几类特殊函数的不定积分
不定积分计算公式
不定积分计算公式不定积分是微积分中的重要内容之一,它是对函数的积分运算,是求导的逆运算。
在数学中,不定积分可以帮助我们求解各种函数的原函数,用符号∫来表示,被积函数称为被积表达式,积分变量叫做积分变量。
本文将介绍不定积分的计算方法和常用公式,并通过具体的例子进行说明。
一、基本公式1. 常数的不定积分当被积表达式为常数c时,不定积分为cx,其中x为积分变量,c为常数。
2. 幂函数的不定积分(a) 单项式的不定积分对于单项式x^n来说,其中n是非零整数,不定积分为(x^(n+1))/(n+1)+C,其中C为常数。
例如,∫x^3dx=(x^(3+1))/(3+1)+C=(x^4)/4+C。
(b) 反函数的不定积分当被积表达式为反函数1/x时,不定积分为ln|x|+C,其中C 为常数。
例如,∫(1/x)dx=ln|x|+C。
(c) 一般幂函数的不定积分对于一般的幂函数x^m来说,其中m不等于-1,不定积分为(x^(m+1))/(m+1)+C,其中C为常数。
例如,∫x^(-3)dx=(x^(-3+1))/(-3+1)+C=(x^(-2))/(-2)+C=-1/(2x^2)+C。
3. 指数函数的不定积分(a) e^x的不定积分为e^x+C,其中C为常数。
例如,∫e^xdx=e^x+C。
(b) a^x(lna)的不定积分为(a^x)/lna+C,其中C为常数,a不等于1。
例如,∫2^xdx=(2^x)/ln2+C。
4. 对数函数的不定积分lnx的不定积分为xlnx-x+C,其中C为常数。
例如,∫lnxdx=xlnx-x+C。
5. 三角函数的不定积分(a) sinx的不定积分为-cosx+C,其中C为常数。
例如,∫sinxdx=-cosx+C。
(b) cosx的不定积分为sinx+C,其中C为常数。
例如,∫cosxdx=sinx+C。
(c) tanx的不定积分为-ln|cosx|+C,其中C为常数。
例如,∫tanxdx=-ln|cosx|+C。
不定积分公式总结
不定积分公式总结在微积分的学习中,不定积分是一个非常重要的概念,它是求导的逆运算。
掌握不定积分公式对于解决各种积分问题至关重要。
接下来,就让我们一起系统地总结一下常见的不定积分公式。
一、基本积分公式1、常数的积分:∫C dx = Cx + C₁(其中 C 为常数,C₁为任意常数)这意味着任何常数乘以自变量 x 的积分,结果是该常数乘以 x 再加上一个任意常数。
2、幂函数的积分:∫xⁿ dx =(1/(n + 1))xⁿ⁺¹+ C (n ≠ -1)∫x⁻¹ dx = ln|x| + C3、指数函数的积分:∫eˣ dx =eˣ + C∫aˣ dx =(1 /ln a) aˣ + C (a > 0 且a ≠ 1)4、对数函数的积分:∫ln x dx = x ln x x + C5、三角函数的积分:∫sin x dx = cos x + C∫cos x dx = sin x + C∫tan x dx = ln|cos x| + C∫cot x dx = ln|sin x| + C6、反三角函数的积分:∫arcsin x dx = x arcsin x +√(1 x²) + C∫arccos x dx =x arccos x √(1 x²) + C∫arctan x dx = x arctan x (1/2) ln(1 + x²) + C二、凑微分法相关公式凑微分法是一种非常重要的积分方法,通过将被积表达式凑成某个函数的微分形式,然后进行积分。
例如:∫f(ax + b) dx =(1/a) ∫f(u) du (其中 u = ax + b)常见的凑微分形式有:1、∫cos(ax + b) dx =(1/a) sin(ax + b) + C2、∫sin(ax + b) dx =(1/a) cos(ax + b) + C三、换元积分法相关公式换元积分法分为第一类换元法(凑微分法)和第二类换元法。
关于不定积分计算的总结
关于不定积分计算的总结不定积分是微积分中的一个重要概念,主要用于求函数的原函数。
在计算不定积分时,需要掌握一些基本的积分公式和技巧,以及一些应用不定积分的方法。
下面是关于不定积分计算的一些总结。
一、基本不定积分公式:1. 常数函数:∫kdx=kx+C,其中k为常数,C为任意常数。
2. 幂函数:∫x^ndx=x^(n+1)/(n+1)+C,其中n≠-1,C为任意常数。
3.正弦和余弦函数:∫sinxdx=-cosx+C∫cosxdx=sinx+C∫sec^2xdx=tanx+C∫csc^2xdx=-cotx+C∫secxdxtanxdx=secx+C∫cscxcotxdx=-cscx+C。
4.指数和对数函数:∫e^xdx=e^x+C∫a^xdx=(a^x)/(lna)+C∫(1/x)dx=ln,x,+C。
5.反三角函数:∫1/(√(1-x^2))dx=sin^(-1)(x)+C∫1/(1+x^2)dx=tan^(-1)(x)+C。
二、通用技巧:1. 常数倍和求和:∫(kf(x)+g(x))dx=k∫f(x)dx+∫g(x)dx∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx。
2. 反函数:如果F'(x)=f(x),则∫f(x)dx=F(x)+C。
3. 分部积分法:∫u(x)v'(x)dx=u(x)v(x)-∫v(x)u'(x)dx。
分部积分法适用于由两个函数的乘积构成的积分。
4. 代换法:设x=g(t)或t=h(x),则dx=g'(t)dt或dx=(1/h'(x))dt。
代换法适用于需要进行变量代换的积分。
5. 三角函数的平方:∫sin^2xdx=(1/2)(x-sin(x)cos(x))+C∫cos^2xdx=(1/2)(x+sin(x)cos(x))+C。
6.分数分解:对于有理函数,可以使用部分分数分解的方法将其化简为简单的分式相加。
7.特殊函数的特殊方法:对于特定的函数形式,可以使用特殊的方法进行不定积分的计算,如有理函数的积分可以使用多项式的除法。
高数不定积分公式
高数不定积分公式高数不定积分公式1. 引言对于学习高等数学的同学来说,不定积分是一个非常重要的概念和技巧。
在数学中,不定积分是求解函数原函数的过程,也是解决微积分问题的关键方法之一。
本文将介绍一些常用的高数不定积分公式,帮助读者更好地理解和掌握该知识点。
2. 基本公式不定积分中最基本的公式就是导函数与原函数之间的关系。
根据基本公式,我们有以下常见的高数不定积分公式:•∫k dx=kx+C(其中,k为常数,C为常数)x n+1+C(其中,n为实数,C为常•∫x n dx=1n+1数)•∫e x dx=e x+C•∫lnx dx=xlnx−x+C•∫sinx dx=−cosx+C•∫cosx dx=sinx+C•∫tanx dx=−ln|cosx|+C•∫secx dx=ln|secx+tanx|+C3. 特殊函数的不定积分除了基本公式外,常见的一些特殊函数的不定积分公式也是我们需要注意和掌握的。
下面列举几个常见的特殊函数的不定积分公式:•∫1x dx=ln|x|+C•∫1sinx dx=ln|tan(x2)|+C•∫1cosx dx=ln|sin(x2+π4)|+C•∫11+x2 dx=arctanx+C4. 其他常用公式在高数不定积分中,还有一些常用的公式和技巧可以帮助我们更快地完成复杂的计算。
以下是一些常用的高数不定积分公式:•∫u dv=uv−∫v du(分部积分公式)•∫f′(x)f(x) dx=ln|f(x)|+C(对数函数的不定积分公式)•∫e kx f(x) dx=1k e kx F(x)−∫1ke kx F′(x) dx(指数函数和复合函数的不定积分公式)5. 总结本文介绍了一些常用的高数不定积分公式,包括基本公式、特殊函数的不定积分公式以及其他常用公式。
通过掌握这些公式,读者可以更加灵活地应用不定积分方法解决各种数学问题。
当然,不定积分是一个较为复杂的数学概念,需要大量的练习和应用才能熟练掌握。
利用特殊函数的性质求解不定积分
利用特殊函数的性质求解不定积分利用特殊函数的性质求解不定积分随着科技的不断发展,数学成为现代科学的重要基础,而积分作为数学的一个基本工具,在各个领域都发挥着重要的作用。
然而,求解不定积分并非容易的事情,常常需要运用多种方法和技巧。
本文将讨论利用特殊函数的性质来求解不定积分的方法,为读者提供一种更为简便的途径。
一、特殊函数的概念特殊函数是指在数学领域中具有特殊性质和应用的一类函数。
这些函数通常不是由基本初等函数组合而成的,但却常常用于广泛的领域,例如物理、工程、经济等。
因此,了解和掌握特殊函数的概念和性质对于掌握不定积分的方法具有重要意义。
二、常见特殊函数1. 常用特殊函数常用特殊函数包括伽马函数、贝塞尔函数、超几何函数等。
这些函数的性质和应用都非常广泛,有些特殊函数甚至在统计学、物理、工程和自然科学等领域都有应用。
2. 径向函数径向函数是一种具有特殊性质的函数族,常用于描述空间中的物理现象,例如量子力学和电磁学等。
常见的径向函数包括球贝塞尔函数、球贝赛尔函数、球面调和函数等。
3. 离散函数离散函数是一类具有离散变量的函数,通常用于描述统计学和信息学中的离散分布。
例如,狄利克雷函数和莫比乌斯函数等就是一种常见的离散函数。
三、利用特殊函数的性质求解不定积分利用特殊函数的性质求解不定积分,通常需要结合实际情况和具体的积分形式进行分析。
下面以伽马函数为例,探讨如何运用它的性质来求解不定积分。
伽马函数是一种具有特殊性质的函数,常用于求解复杂积分和微积分问题。
伽马函数的定义式为:$$\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} dt, {\rm Re}(z)>0$$其中,Re(z)表示z的实部。
现在考虑一个具体的不定积分,即:$$\int x^{n} e^{-x} dx$$利用伽马函数的性质,可以将上式变形为:$$\int x^{n} e^{-x} dx=\frac{1}{\Gamma(n+1)}\int_{0}^{\infty} t^{n} e^{-t} dt$$ 这里我们使用了积分变量替换法,将x换成了t。
不定积分的解法汇总
不定积分的解法汇总不定积分是微积分中的一个重要概念,在实际应用中经常需要求解不定积分。
下面将汇总一些常见的不定积分的解法。
1. 一些基本的不定积分:- 常数函数的不定积分:∫c dx = cx + C,其中c为常数,C为常数。
- 幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n为实数,C为常数。
- 指数函数的不定积分:∫e^x dx = e^x + C,其中C为常数。
- 正弦函数的不定积分:∫sin(x) dx = -cos(x) + C,其中C为常数。
- 余弦函数的不定积分:∫cos(x) dx = sin(x) + C,其中C为常数。
2. 基本积分法则:- 线性性质:∫(af(x) + bg(x)) dx = a∫f(x) dx + b∫g(x) dx,其中a和b为常数。
- 乘法性质:∫f(x)g'(x) dx = f(x)g(x) - ∫f'(x)g(x) dx,其中f(x)和g(x)为可微函数。
- 分部积分法:∫u dv = uv - ∫v du,其中u和v为可微函数。
4. 一些常见的特殊积分:- ∫(ax + b)^n dx = (ax + b)^(n+1)/(a(n+1)) + C,其中n为实数。
- ∫e^(ax)sin(bx) dx = (e^(ax))(asinx - bcosx)/(a^2 + b^2) + C。
- ∫e^(ax)cos(bx) dx = (e^(ax))(acosx + bsinx)/(a^2 + b^2) + C。
还有一些特殊的函数积分,比如有理函数、反三角函数和反双曲函数的不定积分,需要根据具体的情况使用不同的方法进行求解。
需要注意的是,不定积分的解法并不唯一,同一个函数可能可以使用不同的方法进行求解,有时还需要进行换元积分或部分分式分解等技巧。
有些函数可能不存在原函数,即无法求得其不定积分。
不定积分是一个复杂而多变的问题,需要根据具体的函数和积分形式选择不同的解法。
基本不定积分公式
5.反三角函数的不定积分
∫(1/√(1-x²)) dx = arcsinx + C
∫(1/√(1+x²)) dx = arctanx + C
6.双曲函数的不定积分
∫sinhxdx=coshx+C
∫coshxdx=sinhx+C
7.分式函数的不定积分
∫(1/x+a) dx = ln,x+a, + C
其中C为常数。
2.指数函数的不定积分
∫aˣ dx = (aˣ)/(logₑa) + C
其中a>0且a≠1,C为常数。
3.对数函数的不定积分
∫(1/x) dx = ln,x, + C
4.三角函数的不定积分
∫sinx dx = -cosx + C
∫cosx dx = sinx + C
∫sec²x dx = tanx + C
其中a≠0,C为常数。
8.代换法则
通过代换可以将一个复杂的不定积分转化为一个简单的不定积分,然后利用基本公式进行求解。常见的代换方法有以下几种:
(1)以变量替代法:
当不定积分中的部分表达式与一些变量的导数形式相似时,可以进行变量替代。
(2)以三角函数替代法:
当不定积分中包含三角函数且可三角函数替代。
基本不定积分公式
不定积分是微积分的重要内容,它是定积分的逆运算。通过求导可以得到原函数,而不定积分则是给定一个函数,求出它的原函数。在求解不定积分时,我们需要掌握一些基本的不定积分公式。下面我们将介绍一些常见的基本不定积分公式。
1.幂函数的不定积分
如果n不等于-1,则有:
求不定积分的基本方法
1 例13. 求不定积分 ∫ dx . (2 + cos x) sin x sin x 解: 原式 = ∫ (令 u = cos x) dx 2 (2 + cos x ) sin x 1 =∫ du 2 ( 2 + u )(u − 1) A=1
1 ( 2+u )(u −1)
习题课 不定积分的计算方法
一、 求不定积分的基本方法 二、几种特殊类型的积分
第四章
机动
目录
上页
下页
返回
结束
一、 求不定积分的基本方法
1. 直接积分法 通过简单变形, 利用基本积分公式和运算法则 求不定积分的方法 . 2. 换元积分法
∫ f ( x ) dx
第一类换元法 第二类换元法
∫ f [ϕ (t )]ϕ ′(t ) dt
分部积分
机动
目录
上页
下页
返回
结束
1 dx . 例4. 设 y ( x − y ) = x , 求积分 ∫ x − 3y 解: y ( x − y ) 2 = x 令 x − y = t, 即 y = x −t
2
t3 x= 2 , t −1
t t 2 (t 2 − 3) y = 2 , 而 dx = 2 dt 2 t −1 (t − 1)
=
x x − 3 ln(e 6
+ 1) − 2
x 3 ln(e 3
x + 1) − 3 arctan e 6
+C
返回 结束
机动
目录
上页
下页
3 cos x − sin x dx . 例11. 求 ∫ cos x + sin x
不定积分
dln x
dsin x
(6) f (cos x)sin xdx
dcos x
(7) f (tan x)sec2 xdx
dtan x
(8) f (e x )e x dx
de x
(9) f (arcsin x)
1 1
x2
dx
f
(arcsin
x)d(arcsin
x)
f (arccos x)
x
1 1
t t
2 2
原式
1
2t 1t 2
2t 1t 2
(1
1t 1t
2 2
)
dx
1
2 t
2
dt
2 1t
2
dt
1 2
t
2
1 t
dt
1 2
1t2 2
2t
ln
t
C
1 tan2 x tan x 1 ln tan x C
x) c
09数二三 计算不定积分
ln(1
1 x )dx x
(x 0)
令
1 x t
x
原式 ln(1 t) 2t dt ln(1 t) 1 d (t2 1)
(t 2 1)2
(t2 1)2
ln(1
t)d
( t
1) 2 1
ln(1 t) 1 1 dt
例4. 求
cos3 x 1 sin2
x
2
cos x sin4 x
dx
不定积分与定积分的各种计算方法
不定积分与定积分的各种计算方法一、不定积分的计算方法:1.初等函数不定积分法:基于已知的初等函数的不定积分公式,例如导数的逆运算。
例如,对于常数函数、幂函数、指数函数、三角函数、对数函数等,都存在常用的不定积分公式。
例如,对于函数f(x)=x^n(n≠-1),不定积分的结果为F(x)=(1/(n+1))x^(n+1)+C,其中C为任意常数。
2.换元法:也称为反链式法或u-替换法,通过引入新的变量替换积分变量,以简化积分表达式。
这种方法需要根据被积函数的特点选择适当的替换变量。
例如,对于含有根式的积分,可以通过引入新的变量将积分化为有理函数积分。
3.分部积分法:也称为积化和差减法,将积分运算转换为两个函数的乘积的积分运算,通常用于乘积的积分。
根据乘积法则,可以将积分转化为函数间的和差表达式,从而得到一个更容易求解的积分。
4.特殊函数的不定积分:一些特殊函数的不定积分需要特殊的处理,例如三角函数的不定积分、反三角函数的不定积分等。
这些特殊函数的不定积分可以通过使用特殊的积分公式或者简化技巧进行计算。
5.利用递推关系:在一些情况下,可以通过利用函数的递推关系进行不定积分的计算。
例如,对于多项式函数f(x)=(x-a)^n,可以通过多次使用求导的反向应用从高阶幂递推到低阶幂。
二、定积分的计算方法:1.几何与图形面积法:定积分可以解释为曲线与坐标轴之间的面积或图形的面积。
根据几何图形的特点,可以使用几何图形的面积公式计算定积分的值,例如长方形面积公式、三角形面积公式等。
2.定积分的性质:定积分具有一些重要的性质,例如线性性、区间可加性、区间可减性等。
利用这些性质,可以将复杂的函数表示为若干个简单的函数之和或差,从而进行定积分的计算。
3.换元法:与不定积分类似,定积分也可以通过引入新的变量来简化积分表达式。
需要注意的是,换元法在定积分中还需要考虑积分上下限的转换。
4.分部积分法:与不定积分类似,定积分也可以使用分部积分法进行计算。
4.4 几种特殊函数的不定积分
当 P( x) 的次数小于 Q( x) 时,
称这有理函数为真分式,否则为假分式。 总可以将一个假分式化成一个多项式与一个真分 式之和的形式
例1 将下列真分式分解为部分分式
4.4几种特殊函数的不 定积分
解
(1) 用拼凑法
x ( x 1) 1 1 1 2 2 2 ( x 1) x( x 1) x( x 1) x( x 1) 1 x ( x 1) 2 ( x 1) x( x 1) 1 1 1 2 x 1 x ( x 1)
4.4几种特殊函数的不 定积分
(2) 用赋值法,设
x3 x3 A B 2 x 5 x 6 ( x 2)( x 3) x 2 x 3
解得
A 5, B 6
6 5 原式 x2 x 3
4.4几种特殊函数的不 定积分
(3) 设
1 Bx C A 2 (1 2 x)(1 x ) 1 2 x 1 x 2
.
2 2t 1 t2 dt sin x , cos x , dx 2 2 2 1 t 1 t 1 t
于是
1 1 du 2 dt 2 2 2 2 1 t 1 t 1 t 1 t 4t
sin x 1 sin x dx
x 设 tan t 2
4.4几种特殊函数的不 定积分
1 t2 cos x 1 t2
2t sin x , 2 1 t
x 2arctan t ,
从而
2 dx dt 2 1 t
称为万能代换
例5 求
x 解 设 tan 2 t ,则
1 sin x dx
4.4几种特殊函数的不 定积分 sin x
几种特殊类型函数地积分
几种特殊类型函数的积分一、有理函数的不定积分1.化有理函数为简单函数两个多项式的商所表示的函数)(x R 称为有理函数,即mm m m m nn n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++==------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且0,000≠≠b a .当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式.对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一个真分式之和的形式.例如12)1(112224+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题.设有理函数(1)式中m n <,如果多项式)(x Q 在实数围能分解成一次因式和二次质因式的乘积:μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= .其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式)()(x Q x P 总可以分解成如下部分分式之和,即βααα)()()()()(1121b x B a x A a x A a x A x Q x P -++-++-+-=-λββ)()(21112q px x N x M b x B b x B ++++-++-+-μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++++++++++++-srx x S x R s rx x S x R +++++++++-21222)(μμμ . (2) 其中i i i i i i S R N M B A ,,,,,,, 都是待定常数,并且这样分解时,这些常数是唯一的.可见在实数围,任何有理真分式都可以分解成下面四类简单分式之和: (1)a x A - , (2)k a x A )(- (k 是正整数,2≥k ), (3)qpx x B Ax +++2(042<-q p ), (4)kq px x B Ax )(2+++ (k 是正整数,04,22<-≥q p k ).2. 有理函数的不定积分求有理函数的不定积分归结为求四类简单分式的积分.下面讨论这四类简单分式的积分.(1)C a x A a x d ax A dx a x A +-=--=-⎰⎰ln )(1,(2)C a x k A a x d a x A dx a x A k k k+-⋅--=--=---⎰⎰1)(11)()()(, (3)dx qpx x B Ax ⎰+++2(042<-q p ). 将分母配方得)4()2(222p q p x q px x -++=++,作变量代换2px u +=,则du dx p u x =-=,2;由于04,0422>-<-p q q p ,记224a p q =-,于是 du a u B pu A dx p q p x B Ax dx qpx x B Ax ⎰⎰⎰++-=-+++=+++22222)2()4()2( du au ApB du a u Au ⎰⎰+-++=22222C au a Ap B a u A +-++=arctan 2)ln(222 C pq p x p q Ap B q px x A +-+--+++=22242arctan 42)ln(2.(4)dx q px x B Ax k⎰+++)(2 (04,22<-≥q p k ).作变量代换2px u +=,并记224a p q =-,于是⎰⎰⎰+-++=+++du a u ApB du a u Au dx q px x B Ax k k k )(2)()(22222. 其中第一个积分C a u k A a u d a u A du a u Au k k k ++⋅--=++=+--⎰⎰122222222)(1)1(2)()(2)(. 第二个积分可通过建立递推公式求得.记 ⎰+=kk a u du I )(22 利用分部积分法有⎰⎰++++=+=12222222)(2)()(k kk k a u du u k a u u a u du I du a u a a u k a u u k k ⎰++-+++=12222222)()(2)(122222)(+-++=k k kkI a kI a u u .整理得 k k k I ka k a u u k a I 22221212)(21-++⋅=+. 于是可得递推公式]2232)()1(21[111222----++⋅-=k k k I k k a u u k a I . (3)利用(3)式,逐步递推,最后可归结为不定积分C a u aa u du I +=+=⎰arctan 1221. 最后由2px u +=全部换回原积分变量,即可求出不定积分⎰+++dx q px x B Ax k )(2. 例1 求⎰++-dx x x x 22)32(1. 解⎰⎰++-+=++-dx x x dx x x x 2222]2)1[(21)32(1 ⎰⎰+-++=2222)2(2)2(1u du du u u x u]2212121[212)2(21222⎰+++⋅⨯⨯-+-=u du u u uC u u u +-++-=2arctan 221)2(212`C x x x x ++-+++-=21arctan 221)32(222.例2 求dx x x ⎰-2)1(1. 解 因为2)1(1-x x 可分解为1)1()1(122-+-+=-x C x B x A x x . 其中A ,B ,C 为待定系数.可以用两种方法求出待定系数.第一种方法:两端去掉分母后,得)1()1(12-++-=x Cx Bx x A . (4)即 A x C A B x C A +--++=)2()(12由于(4)式是恒等式,等式两端2x 和x 的系数及常数项必须分别相等,于是有⎪⎩⎪⎨⎧==--=+1020A C A B C A , 从而解得 1=A ,1=B ,1-=C .第二种方法:在恒等式(4)中,代入特殊的x 值,从而求出待定系数.如令0=x ,得1=A ;令1=x ,得1=B ;把A ,B 的值代入(4)式,并令2=x ,得C 2211++=,即1-=C .于是⎰⎰---+=-dx x x x dx x x )11)1(11()1(122 ⎰⎰⎰---+=dx x dx x dx x 11)1(112C x x x +----=1ln 11ln . 例3 求⎰+-+dx x x x 22)1)(1(22. 解 因为1)1(1)1)(1(2222222++++++-=+-+x E Dx x C Bx x A x x x , 两端去分母得)1)(1)(()1)(()1(22222+-++-+++=+x x E Dx x C Bx x A x234)2()()(x B E D A x D E x D A +-++-++=)()(C E A x C B E D --++-+-+.两端比较系数得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=+-+-=+-+=-=+220200C E A C B ED BE D A D E D A ,解方程组得1=A ,2-=B ,0=C ,1-=D ,1-=E ,故dx x x x x x dx x x x )11)1(211()1)(1(2222222⎰⎰++-+--=+-+ dx x x dx x x dx x ⎰⎰⎰++-+--=11)1(211222C x x x x +-+-++-=arctan )1ln(21111ln 22 C x x x x +-+++-=arctan 1111ln22. 例4 求⎰+-+dx x x x 6532. 解 因为32)3)(2(36532-+-=--+=+-+x B x A x x x x x x ,两端去分母得 )2()3(3-+-=+x B x A x . 令2=x ,得5-=A ;令3=x ,得6=B .于是Cx x dx x x dx x x x +---=---=+-+⎰⎰2ln 53ln 6)2536(6532C x x +--=56)2()3(ln . 从理论上讲,多项式)(x Q 总可以在实数围分解成一次因式和二次质因式的乘积,从而把有理函数)()(x Q x P 分解为多项式与四类简单分式之和,而简单分式都可以积出.所以,任何有理函数的原函数都是初等函数.但我们同时也应该注意到,在具体使用此方法时会遇到困难.首先,用待定系数法求待定系数时,计算比较繁琐;其次,当分母的次数比较高时,因式分解相当困难.因此,在解题时要灵活使用各种方法.例5 求dx x x x x x ⎰+++++12232. 解dx x dx x dx x x x x dx x x x x x ⎰⎰⎰⎰+++=+++++=+++++1111)1)(1()1()1(12222232C x x +++=arctan 1ln .例6 求dx x x x x ⎰+-+-)54)(44(122 .解 dx x x x x x x x x dx x x x x ⎰⎰+-+-+--+-=+-+-)54)(44()44()54()54)(44(1222222dx x x dx x x ⎰⎰+--+-=54144122 ⎰⎰-+----=)2(1)2(1)2()2(122x d x x d xC x x +----=)2arctan(21.例7 求dx x ⎰+114. 解⎰⎰⎰+--++=+dx x x dx x x dx x 112111211142424dx x x x dx x x x ⎰⎰+--++=2222221112111121 )1(2)1(121)1(2)1(12122xx d xx x x d x x +-+--+-=⎰⎰C x x x x x x ++++---=1212ln 24121arctan 221222.二、三角函数有理式的积分由三角函数和常数经过有限次四则运算所构成的函数称为三角函数有理式.因为所有三角函数都可以表示为x sin 和x cos 的有理函数,所以,下面只讨论)cos ,(sin x x R 型函数的不定积分.由三角学知道,x sin 和x cos 都可以用2tan x 的有理式表示,因此,作变量代换2tan x u =,则222122tan12tan22sec 2tan22cos 2sin 2sin u u x xx x x x x +=+===, 22222222112tan 12tan 12sec 2tan 12sin 2cos cos u u x xx x x x x +-=+-=-=-=. 又由u x arctan 2=,得du u dx 212+=,于是 ⎰⎰++-+=du u u u u u R dx x x R 222212)11,12()cos ,(sin . 由此可见,在任何情况下,变换2tan x u =都可以把积分dx x x R )cos ,(sin ⎰有理化.所以,称变换2tan x u =为万能代换.例8 求dx xx ⎰++cos sin 11. 解 设2tan x u =,则du u du u u u u u dx x x ⎰⎰⎰+=+⋅+-+++=++1112111211cos sin 112222C xC u ++=++=2tan1ln 1ln . 例9 求dx xx ⎰-+cos 1sin 1.解 设2tan x u =,则du u u u u du u u u u u dx xx ⎰⎰⎰+++=+⋅+--++=-+)1(2)1(12111121cos 1sin 12222222du u u du u ⎰⎰++=)1(2122du u u u u du u ⎰⎰+-++=)1()1(212222⎰⎰⎰+-+=du u u du u du u 2212121C u u u ++-+-=)1ln(ln 212 C x x x +--=)2ln(sec 2cot 2tan ln 22.虽然利用代换2tan x u =可以把三角函数有理式的积分化为有理函数的积分,但是,经代换后得出的有理函数积分一般比较麻烦.因此,这种代换不一定是最简捷的代换.例10 求dx xx ⎰+sin 1sin . 解 dx x x x dx xx x dx x x ⎰⎰⎰-=--=+222cos sin sin sin 1)sin 1(sin sin 1sin dx xx dx x x ⎰⎰--=222cos cos 1cos sin ⎰⎰⎰+--=dx dx x x d x 22cos 1cos cos 1C x x x ++-=tan cos 1. 例11 求dx x ⎰+2cos 311. 解x d x dx x x dx xtan 4tan 13sec sec cos 3112222⎰⎰⎰+=+=+ C x +=)2tan arctan(21.三、简单无理函数的积分(一)),(nb ax x R +型函数的积分),(u x R 表示x 和u 两个变量的有理式.其中a ,b 为常数.对于这种类型函数的积分,作变量代换u b ax n=+,则a b u x n -=,du anu dx n 1-=,于是 du a nuu a b u R dx b ax x R n n n 1),(),(-⋅-=+⎰⎰ . (5)(5)式右端是一个有理函数的积分.例12 求⎰++dx x 3211. 解 令u x =+32,则23-=u x ,du u dx 23=,于是⎰⎰⎰++-=+=++du u u du u u dx x 111313211223 C u u u du u u +++-=++-=⎰)1ln 2(3)111(32C x x x +++++-+=333221ln 323)2(23.例13 求dx xx ⎰+31.解 为了同时去掉被积函数中的两个根式,取3和2的最小公倍数6,并作变量代换u x =6,则6u x =,du u dx 56=,23u x =,3u x =,于是du u u du u u dx xx⎰⎰⎰+=+=+1616128283u d uu u u ⎰++-+-=)111(62246 C u u u u u ++-+-=arctan 6625676357 C x x x x x x ++-+-=66656arctan 6625676.(二)),(ndcx b ax x R ++型函数的积分 这里),(u x R 仍然表示x 和u 两个变量的有理式.其中d c b a ,,,为常数.对于这种类型函数的不定积分,作变量代换u d cx b ax n=++,则nn cu a b du x --=,du cu a bc ad nu dx n n 21)()(--=-,于是du cu a bc ad nu u cu a b du R dx d cx b ax x R n n n nn21)()(),(),(--⋅--=++-⎰⎰. (6) (6)式右端是一个有理函数的积分.例14 求dx xx x ⎰+11. 解 令u x x =+1, 则112-=u x ,du u u dx 22)1(2--=,于是 duu u du u u du u u u u dx x x x ⎰⎰⎰⎰-+--=--=--⋅-=+111212)1(2)1(112222222C u u u du u ++---=-+-=⎰11ln 2)111(22C u u u +--++-=1ln )1ln(222 C x x xx x++++++-=ln )11ln(212.例15 求dx x x ⎰-+342)1()1(1.解 ⎰⎰+--+=-+dx x x x x dx x x 334211)1)(1(1)1()1(1,令ux x =+-311,则311u x x =+-,3311u u x -+=,du u u dx 232)1(6-=, 于是du u dx x x x dx x x ⎰⎰⎰=+--=-+23234212311)1(1)1()1(1C x x C u +-+-=+-=3112323.。
几种特殊类型函数的积分
2
.
解 设 3 x 2 u .于是xu22,dx3u2d u ,从而
1
dx 3x
2
1
1 u
·3u2d u
3
u2 1
1du u
3 (u
1 1 )du 1 u
3(
u2 2
uln|1u|)C
3 3 (x 2)2 33 x 2 ln |1 3 x 2 | +C. 2
练习
求积分:
(1)
2
dx cos
an bm
其中m和n都 是非负整数;a0 ,a1 ,a2 ,… ,an 及b0 ,b1 ,b2
,… ,bm都是实数,并且a00,b00.当n<m时,称这有理函数
是真分式;而当nm时,称这有理函数是假分式.假分式总可以
化成一个多项式与一个真分式之和的形式.例如
x3 x 1 x2 1
x
1 x2 1
.
例2 求
x
2
x
2 2x
3
dx
.
解
x2
x
2
2 x
3
dx
(1 2
x
2x 2 2 2x
3
3
x
2
1 2
x
)dx 3
1 2
x
2x 2 2 2x
dx 3
3
x
2
1 2
x
dx 3
1 2
d (x2 2x 3) x2 2x 3
3
d (x 1) (x 1)2 ( 2)2
1 ln(x2 2x 3) 3 arctan x 1 C .
2
dx.
解
x2
3x 1 3x
几类特殊函数的不定积分公式
( 黔南 民族师范学院 数学系 , 贵州 都匀 5 5 8 0 0 0 )
爿 c
摘
要: 利用分部积分公式和指数函数 、 正 弦函数 、 余弦 函数的原 函数 的关 系 , 给 出了几类特殊 函数 的积 分
公式 。使其在求相应 的积分 时 , 直接利用公式 , 可避 免反 复地 用分部积分公式。
( 其中 P ( )为 的 n次多项 式 ) 定理 1 设 n ∈N+ , a≠ 0, 则
s i n +6 ) = ( _1 )
关键 词 : 分部积分 ; 多项式 ; 指数函数 ; 正 弦函数 ; 余弦函数
[ 中图分类号 ]0 1 7 2 . 2 [ 文献标识码 ]A [ 文章编号 ]1 6 7 4—2 3 8 9 ( 2 0 1 5 ) 0 4— 0 0 8 6— 0 2
On t he I nd e f i n i t e I n t e g r a l Fo r mu l a o f S e v e r a l Ki nd s o f S pe c i a l Fu nc t i o ns
L I U We n. WU
( D e p a r t m e n t o f Ma t h e m a t w s , Q i a n n a n N o r m a l C o l l t i e s , D u y u n 5 5 8 0 0 0 , G u  ̄ h o u ,C h i n a )
关于积分 I X n s i n a x d x、 I n c o s a x d x 、 I e 如 d x
J J J
s i n ( n + 6 一
…
c。s
) + c
㈠
不定积分公式大全24个
不定积分公式大全24个在数学中,不定积分是微积分中的一个重要概念,它是定积分的逆运算。
不定积分公式是求不定积分时经常会用到的工具,掌握不定积分公式对于解决各种数学问题至关重要。
在本文中,我们将为大家整理24个常用的不定积分公式,希望能够帮助大家更好地理解和应用不定积分。
1. 常数函数不定积分公式。
对于常数函数f(x)=C,其中C为常数,则它的不定积分为F(x)=Cx + C1,其中C1为任意常数。
2. 幂函数不定积分公式。
对于幂函数f(x)=x^n,其中n≠-1,则它的不定积分为F(x)=(x^(n+1))/(n+1)+ C,其中C为任意常数。
3. 正弦函数不定积分公式。
对于正弦函数f(x)=sinx,则它的不定积分为F(x)=-cosx + C,其中C为任意常数。
4. 余弦函数不定积分公式。
对于余弦函数f(x)=cosx,则它的不定积分为F(x)=sinx + C,其中C为任意常数。
5. 正切函数不定积分公式。
对于正切函数f(x)=tanx,则它的不定积分为F(x)=-ln|cosx| + C,其中C为任意常数。
6. 余切函数不定积分公式。
对于余切函数f(x)=cotx,则它的不定积分为F(x)=ln|sinx| + C,其中C为任意常数。
7. 指数函数不定积分公式。
对于指数函数f(x)=e^x,则它的不定积分为F(x)=e^x + C,其中C为任意常数。
8. 对数函数不定积分公式。
对于对数函数f(x)=1/x,则它的不定积分为F(x)=ln|x| + C,其中C为任意常数。
9. 分式函数不定积分公式。
对于分式函数f(x)=1/(x-a),其中a为常数,则它的不定积分为F(x)=ln|x-a| + C,其中C为任意常数。
10. 分式函数不定积分公式。
对于分式函数f(x)=1/(x^2+a^2),其中a为常数,则它的不定积分为F(x)=(1/a)arctan(x/a) + C,其中C为任意常数。
不定积分不可积类型
不定积分不可积类型
《不定积分不可积类型》
不定积分是微积分中的一个重要概念,用于求解函数的原函数。
然而,并非所有的函数都能被求解出不定积分,存在一些不可积类型的函数。
本文将介绍一些常见的不可积类型。
1. 常数函数:常数函数是指在定义域内始终保持不变的函数。
由于其导数恒为0,所以其原函数是一个线性函数。
然而,由于线性函数不满足原函数的定义,所以常数函数没有不定积分。
2. 非连续函数:不定积分要求函数必须在定义域内连续,而非连续函数在某些点上出现跳跃或间断的情况。
例如,阶梯函数在每个跳跃点上都无法定义不定积分。
3. 未定义函数:有些函数在某些点上是未定义的,例如除以零的情况。
这种情况下,由于函数在某些点上没有定义,所以其不定积分也无法计算。
4. 非初等函数:初等函数是指由有限次的四则运算、乘方、指数、对数和三角函数/反三角函数组成的函数。
而一些特殊函数,如椭圆函数、超越函数和特殊函数(如贝塞尔函数)等,不属于初等函数的范畴,因此它们的不定积分也不能用常规的方法求解。
需要注意的是,虽然有些函数无法求解不定积分,但它们可能存在定积分或广义积分。
定积分是在某个区间内求解函数的面积或曲线长度,而广义积分是对无穷区间或在某个点附近发散的函数进行求解。
总结起来,不定积分不可积类型包括常数函数、非连续函数、未定义函数以及非初等函数。
这些函数不满足不定积分的定义条件,导致无法求解其不定积分。
对于这类函数,我们可以尝试使用其他方法来求解其定积分或广义积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mx + N ; 特殊地: 特殊地:k = 1, 分解后为 2 x + px + q
真分式化为部分分式之和的待定系数法 真分式化为部分分式之和的待定系数法
x+3 A B x+3 例1 2 , = + = x 5 x + 6 ( x 2)( x 3) x 2 x 3
x x 2 tan 2 tan x x 2 , 2 = ∵ sin x = 2 sin cos = 2 2 2 x 2 x 1 + tan sec 2 2 2 x 2 x cos x = cos sin , 2 2
x 2 x 1 tan 1 tan 2= 2, cos x = 2 x 2 x sec 1 + tan 2 2 x 令u = tan 万能置换公式) x = 2 arctan u(万能置换公式) 2
3 = x 3 ln(1 + e ) ln(1 + e ) 3 arctan(e ) + C . 2
x 6 x 3 x 6
说明 将有理函数化为部分分式之和后,只出 将有理函数化为部分分式之和后, 现三类情况: 现三类情况:
A Mx + N (1) 多项式; ( 2) 多项式; ; ( 3) ; n 2 n ( x a) ( x + px + q ) Mx + N dx , 讨论积分∫ 2 n ( x + px + q )
修改万能置换公式, 解(二) 修改万能置换公式 令 u = tan x
u 1 sin x = , dx = du, 2 2 1+ u 1+ u 2 1 1 1 1+ u ∫ sin 4 x dx = ∫ u 4 1 + u2 du = ∫ u4 du 2 1+ u
1 1 1 3 = 3 + C = cot x cot x + C . 3u u 3
(1)
1 1 1 1 . ∴ = + 2 2 x ( x 1) x ( x 1) x 1
1 A Bx + C , + 例3 2 = 2 (1 + 2 x )(1 + x ) 1 + 2 x 1 + x
1 = A(1 + x 2 ) + ( Bx + C )(1 + 2 x ),
整理得 1 = ( A + 2 B ) x 2 + ( B + 2C ) x + C + A,
都是常数. 其中 A1 , A2 , , Ak 都是常数
A ; 特殊地: 特殊地:k = 1, 分解后为 xa
(2)分母中若有因式 ( x + px + q ) ,其中 ) 2 p 4q < 0 则分解后为
2 k
M1 x + N1 M2 x + N2 Mk x + Nk + 2 + + 2 2 k k 1 ( x + px + q ) ( x + px + q ) x + px + q
2 1 2x 1 1 dx + ∫ dx = ln(1 + 2 x ) ∫ 2 2 5 5 1+ x 5 1+ x 2 1 1 2 = ln(1 + 2 x ) ln(1 + x ) + arctan x + C . 5 5 5
例6 求积分 ∫
1 1+
x e2
+
x e3
+
x e6
dx .
6 解 令 t = e x = 6 ln t , dx = dt , t 1 1 6 dx = ∫ dt ∫ 3 2 x x x 1+ t + t + t t
2
2 2u 1 u 2 sin x = , cos x = , dx = du 2 2 2 1+ u 1+ u 1+ u
2u 1 u 2 ∫ R(sin x , cos x ) dx =∫ R 1 + u2 , 1 + u2 1 + u2 du.
2
sin x dx . 例7 求积分 ∫ 1 + sin x + cos x 2u , 解 由万能置换公式 sin x = 2 1+ u 1 u2 2 cos x = dx = du, 2 2 1+ u 1+ u sin x 2u ∫ 1 + sin x + cos x dx = ∫ (1 + u)(1 + u2 )du
p p ∵ x + px + q = x + + q , 2 4 p 令 x+ =t 2
2 2 2
记 x 2 + px + q = t 2 + a 2 , 则
Mx + N = Mt + b,
p a =q , 4
2
2
Mp b= N , 2
Mx + N dx ∴∫ 2 n ( x + px + q )
2u + 1 + u 2 1 u 2 du =∫ 2 (1 + u)(1 + u )
(1 + u)2 (1 + u 2 ) 1+ u 1 du = ∫ =∫ du ∫ du 2 2 (1 + u)(1 + u ) 1+ u 1+ u
1 = arctan u + ln(1 + u 2 ) ln | 1 + u | + C 2 x ∵ u = tan 2 x x = + ln | sec | ln | 1 + tan x | + C . 2 2 2
1 1 1 sin 2 x + cos 2 x dx dx + ∫ = ∫ 2 2 4 cos x 4 sin x cos x 1 sin x 1 1 1 1 dx + ∫ dx + ∫ dx = ∫ 2 2 4 cos x 4 sin x 4 cos x
1 1 1 1 1 1 d (cos x ) + ∫ dx + ∫ dx = ∫ 2 2 4 cos x 4 sin x 4 cos x
A B C 1 , = + + 例2 2 2 x ( x 1) x 1 x ( x 1 )
1 = A( x 1) 2 + Bx + Cx ( x 1)
代入特殊值来确定系数 A, B , C 取 x = 0, A = 1 取 x = 1, B = 1 取 x = 2, 并将 A, B 值代入 (1) C = 1
Mt b dt + ∫ 2 =∫ 2 dt 2 n 2 n (t + a ) (t + a )
Mx + N dx (1) n = 1, ∫ 2 x + px + q p x+ M b 2 2 + C; = ln( x + px + q ) + arctan 2 a a Mx + N dx ( 2) n > 1, ∫ 2 n ( x + px + q ) M 1 b 2 dt . = 2 2 n 1 + ∫ 2 n (t + a ) 2( n 1)( t + a )
1 1 1 1 dx = ∫ + 解 ∫ 2 2 dx x ( x 1) x ( x 1) x 1
1 1 1 dx ∫ dx = ∫ dx + ∫ 2 x ( x 1) x 1
1 = ln x ln( x 1) + C . x 1
1 dx . 例5 求积分 ∫ 2 (1 + 2 x )(1 + x ) 4 2 1 x+ 1 dx= ∫ 5 dx + ∫ 5 2 5dx 解 ∫ (1 + 2 x )(1 + x 2 ) 1 + 2x 1+ x
这三类积分均可积出, 且原函数都是初等函数. 这三类积分均可积出 且原函数都是初等函数 结论 有理函数的原函数都是初等函数. 有理函数的原函数都是初等函数.
二,三角函数有理式的积分
三角有理式的定义: 三角有理式的定义: 由三角函数和常数经过有限次四则运算 构成的函数称之. 构成的函数称之.一般记为 R(sin x , cos x )
第三节 几类特殊函数的 不定积分
一,有理函数的积分
二,三角函数有理式的积分 三,简单无理函数的积分
一,有理函数的积分
有理函数的定义: 有理函数的定义: 两个多项式的商表示的函数称之. 两个多项式的商表示的函数称之.
P ( x ) a0 x n + a1 x n1 + + an1 x + an = m m 1 Q( x ) b0 x + b1 x + + bm 1 x + bm
1 + sin x dx . 例9 求积分 ∫ sin 3 x + sin x A+ B A B 解 sin A + sin B = 2 sin cos 2 2 1 + sin x 1 + sin x ∫ sin 3 x + sin x dx = ∫ 2 sin 2 x cos x dx 1 + sin x dx =∫ 2 4 sin x cos x 1 1 1 1 dx + ∫ = ∫ dx 2 2 4 sin x cos x 4 cos x