. 当a = — 4时,|a + 3|= 1,符合题意,所以a = — 4.9. (10 分)已知集合 A = {x|ax 2-3x — 4 = 0, x € R }. (1)若A 中有两个元素,求实数 a 的取值范围;⑵若A 中至多有一个元素,求实数 a 的取值范围.【解析】(1)T A 中有两个元素,•••方程ax 2-3x — 4= 0有两个不等的实数根,9 9即 a > — 16•…a > — 16,且 a z 0.a 工0,LA= 9+ 16a > 0,t, 4(2)当a= 0 时,A = { - 3};29当a工0时,若关于x的方程ax2- 3x- 4= 0有两个相等的实数根,A= 9+ 16a= 0,即a=-祀;若关于x的方程无实数根,则A= 9+ 16a v 0,即a v —16;9故所求的a的取值范围是a<- 16或a= 0.1.设集合 A ={x|2 <x v4} , B= {x|3x —7> 8-2x},则 A U B 等于( )A . {x|x > 3}B . {x|x > 2}C. {x|2 < xv 3} D . {x|x >4}【解析】 B = {x|x >3}.画数轴(如下图所示)可知选B.【答案】 B2 .已知集合 A = {1,3,5,7,9} , B = {0,3,6,9,12},贝U A A B =( )A . {3,5}B . {3,6}C. {3,7}D. {3,9}【解析】 A = {1,3,5,7,9} , B = {0,3,6,9,12} , A 和 B 中有相同的元素3,9, /• A A B ={3,9}.故选 D.【答案】 D3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30 名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为___________ .【解析】设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x) 人.(30-x)+x+(25-x)=50 ,••• x=5.•••只参加甲项的有25人,只参加乙项的有20人,•••仅参加一项的有45人.【答案】454.已知集合 A = {—4,2a—1, a) , B = {a —5,1 —a,9},若 A A B = {9},求 a 的值.【解析】:A A B = {9},••• 9€ A,二2a—1= 9 或a2= 9,:a= 5 或a=±3.当a= 5 时,A = { —4,9,25} , B= {0,—4,9}.此时A n B = { —4,9}工{9}.故a= 5舍去.当a= 3时,B = { —2,—2,9},不符合要求,舍去.经检验可知a= —3符合题意.一、选择题(每小题5分,共20分)1.集合 A = {0,2,a},B = {1,a2}.若 A U B = {0,1,2,4,16},则 a 的值为()A . 0B . 1C. 2D. 4【解析】T A U B = {0,1,2,a,a2},又 A U B= {0,1,2,4,16},••• {a,a2} = {4,16},/• a= 4,故选 D.【答案】 D2.设S= {x|2x + 1>0},T = {x|3x —5<0},则Sn T=()1A . ?B . {x|x< —2}5 1 5C. {x|x> 3} D . {x| —2<x<3}1 5 1【解析】S= {x|2x + 1>0} = {x|x> —2,T = {x|3x —5<0} = {x|x<3},则Sn T = {x| —25<x<3).故选 D.【答案】 D3.已知集合 A = {x|x>0},B = {x| —1< x < 2},则 A U B =()A . {x|x > —1} B. {x|x <2}C. {x|0<x <2} D . {x| —1< x< 2}【解析】集合A、B用数轴表示如图,A UB = {x|x > —1}.故选 A.【答案】 A4.满足M?{a1,a2,a3,su},且M n {a1,a2,a3} = {a1,a2}的集合M 的个数是()A . 1B . 2C. 3D. 4【解析】集合M必须含有元素a i, 82,并且不能含有元素a s,故M = {a i, a?}或M ={a i,a2, a4}.故选 B.【答案】 B二、填空题(每小题5分,共10分)5._______________________________________________________________________ 已知集合A = {x|x < 1} ,B= {x|x >a},且A U B = R,则实数a的取值范围是 ______________ .【解析】 A = (―%, 1], B =[a,+x),要使A U B= R,只需a< 1.【答案】a< 16.满足{1,3} U A = {1,3,5}的所有集合A的个数是 _________ .【解析】由于{1,3} U A = {1,3,5},则A?{1,3,5},且A中至少有一个元素为5,从而A中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4•它们分别是{5} , {1,5} , {3,5} , {1,3,5}.【答案】4三、解答题(每小题10分,共20分)7.已知集合 A = {1,3,5} , B = {1,2 , x2- 1},若 A U B= {1,2,3,5},求x 及 A A B.【解析】由 A U B = {1,2,3,5} , B = {1,2 , x2- 1}得x2- 1= 3或x2- 1= 5.2若x - 1= 3则x=吃;若x2- 1= 5,则x= ±.6;综上,x= ±2或土 6.当x= ±2 时,B = {1,2,3},此时 A A B = {1,3};当x= ± 6时,B = {1,2,5},此时 A A B = {1,5}.8 .已知 A = {x|2a <x< a+ 3}, B= {x|x< - 1 或x>5},若 A A B= ?,求 a 的取值范围.【解析】由A A B = ?,(1)若 A = ?,有2a>a+ 3,二a>3.⑵若A丰?,如图:二,解得-w a< 2.综上所述,a的取值范围是{a|- w a< 2或a>3}.9. (10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组•已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【解析】设单独参加数学的同学为x人,参加数学化学的为y人,单独参加化学的为z 人.「X + y+ 6= 26,「X = 12,依题意y+ 4+z=13,解得y=8,x+ y+ z= 21,z= 1.•••同时参加数学化学的同学有8人,答:同时参加数学和化学小组的有8人.1 .集合{a,b}的子集有()A . 1个B . 2个C. 3个 D . 4个【解析】集合{a,b}的子集有?,{a},{b},{a,b}共4个,故选D.【答案】 D2•下列各式中,正确的是()A . 2 ,3 € {x|x w3} B. 2.3?{x|x w3}C. 2 .3?{x|x w 3} D . {2 3〕{xxw 3}【解析】2 3表示一个元素,{x|x w 3}表示一个集合,但2,3不在集合中,故2,3?{x|x w 3},A、C不正确,又集合{2 3}?{x|x w 3},故D不正确.【答案】 B3•集合B = {a,b,c},C = {a,b,d},集合A满足A?B,A?C.则集合A的个数是 ____________ .【解析】若A = ?,则满足A?B,A?C ;若A工?,由A?B,A?C知A是由属于B且属于C【答案】44•已知集合 A = {x|1 <x<4} , B= {x|xva},若A?B,求实数a的取值集合.【解析】将数集A表示在数轴上(如图所示),要满足A?B,表示数a的点必须在表示4的点处或在表示4的点的右边,所以所求a的集合为{a|a > 4} •一、选择题(每小题5分,共20分)1.集合A = {x|0 < x<3且x € Z}的真子集的个数是()A. 5B. 6C. 7D. 8【解析】由题意知A = {0,1,2},其真子集的个数为23- 1= 7个,故选C.【答案】 C2.在下列各式中错误的个数是()① 1 € {0,1,2};②{1} € {0,1,2};③{0,1,2} ?{0,1,2};④{0,1,2} = {2,0,1}A. 1B. 2C. 3D. 4【解析】①正确;②错.因为集合与集合之间是包含关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选 A.【答案】 A3.已知集合 A = {x| —1<x<2},B ={x|0<x<1},则()A. A>BB. A BC. B AD. A?B【解析】如图所示,,由图可知,【答案】 C4.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若?A,则A工?.其中正确的有( )A . 0个B . 1个C. 2个 D . 3个【解析】①空集是它自身的子集;②当集合为空集时说法错误;③空集不是它自身的真子集;④空集是任何非空集合的真子集•因此,①②③错,④正确•故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知?{XX2-x + a= 0},则实数a的取值范围是____________ .【解析】v?农葢2—x + a = 0},•••方程X2—x+ a= 0有实根,2 1• A= (—1) —4a>0, a<4.1【答案】a< -46.已知集合 A = {—1,3,2m—1},集合 B = {3 , m2},若B?A,则实数m = ____________ .【解析】v B?A , • m2= 2m —1,即(m—1)2= 0二m = 1,当m= 1 时,A = { —1,3,1}, B = {3,1}满足B?A.【答案】1三、解答题(每小题10分,共20分)7.设集合 A = {x , y} , B = {0 , x2},若 A = B,求实数x, y.【解析】从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性•因为 A =B,贝V x = 0 或y = 0.(1)当x= 0时,x2= 0,则B= {0,0},不满足集合中元素的互异性,故舍去.(2)当y= 0时,x = x2,解得x = 0或x= 1•由(1)知x = 0应舍去.综上知:x = 1, y = 0.8.若集合M = {x|x2+ x —6= 0}, N = {x|(x —2)(x —a) = 0},且N?M,求实数 a 的值.2【解析】由x + x —6= 0,得x = 2或x =— 3.因此,M = {2 , —3}.若a= 2,则N = {2},此时N M;若 a =— 3,贝U N = {2 , — 3},此时 N = M ; 若a 工2且a 工一3,贝V N = {2 , a},此时N 不是M 的子集,故所求实数a 的值为2或—3.1 n 1 p 19. (10 分)已知集合 M = {x|x = m + 6,m € Z }, N = {x|x = 2—— 3,n € Z }, P = {x|x = 2 + 召,p € Z },请探求集合M 、 N 、 P 之间的关系.1【解析】M = {x|x = m + 6, m € Z }6m + 1 _={x|x = ―6-, m € Z }.n 1 厂 r 、N = {x|x = 2 — 3, n € Z }p 1P = {x|x = 2+ 6,p € Z }3p + 1 ={x|x = ~6~,P €Z }.••• 3n — 2 = 3(n — 1) + 1, n € Z .••• 3n — 2,3p + 1都是3的整数倍加1,从而N = P.而6m + 1= 3X 2m + 1是3的偶数倍加1,3n — 2|x= 6 , n € Z。

相关文档
最新文档