非正弦周期量概
非正弦周期电流的平均值
平均功率:
i
u
无源 二端 网络
u U 0 U mk sinkt uk
k 1
i I 0 I mk sinkt ik
k 1
p ui
1 P T
T
0
1 pdt T
T
0
uidt
1 T P U 0 U mk sinkt uk I 0 I mk sinkt ik dt T 0 k 1 k 1
周期函数展开为傅里叶函数举例
例1:矩形周期波电压如图所示,求其傅立叶展级数:
u Um
0
Um
T
2
T
t
解:图示矩形周期电压,在一个周期内的表达式为: T 0t u(t ) U m 2
u(t ) U m
T t T 2
1 A0 T
T
0
1 u( t )dt T
T 2 0
1 U m dt T
1 + + u u 0 (b)
u
1
u= U0
1
u
0
u =U m1Sinwt
0
2 (a)
wt
正弦 交流电
两信号 叠加后的 波形
电路中存在 非线性元件,也产生非正弦的周期信号
非线性元 件二极管
i + u (a) R + u
电源电压 波形
i
整流后电 流波形
u
R
-
0
T 2
T (b)
t
0 (c)
t
首页
§6-2 非正弦周期信号的分解
主要内容 非正弦周期信号及分解 非正弦周期信号的有效值,平均值和平均功率 非正弦周期电路的计算.
电路原理课件10非正弦周期电流电路
返回 上页 下页
非正弦周期电流电路 工程上傅里叶级数常用另一种形式:
f ( t ) = A0 + A1mcos(1t + 1 ) + = A0 + Akm cos( k1t + k )
k =1
= a0 + [ak cos( k1t ) + bk sin( k1t )]
交流稳态分析
暂态分析
返回 上页 下页
非正弦周期电流电路
返回 上页 下页
非正弦周期电流电路 用晶体管特性图示器测 量晶体二极管的电压电流关 系。
实验表明: 在低频工作条件下,晶
体二极管的电压电流关系是
u-i 平面上通过坐标原点的 一条曲线。
返回 上页 下页
非正弦周期电流电路
返回 上页 下页
非正弦周期电流电路
f ( t ) = a0 + [ak cos( k1t ) + bk sin( k1t )] k =1 因 bk = 0 f ( t ) = a + [a cos( k t ) b sin( k t )] 0 k 1 k 1 k =1 a k = 0 2. 奇函数: f (t) = f (t),有 a0 = 0
返回 上页 下页
非正弦周期电流电路
10.1 非正弦周期信号的谐波分析
一、非正弦周期函数分解为傅里叶(Fourier)级数 满足狄里赫利条件的周期函数 f(t) = f(t + kT)[式中T 为周期函数 f(t)
的周期,k = 0,1,…],可展开为收敛的傅里叶级数:
f ( t ) = a0 + [a1cos(1t ) + b1sin(1t )] + [a2cos(21t ) + b2sin(21t )] + + [ak cos( k1t ) + bk sin( k1t )] + = a0 + [ak cos( k1t ) + bk sin( k1t )]
非正弦周期电流电路及电路频率特性
电感与电容两端的电压相等且相位相反,总电压 等于电阻两端的电压。
阻抗最小
在谐振频率下,电路的阻抗达到最小值,使得电 流达到最大值。
品质因数
串联谐振电路的品质因数Q较高,表示电路的选 择性较好。
并联谐振条件及特点
并联谐振条件
阻抗最大
电流分配
品质因数
在RLC并联电路中,当电源频 率等于电路的固有频率时,电 路发生并联谐振。此时,电路 中的阻抗最大,电流最小,且 电感与电容支路的电流相等且 相位相反。
电路频率特性的研究
探讨非正弦周期电流电路在不同频率下的响应特性,包括幅频特性、 相频特性和阻抗特性等,并分析这些特性对电路性能的影响。
实际应用案例
结合具体实例,展示非正弦周期电流电路及其频率特性在实际应用中 的价值,如电力电子设备、通信系统和控制系统等。
02
非正弦周期电流电路基本概 念
非正弦周期信号定义
非正弦周期信号
与正弦信号不同,非正弦周期信号的 波形在一个周期内不能简单地用正弦 函数描述。这种信号可以分解为一系 列不同频率的正弦波分量。
周期与非周期信号
周期信号是指在一个固定时间间隔内 重复出现的信号,而非周期信号则不 具有这种重复性。非正弦周期信号属 于周期信号的一种。
傅里叶级数展开与频谱分析
通频带
对于具有一定带宽的信号而言,能够通过谐振电路并被放大的频率范围称为通频带。通频带的宽度与 电路的品质因数Q有关,Q值越高则通频带越窄,反之则越宽。在实际应用中,需要根据信号的特点 和电路的要求来选择合适的通频带宽度。
06
非正弦周期电流电路实验验 证与仿真分析
实验目的和步骤
01
实验目的:通过搭建非正弦周期电流电路,验证其工作原 理和特性,并利用仿真软件进行分析,深入理解电路的频 率响应。
第十三章 非正弦周期信号
试用叠加定理求稳态电压u(t)。
解:1.计算 uS ( t ) 20cos(100t 10 )V 单独作用时产生
的电压 u' ( t )
将电流源iS(t)以开路代替,得到图(b)所示相量模型,
由此求得
U' j5 j5 US 10 210 1055 V 5 j5 5 j5
u( t ) u' ( t ) u" ( t ) 10 2 cos(100 t 55 )V 4.47 2 cos(200 t 76.6 )V
u(t ) u' (t ) u" (t ) 的 u ( t ) 和 u ( t ) 的波形如图(a)所示。
'
"
波形如图(b)所示,它是一个非正弦周期波形。
f (t ) A0 A1m cos(1t 1 ) A2m cos(21t 2 ) Anm cos(n1t n )
高次谐波
f ( t ) A0 Akm cos(k 1t k )
k 1
周期性方波信号的分解 解: 图示矩形波电流在一个周期内 的表达式为:
平均功率=直流分量的功率+各次谐波的平均功率
本章 要点 一、基本概念 非正弦周期信号的分解:直流分量,基波,高次谐波; 非正弦周期电量:平均值,有效值,平均功率 二、电路分析 电路的分解
直流分量作用的电路:电感短路,电容开路
谐波分量作用的电路分析:相量法 时域叠加求电流、电压; 电流、电压有效值计算;电路有功功率的计算
五次谐波电压单独作用时:
10 6 Z 5 10 j (5 314 0.05 ) 51.278.7 5 314 22.5 U 5m 2018 I 5m 0.39 60.7A Z 5 51.278.7
非正弦周期信号的频谱
频谱分析在通信、电力、自动控制等领域 都有广泛的应用,其分析结果可以为相关 领域的发展提供支持和指导。
02
非正弦周期信号的基本概念
非正弦周期信号的定义
01
非正弦周期信号是指在一个周期 内,信号的波形不是正弦波形的 周期信号。
02
与正弦周期信号相比,非正弦周 期信号的波形更加复杂,包含多 种频率成分。
05
非正弦周期信号频谱分析的应 用
在通信领域的应用
调制与解调
在通信系统中,非正弦周期信号 常被用作调制信号,通过频谱分 析可以了解信号的频率成分,进
而实现信号的调制与解调。
信道特性分析
通过分析信道对非正弦周期信号的 频谱影响,可以评估信道的传输特 性,为信道均衡和信号恢复提供依 据。
干扰识别与抑制
高精度算法
02
发展更高精度的频谱分析算法,以应对复杂和微弱信号的挑战,
提高分析的灵敏度和分辨率。
多域联合分析
03
结合时域、频域和其他变换域的分析方法,提供更全面、深入
的信号特征提取和理解。
对未来技术的展望
实时分析技术
开发能够实时处理和分析非正弦周期信号的技术,以满足实时监 测和控制的需求。
自适应分析技术
频谱的奇对称性
如果非正弦周期信号的波形具有奇对称性(即波形关于原 点对称),则其频谱具有奇对称性。在这种情况下,正负 频率分量的幅度相等,相位相同。
频谱的非对称性
对于不具有偶对称性或奇对称性的非正弦周期信号,其频 谱可能呈现出非对称性。这意味着正负频率分量的幅度和 相位关系可能不遵循简单的对称规律。
在通信系统中,干扰信号往往具有 特定的频谱特征。通过频谱分析, 可以识别干扰信号并采取相应的抑 制措施。
非正弦周期性电流电路
增加能耗
非正弦周期性电流可能导致额外的 能耗,增加能源消耗和运营成本。
非正弦周期性电流的消除方法
电路中加入滤波器可以 滤除非正弦周期性电流成 分。
优化电源设计
优化电源设计,提高电源 的输出质量,减少非正弦 周期性电流的产生。
采用线性负载
采用线性负载可以减少谐 波干扰和非正弦周期性电 流的影响。
非正弦周期性电流电 路
目录
• 非正弦周期性电流电路概述 • 非正弦周期性电流的产生与影响 • 非正弦周期性电流电路的分析方法
目录
• 非正弦周期性电流电路的实验研究 • 非正弦周期性电流电路的工程应用 • 非正弦周期性电流电路的发展趋势与展望
01
非正弦周期性电流电路概 述
定义与特点
特点
定义:非正弦周期性电流电 路是指电路中的电流呈非正
在控制系统中的应用
执行器控制
非正弦周期性电流电路可以用于执行器的控制,以实现系统的稳 定性和动态性能。
传感器信号处理
非正弦周期性电流电路可以用于传感器信号的处理,以提取有用 的信息并进行反馈控制。
伺服系统
非正弦周期性电流电路可以用于伺服系统的设计,以实现精确的 位置和速度控制。
06
非正弦周期性电流电路的 发展趋势与展望
如雷电、电磁场等外部因素可能对电 路产生干扰,导致非正弦周期性电流 的产生。
电路中元件的非线性
电路中的元件,如电阻、电容、电感 等,可能具有非线性特性,导致非正 弦周期性电流的产生。
非正弦周期性电流对电路的影响
电压波动
非正弦周期性电流可能导致电压 波动,影响用电设备的正常运行。
谐波干扰
非正弦周期性电流可能产生谐波干 扰,影响通信和信号处理设备的性 能。
非正弦周期信号电路
瞬态分析的目的是了解电路在非正弦周期信号作用下的动态响应过程,包括电压、 电流的峰值、相位、波形等参数。
稳态分析
稳态分析是研究非正弦周期信号作用于电路时,电路 达到稳态后电压和电流的平均值或有效值。
稳态分析主要采用频域分析方法,通过将非正弦周期 信号进行傅里叶级数展开,转化为多个正弦波成分,
非正弦周期信号电路可以用于设计音频功率 放大器,将微弱的音频信号放大到足够的功 率以驱动扬声器或其他音频输出设备。
电力电子系统
逆变器
01
非正弦周期信号电路可以用于设计逆变器,将直流电转换为交
流电,以驱动电机、照明和加热等设备。
整流器
02
非正弦周期信号电路也可以用于设计整流器,将交流电转换为
直流电,以提供稳定的直流电源。
再对每个正弦波成分进行单独分析。
稳态分析的目的是了解电路在非正弦周期信号作用下 的稳态工作状态,包括平均功率、效率等参数。
频率响应分析
1
频率响应分析是研究非正弦周期信号作用于电路 时,电路在不同频率下的响应特性。
2
频率响应分析主要采用频域分析方法,通过测量 电路在不同频率下的输入输出特性,绘制频率响 应曲线。
生物医学工程
在生物医学工程中,非正 弦周期信号用于刺激或记 录生物体的电生理信号。
02
非正弦周期信号电路的基本 元件
电感元件
电感元件是利用电磁感应原理制 成的元件,其基本特性是阻碍电
流的变化。
当电感元件的电流发生变化时, 会在其周围产生磁场,储存磁场
能量。
电感元件的感抗与频率成正比, 因此对于非正弦周期信号,电感 元件会对其产生较大的阻碍作用。
非正弦周期信号汇总
第十三章非正弦周期电流电路和信号的频谱重点:1. 非正弦周期电流电路的电流、电压的有效值、平均值;2. 非正弦周期电流电路的平均功率3. 非正弦周期电流电路的计算方法难点:1. 叠加定理在非正弦周期电流电路中的应用2. 非正弦周期电流电路功率的计算章与其它章节的联系:三相电路可以看成是三个同频率正弦电源作用下的正弦电流电路,对它的计算,第九章正弦电流电路中所阐述的方法完全适用。
§13.1 非正弦周期信号生产实际中不完全是正弦电路,经常会遇到非正弦周期电流电路。
在电子技术、自动控制、计算机和无线电技术等方面,电压和电流往往都是周期性的非正弦波形。
非正弦周期交流信号的特点:1) 不是正弦波2) 按周期规律变化,满足:(k=0,1,2…..)式中T 为周期。
图 13.1 为一些典型的非正弦周期信号。
图13.1(a)半波整流波形(b)锯齿波(c)方波本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。
采用谐波分析法,实质上就是通过应用数学中傅里叶级数展开方法,将非正弦周期信号分解为一系列不同频率的正弦量之和,再根据线性电路的叠加定理,分别计算在各个正弦量单独作用下电路中产生的同频率正弦电流分量和电压分量,最后,把所得分量按时域形式叠加得到电路在非正弦周期激励下的稳态电流和电压。
§13.2 周期函数分解为付里叶级数电工技术中所遇到的非正弦周期电流、电压信号多能满足展开成傅里叶级数的条件,因而能分解成如下傅里叶级数形式:也可表示成:以上两种表示式中系数之间关系为:上述系数可按下列公式计算:(k=1,2,3……)求出a0、a k、b k便可得到原函数f(t) 的展开式。
注意:非正弦周期电流、电压信号分解成傅里叶级数的关键在于求出系数a0、ak、bk ,可以利用函数的某种对称性判断它包含哪些谐波分量及不包含哪些谐波分量,可使系数的确定简化,给计算和分析将带来很大的方便。
非正弦周期交流电路
解 由公式可知,等效正弦电流的有效值为
I ( 0.8)2 (0.25)2 0.593 A
2
2
平均功率为
P
U1I1
cos
1
311 2
0.8 2
cos 85
10.8
W
正弦电压与等效正弦电流之间的相位差为
arc
cos
P UI
arc
cos
10.8 311 0.593
85.2
2
例 方波信号激励的电路。
U0 RI S0
20 78 .5106
1.57 mV
IS0
R u0
2. 基波 作用 is1 100 sin106 t μ A
20Ω R
为了便于分析与计算,通常可将非正弦周期电压和电
流用等效正弦电压和电流来代替。等效的条件是:等
效正弦量的有效值应等于已知非正弦周期量的有效值,
等效正弦量的频率应等于非正弦周期量的基波的频率,
用等效正弦量代替非正弦周期电压和电流后,其功率
必须等于电路的实际功率。这样等效代替之后,就可
以用相量表示。等效正弦电压与电流之间的相位差应
cos
k
d
1 2
[sin(k
0
1)
sin(k
1)]d
1 2
[
cos(k 1) k 1
cos(k 1) k 1
]0
11 k 1 k 1
2 k2 1
即
Ckm
4Um (k2 1)
0
( k为偶数) ( k为奇数)
A0
2Um
Bkm 0
Ckm
4Um (k2 1)
( k为偶数)
可得
k
第七章非正弦周期性电路概要
f(t)
t
0
0
例题
已知周期函数f(t)如图所示,求其傅立叶级数的展开式。
Am
-T
f(t)
f(t)既是偶函数( bK=0)
T 2
0
-Am
T
t
又是奇谐波函数( aK=0,不含偶次谐波)
T T 4 T 4 A 1 m 4 2 a K 2 f ( t ) cos(kt )dt sin( k t ) sin( k t ) 0 T 0 T T k 4 T 4A 4A m T k 4 2 m cos( k t ) dt cos( k t ) dt sin T T 0 k 2 4
解
2 2 U U0 U1 U2 2
180 60 2 40 140V 2 2
2
2
非正弦周期电流电路中的有效值和有功功率
二、平均值 非正弦周期量的平均值是它的直流分量
整流平均值 上下半周对称的电流
I rect
1 T i dt T 0 2 T I rect 2 i dt T 0
1 T U0 U km sin(kt ku ) I0 I km sin(kt ki )dt T 0 k 1 k 1
1 T 1 T P pdt uidt T 0 T 0
非正弦周期电流电路的有效值和有功功率
4. 周期函数为奇谐波函数 满足f(t)=-f(t + 对称于横轴。 表示为
a0 f ( t ) a K cos(kt ) 2 k 1
T 2
),波形移动半个周期后与原函数波形 k为奇数
第7章 非正弦周期电流电路
第七章 非正弦周期电流电路
7. 3 非正弦周期电流电路的计算 非正弦周期性电流电路的分析计算方法,主要是利用傅 里叶级数将激励信号分解成恒定分量和不同频率的正弦量之 和,然后分别计算恒定分量和各频率正弦量单独作用下电路 的响应,最后利用线性电路的叠加原理,就可以得到电路的实 际响应。这种分析电路的方法称谐波分析法。其分析电路的 一般步骤如下: (1 )将给定的非正弦激励信号分解为傅里叶级数,并根据 计算精度要求,取有限项高次谐波。
第七章 非正弦周期电流电路Fra bibliotek对上例的正弦量
对于同一非正弦周期电流,当我们用不同类型的仪表进 行测量时,往往会有不同的结果。如用磁电系仪表测量时,所 得结果为电流的恒定分量;用电磁系或电动系仪表测量时,所 得结果将是电流的有效值;用全波整流磁电系仪表测量时,所 得结果将是电流的平均值,但标尺按正弦量的有效值与整流 平值的关系换算成有效值刻度,只有在测量正弦量时读数为 其实际有效值,而测量非正弦量时会有误差。
第七章 非正弦周期电流电路
表 7.1 中,三角波、梯形波、锯形波都是奇谐波函数。 交流发电机所产生的电压实际为非正弦周期性的电压(一般 为平顶波),也属于奇谐波函数。 可以证明,奇谐波函数的傅里 叶展开式中只含有奇次谐波, 而不含直流分量和偶次谐波, 可表示为
第七章 非正弦周期电流电路
函数对称于坐标原点或纵轴,除与函数自身有关外,与计 时起点也有关。而函数对称于横轴,只与函数本身有关,与计 时起点的选择无关。因此,对某些奇谐波函数,合理地选择计 时起点,可使它又是奇函数或又是偶函数,从而使函数的分解 得以简化。如表 7.1 中的三角波、矩形波、梯形波,它们本身 是奇谐波函数,其傅里叶级数中只含奇次谐波,如表中选择的 计时起点,则它们又是奇函数,不含余弦项,所以,这些函数的傅 里叶级数中只含有奇次正弦项。
非正弦周期电流电路
单元四非正弦周期电流电路一、非正弦周期信号二、非正弦周期量的有效值、平均值及三、非正弦周期电流电路的平均功率四、非正弦周期电流电路的计算一、非正弦周期信号1.非正弦周期信号:随时间周期性地按非正弦规律变化的信号。
2.非正弦周期函数的分解傅里叶级数:若周期为T ,角频率ω=2π/T 的周期函数,满足狄里赫利条件,则的可展开为∑∞=++=++++++++=1022110)sin cos ( sin cos 2sin 2cos sin cos )(k k k k k t k b t k a a t k b t k a t b t a t b t a a t f ωωωωωωωω ∵)t k (sin A sin cos k k ψ+=+ωωωt k b t k a k k ∴+++++=)2sin()sin()(22m 11m 0θωθωt A t A A t f 直流分量基波二次谐波∑∞=++=10)sin(k k k t k A A ψω(K=1、2、3、4…)几种非正弦周期函数的傅里叶级数名称波形傅里叶级数有效值平均值梯形波f (t) =απmA4(sinαsinωt +91sin3αsin3ωt+251sin5αsin5ωt +…+2k1sinkαsinkωt +…)(式中α =Td2π,k为奇数)A mπα-341A m(1-πα)三角波f (t) =2mA8π(sinωt-91sin3ωt+251sin5ωt +…+221kk)1(--sinkωt +…)(k为奇数)3A m2A m名称波形傅里叶级数有效值平均值矩形波f (t) =πmA4(sinωt+31sin3ωt+51sin5ωt +k1sinkωt +…)(k为奇数)A m A m半波整流波f (t) =πmA2(21+4πcosωt+311⨯cos2ωt -531⨯cos4ωt+751⨯cos6ωt -…)2A mπmA全波整流波f (t) =πmA4(21+311⨯cos2ωt-531⨯cos4ωt +751⨯cos6ωt-…)2A mπmA2名称波形傅里叶级数有效值平均值锯齿波f (t) = A m [21-π1(sinωt+21sin2ωt+31sin3ωt +…) ]3A m2A m矩形脉冲波f (t) =A m [ α+π2(sinαπcosωt+21sin2απcos2ωt+31sin3απcos3ωt +…) ]αA mαA m3.几种波形具有对称性的周期函数的傅里叶级数1. 奇函数的傅里叶级数奇函数:f (t )=-f (-t );奇函数的波形对称于坐标系的原点。
第八章 非正弦周期信号频谱
角频率ω=2π/T。 a0、 ak、bk——傅里叶系数。
傅里叶级数是一个收敛的无穷级数,随着k取值的增大Akm的值减小。 k取值越大,三角级数越接近周期函数f ( t ),当k为无穷时,三角级数就能 准确代表周期函数f ( t )。但随着k取值的增大计算量也随之增大。 实际运算时三角级数应取多少项,要根据计算精度要求和级数的收敛 快慢而定。 在工程计算中,一般取式中的前几项就可以满足精度要求了,后边的 更高次项谐波可以忽略不计。
利用电感随着谐波频率的升高感抗值增大,电容随着谐波频率的升 高容抗值减小这一特点,可以将电感和电容组成各种不同的滤波电路, 把电路接在输入和输出之间,让某些需要的谐波通过而抑制某些不需要 的谐波。滤波电路广泛地运用在电子电路中,按其功能分为低通滤波器 、高通滤波器、带通滤波器和带阻滤波器。按其接线方式又分为T型滤 波器、 型滤波器和 型滤波器。
解:
(1)基波电压作用于网络时,电流 与电压同相位,故此时为串联谐振, 即
L
R 1
Z (3) 50 / 1 .7 5 5 /
2
2 2
2 8 .5
C
314 L 100 10 2 2
1 314C 10
即:
Z (3)
R ( 942 L
1 942 C
目录:
8.1 非正弦周期电流电路的基本概念 8.2 周期函数分解为傅里叶级数 8.3 有效值、平均值 和 平均功率 8.4 非正弦周期电流电路的分析计算 8.5 对称三相电路的高次谐波 8.6 傅里叶级数的指数形式及其相应的频谱 8.7 傅里叶积分及傅里叶变换
重点:
1. 正弦量的表示、相位差;
)
2
28 . 5
电工学课件第5章-非正弦周期电流的电路
5.2 非正弦周期量的有效值
一、平均值
若
u U0 U km sin(kwt k )
k 1
则其平均值为: (直流分量)
U AV
1
2
02 udwt
U0
平均值
面积 周期
二,有效值
若 i I0 Ikm sin(kwt k )
k 1 则有效值:
I 1 T i2dt
T0
1 T
T 0
I0
WA i
u
R
求(1)电流的瞬时表达式;
(2) A 、V 的读数; V
(3) W 的读数.
解: I1 U1 4A
R
I 3 U 3 3A R
i1 4 2 sin(wt 30o )A i3 3 2 sin(3wt 60o )A
电流i的瞬时表达式 i 4 2 sin(wt 30o ) 3 2 sin(3wt 60o )A
o
t
T
5.1 非正弦周期量的分解
i e1 E0
e e1
E0
0
已知E0为直流电源, e1为正弦信号源
该电路总电动势为
R e E0 e1 E0 E1m sinw t
其波形如图所示,显然不是正弦量 电路中的电流也不是正弦量
E1m
i e E0 E1m Sinwt
RR R
wt
由此题可知:
直流电量+正弦交流电量=非正弦周期电量
第5章 非正弦周期电流的电路
目录
5.1 非正弦周期量的分解 5.2 非正弦周期量的有效值 5.3 非正弦周期电流的线性电路的计算 5.4 非正弦周期电流电路中的平均功率
概述
一. 非正弦周期交流信号的特点
不是正弦波 按周期规律变化
03-非正弦量及其分析知识点
非正弦周期电路分析
1、基本概念
(1)非正弦周期信号可以用傅里叶级数分解为直流分量和各次谐波分量之和。
其分解式为
)
()(k 1km 0sin ψωω++=∑∞
=t k A A t f k (2)平均值。
)(t f 的恒定分量A 0就是其平均值
⎰=T
t
t f T A 00d 1)((3)有效值。
任何非正弦周期交流电流、电压有效值分别为
⋅
⋅⋅+++=222120I I I I ⋅
⋅⋅+++=222120U U U U (4)平均功率。
非正弦交流电路的平均功率等于各次谐波平均功率之和。
⋅
⋅⋅++++=33322211100cos cos cos ϕϕϕI U I U I U I U P 2、分析步骤
非正弦周期信号作用于线性电路时,其分析步骤为:
(1)把给定的非正弦周期电压(或电流)按照傅里叶级数,高次谐波取到哪一项,由计算精度要求决定。
(2)利用叠加原理计算电源的恒定分量和各次谐波分量单独作用时所产生的电流分量。
(3)将所得电流分量叠加起来。
注意:
(1)直流分量(恒定分量)作用于电路时,电容可视为开路,电感可视为短路;
(2)各次谐波作用于电路时,可按照不同频率的正弦交流电路计算。
(3)对于不同频率的正弦量,其感抗和容抗则为
L1Lk kX L k X ==ωC1Ck 11X k
C k X ==ω(4)不同频率谐波分量的代数和不能用相量图或者复数式运算,只能用瞬时值合成。
非正弦周期量的谐波分析
谐波分析的未来发展趋势
深度学习在谐波分析中的应用
深度学习算法具有强大的特征提取和分类能力,可以应用于谐波分析中,提高分析的准确 性和效率。
高性能计算技术的利用
随着高性能计算技术的发展,可以处理更复杂的非正弦周期信号,实现更精确的谐波分析 。
多域联合分析
将时域、频域和其他域的分析方法相结合,可以更全面地揭示非正弦周期信号的特性。
06
谐波分析的挑战与未来发展
谐波分析的挑战
复杂性和多样性
非正弦周期信号具有复杂性和多 样性,使得谐波分析变得困难。 需要开发更高级的数学工具和算
法来处理这些信号。
实时性要求
在许多应用中,如电力系统和音频 处理,谐波分析需要实时进行。这 对计算资源和算法效率提出了更高 的要求。
噪声干扰
实际信号中往往包含噪声,这会对 谐波分析的结果产生干扰。需要采 取降噪措施或开发对噪声具有鲁棒 性的算法。
频率等参数的测量和计算。
04
谐波分析的方法与步骤
基于傅里叶变换的谐波分析方法
傅里叶级数展开
01
将非正弦周期信号表示为一系列正弦波和余弦波的叠加,通过
求解傅里叶系数得到各次谐波的幅值和相位。
傅里叶变换
02
将时域信号转换为频域信号,通过分析频谱得到各次谐波的频
率、幅值和相位信息。
离散傅里叶变换(DFT)
非正弦周期量的谐波分析
$number {01}
目 录
• 引言 • 非正弦周期量的基本概念 • 谐波分析的基本原理 • 谐波分析的方法与步骤 • 谐波分析的应用领域 • 谐波分析的挑战与未来发展
01 引言
目的和背景
研究非正弦周期量的谐波分析是为了更好地理解和描述周期性非正弦信号的性质和 行为。
第13章非正弦周期电流电路和信号的频谱方
基本要求
重点
了解周期函数分解为傅
里叶级数的方法和信号 频谱的概念。
理解周期量的有效值、平
均值的概念,掌握周期量 有效值的计算方法。
掌握非正弦周期电流电
路的谐波分析法和平均 功率的计算,了解滤波 器的概念。
非正弦周期电流电
路的电流、电压的 有效值、平均值;
非正弦周期电流电
0
ak=
1 p
p
f(t)cos(kw1t) d(w1t)
-p
对 a0、bk也作同样的处理。
§13-2 周期函数分解为傅里叶级数
∑∞
f(t) = a0+ [akcos(kw1t) + bksin(kw1t)]
k=1
展开式同时存在正弦项和余弦项,在进行不同信号
的对比时不方便,而且数ak、bk的意义也不明确。 将展开式合并成另一种形式—余弦级数:
-
T 2
oT
2
t
t
T
即满足 f(-t) = - f(t)
则 ak= 0,只求bk即可:
bk =
4 T
T
2 f(t) sin(kw1t)dt
0
§13-2 周期函数分解为傅里叶级数
(4) 若f(t)为半波对称 即满足f(t) = f(t±T/2)
u
T是整流 电源周期
则a2k+1 = b2k+1 = 0 展开式中不含奇次谐波。 -T/2 o
理论上,一个收敛的傅里 f(t) 取前3项的情况
叶级数要取无穷多项,才
能准确代表原函数。
w1t
实用中,根据展开式的收 o
敛速度和误差要求取前几
项,高次谐波可以忽略。 方波的展开式收敛 速度比较慢:
电路基础(第4版_王慧玲)教学资源 4第7章 非正弦电路
非正弦周期量,非正弦周期信号的谐波分 析,非正弦周期波的有效值、平均值、功率,非 正弦周期电压作用下的线性电路。
概述: 实际工程中我们还经常会遇到非正弦信号。
例如:通信技术中,由语言、音乐、图象等转换 过来的信号,自动控制以及电子计算机、数字通 信中大量使用的脉冲信号,都是非正弦信号。
7-1 非正弦周期量 7-2 非正弦周期信号的谐波分析
解:
因为 U
U
2 0
U12
U
2 2
所以
U 1002 70.7 61.6V 120V 22
7-3-2 平均值
定义
I av
1 T
T
| i | dt
0
同理
U av
1 T
T
| u | dt
0
Eav
1 T
T
| e | dt
0
若 i I0 Ikm sin(kt k )
k 1
正弦量的平均值为0
1 T
(3) T
0 I 0 U km sin k 1
kt uk dt 0
(4) 1 T
T 0
k 1 q1
U km I qm sin kt uk
sin qt iq
dt 0
(5) 1
T
T 0
k 1
UkmIkm sinkt uk sinkt ik dt
(k≠q)
1.电源电压为非正弦电压 脉冲信号发生器产生矩形脉冲电压。 放大电路中,电源提供的是直流电压,输入信 号是正弦电压,合成一个非正弦电压。
+VCC
us
2.电路中存在非线性元件 利用二极管的单向导电性,进行半波整流。
铁心线圈接通正弦电压时,线圈中的电流也是 非正弦的。