《统计》近年高考真题
2024年高考数学贝叶斯统计与推理历年真题
2024年高考数学贝叶斯统计与推理历年真题2024年高考数学真题第一题:(3分)已知事件A与事件B独立,且P(A)=0.6,P(B)=0.4。
求P(A|B)。
解答:根据贝叶斯定理,有P(A|B) = (P(B|A) * P(A)) / P(B)。
由于事件A与事件B独立,所以P(B|A) = P(B)。
代入已知条件,P(A|B) = (P(B) * P(A)) / P(B) = P(A) = 0.6。
第二题:(4分)某医院进行乳腺癌筛查,根据历年数据统计,该筛查方法的阳性率为85%,同时,已知乳腺癌的发病率为1%。
对于新来的患者,她的筛查结果为阳性,请问她真的患有乳腺癌的概率是多少?解答:设事件A为患有乳腺癌,事件B为筛查结果为阳性。
根据贝叶斯定理,求解P(A|B)。
已知P(B|A) = 0.85,P(A) = 0.01,求P(A|B)。
根据贝叶斯定理,有P(A|B) = (P(B|A)*P(A)) / P(B),代入已知条件进行计算,得到P(A|B) = (0.85*0.01) / (0.85*0.01 + 0.15*0.99) ≈ 0.053。
第三题:(5分)某机场对通过安检的旅客进行毒品筛查。
根据统计数据,已知在旅客中约0.5%携带毒品,而安检机器能够正确识别携带毒品的旅客的概率为90%,不携带毒品的旅客有10%的概率被识别为携带毒品。
现在,有一位旅客被安检机器识别为携带毒品,请问他实际携带毒品的概率是多少?解答:设事件A为旅客携带毒品,事件B为安检机器识别结果为携带毒品。
根据贝叶斯定理,求解P(A|B)。
已知P(B|A) = 0.90,P(A) = 0.005,求P(A|B)。
根据贝叶斯定理,有P(A|B) = (P(B|A)*P(A)) / P(B),代入已知条件进行计算,得到P(A|B) = (0.90*0.005) / (0.90*0.005 + 0.10*0.995) ≈0.043。
高考真题与模拟训练 专题26 计数原理与概率统计(解析版)
专题26 计数原理与概率统计第一部分 真题分类1.(2021·天津高考真题)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.4253=;则在3次活动中,甲至少获胜22.(2021·江苏高考真题)下图是某项工程的网络图(单位:天),则从开始节点①到终止节点⑧的路径共有( )A.14条B.12条C.9条D.7条【答案】B3条路径,由④→⑥有22条路径,根据分步乘法.故选:B3.(2021·40A.5B.6C.7D.8【答案】A【解析】()()222221nC x n n x-=-,所以()21405n n n-=⇒=.故选:A.4.(2021·个评分数据分为8组:[)66,70、[)70,74、 、A B C D .80【答案】D故选:D.5.(2020·天津高考真题)从一批零件中抽取809组:A .10B .18C .20D .36【答案】B【解析】根据直方图,直径落在区间[)5.43,5.47之间的零件频率为:()6.25 5.000.020.225+⨯=,故选:B.6.(2020·A B .5C D .10【答案】C展开式的通项公式为:()()515522rrrr r r T CC -+=-=-1r =故选:C.7.(2020·海南高考真题)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C .第3天至第11天复工复产指数均超过80%;D .第9天至第11天复产指数增量大于复工指数的增量;【答案】CD【解析】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A 错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B 错误;由图可知,第3天至第11天复工复产指数均超过80%,故C 正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D 正确;8.(2021·的二次函数()24f x ax bx a =-+.(1}的概率;(2[]0,2b ∈.【答案】(12【解析】(1)根据题意有:0a >,且对称轴21bx a =….(2,1)5个,A(2)方程240ax bx a-+=无实根,则22(4)40ab a≠⎧⎨--<⎩,又[1a∈,2],[0b∈,2],如图,11(1)1322()28B+⨯==.9.(2021·全国高考真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1(1)已知01230.4,0.3,0.2,0.1p p p p====,求()E X;(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的一个最小正实根,求证:(3)根据你的理解说明(2)问结论的实际含义.【答案】(1)1;(2)见解析;(3)见解析.【解析】(1(2)设()()3232101f x p x p x p x p=++-+,因若()1E X≤,则123231p p p++≤,故2302p p p+≤.因,()230120f p p p '=+-≤,1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<;()12,x x 上为减函数,若21x =,因为()f x 在()2,x +∞为增函数且()10f =,,因()12,x x因1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤此时()()20300f p p p '=-++<,()230120f p p p '=+->,34,x x ,且3401x x <<<,上为增函数,在()34,x x 上为减函数,而()10f =,故()40f x <,故当()1E X >时(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.10.(2020·海南高考真题)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽空气(1)估计事件“该市一天空气不超过75,且不超过150”的概率;(2)根据所给数据,完成联表:(3)根据(2)中的列联表,判把握认为该市一天空气有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(12)答案见解析;(3)有.【解析】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过1500.64=;(2)由所给联表为:22()()()()()n ad bc K a b c d a c b d -==++++36007.4844 6.635481≈>,因为根据临界值把握认为该市一天空气中 2.5PM 浓度有关.第二部分 模拟训练1.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用+(股-勾实+黄实=弦实,化简,得股2=勾股中勾股比向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在红(朱)色图形内的图钉数大约为( )(参 1.732≈≈)A .866B .500C .300D .134【答案】A【解析】不妨设则朱色面积大正方形的边长积为224=,所以落在红(朱)色图形内的图钉数大约故选:A2.琵琶、二胡、编钟、箫、笛、瑟、琴、埙、笙和鼓这十种民族乐器被称为“中国古代十大乐器”.为弘扬中国传统文化,某校以这十种乐器为题材,在周末学生兴趣活动中开展了“中国古代乐器”知识讲座,共连续安排四节课,一节课只讲一种乐器,一种乐器最多安排一节课,则琵琶、二胡一定安排,且这两种乐器互不相邻的概率为( )ABCD .715【答案】C【解析】由题意得:10种乐器种任选4种,故总的可能性有410A 种,琵琶、二胡一定安排且不相邻的可能性有2283A A 种,所以两种乐器互不相邻故选:C3.造纸术、印刷术、指南针、火药被称为中国古代四大发明,这四种发明对中国古代的政治、经济、文化的发展产生了巨大的推动作用;2017年5月,来自“一带一路”沿线的20国青年评选出了“中国的新四大发明”:高铁、扫码支付、共享单车和网购.若从这8个发明中任取两个发明,则两个都是新四大发明的概率为( )ABCD .14【答案】C【解析】从8个发明中任取两个发明两个都是新四大发明的有24C 6=种,∴故选:C4.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率x (每分钟鸣叫的次数)与气温y (单位:℃)存在着较强的线性相关关系.某地观测人员根据下表的观测数据,建立了y 关于x 的线性回归方程ˆ0.25yx k =+x (次数/分钟)2030405060y (℃)2527.52932.536则当蟋蟀每分钟鸣叫60次时,该地当时的气温预报值为( )A .33℃B .34℃C .35℃D .35.5℃【答案】C40=,30y =,则0.25300.254020k y x =-=-⨯=;,35y =.故选:C.5.将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即≈0.618,后人把这个数称为黄金分割,把点C 称为线段AB 的黄金分割点.图中在ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,在ABC 内任取一点M ,则点M落在AB2C.14D【答案】B【解析】由几何概型公式知,故选:B.6.在新冠疫情的持续影响下,全国各地电影院等密闭式文娱场所停业近半年,电影行业面临巨大损失.2011~2020年上半年的票房走势如下图所示,则下列说法正确的是( )A.自2011年以来,每年上半年的票房收入逐年增加B.自2011年以来,每年上半年的票房收入增速为负的有5年C.2018年上半年的票房收入增速最大D.2020年上半年的票房收入增速最小【答案】D【解析】由图易知自2011年以来,每年上半年的票房收入相比前一年有增有减,增速为负的有3年,故A,B错误;2017年上半年的票房收入增速最大,故C错误;2020年上半年的票房收入增速最小,故D正确.故选:D7.某士特产超市为预估2021年元旦期间游客购买土特产的情况,对2020年元且期间的90位游客购买情况进行统计,得到如下人数分布表.60元与性别有关.不小于60元小于60元合计男40女18合计90(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为P(每次抽奖互不影响,且P的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元若游客甲计划购买80元的土特产,请列出实际付款数X(元)的分布列并求其数学期望.参考公式及数据:附表:【答案】(1)列联表见解析,有95%的把握认为购买金额是否少于60元与性别有关;(2)分布列见解【解析】(1联表如下:不少于60元少于60元合计男124052女182038合计3060902290(12204018)1440 5.830 3.84130605238247K ⨯⨯-⨯==≈>⨯⨯⨯,因此有95%的把握认为购买金额是否少于60元与性别有关. (2)X 可能取值为65,70,75,80,且10201903p +==.由题意知:30328(80)327P X C ⎛⎫=== ⎪⎝⎭,所以X 的分布列为X657075808.一年一度的剁手狂欢节——“双十一”,使千万女性朋友们非常纠结.2020年双十一,淘宝点燃火炬瓜分2.5个亿,淘宝、京东、天猫等各大电商平台从10月20号就开始预订,进行了强大的销售攻势.天猫某知名服装经营店,在10月21号到10月27号一周内,每天销售预定服装(百件)与获得的纯利润y (单位:百元)之间的一组数据关系如下表:(1)若y (2)试性回归方程;(3)该服装经营店打算11月2号结束双十一预定活动,预计在结束活动之前,每天销售服装(百件)与获得的纯利润y (单位:百元)之间的关系仍然服从(1)中的线性关系,若结束当天能销售服装14百件,估计这一天获得的纯利润与前一周的平均利润相差多少百元?(有关计算精确到小数点后两位)参考公式与数据:【答案】(1)y 2)ˆ 4.7551.36yx =+;(3)结束当天获得的纯利润比前一周的平均利润多38.00百元.【解析】解:(1)由题目中的数据表格可以看出,y而增大,∴判断(2)由题设知,721280i i x==∑,6669738189909155977++++++==,∴线性回归直线方程为ˆ 4.7551.36yx =+;(3)由(1)知,, 4.751451.361ˆ17.86y=⨯+=(百元),∴11月2号这天估计可获得的纯利润大约为117.86百元;由(1)知,前一周的平均利润百元),故结束当天获得的纯利润比前一周的平均利润多38.00百元.。
五年2018-2022高考数学真题按知识点分类汇编25-统计(含解析)
五年2018-2022高考数学真题按知识点分类汇编25-统计(含解析)一、单选题1.(2022·全国·统考高考真题)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差2.(2022·全国·统考高考真题)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C .甲同学周课外体育运动时长大于8的概率的估计值大于0.4D .乙同学周课外体育运动时长大于8的概率的估计值大于0.63.(2022·北京·统考高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T 和lg P 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar .下列结论中正确的是( )A .当220T =,1026P =时,二氧化碳处于液态B .当270T =,128P =时,二氧化碳处于气态C .当300T =,9987P =时,二氧化碳处于超临界状态D .当360T =,729P =时,二氧化碳处于超临界状态4.(2022·天津·统考高考真题)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .8B .12C .16D .185.(2021·全国·高考真题)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( ) A .该地农户家庭年收入低于4.5万元的农户比率估计为6% B .该地农户家庭年收入不低于10.5万元的农户比率估计为10% C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间6.(2021·天津·统考高考真题)从某网络平台推荐的影视作品中抽取400部,统计其评分数据,将所得400个评分数据分为8组:[)66,70、[)70,74、、[]94,98,并整理得到如下的频率分布直方图,则评分在区间[)82,86内的影视作品数量是( )A .20B .40C .64D .807.(2020·全国·统考高考真题)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+8.(2020·全国·统考高考真题)在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====9.(2020·全国·统考高考真题)设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为( ) A .0.01B .0.1C .1D .1010.(2020·天津·统考高考真题)从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A .10B .18C .20D .3611.(2019·全国·高考真题)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差12.(2018·全国·高考真题)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半13.(2019·全国·高考真题)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生二、多选题14.(2021·全国·统考高考真题)有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则( ) A .两组样本数据的样本平均数相同 B .两组样本数据的样本中位数相同 C .两组样本数据的样本标准差相同 D .两组样本数据的样本极差相同15.(2021·全国·统考高考真题)下列统计量中,能度量样本12,,,n x x x 的离散程度的是( ) A .样本12,,,n x x x 的标准差 B .样本12,,,n x x x 的中位数 C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数16.(2020·海南·高考真题)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C .第3天至第11天复工复产指数均超过80%;D .第9天至第11天复产指数增量大于复工指数的增量;三、填空题17.(2020·江苏·统考高考真题)已知一组数据4,2,3,5,6a a 的平均数为4,则a 的值是_____.18.(2020·山东·统考高考真题)某创新企业为了解新研发的一种产品的销售情况,从编号为001,002,…480的480个专卖店销售数据中,采用系统抽样的方法抽取一个样本,若样本中的个体编号依次为005,021,…则样本中的最后一个个体编号是______. 19.(2019·全国·高考真题)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 20.(2018·全国·高考真题)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.21.(2019·江苏·高考真题)已知一组数据6,7,8,8,9,10,则该组数据的方差是____.四、解答题22.(2022·全国·统考高考真题)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i12345678910总和根部横截面积i x0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6 材积量i y0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得10101022i i i ii=1i=1i=10.038, 1.6158,0.2474x y x y===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数i ii=122i ii=1i=1(, 1.896 1.377)()()()nn nx x y yrx x y y--=≈--∑∑∑.23.(2022·全国·统考高考真题)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).24.(2022·北京·统考高考真题)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m .以上(含950m .)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ): 甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25; 乙:9.78,9.56,9.51,9.36,9.32,9.23; 丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立. (1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)25.(2021·全国·统考高考真题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则不认为有显著提高).26.(2020·全国·统考高考真题)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级 A B C D频数40 20 20 20乙分厂产品等级的频数分布表等级 A B C D频数28 17 34 21(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?27.(2019·全国·统考高考真题)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:P C的估计值记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()为0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).28.(2018·全国·高考真题)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,29.(2018·全国·高考真题)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.30.(2019·全国·高考真题)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组 [0.20,0)- [0,0.20) [0.20,0.40) [0.40,0.60) [0.60,0.80)企业数 2 24 53 14 7(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 748.602.31.(2018·全国·高考真题)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表 日用水量[)0,0.1 [)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6 [)0.6,0.7频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表 日用水量 [)0,0.1[)0.1,0.2[)0.2,0.3[)0.3,0.4[)0.4,0.5[)0.5,0.6频数 151310165(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)32.(2018·天津·高考真题)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.33.(2019·北京·高考真题)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.34.(2018·天津·高考真题)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.35.(2019·天津·高考真题)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A B C D E F.享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中随,,,,,机抽取2人接受采访.员工项目 A B C D E F子女教育○○×○×○(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.参考答案:1.B【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解. 【详解】讲座前中位数为70%75%70%2+>,所以A 错; 讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错. 故选:B. 2.C【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案. 【详解】对于A 选项,甲同学周课外体育运动时长的样本中位数为7.37.57.42+=,A 选项结论正确.对于B 选项,乙同学课外体育运动时长的样本平均数为:6.37.47.68.18.28.28.58.68.68.68.69.09.29.39.810.18.50625816+++++++++++++++=>,B 选项结论正确.对于C 选项,甲同学周课外体育运动时长大于8的概率的估计值60.3750.416=<, C 选项结论错误.对于D 选项,乙同学周课外体育运动时长大于8的概率的估计值130.81250.616=>, D 选项结论正确. 故选:C 3.D【分析】根据T 与lg P 的关系图可得正确的选项.【详解】当220T =,1026P =时,lg 3P >,此时二氧化碳处于固态,故A 错误. 当270T =,128P =时,2lg 3P <<,此时二氧化碳处于液态,故B 错误.当300T =,9987P =时,lg P 与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C 错误.当360T =,729P =时,因2lg 3P <<, 故此时二氧化碳处于超临界状态,故D 正确. 故选:D 4.B【分析】结合已知条件和频率分布直方图求出志愿者的总人数,进而求出第三组的总人数,从而可以求得结果.【详解】志愿者的总人数为20(0.240.16)1+⨯=50,所以第三组人数为50×0.36=18, 有疗效的人数为18-6=12. 故选:B. 5.C【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确; 该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(万元),超过6.5万元,故C 错误. 综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距. 6.D【分析】利用频率分布直方图可计算出评分在区间[)82,86内的影视作品数量.【详解】由频率分布直方图可知,评分在区间[)82,86内的影视作品数量为4000.05480⨯⨯=. 故选:D. 7.D【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近, 因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+. 故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题. 8.B【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65As =-⨯+-⨯+-⨯+-⨯=; 对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85Bs =-⨯+-⨯+-⨯+-⨯=; 对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05Cs =-⨯+-⨯+-⨯+-⨯=; 对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45Ds =-⨯+-⨯+-⨯+-⨯=. 因此,B 选项这一组的标准差最大. 故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题. 9.C【分析】根据新数据与原数据关系确定方差关系,即得结果. 【详解】因为数据(1,2,,)i ax b i n +=,的方差是数据(1,2,,)i x i n =,的方差的2a 倍,所以所求数据方差为2100.01=1⨯ 故选:C【点睛】本题考查方差,考查基本分析求解能力,属基础题. 10.B【分析】根据直方图确定直径落在区间[)5.43,5.47之间的零件频率,然后结合样本总数计算其个数即可.【详解】根据直方图,直径落在区间[)5.43,5.47之间的零件频率为:()6.25 5.000.020.225+⨯=,则区间[)5.43,5.47内零件的个数为:800.22518⨯=. 故选:B.【点睛】本题主要考查频率分布直方图的计算与实际应用,属于中等题. 11.A【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤,中位数仍为5x ,∴A 正确.②原始平均数1234891()9x x x x x x x =+++++,后来平均数234817x x x x x '=+++()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.12.A【分析】首先设出新农村建设前的经济收入为M ,根据题意,得到新农村建设后的经济收入为2M ,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【详解】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确; 新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%28%58%50%+=>,所以超过了经济收入的一半,所以D 正确; 故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果. 13.C【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样. 14.CD【分析】A 、C 利用两组数据的线性关系有()()E y E x c =+、()()D y D x =,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B 、D 的正误. 【详解】A :()()()E y E x c E x c =+=+且0c ≠,故平均数不相同,错误;B :若第一组中位数为i x ,则第二组的中位数为i i y x c =+,显然不相同,错误;C :()()()()D y D x D c D x =+=,故方差相同,正确;D :由极差的定义知:若第一组的极差为max min x x -,则第二组的极差为max min max min max min ()()y y x c x c x x -=+-+=-,故极差相同,正确;故选:CD 15.AC【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.【详解】由标准差的定义可知,标准差考查的是数据的离散程度; 由中位数的定义可知,中位数考查的是数据的集中趋势; 由极差的定义可知,极差考查的是数据的离散程度; 由平均数的定义可知,平均数考查的是数据的集中趋势; 故选:AC. 16.CD【分析】注意到折线图中有递减部分,可判定A 错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B 错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD 正确.【详解】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A 错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B 错误; 由图可知,第3天至第11天复工复产指数均超过80%,故C 正确; 由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D 正确;【点睛】本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题. 17.2【分析】根据平均数的公式进行求解即可. 【详解】∵数据4,2,3,5,6a a -的平均数为4 ∴4235620a a ++-++=,即2a =.。
五年高考题库:概率统计
18(2010 湖北理数 4)投掷一枚均匀硬币和一枚均匀骰子各一 73 随机 次,记“硬币正面向上”为事件 A,“骰子向上的点数是 3”为 事 件 的 事件 B,则事件 A,B 中至少有一件发生的概率是 概率 A
易
选择题
2
C
5 12
B
1 2
C
7 12
D
3 4
易 选择题 2 B
19 (2010 湖北理数 6) 将参加夏令营的 600 名学生编号为: 001, 82 随机 002,„„600,采用系统抽样方法抽取一个容量为 50 的样本, 抽样 且随机抽得的号码为 003.这 600 名学生分住在三个营区,从 001 到 300 在第Ⅰ营区,从 301 到 495 住在第Ⅱ营区,从 496 到 600 在第Ⅲ营区,三个营区被抽中的人数一次为 A.26, 16, 8, B.25,17,8 C.25,16,9 D.24,17,9 20(2009 江西卷文 10)甲、乙、丙、丁 4 个足球队参加比赛, 74 古典 概型 假设每场比赛各队取胜的概率相等,现任意将这 4 个队分成两 个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概 率为( A. ) B.
题目 1【2012 高考真题湖北理 8】如图,在圆心角为直角的扇形 OAB 中,分别以 OA,OB 为直径作两个半圆. 在扇形 OAB 内随机取一点,则此点取自阴影部分的概率是( )
知识点 75 几何 概型
解题 方法
难 易 度 中
题型 选择题
时 间 3 A
答案
A. 1
2 π
B.
1 1 2 C. 2 π π
1
5 【2012 高考真题山东理 4】 采用系统抽样方法从 960 人中抽取 82 随机 32 人做问卷调查,为此将他们随机编号为 1,2,„,960,分组 抽样 后在第一组采用简单随机抽样的方法抽到的号码为 9.抽到的 32 人中,编号落入区间 1, 450 的人做问卷 A ,编号落入区间
07-13年广东高考数学理科概率统计真题(含答案)
17.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y (吨标准煤)的几组对照数据;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y bx a=+(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤;试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(3×2.5+4×3+5×4+6×4.5=66.5)2008年广东高考文科卷17.(本小题满分13分)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?17.(本小题满分12分)根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API 数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图5 (1)求直方图中x 的值;(2)计算一年屮空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率. (结果用分数表示.已知7732738123578125,2128,,36573518253651825182591259125==++++==⨯)2010年广东高考文科卷17.(12分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495】,(495,500】,……,(510,515】,由此得到样本的频率分布直方图,如图4(1)根据频率分布直方图,求重量超过505克的产品数量,(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列; (3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。
2014年高考数学文科(高考真题+模拟新题)分类汇编:统计
数学I单元统计I1 随机抽样3.[2014·重庆卷] 某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150C.200 D.2503.A[解析] 由题意,得703500=n3500+1500,解得n=100.11.[2014·湖北卷] 甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.11.1800[解析] 设乙设备生产的产品总数为n,则80-50n=804800,解得n=1800.3.[2014·湖南卷] 对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p33.D[解析] 不管是简单随机抽样、系统抽样还是分层抽样,它们都是等概率抽样,每个个体被抽中的概率均为n N.2.、[2014·四川卷] 在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本2.A[解析] 根据抽样统计的概念可知,统计分析的对象全体叫做“总体”.故选A.9.[2014·天津卷] 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.9.60[解析] 由分层抽样方法可得,从一年级本科生中抽取的学生人数为300×44+5+5+6=60.15.、[2014·天津卷] 某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:现从这6).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.15.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=615=25.I2 用样本估计总体17.、[2014·安徽卷] 某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图1-4所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.图1-4(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d)17.解:(1)300×450015 000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得每周平均体育运动超过4小时的频率为1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225(位)的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:结合列联表可算得K 2=300×(165×30-45×60)275×225×210×90=10021≈4.762>3.841.所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.18.[2014·北京卷] 从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图(如图1-6).图1-6(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论)18.解:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有6+2+2=10(名),所以样本中的学生课外阅读时间少于12小时的频率是1-10100=0.9.故从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组[4,6)内的有17人,频率为0.17,所以a =频率组距=0.172=0.085.课外阅读时间落在组[8,10)内的有25人,频率为0.25,所以b =频率组距=0.252=0.125.(3)样本中的100名学生课外阅读时间的平均数在第4组.20.,[2014·福建卷] 根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035~4085美元为中等偏下收入国家;人均GDP 为4085~12 616美元为中等偏上收入国家;人均GDP 不低于12 616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.20.解:(1)设该城市人口总数为a ,则该城市人均GDP 为8000×0.25a +4000×0.30a +6000×0.15a +3000×0.10a +10 000×0.20aa=6400(美元).因为6400∈[4085,12 616),所以该城市人均GDP 达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A ,B},{A ,C},{A ,D},{A ,E},{B ,C},{B ,D},{B ,E},{C ,D},{C ,E},{D ,E},共10个.设事件M 为“抽到的2个行政区人均GDP 都达到中等偏上收入国家标准”, 则事件M 包含的基本事件是:{A ,C},{A ,E},{C ,E},共3个.所以所求概率为P (M )=310.6.[2014·广东卷] 为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .206.C [解析] 由题意得,分段间隔是100040=25.17.、[2014·湖南卷] 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平.(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率. 17.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x 甲=1015=23,方差为s 2甲=115⎣⎡⎦⎤⎝⎛⎭⎫1-232×10+⎝⎛⎭⎫0-232×5=29. 乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x 乙=915=35,方差为s2乙=115⎣⎡⎦⎤⎝⎛⎭⎫1-352×9+⎝⎛⎭⎫0-352×6=625.因为x甲>x乙,s2甲<s2乙,所以甲组的研发水平优于乙组.(2)记E={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),共7个,故事件E发生的频率为715.将频率视为概率,即得所求概率为P(E)=715.6.[2014·江苏卷] 为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图1-2所示,则在抽测的60株树木中,有____株树木的底部周长小于100 cm.图1-26.24[解析] 由频率分布直方图可得,数据在[80,90]的频率为0.015×10=0.15,数据在[90,100]的频率为0.025×10=0.25.又样本容量为60株,故所求为(0.15+0.25)×60=24(株).19.[2014·新课标全国卷Ⅱ] 某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.19.解:(1)由所给茎叶图知,将50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本的中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(注:考生利用其他统计量进行分析,结论合理的同样给分.)18.[2014·全国新课标卷Ⅰ] 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在答题卡上作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均值及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?18.解:(1)频率分布直方图如下:(2)质量指标值的样本平均数为x =80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100. 质量指标值的样本方差为s 2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.8=0.68. 由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.8.[2014·山东卷] 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17].将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,图1-2是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )图1-2A .6B .8C .12D .188.C [解析] 因为第一组与第二组共有20人,并且根据图像知第一组与第二组的频率之比是0.24∶0.16=3∶2,所以第一组的人数为20×35=12.又因为第一组与第三组的频率之比是0.24∶0.36=2∶3 ,所以第三组有 12÷23=18人.因为第三组中没有疗效的人数为6,所以第三组中有疗效的人数是18-6=12.16.,[2014·山东卷] 海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.16.解:(1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2.则抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3}{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的. 记事件D 为“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415.9.[2014·陕西卷] 某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x -和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x -,s 2+1002B.x -+100,s 2+1002 C.x -,s 2 D.x -+100,s 29.D [解析] 由题目中所给的数据可知x x 1+x 2+x 3+…+x 1010,不妨设这10位员工下月工资的均值为y -,则y -=(x 1+x 2+x 3+…+x 10)+100010=x -+100,易知方差没发生变化.2.、[2014·四川卷] 在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是( )A .总体B .个体C .样本的容量D .从总体中抽取的一个样本2.A [解析] 根据抽样统计的概念可知,统计分析的对象全体叫做“总体”.故选A. 17.、[2014·重庆卷] 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图1-3所示.(1)求频率分布直方图中a 的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.17.解:(1)据直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得a=1200=0.005.(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2.成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A1,A2,成绩落在[60,70)中的3人为B1,B2,B3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个,即(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).其中2人的成绩都在[60,70)中的基本事件有3个,即(B1,B2),(B1,B3),(B2,B3).故所求概率为P=310.I3 正态分布I4 变量的相关性与统计案例17.、[2014·安徽卷] 某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图1-4所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.图1-4(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d)17.解:(1)300×450015 000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得每周平均体育运动超过4小时的频率为1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225(位)的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:结合列联表可算得K 2=300×(165×30-45×60)75×225×210×90=10021≈4.762>3.841.所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.6.[2014·得到的回归方程为y =bx +a ,则( ) A .a >0,b <0 B .a >0,b >0 C .a <0,b <0 D .a <0,b >0 6.A [解析]由图像不难得出,回归直线y =bx +a 的斜率b <0,截距a >0,所以a >0,b <0.故选A.7.[2014·江西卷] 某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1 表2表3A .成绩B .视力C .智商D .阅读量7.D [解析] 通过计算可得,表1中的χ2≈0.009,表2中的χ2≈1.769,表3中的χ2=1.300,表4中的χ2≈23.481,故选D.18.、[2014·辽宁卷] 某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行(1)习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2++,18.解:(1)将2×2列联表中的数据代入公式计算,得χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)},其中a i 表示喜欢甜品的学生,i =1,2,b j 表示不喜欢甜品的学生,j =1,2,3. Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则A ={(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)}.事件A 由7个基本事件组成,因而P (A )=710.I5 单元综合17.[2014·广东卷] 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差. 1.[2014·株洲模拟]由K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),得K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 1.A [解析] 因为7.8>6.635,所以选项A 正确.2.[2014·济南期末] 为了调查城市PM2.5的情况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为8,16,24.若用分层抽样的方法抽取12个城市,则应抽取的中型城市数为( )A .3B .4C .5D .6图X3312.B [解析] 根据分层抽样的特点可知,抽样比例为1248=14,则应抽取的中型城市数为16×14=4.3.[2014·长沙四校联考] 为了了解某同学的数学学习情况,对他的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图X331所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为193.C [解析] 易知该同学的6次数学测试成绩的中位数为84,众数为83,平均数为85.8.[2014·湖南长郡中学月考] 为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K 2=8.01,则认为“喜欢乡村音乐与性别有关系”的把握性约为( )A.0.1% B .1% C .99% D .99.9%8.C [解析] 因为K 2=8.01>6.635,所以有99%以上的把握认为“喜欢乡村音乐与性别有关系”.9.[2014·衡阳模拟] 已知某总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表中第1行的第5列和第6列的数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08 B .9.D [解析] 从随机数表第1行的第5列和第6列的数字开始由左到右依次选取两个数字,依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,其中08,02,14,07,01符合条件,故选D.10.[2014·湖南师大附中月考] 某厂对一批元件的长度(单位:mm)进行抽样检测,得到如图X332所示的频率分布直方图.若长度在区间[90,96)内的元件为合格品,则估计这批产品的合格率是( )A .70%B .75%C .80%D .85%图X33210.C [解析] 易知在区间[90,96)内的直方图的面积S =1-(0.027 5+0.027 5+0.0450)×2=0.8,故合格率是80%.。
《高考真题》专题17 统计综合-2019年高考文数母题题源系列全国Ⅲ专版(解析版)
【母题原题1】【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1) 0.35a =,0.10b =;(2)4.05,6. 【解析】(1)由已知得0.70=a +0.20+0.15,故a =0.35. b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为 2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.【名师点睛】本题考查频率分布直方图和平均数,属于基础题.【母题原题2】【2018年高考全国Ⅲ卷文数】某工厂为提高生产效率,开展技术创新活动,提出了完成某专题17 统计综合项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,【答案】(1)第二种生产方式的效率更高.理由见解析;(2)80;(3)能.【解析】(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知7981802m+==.列联表如下:(3)由于2240(151555)10 6.63520202020K⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.【名师点睛】本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活.【母题原题3】【2017年高考全国Ⅲ卷文数】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.【答案】(1)0.6;(2)0.8【解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6450–4450=900;若最高气温位于区间[20,25),则Y=6300+2(450–300)–4450=300;若最高气温低于20,则Y=6200+2(450–200)–4450= –100.所以,Y的所有可能值为900,300,–100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为,因此Y大于零的概率的估计值为0.8.【名师点睛】古典概型中基本事件数的探求方法:(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.【命题意图】2019年的高考题主要考查了频率分布直方图.考查考生的数据分析能力、逻辑推理能力.【命题规律】统计的解答题通常考查随机抽样,频率分布直方图,变量的相关性,独立性检验,求线性回归方程、利用回归方程进行预测等,常与概率知识相交汇命题.【答题模板】1.频率分布表与频率分布直方图的绘制步骤如下:(1)求极差,即求一组数据中最大值与最小值的差;(2)决定组距与组数;(3)将数据分组;(4)列频率分布表,落在各小组内的数据的个数叫作频数,每小组的频数与样本容量的比值叫作这一小组的频率,计算各小组的频率,列出频率分布表;(5)画频率分布直方图,依据频率分布表画出频率分布直方图,其中纵坐标(小长方形的高)表示频率与组距的比值,其相应组距上的频率等于该组上的小长方形的面积,即每个小长方形的面积=组距×频率=频率.组距各个小长方形的面积的总和等于1.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作频率分布直方图时所分的组数增加,组距减小,相应的频率分布折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.独立性检验的一般步骤(1)根据样本数据列出2×2列联表.(2)计算随机变量K2的观测值k,查下表确定临界值k0.(3)如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过P(K2≥k0);否则,就认为在犯错误的概率不超过P(K2≥k0)的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”.【知识总结】1.众数、中位数、平均数(1)众数、中位数与平均数都是描述一组数据的集中趋势的量,平均数是最重要的量.(2)平均数反映的是一组数据的平均水平,众数和中位数则反映一组数据的“重心”.(3)在实际问题中求得的平均数、众数和中位数应带上单位.2.极差、标准差与方差3.平均数的性质(1)若给定一组数据x1,x2,…,x n的平均数为,则ax1,ax2,…,ax n的平均数为a;ax1+b,ax2+b,…,ax n+b的平均数为a+b.(2)若M个数的平均数是X,N个数的平均数是Y,则这(M+N)个数的平均数是;若两组数据x1,x2,…,x n和y1,y2,…,y n的平均数分别是和,则x1+y1,x2+y2,…,x n+y n的平均数是+.4.方差的性质若给定一组数据x1,x2,…,x n,其方差为s2,则ax1,ax2,…,ax n的方差为a2s2;ax1+b,ax2+b,…,ax n+b的方差为a2s2,特别地,当a=1时,有x1+b,x2+b,…,x n+b的方差为s2,这说明将一组数据中的每一个数据都加上一个相同的常数,方差是不变的,即不影响数据的波动性.【方法总结】1.在频率分布直方图中:(1)众数是最高的小长方形底边中点的横坐标;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,其估计值等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.绘制频率分布直方图时需注意:(1)频率分布直方图中的纵轴表示频率组距,而不是频率;(2)频率分布直方图中各小长方形的高之比就是相应各组的频率之比;(3)频率分布直方图中各个小长方形的面积是相应各组的频率,所有的小长方形的面积之和等于1,即频率之和为1.3.由频率分布直方图进行相关计算时,需掌握下列关系式:(1)频率组距×组距=频率;(2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数.4.作样本的茎叶图时,要先根据数据的特点确定茎、叶,再作茎叶图.茎部位的数字由上向下,从小到大排列;叶部位的数字由内向外,从小到大排列.5.给定两组数据的茎叶图,比较数字特征时,“重心”下移者平均数较大,数据集中者方差较小.6.用样本的数字特征估计总体的数字特征类型1:直接给出样本数据,根据平均数、众数、方差、标准差的概念进行相关计算得出相应数据.类型2:利用茎叶图给出样本数据,一般情况下,茎叶图中的数据多为两位数(茎叶图中,一位数的“茎”处的数字为0),明确每一行中“茎”处的数字是该行数字共用的十位数字,“叶”处的数字是个位数字,正确写出茎叶图中的所有数字,再根据平均数、中位数、众数、方差、标准差的概念进行相关计算.1.【四川省乐山市2019届高三第三次调查研究考试数学】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查,已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务的时间统计数据如下表:(1)求,m n ;(2)将表格补充完整,并判断能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?(3)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.附:22()()()()()n ad bc k a b c d a c b d -=++++.【答案】(1)8m =,48n =;(2)没有95%把握;(3)4人. 【解析】(1)由已知,该校有女生400人,故12400208560m +=+,得8m =,从而20812848n =+++=. (2)作出列联表如下:()224816096240.6857 3.8412820321635K -==≈<⨯⨯⨯. 所以没有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关. (3)根据以上数据,学生一周参加社区服务时间超过1小时的概率322483P ==, 故估计这6名学生一周参加社区服务时间超过1小时的人数是4人.【名师点睛】本题考查列联表与独立性检验的应用问题,也考查了用频率估计概率的应用问题,是基础题.2.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】一汽车销售公司对开业4年来某种型号的汽车“五一”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料.(1)求出y 关于x 的线性回归方程ˆˆˆybx a =+; (2)若第5年优惠金额8.5千元,估计第5年的销售量y (辆)的值.参考公式:()()()11211ˆˆˆ,()n eiii ii i pz nzlii i x x y y x y nxybay bx x x xn x ====---===---∑∑∑∑ 【答案】(1)ˆ38.5yx =-;(2)第5年优惠金额为8.5千元时,销售量估计为17辆. 【解析】(1)由题中数据可得11.5,26x y ==,442111211,534i ii i i x yx ====∑∑∴()414222141211411.526153534411.554ˆi ii i i x y xybx x ==--⨯⨯====-⨯-∑∑,故26311ˆ.58.5ˆay bx =-=-⨯=-,∴38.5ˆy x =-; (2)由(1)得,当8.5x =时,ˆ17y=,∴第5年优惠金额为8.5千元时,销售量估计为17辆.【名师点睛】本题主要考查线性回归分析,熟记最小二乘法求ˆb和ˆa即可,属于常考题型.3.【广西钦州市2019届高三4月综合能力测试(三模)数学】为研究男、女生的身高差异,现随机从高二某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米):男:164178174185170158163165161170女:165168156170163162158153169172(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值;(2)请根据测量结果得到20名学生身高的中位数中位数h(单位:厘米),将男、女身高不低于h和低于h的人数填入下表中,并判断是否有90%的把握认为男、女身高有差异?参照公式:()()()()()22n ad bcka b c d a c b d-=++++(3)若男生身高低于165厘米为偏矮,不低于165厘米且低于175厘米为正常,不低于175厘米为偏高,假设可以用测量结果的频率代替概率,试求从高三的男生中任意选出2人,恰有1人身高属于正常的概率.【答案】(1)见解析;(2)见解析;(3)0.48.【解析】(1)茎叶图为:平均值是将所有数据加到一起,除以数据的个数得到的结果,根据这一公式将数据代入公式, 得到平均身高:男168.8,女:163.6. (2)根据中位数的概念得到165h =,2200.202 2.70699k =≈<, 所以没有90%把握认为男、女身高有差异.(3)由测量结果可知,身高属于正常的男生概率为0.4,因此选2名男生,恰好一名身高正常的概率为()20.410.40.48⨯⨯-=.【名师点睛】这个题目考查了卡方值的计算,以及茎叶图的应用;茎叶图的均值,是将所有数据加到一起,除以数据的个数得到的结果.4.【四川省棠湖中学2019届高三高考适应性考试数学】在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方法,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的22⨯列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?(2)若从年龄在[55,65),[65,75)调查的人中各随机选取1人进行追踪调查,求选中的2人中赞成“使用微信交流”的人数恰好为1人的概率.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)见解析;(2)1125P =. 【解析】(1)根据频数分布,填写22⨯列联表如下:计算观测值22()()()()()n ad bc K a b c d a c b d -=++++18.36710.828≈>,对照临界值表知,在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”; (2)年龄[)55,65中有5人,不赞成的记为3A ,4A ,5A ;赞成的记为1A ,2A ,年龄[)65,75中有5人,不赞成的记为2B ,3B ,4B ,5B ,赞成记1B ,则从年龄[)55,65,[)65,75中各取1人共有25种可能,结果如下:11A B ,12A B ,13A B ,14A B ,15A B ,21A B ,22A B ,23A B ,24A B ,25A B ,31A B ,32A B ,33A B ,34A B ,35A B ,41A B ,42A B ,43A B ,44A B ,45A B ,51A B ,52A B ,53A B ,54A B ,55A B恰好有1人使用微信交流的共有11种可能,结果如下:12A B ,13A B ,14A B ,15A B ,22A B ,23A B ,24A B ,25A B ,31A B ,41A B ,51A B所以从年龄在[)55,65,[)65,75调查的人中各随机选取一人进行追踪调查,选中的2人中赞成“使用微信交流”的人数恰好为一人的概率1125P =. 【名师点睛】本题考查了通过补完列联表,计算出2K ,然后做出数学判断,考查了古典概型,考查了数学应用能力、数学运算能力.5.【广西桂林市、贺州市、崇左市2019届高三下学期3月联合调研考试数学】某校为了调查高三男生和女生周日学习用时情况,随机抽取了高三男生和女生各40人,对他们的周日学习时间进行了统计,分别得到了高三男生的学习时间(单位:小时)的频数分布表和女生的学习时间的频率分布直方图.(学习时间均在[0,6]内)男生周日学习时间频数表女生周日学习时间频率分布直方图(1)根据调查情况,该校高三年级周日学习用时较长的是男生还是女生?请说明理由;(2)从被抽到的80名高三学生中周日学习用时在[5,6]内的学生中抽取2人,求恰巧抽到1男1女的概率.【答案】(1)见解析;(2)815【解析】(1)该校高三年级周日学习用时较长的是女生. 理由如下:列出女生周日学习时间频数表对比男生和女生学习时间频数表,可以发现:学习用时在2小时以上的男生有22人,女生有34人,学习用时在3小时以上的男生有15人,女生有26人,都是女生人数明显多于男生人数,所以该校高三年级周日学习用时较长的是女生.(言之有理即可)(2)被抽到的80名学生中周日学习用时在[]5,6内的男生有2人,记为,A B ,女生有4人,记为a b c d ,,,, 设恰巧抽到1男1女为事件M ,从中抽取2人,共有15个基本事件:,,,,,,,AB Aa Ab Ac Ad Ba Bb ,,,,,,,Bc Bd ab ac ad bc bd cd则M 包含的基本事件为:,,,,,,,Aa Ab Ac Ad Ba Bb Bc Bd ,共8个 故()815P M =. ∴恰巧抽到1男1女的概率为815. 【名师点睛】主要考查了通过样本对总体的估计以及古典概型概率求解,属于中档题.通过样本对总体的估计,主要采取的方法是:(1)列出频数表、频率分布表,画出频率分布直方图、频率分布折线图和茎叶图等统计图表,估计总体的数据分布情况;(2)求出样本数据的平均数、方差、标准差等数字特征,估计总体的数据特征.求古典概型概率的基本步骤:(1)算出所有基本事件的个数n ;(2)求出事件A 包含的基本事件个数m ;(3)代入公式()mP A n=求解. 6.【广西南宁市2019届高三毕业班第一次适应性测试数学】某电子商务平台的管理员随机抽取了1000位上网购物者,并对其年龄(在10岁到69岁之间)进行了调查,统计情况如下表所示.已知[30,40),[40,50),[50,60)三个年龄段的上网购物的人数依次构成递减的等比数列. (1)求,a b 的值;(2)若将年龄在[30,50)内的上网购物者定义为“消费主力军”,其他年龄段内的上网购物者定义为“消费潜力军”.现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,再从这5人中抽取2人,求这2人中至少有一人是消费潜力军的概率.【答案】(1)400a =,100b =;(2)7()10P A =. 【解析】(1)由题意得50040000a b ab a b +=⎧⎪=⎨⎪>⎩,解得400a =,100b =.(2)由题意可知,在抽取的5人中,有3人是消费主力军,分别记为1a ,2a ,3a ,有2人是消费潜力军,分别记为1b ,2b .记“这2人中至少有一人是消费潜力军”为事件A .从这5人中抽取2人所有可能情况为()12,a a ,()13,a a ,()11,a b ,()12,a b ,()23,a a ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()12,b b ,共10种.符合事件A 的有()11,a b ,()12,a b ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()12,b b ,共7种. 故所求概率为()710P A =. 【名师点睛】本题主要考查了统计的简单应用,考查了古典概型的求解,属于基础题.7.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):该社团将该校区在2018年11月中10天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.(1)以这10天的空气质量指数监测数据作为估计2018年11月的空气质量情况,则2018年11月中有多少天的空气质量达到优良?(2)已知空气质量等级为1级时不需要净化空气,空气质量等级为2级时每天需净化空气的费用为1000元,空气质量等量等级为3级时每天需净化空气的费用为2000元.若从这10天样本中空气质量为1级、2级、3级的天数中任意抽取两天,求这两天的净化空气总费用为3000元的概率. 【答案】(1)9天;(2)25. 【解析】(1)由频率分布直方图可得:这10天中1级优1天,2级良2天,3~6级共7天. 所以这10天中空气质量达到优良的概率为310P =, 因为330910⨯=, 所以11月中平均有9天的空气质量达到优良.(2)设空气质量指数在(]0,50的一天为A ,空气质量指数在(]50,100的两天为b 、c ,空气质量指数在(]100,150的三天为1、2、3,则从六天中随机抽取两天的所有可能结果为:(),A b ,(),A c ,(),1A ,(),2A ,(),3A ,(),b c ,(),1b ,(),2b ,(),3b ,(),1c ,(),2c ,(),3c ,()1,2,()1,3,()2,3,共15种情况.其中这两天的净化空气总费用为3000元的可能结果为:(),1b ,(),2b ,(),3b ,(),1c ,(),2c ,(),3c ,共6种情况.所以这两天的净化空气总费用为3000元的概率为62155P ==. 【名师点睛】解答本题的关键有两个:一是读懂统计图表,并从中得到所需的数据,然后再进行解题;二是在列举时要做好标识、并做到不重不漏,这也是解答概率问题的常用方法.考查阅读理解和识图用图的能力,属于基础题.8.【四川省内江市2019届高三第三次模拟考试数学】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率%y 进行了统计,结果如下表:(1)请用相关系数说明能否用线性回归模型拟合y 与月份代码x 之间的关系.如果能,请计算出y 关于x 的线性回归方程,如果不能,请说明理由;(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的A 型车和800元/辆的B 型车中选购一种,两款单车使用寿命频数如下表:经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型? 参考数据:61()()35iii x x y y =--=∑,621()17.5ii x x =-=∑,621()76i i y y =-=∑36.5≈.参考公式:相关系数()()niix x y y r --=∑,121()()()niii nii x xy y b x x ==--=-∑∑,a y bx =-$$.【答案】(1)见解析;(2)采购B 款车型.【解析】(1)由表格中数据可得, 3.5x =,16y =.∵()()nx x y y r --=0.96==≈.∴y 与月份代码x 之间具有较强的相关关系,故可用线性回归模型拟合两变量之间的关系.()121()35217.5()ˆni i i n i i x x y y b x x ==--===-∑∑, ∴ˆˆ162 3.59ay bx =-=-⨯=, ∴关于x 的线性回归方程为ˆ29yx =+. (2)这100辆A 款单车平均每辆的利润为()15001003050040100020350100⨯-⨯+⨯+⨯+⨯=(元), 这100辆B 款单车平均每辆的利润为()1300152004070035120010400100⨯-⨯+⨯+⨯+⨯=(元). ∴用频率估计概率,A 款单车与B 款单车平均每辆的利润估计值分别为350元、400元,应采购B 款车型.【名师点睛】本题主要考查了回归直线方程的求解及应用,其中解答中根据表格中的数据,利用公式,准确计算ˆˆ,,r ba 的值是解答的关键,着重考查了运算与求解能力,属于中档试题. 9.【四川省双流中学2019届高三第一次模拟考试数学】噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度D (单位:分贝)与声音能量(单位:2/W cm )之间的关系,将测量得到的声音强度1D 和声音能量i I (i =1,2…,10)数据作了初步处理,得到如图散点图及一些统计量的值.表中lg i i W I =,101110i i W W ==∑. (1)根据散点图判断,11D a b I =+与22lg D a b I =+哪一个适宜作为声音强度D 关于声音能量的回归方程类型?(给出判断即可,不必说明理由)(2)根据表中数据,求声音强度D 关于声音能量的回归方程;(3)当声音强度大于60分贝时属于噪音,会产生噪音污染,城市中某点P 共受到两个声源的影响,这两个声源的声音能量分别是1I 和2I ,且10121410I I +=.己知点P 的声音能量等于声音能量1I 与2I 之和.请根据(1)中的回归方程,判断P 点是否受到噪音污染的干扰,并说明理由. 附:对于一组数据()()()1122,,,,,,n n u v u v u v .其回归直线V a u β=+的斜率和截距的最小二乘估计分别为:()()()121,nji i nii uu v v v u u u βαβ==--==--∑∑.【答案】(1)22lg D a b I =+更适合;(2)10lg 160.7D I =+;(3)点P 会受到干扰. 【解析】(1)22lg D a b I =+更适合.(2)令lg i i W I =,先建立D 关于W 的线性回归方程. 由于()()()10110215.1100.51iii ii W W D D b W W ==--===-∑∑,∴ˆ160.ˆ7a D bW=-=, ∴D 关于W 的线性回归方程是10160.7D W =+, 即D 关于的回归方程是10lg 160.7D I =+. (3)点P 的声音能量12I I I =+,∵10121410I I +=, ∴()101212121410I I I I I I I -⎛⎫=+=++ ⎪⎝⎭101021124105910I I I I --⎛⎫=++≥⨯ ⎪⎝⎭,根据(1)中的回归方程,点P 的声音强度D 的预报值()10min 10lg 910160.710lg960.760D -=⨯+=+>,∴点P 会受到巢声污染的干扰.【名师点睛】本题主要考查了回归方程的求法与应用问题,其中解答中认真审题,利用公式准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.10.【四川省攀枝花市2019届高三下学期第三次统考数学】某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取100件产品作为样本称出它们的质量(单位:毫克),质量值落在(175,225]的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.(1)根据乙流水线样本的频率分布直方图,求乙流水线样本质量的中位数(结果保留整数);(2)从甲流水线样本中质量在(165,185]的产品中任取2件产品,求两件产品中恰有一件合格品的概率;(3)由以上统计数据完成下面2×2列联表,能否在犯错误的概率不超过0.15的前提下认为产品的包装合格与两条自动包装流水线的选择有关?下面临界值表仅供参考:。
专题13 概率统计解答题-【2023高考必备】2013-2022十年全国高考数学真题分类汇编
(2)若甲药、乙药在试验开始时都赋予4分, 表示“甲药的累计得分为 时,最终认为甲药比乙药更有效”的概率,则 ( ),
其中 , , .假设 , .
(i)证明: 为等比数列;
(ii)求 ,并根据 的值解释这种试验方案的合理性.
17.(2018年高考数学课标Ⅲ卷(理)·第18题)(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种生产方式,为比较两咱生产方式的效率,选取 名工人,将他们随机分成两组,每组 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位: )绘制了如下茎叶图:
附:相关系数r= , ≈1.414.
13.(2020年高考数学课标Ⅲ卷理科·第18题)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
空气质量等级
[0,200]
(200,400]
(400,600]
1(优)
2
16
25
2(良)
5
10
第一种生产方式
第二种生产方式
8
6
5
5
6
8
9
9
7
6
2
7
0
1
2
2
3
4
5
6
6
8
9
8
7
7
6
5
4
3
3
2
8
1
4
4
5
2
1
1
0
0
9
0
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
2024全国高考真题数学汇编:概率与统计章节综合
2024全国高考真题数学汇编概率与统计章节综合一、单选题1.(2024上海高考真题)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A .气候温度高,海水表层温度就高B .气候温度高,海水表层温度就低C .随着气候温度由低到高,海水表层温度呈上升趋势D .随着气候温度由低到高,海水表层温度呈下降趋势2.(2024天津高考真题)下列图中,线性相关性系数最大的是()A .B .C .D .二、多选题3.(2024全国高考真题)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x ,样本方差20.01s ,已知该种植区以往的亩收入X 服从正态分布 21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布 2N x s,则()(若随机变量Z 服从正态分布 2,N,()0.8413P Z )A .(2)0.2P XB .(2)0.5P XC .(2)0.5P Y D .(2)0.8P Y 三、填空题4.(2024上海高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,已知小申完成A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是.5.(2024天津高考真题),,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.甲选到A 的概率为;已知乙选了A 活动,他再选择B 活动的概率为.6.(2024全国高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.四、解答题7.(2024全国高考真题)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p ,设p 为升级改造后抽取的n 件产品的优级品率.如果p p 150件产品的数据,能否认为生12.247 )附:22()()()()()n ad bc K a b c d a c b d2P K k0.0500.0100.001k3.8416.63510.8288.(2024上海高考真题)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩0,0.50.5,11,1.51.5,22,2.5优秀5444231不优秀1341471374027(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:22(),n ad bc a b c d a c b d 其中n a b c d , 2 3.8410.05P .)9.(2024北京高考真题)某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:赔偿次数01234单数800100603010假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i )记X 为一份保单的毛利润,估计X 的数学期望 E X ;(ⅱ)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i )中 E X 估计值的大小.(结论不要求证明)10.(2024全国高考真题)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成绩为0分;若至少投中一次,则该队进入第二阶段.第二阶段由该队的另一名队员投篮3次,每次投篮投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q (1)若0.4p ,0.5q 5分的概率.(2)假设0p q ,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?参考答案1.C【分析】根据相关系数的性质可得正确的选项.【详解】对于AB ,当气候温度高,海水表层温度变高变低不确定,故AB 错误.对于CD ,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C 正确,D 错误.故选:C.2.A【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A 3.BC【分析】根据正态分布的3 原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ,所以 2.1,0.1Y N ,故 2 2.10.1 2.10.10.84130.5P Y P Y P Y ,C 正确,D 错误;因为 1.8,0.1X N ,所以 2 1.820.1P X P X ,因为 1.80.10.8413P X ,所以 1.80.110.84130.15870.2P X ,而 2 1.820.1 1.80.10.2P X P X P X ,B 正确,A 错误,故选:BC .4.0.85【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,,,A B C 题库的比例为:5:4:3,各占比分别为543,,121212,则根据全概率公式知所求正确率5430.920.860.720.85121212p .故答案为:0.85.5.3512【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为 2435C 3C 5P M ;乙选了A 活动,他再选择B 活动的概率为 133524351C 2C C P MN C P N M P M故答案为:35;126.12/0.5【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .该轮得分的概率 631448k P X,所以 31,2,3,48k E X k .从而 441234113382k k k E X E X X X X E X .记 0,1,2,3k p P X k k .如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p .而X 的所有可能取值是0,1,2,3,故01231p p p p , 1233232p p p E X .所以121112p p,1213282p p ,两式相减即得211242p,故2312p p .所以甲的总得分不小于2的概率为2312p p .故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.7.(1)答案见详解(2)答案见详解【分析】(1)根据题中数据完善列联表,计算2K,并与临界值对比分析;(2)用频率估计概率可得0.64p ,根据题意计算p .【详解】(1)根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得2215026302470754.687550100965416K,因为3.841 4.6875 6.635,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64 150,用频率估计概率可得0.64p ,又因为升级改造前该工厂产品的优级品率0.5p ,则0.50.50.5 1.650.56812.247p ,可知p p所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 8.(1)12500(2)0.9h(3)有【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【详解】(1)由表可知锻炼时长不少于1小时的人数为占比17943282558058,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为25 290001250058.(2)估计该地区初中生的日均体育锻炼时长约为10.50.511 1.5 1.522 2.51391911794328580222220.9 .则估计该地区初中学生日均体育锻炼的时长为0.9小时.(3)由题列联表如下:1,2其他合计优秀455095不优秀177308485合计222358580提出零假设0H :该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中0.05 .22580(4530817750) 3.976 3.84195485222358.则零假设不成立,即有95%的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.9.(1)110(2)(i)0.122万元;(ii)这种情况下一份保单毛利润的数学期望估计值大于(i )中 E X 估计值【分析】(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(ⅰ)设 为赔付金额,则 可取0,0.8,0.1.6,2.4,3,用频率估计概率后可求 的分布列及数学期望,从而可求 E X .(ⅱ)先算出下一期保费的变化情况,结合(1)的结果可求 E Y ,从而即可比较大小得解.【详解】(1)设A 为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得 603010180010060301010P A.(2)(ⅰ)设 为赔付金额,则 可取0,0.8,1.6,2.4,3,由题设中的统计数据可得 800410010,0.810005100010P P ,603( 1.6)100050P ,303( 2.4)1000100P ,101(3)1000100P,故 4133100.8 1.6 2.430.27851050100100E故 0.40.2780.122E X (万元).(ⅱ)由题设保费的变化为410.496%0.4 1.20.403255,故 0.1220.40320.40.1252E Y (万元),从而 E X E Y .10.(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛;【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q 甲,331(1)Pq p 乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,比赛成绩不少于5分的概率 3310.610.50.686P .(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q 甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p 乙,0p q ,3333()()P P q q pq p p pq 甲乙2222()()()()()()q p q pq p p q p pq q pq p pq q pq2222()333p q p q p q pq 3()()3()[(1)(1)1]0pq p q pq p q pq p q p q ,P P 甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,比赛成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q, 3213511C 1P X p q q ,3223(10)1(1)C (1)P X p q q ,33(15)1(1)P X p q ,332()151(1)1533E X p q p p p q记乙先参加第一阶段比赛,比赛成绩Y 的所有可能取值为0,5,10,15,同理 32()1533E Y q q q p()()15[()()3()]E X E Y pq p q p q pq p q 15()(3)p q pq p q ,因为0p q ,则0p q ,31130p q ,则()(3)0p q pq p q ,应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.。
数学高考概率与统计历年真题精选2024
数学高考概率与统计历年真题精选2024概率与统计是高中数学的重要内容之一,在高考中占有相当的比重。
为了帮助广大考生更好地备考概率与统计,本文整理了数学高考概率与统计的历年真题,并进行了精选,希望对考生的备考有所帮助。
1. 选择题精选1)(2015年广东高考)设事件A、B独立,P(A)=0.3,P(A∪B)=0.7,则P(B)为()A. 0.2B. 0.3C. 0.4D. 0.5解析:由独立事件的性质可得,P(A∪B) = P(A) + P(B) - P(A)·P(B),代入已知条件可得,0.7 = 0.3 + P(B) - 0.3·P(B),整理得P(B) = 0.4,故选C。
2)(2016年江苏高考)某人参加驾驶证考试,第一道选择题有5个选项,有且只有1个正确选项,则某人随机选择答案的通过率为()。
A. 5%B. 20%C. 25%D. 80%解析:某人随机选择答案的通过率为正确答案的比例,即为1/5,转换成百分数为20%,故选B。
2. 解答题精选1)(2017年北京高考)某地下车库共有4层,每层有16个停车位,小明停车习惯于停在第1层,而小红停车习惯于停在第2层,他们同时来到车库停车,请问小明和小红停在同一层的概率是多少?解析:小明停在第1层的概率为1/4,小红停在第2层的概率为1/4,由于小明和小红是同时来到车库停车的,因此小明和小红停在同一层的概率为(1/4)·(1/4) = 1/16。
2)(2018年福建高考)某地区的夏季天气,可以分为晴天、多云、阴天三种情况,以往观测数据表明:晴天、多云、阴天的概率分别为0.4、0.3、0.3。
今有一天这个地区天气为晴天,已知当天多云、阴天的概率为x和y,求概率x与y之和的最大值。
解析:根据题意,晴天的概率为0.4,多云和阴天的概率之和为0.6,因此x+y=0.6。
根据概率的性质,x和y的取值范围为[0, 0.3],且x+y的最大值为0.6。
统计高考真题大题解析答案
统计高考真题大题解析答案高考是每年千万考生都期盼和紧张的时刻,而统计学科也是其中一门相对较难的科目之一。
无论是对于广大考生还是对于家长和老师们来说,了解和掌握高考统计真题的解析答案,对于备考也是非常重要的。
本文将为大家解析一些高考统计学科的典型题目,帮助大家更好地理解和应对这门科目。
第一题:某校700位高三学生体重信息的频率分布如下图所示。
学校要求体重指数在18.5至23.9之间的学生视为健康范围内,请计算该校健康体重范围内的学生人数。
此题是一个统计数据的频率分布问题,可以通过绘制频率分布直方图来进行解答。
将体重范围分成若干个组,并计算每个组的频率,然后求出健康体重范围内的频率之和即可得到答案。
第二题:某城市男性和女性的身高数据如下表所示,请计算男性和女性身高的平均值和标准差,并判断两者之间的差异是否具有统计学意义。
此题是一个比较两组数据差异的问题,需要计算平均值和标准差,并进行假设检验来判断差异是否显著。
对于两组数据,分别计算其平均值和标准差,然后应用t检验或方差分析等方法来判断差异是否具有统计学意义。
如果计算得到的显著性水平小于设定的显著性水平(通常为0.05),则可以认为差异具有统计学意义。
第三题:某厂生产的汽车零部件自然寿命数据如下图所示,请根据数据判断该厂生产的零部件的寿命服从正态分布还是指数分布。
此题是一个判断数据分布的问题,需要根据给定的数据来确定数据的分布类型。
对于给定的数据,可以绘制直方图或者QQ图,通过观察数据的分布形态来判断其是否符合正态分布或指数分布。
如果数据的直方图呈现正态分布的形态或者QQ图上的数据点接近于一条直线,则可以判断该数据符合正态分布。
反之,如果数据的直方图呈现指数分布的形态,则可以判断该数据符合指数分布。
通过以上三个例题的解析,我们可以看到高考统计学科的试题常常涉及到数据的处理和分析,需要掌握一定的计算方法和统计原理。
在备考过程中,除了熟悉考纲和掌握基本概念外,还需要多做真题并进行解析,尤其是那些典型的大题。
高考生物统计考研真题
高考生物统计考研真题
生物统计是统计学在生物学领域中的应用和发展。
对于生物学专业的考研学生来说,生物统计是一个重要的考试科目。
以下是一道高考生物统计考研真题,供同学们练习。
题目:某实验室对一种新药的疗效进行了研究,研究共有200名患者参与,这些患者被随机分为两组:实验组和对照组,每组100人。
实验组服用新药,对照组服用安慰剂。
经过一段时间的观察,实验组中有70人治愈,对照组中有55人治愈。
请回答以下问题:
1. 实验组中治愈率的估计值是多少?
2. 对照组中治愈率的估计值是多少?
3. 用95%的置信区间估计实验组和对照组的治愈率。
解答:
1. 实验组中治愈率的估计值为70%(70/100)。
2. 对照组中治愈率的估计值为55%(55/100)。
3. 用95%的置信区间估计实验组的治愈率,首先计算实验组的治愈率的标准误差:
标准误差=√(p*(1-p)/n)=√(0.7*0.3/100)=0.045。
95%的置信区间为估计值加减1.96倍的标准误差,即
70%±1.96*0.045=[0.61,0.79],所以实验组的治愈率的95%置信区间为[61%,79%]。
同理,对照组的治愈率的95%置信区间为[49%,61%]。
通过以上计算,我们得出了实验组和对照组的治愈率的估计值和95%的置信区间。
这种生物统计的方法有助于科学家们评估新药的疗效,
为医学研究提供可靠的依据。
希望考生们能够熟练掌握生物统计的基
本知识,顺利通过考研。
2024年高考数学概率统计历年真题精细分析
2024年高考数学概率统计历年真题精细分析概率统计是高中数学中的一门重要的学科,也是在高考数学卷中占有一定比重的内容。
通过对历年真题的精细分析,我们可以更好地理解和掌握概率统计的知识点,提高解题能力和应对高考的能力。
下面,我们将对2024年高考数学概率统计部分的历年真题进行精细分析,帮助同学们深入了解考点,掌握解题技巧。
1. 第一题【题目描述】某校全年级的学生身高数据如下:- 140cm-150cm:30人- 150cm-160cm:60人- 160cm-170cm:80人- 170cm-180cm:50人- 180cm-190cm:30人从中随机抽取一位同学,求身高在160cm以上的概率。
【解题思路】首先,计算总人数:30 + 60 + 80 + 50 + 30 = 250。
然后,计算身高在160cm以上的学生人数:80 + 50 + 30 = 160。
最后,计算概率:160 / 250 ≈ 0.64。
【解答】身高在160cm以上的概率为0.64。
2. 第二题【题目描述】一袋中有12个黑球和8个白球,从中无放回地抽取3个球,求至少有2个黑球的概率。
【解题思路】首先,计算总球数:12 + 8 = 20。
然后,计算抽取至少2个黑球的情况有几种:- 抽取2个黑球:C(12, 2) * C(8, 1) = 66 * 8 = 528- 抽取3个黑球:C(12, 3) = 220最后,计算概率:(528 + 220) / C(20, 3) ≈ 0.343。
【解答】抽取至少有2个黑球的概率为约0.343。
3. 第三题【题目描述】设事件A、B相互独立。
若P(A) = 0.4,P(B) = 0.3,则P(A∪B) = ?【解题思路】由题意可知,事件A、B相互独立,则P(A∪B) = P(A) + P(B) -P(A∩B)。
已知P(A) = 0.4,P(B) = 0.3,且相互独立,则P(A∩B) = P(A) * P(B) = 0.4 * 0.3 = 0.12。
07-13年广东高考数学文科概率统计真题(含答案)
2007-2013广东高考文科数学真题汇编——概率与统计1、(2007广东文数)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是【解析】随机取出2个小球得到的结果数有154102⨯⨯=种(提倡列举).取出的小球标注的数字之和为3或6的结果为{1,2},{1,5},{2,4}共3种,故所求答案为(A).2、(2007广东文数)图3是某汽车维修公司的维修点环形分布图.公司在年初分配给A B C D ,,,四个维修点某种配件各50件.在使用前发现需将A B C D ,,,四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为( ) A.18 B.17 C.16 D.15 答案:C【解析】很多同学根据题意发现n=16可行,判除A,B 选项,但对于C,D 选项则难以作出选择,事实上,这是一道运筹问题,需要用函数的最值加以解决.设A B →的件数为1x (规定:当10x <时,则B 调整了1||x 件给A,下同!),B C →的件数为2x ,C D →的件数为3x ,D A →的件数为4x ,依题意可得415040x x +-=,125045x x +-=,235054x x +-=,345061x x +-=,从而215x x =+,311x x =+,4110x x =-,故调动件次11111()|||5||1||10|f x x x x x =+++++-,画出图像(或绝对值的几何意义)可得最小值为16,故选(C).3、(2009广东文科)广州2010年亚运会火炬传递在A 、B 、C 、D 、E 五个城市之间进行,各城市之间的路线距离(单位:百公里)见下表.若以A 为起点,E 为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是A.20.6B.21C.22D.23 答案:B 【解析】由题意知,所有可能路线有6种: ①A B C D E →→→→,②A B D C E →→→→,③A C B D E→→→→,④A C DB E →→→→,⑤A D BC E →→→→,⑥AD C BE →→→→,其中, 路线③A C B D E →→→→的距离最短, 最短路线距离等于496221+++=,图34、(2009广州一模文数)某商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图1所示.已知9时至10时的销售额为2.5万元,则11时至12时的销售额为 A .6万元 B .8万元C .10万元 D .12万元 答案C解:设11时到12时的销售额为x 万元,依题意有 2.5/x=0.10/0.4,X=10 故选 C .5、 (2010广州二模文数)在长为3m 的线段AB 上任取一点P , 则点P 与线段两端点A 、B 的距离都大于1m 的概率是 A.14 B.13 C. 12 D.23答案B 线段AB 三等分,当点P 落在中间那一段时满足条件,所以概率P=1/36、 (2010广州一模文数)在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为A .12πB .112π-C .6π D .16π-答案B以O 为圆心半径为1的球体积为4πR^3/3,因为O 在底面上,所以为半个球的体积即2πR^3/3=2π/3,正方体体积为2^3=8.,所以概率为(8-2π/3)/8=1-π/127、(2011广州一模文数)甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是 A .甲B .乙C .丙D .丁 答案C8、(2011广州二模文数)在区间()0,1内任取两个实数,则这两个实数的和大于13的概率为 A .1718B .79C .29D .118答案A设这两个数为x ,y ,建立一个直角坐标系,标出x ∈(0,1),y ∈(0,1)的区域,是一个正方形。
高考真题理科数学解析分类汇编12统计
高考真题理科数学解析分类汇编12 统计1.【2012高考上海理17】设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )A .21ξξD D >B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关【答案】A【解析】 由随机变量21,ξξ的取值情况,它们的平均数分别为:1123451(),5x x x x x x =++++,2334455112211,522222x x x x x x x x x x x x +++++⎛⎫=++++= ⎪⎝⎭且随机变量21,ξξ的概率都为2.0,所以有1ξD >2ξD . 故选择A.【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题.2.【2012高考陕西理6】从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( ) A. x x <甲乙,m甲>m 乙 B. x x <甲乙,m 甲<m 乙 C. x x >甲乙,m 甲>m 乙 D. x x >甲乙,m 甲<m 乙【答案】B.【解析】根据平均数的概念易计算出乙甲x x <,又2022218=+=甲m ,2923127=+=乙m 故选B.3.【2012高考山东理4】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15【答案】C【解析】从960中用系统抽样抽取32人,则每30人抽取一人,因为第一组号码为9,则第二组为39,公差为30.所以通项为2130)1(309-=-+=n n a n ,由7502130451≤-≤n ,即302125302215≤≤n ,所以25,17,16 =n ,共有1011625=+-人,选C. 4.【2012高考江西理9】样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z ax a y =+-,其中102α<<,则n,m 的大小关系为 A .n m < B .n m > C .n m = D .不能确定【答案】A【解析】本题考查统计中的平均数,作差法比较大小以及整体思想. 由统计学知识,可得1212,n m x x x nx y y y my +++=+++= ,()()()12121n m x x x y y y m n z m n x y αα⎡⎤+++++++=+=++-⎣⎦ .()()()1m n x m n y αα=+++-, 所以()()()1nx my m n x m n y αα+=+++-.所以()()(),1.n m n m m n αα=+⎧⎪⎨=+-⎪⎩ 故()[(1)]()(21)n m m n m n ααα-=+--=+-. 因为102α<<,所以210α-<.所以0n m -<.即n m <. 【点评】要牢固掌握统计学中一些基本特征:如平均数,中位数,方差,标准差等的求法. 体现考纲中要求会用样本的基本数字特征估计总体的基本数字特征.来年需要注意频率分布直方图中平均值,标准差等的求解等.5.【2012高考湖南理4】设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为 y =0.85x-85.71,则下列结论中不正确的是A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重比为58.79kg【答案】D【解析】由回归方程为 y =0.85x-85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确.【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,并且是找不正确的答案,易错.6.【2012高考安徽理5】甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A 甲的成绩的平均数小于乙的成绩的平均数()B 甲的成绩的中位数等于乙的成绩的中位数()C 甲的成绩的方差小于乙的成绩的方差()D 甲的成绩的极差小于乙的成绩的极差【答案】C【命题立意】本题考查统计学中的数字特征与统计图。
专题15 概率与统计专项高考真题(带答案及解析)
专题15概率与统计(解答题)1.【2021·全国高考真题(理)】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x y s s ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高.【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的结论进行判断.【详解】(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610s +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410s +++++++++==.(2)依题意,0.320.15y x -==⨯=,=,y x -≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高.2.【2021·北京高考真题】为加快新冠肺炎检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和数学期望E (X );(2)若采用“5合1检测法”,检测次数Y 的期望为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).【答案】(1)①20次;②分布列见解析;期望为32011;(2)()()E Y E X >.【分析】(1)①由题设条件还原情境,即可得解;②求出X 的取值情况,求出各情况下的概率,进而可得分布列,再由期望的公式即可得解;(2)求出两名感染者在一组的概率,进而求出()E Y ,即可得解.【详解】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;②由题意,X 可以取20,30,()12011P X ==,()1103011111P X ==-=,则X 的分布列:X2030P1111011所以()1103202030111111E X =⨯+⨯=;(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为232981510020499C C P C ==,不在同一组的概率为19599P =,则()()49529502530=999999E Y E X =⨯+⨯>.3.【2021·全国高考真题】某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)B 类.【分析】(1)通过题意分析出小明累计得分X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B 类问题的数学期望,比较两个期望的大小即可.【详解】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=;()()200.810.60.32P X ==-=;()1000.80.60.48P X ==⨯=.所以X 的分布列为X020100P0.20.320.48(2)由(1)知,()00.2200.321000.4854.4E X =⨯+⨯+⨯=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=;()()800.610.80.12P Y ==-=;()1000.80.60.48P X ==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=.因为54.457.6<,所以小明应选择先回答B 类问题.4.【2021·全国高考真题】一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义.【答案】(1)1;(2)见解析;(3)见解析.【分析】(1)利用公式计算可得()E X .(2)利用导数讨论函数的单调性,结合()10f =及极值点的范围可得()f x 的最小正零点.(3)利用期望的意义及根的范围可得相应的理解说明.【详解】(1)()00.410.320.230.11E X =⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p =++-+,因为32101p p p p +++=,故()()32322030f x p x p x p p p x p =+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤,故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<;故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数,若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>.此时()()20300f p p p '=-++<,()230120f p p p '=+->,故()f x '有两个不同零点34,x x ,且3401x x <<<,且()()34,,x x x ∈-∞+∞ 时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数,而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.5.【2020年高考全国Ⅰ卷理数】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.【解析】(1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为11131161684---=.(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为111178168816+++=.6.【2020年高考全国Ⅰ卷理数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)8(0ii x x =-=∑,2021)9000(i iy y =-=∑,201)()800(i i i y y x x =--=∑.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数)((iinx y r x y --=∑1.414≈.【解析】(1)由已知得样本平均数20160120i iy y===∑,从而该地区这种野生动物数量的估计值为60×200=12000.(2)样本(,)i i x y (1,2,,20)i =的相关系数20220.943(iix y y x r --=∑.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.7.【2020年高考全国III 卷理数】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:K 2=()()()()2) n ad bc a b c d a c b d -++++,P (K 2≥k )0.0500.0100.001k 3.841 6.63510.828.【解析】(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:空气质量等级1234概率的估计值0.430.270.210.09(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=.(3)根据所给数据,可得22⨯列联表:人次≤400人次>400空气质量好3337空气质量不好228根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.8.【2020年高考山东】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:2SO [0,50](50,150](150,475]PM 2.5[0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:2SO PM 2.5[0,150](150,475][0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥0.0500.0100.001k3.8416.63510.828【解析】(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且2SO 浓度不超过150的天数为32186864+++=,因此,该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150的概率的估计值为640.64100=.(2)根据抽查数据,可得22⨯列联表:2SO PM 2.5[0,150](150,475][0,75]6416(75,115]1010(3)根据(2)的列联表得22100(64101610)7.48480207426K ⨯⨯-⨯=≈⨯⨯⨯.由于7.484 6.635>,故有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关.9.【2020年高考北京】某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)【解析】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:2121311313((1)()3433436C -+-=;(Ⅲ)01p p <【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题.10.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)a=0.35,b=0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00.【解析】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.11.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【答案】(1)0.5;(2)0.1.【解析】(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.12.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【答案】(1)分布列见解析,()2E X =;(2)20243.【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333k k k P X k k -===.所以,随机变量X 的分布列为X0123P 1272949827随机变量X 的数学期望2()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y ===== .由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立,从而由(1)知()({3,1}{2,0})P M P X Y X Y ===== (3,1)(2,0)P X Y P X Y ===+==(3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=.13.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=.(2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====.所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD ==()()()()P C P D P C P D =+0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为X012P 0.240.520.24故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得33011()C 4060P E ==.答案示例1:可以认为有变化.理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,P (E )比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.14.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.【答案】(1)分布列见解析;(2)(i)证明见解析,(ii)45 127p =,解释见解析.【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,所以X 的分布列为X1-01P (1)αβ-(1)(1)αβαβ+--(1)αβ-(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-,即114()i i i i p p p p +--=-.又因为1010p p p -=≠,所以1{}(0,1,2,,7)i i p p i +-= 为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+ 877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-,所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=.4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
———————————————————————————————— 作者:
———————————————————————————————— 日期:
【高考真题】
1.【15年陕西文】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )
A.93B.123C.137D.167
最高气温
天数
以最高气温位于各区间的频率代替最高气温位于该区间的概率。
(1)估计六月份这种酸奶一天的需求量不超过 瓶的概率;
(2)设六月份一天销售这种酸奶的利润为 (单位:元)。当六月份这种酸奶一天的进货量为 瓶时,写出 的所有可能值并估计 大于 的概率?
17.【17新课标1,19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
3.【15年江苏】已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.
4.【15年广东文】已知样本数据 , , , 的均值 ,则样本数据 , , , 的均值为.
5.【15北京文】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.
加油时间
加油量(升)
加油时的累计里程(千米)
10.【17山东文】如图所示的茎叶图记录了甲、乙
两组各 名工人某日的产量数据(单位:件).若这
两组数据的中位数相等,且平均值也相等,则 和 的
值分别为( )
11.【15新课标2,3】根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )
A.逐年比较,2008年减少二氧化碳排放量的效果最显著
(1)从总体的 名学生中随机抽取一人,估计其分数小于 的概率;
(2)已知样本中分数小于 的学生有 人,试估计总体中分数在区间 内 ,且样本中分数不小于 的男女生人数相等.试估计总体中男生和女生人数的比例.
14.【17江苏】已知一个口袋有 个白球, 个黑球( ),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为 的抽屉内,其中第 次取出的球放入编号为 的抽屉 .
B.2007年我国治理二氧化碳排放显现成效 C.2006年以来我国二氧化碳年排放量呈减少趋势
D.2006年以来我国二氧化碳年排放量与年份正相关
12.【16新课标3,4】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是 ( )
年 月 日
年 月 日
注:“累计里程“指汽车从出厂开始累计行驶的路程,在这段时间内,该车每 千米平均耗油量为( )
A. 升 B. 升 C. 升 D. 升
6.【17江苏】 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取 件进行检验,则应从丙种型号的产品中抽取件.
1
2
3
(1)试求编号为2的抽屉内放的是黑球的概率 ;
(2)随机变量 表示最后一个取出的黑球所在抽屉编号的倒数, 是 的数学期望,证明
15.【17新课标2,19】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 学.科网其频率分布直方图如下:
k
3.841
6.635
10.828
16.【17新课标3,18】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 元,售价每瓶 元,未售出的酸奶降价处理,以每瓶 元的价格当天全部处理完。根据往年销售经验,每天需求量与当天最高气温(单位: )有关。如果最高气温不低于 ,需求量为 瓶;如果最高气温位于区间 ,需求量为 瓶;如果最高气温低于 ,需求量为 瓶。为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频率分布表:
(A)各月的平均最低气温都在0℃以上
(B)七月的平均温差比一月的平均温差大
(C)三月和十一月的平均最高气温基本相同
(D)平均最高气温高于20℃的月份有5个
二、解答题(应写出必要的文字说明、证明过程或演算步骤)
13.【17北京文】某大学艺术专业 名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了 名学生,记录他们的分数,将数据分成 组: ,并整理得到如下频率分布直方图:
9.【17新课标3,3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图:
根据该折线图,下列结论错误的是( )
A.月接待游客量逐月增加 B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
2.【17新课标1,2】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )
A.x1,x2,…,xn的平均数ﻩ B.x1,x2,…,xn的标准差 C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数
7.【15北京文】某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有 人,则该样本的老年教师人数为( )
A. B. C. D.
类别
人数
老年教师
中年教师
青年教师
合计
8.【15年福建】某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.
(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg
箱产量≥50kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较。
附:
P()
0.050
0.010
0.001