张量分析总结讲课稿

合集下载

(完整版)《张量分析》报告

(完整版)《张量分析》报告

一 爱因斯坦求和约定1.1指标变量的集合:n n y y y x x x ,...,,,...,,2121表示为:n j y n i x j i ...,3,2,1,,...,3,2,1,==写在字符右下角的 指标,例如xi 中的i 称为下标。

写在字符右上角的指标,例如yj 中的j 称为上标;使用上标或下标的涵义是不同的。

用作下标或上标的拉丁字母或希腊字母,除非作了说明,一般取从1到n 的所有整数,其中n 称为指标的范围。

1.2求和约定若在一项中,同一个指标字母在上标和下标中重复出现,则表示要对这个指标遍历其范围1,2,3,…n 求和。

这是一个约定,称为求和约定。

例如:333323213123232221211313212111bx A x A x A b x A x A x A bx A x A x A =++=++=++筒写为:ijijbx A =j——哑指标i——自由指标,在每一项中只出现一次,一个公式中必须相同遍历指标的范围求和的重复指标称为“哑标”或“伪标”。

不求和的指标称为自由指标。

1.3 Kronecker-δ符号(克罗内克符号)和置换符号Kronecker-δ符号定义j i ji ij ji ≠=⎩⎨⎧==当当01δδ置换符号ijkijk e e =定义为:⎪⎩⎪⎨⎧-==的任意二个指标任意k j,i,当021)(213,132,3的奇置换3,2,1是k j,i,当112)(123,231,3的偶置换3,2,1是k j,i,当1ijk ijke ei,j,k 的这些排列分别叫做循环排列、逆循环排列和非循环排列。

置换符号主要可用来展开三阶行列式:231231331221233211231231133221332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++==因此有:ijmjimii i i jijAA aa a a a ==++=δδδδδ332211kijjkiijkkjiikjjikijkee e e e e e ==-=-=-=同时有:ijjijij iiiijijijkj ikilkljkijjjiiijijijkjikiie e aa aa a a a aa δδδδδδδδδδδδδδδδδδδ=⋅=++=========++=332211332211331001010100131211232221333231321333222111321321321-=====δδδδδδδδδδδδδδδδδδδδδδδδδδδe e k j i k j i k j i k k k j j j i i i ijk333222111321321321r q p r q p r q p k k k j j j i i i pqr ijke e δδδδδδδδδδδδδδδδδδ⋅=ipp i p i p i p i δδδδδδδδδ==++11332211krkqkpjrjqjpiriqippqrijke e δδδδδδδδδ=jqirjriqjrjqiriqkqrijke e kp δδδδδδδδ-===321321322311332112312213322113312312332211333231232221131211k j i ijkkjiijkaa a e a a a e aa a a a a a a a a a a a a a a a a aaaa a aaa a A ==---++==Kronecker-δ和置换符号符号的关系为:itjsjtiskstkije e δδδδ-=二 张量代数2.1张量的加法(减法)两个同阶、同变异(结构) 的张量可以相加(或相减)。

张量的知识点总结

张量的知识点总结

张量的知识点总结一、张量的定义张量最早由数学家黎曼引入,描述了一种可以沿任意方向变化的数学对象。

在现代数学和物理学中,张量通常被定义为一种可以描述不同维度物理量间关系的数学对象。

张量是一个多维数组,它包括0维标量、1维向量、2维矩阵等,可以描述不同级别的物理量。

二、张量的特点1. 多维性:张量可以描述多维物理量之间的关系,可以用来描述空间中的各种物理量。

2. 方向性:张量可以沿任意方向变化,可以用来描述各种不同方向的物理量。

3. 连续性:张量可以描述连续的物理量,如电磁场、应力场等连续性的物理量。

三、张量的运算1. 张量的加法和减法张量的加法和减法与普通向量和矩阵非常类似,只不过在多维情况下需要注意张量的维度和方向。

2. 张量的乘法张量的乘法包括外积和内积两种,外积用于描述不同张量的叉乘关系,内积用于描述相同张量的点乘关系。

3. 张量的导数和积分张量的导数和积分是描述张量微分和积分的运算,包括对张量的微分和积分操作。

四、张量的应用1. 物理学中的应用张量在物理学中有着广泛的应用,可以描述各种力学量、电磁场、应力场等物理量之间的关系,同时也可以描述空间对称性和不变性等物理性质。

2. 工程学中的应用在工程学中,张量广泛应用于材料力学、流体力学、弹性力学等领域,能够描述各种物理场和物理量之间的相互作用和变化。

3. 计算机科学中的应用张量在深度学习和神经网络领域有着广泛应用,能够描述各种数据结构和数据间的关系,同时也可以描述各种算法和计算模型之间的联系。

五、结语张量作为一种描述多维物理量之间关系的数学对象,在物理学、工程学和计算机科学领域有着非常重要的应用。

对张量的深入理解和运用,对于理解和描述空间中的各种物理量和数据结构是至关重要的。

希望通过本文的总结,能够帮助读者更好地理解张量的概念和运用,为相关领域的学习和研究提供一定的帮助。

《张量基础知识》课件

《张量基础知识》课件
2 线性变换(linear transformation)
线性变换是指一个向量到另一个向量的映射,保持向量的加法和数乘运算。
3 奇异值分解(SVD)
奇异值分解是将矩阵分解为三个矩阵乘积的形式,被广泛应用于数据降维和信号处理。
总结
1 张量的概述
2 张量的运算和应用
张量是一种多维数组,用于表示和处理多 维数据。
《张量基础知识》PPT课 件
# 张量基础知识
什么是张量?
1 张量的定义
张量是一种多维数组, 用于表示和处理多维数 据。它具有多个轴和形 状,可以存储和计算多 维数据。
2 张量的基本特征
张量具有数据类型、维 度和形状。它可以是标 量、向量、矩阵或更高 维度的数组。
3 张量的分类
张量根据维度和形状的 不同可以分为标量、向 量、矩阵和高阶张量。
2 张量的象性
3 张量的幺模性
张量的象性描述了张量 在基向量变换下的行为。 张量的象性可以用来研 究线性变换和坐标变换。
张量的幺模性表示张量 在坐标变换中的不变性。 幺模张量在物理和拓扑 学中具有重要应用。
张量的相关概念
1 秩(rank)
秩是张量的非零元素的个数。秩为0的张量是标量,秩为1的张量是向量。
张量具有丰富的运算和广泛的应用,涵盖 物理学、数学和机器学习等领域。
3 张量的性质和相关概念的介绍
4 知识点总结
张量具有特定的性质和相关概念,如对称 性、象性和幺模性。
总结张量基础知识的关键概念和要点。
Q&A
1 相关问题解答
回答听众提出的与张量基础知识相关的问题。
2 课程结束
感谢听众参与本次张量基础知识课程, 张量乘法
张量加法是对应位置元素的相加操作。两 个形状相同的张量可以直接相加。

张量分析

张量分析

张量分析张量分析,又称张量微积分,是一门研究多维空间中的向量和张量的数学工具。

它在物理学、工程学、计算机科学等领域有着广泛的应用。

张量分析的核心思想是通过张量的计算和运算,来描述和解释多维空间中的现象和问题。

在数学中,张量是一种广义的向量概念。

它不仅可以表示标量和向量,还可以表示具有更高维度的物理量。

例如,二阶张量可以表示物体的形变和应力分布,三阶张量可以表示电磁场的分布,四阶张量可以表示弹性材料的性质等。

张量分析的基本概念包括张量的定义和表示、张量的变换规律以及张量的运算。

对于二阶张量,可以用一个矩阵来表示。

张量的变换规律与坐标系的选择有关,不同的坐标系下,同一个张量可以表示为不同的矩阵形式。

张量的运算包括加法、数乘、内积和外积等。

这些运算在物理和工程问题中具有重要的意义,可以帮助研究人员推导和解决实际问题。

在物理学中,张量分析被广泛应用于描述和分析物体的运动、形变、应力等问题。

例如,通过分析物体的应力张量,可以判断物体是否会发生破坏或变形。

在工程学中,张量分析可以用于解决弹性力学、流体力学、电磁学等问题。

在计算机科学中,张量分析可以用于图像处理、模式识别等领域。

张量分析的发展离不开数学家们的努力。

早在19世纪,克里斯托弗·亚当斯(Christopher Adams)就提出了张量的概念。

20世纪初,爱因斯坦在相对论的研究中也广泛应用了张量分析。

随着计算机的发展和计算能力的提高,张量分析在科学研究中的应用也越来越广泛。

虽然张量分析在各个领域中都有广泛的应用,但它的理论和方法并不容易掌握。

要学好张量分析,需要对线性代数、微积分和向量分析等数学知识有扎实的掌握。

此外,也需要具备一定的物理学和工程学的基础知识。

对于初学者来说,可以通过学习相关的教材和参考资料,同时结合实际问题进行练习和应用。

总之,张量分析是一门重要的数学工具,对于描述和解决多维空间中的问题具有重要的意义。

它在物理学、工程学、计算机科学等领域有着广泛的应用。

张量分析总结[范文]

张量分析总结[范文]

张量分析总结[范文]第一篇:张量分析总结[范文]中国矿业大学《张量分析》课程总结报告第 1 页一、知识总结张量概念1.1 指标记法哑标和自由指标的定义及性质自由指标:在每一项中只出现一次,一个公式中必须相同。

性质:在表达式或方程中自由指标可以出现多次,但不得在同项内重复出现两次。

哑标:一个单项式内,在上标(向量指标)和下标(余向量指标)中各出现且仅出现一次的指标。

性质:哑标可以把多项式缩写成一项;自由指标可以把多个方程缩写成一个方程。

例:A11x1+A12x2+A13x3=B1A21x1+A22x2+A23x3=B2 A31x1+A32x2+A33x3=B3式(1.1)可简单的表示为下式:(1.1)Aijxj=Bi(1.2)其中:i为自由指标,j为哑标。

特别区分,自由指标在同一项中最多出现一次,表示许多方程写成一个方程;而哑标j则在同项中可出现两次,表示遍历求和。

在表达式或者方程中自由指标可以出现多次,但不得在同项中出现两次。

1.2 Kronecker符号定义δij为:δij=⎨⎧1,i=j0,i≠j⎩(1.3)δij的矩阵形式为:⎡100⎤⎥δij=⎢010⎢⎥⎢⎣001⎥⎦(1.4)可知δijδij=δii=δjj=3。

δ符号的两指标中有一个与同项中其它因子的指标相同时,可把该因子的重指标换成δ的另一个指标,而δ符号消失。

如:δijδjk=δikδijδjkδkl=δil(1.5)中国矿业大学《张量分析》课程总结报告第 2 页δij的作用:更换指标、选择求和。

1.3 Ricci符号为了运算的方便,定义Ricci符号或称置换符号:⎧1,i,j,k为偶排列⎪lijk=⎨-1,i,j,k为奇排列⎪0,其余情况⎩(1.6)图1.1 i,j,k排列图lijk的值中,有3个为1,3个为-1,其余为0。

Ricci符号(置换符号)是与任何坐标系都无关的一个符号,它不是张量。

1.4 坐标转换图1.2 坐标转换如上图所示,设旧坐标系的基矢为ei,新坐标系的基矢为ei'。

张量分析(Tensor Analysis)

张量分析(Tensor Analysis)
克罗内克符号 i j 的定义是:
1 i 0
j
(i j ) (i j )
克罗内克符号也可写成ij或ij 。
11 22 33 1
1 1 2 3 12 32 13 23 0
C) 克罗内克符号(续)
例:空间直角坐标系中,线元矢量长度的平方为:
r i dr i dx x
空间一点P的位置矢量可用直角坐标表示为:
r z ji j
式中 ij 为沿坐标轴 zj 方向的单位矢量。
r r z j z j j i i ij i x z x x
r 上式表明, i 是单位矢量 ij 的线性组合,因此也是矢量。 x
基矢量(续)
张量分析(Tensor Analysis)
Objectives
1)熟练运用符号与求和约定; 2)熟练掌握张量以及包括基矢量、度量张量等基本张量的定义; 3)熟练掌握张量的运算法则; 4)熟练运用张量表示力学的基本方程。
1 张量的概念
在三维空间,一个矢量(例如力矢量、速度矢量等)在某参考坐标系中, 有三个分量;这三个分量的集合,规定了这个矢量;当坐标变换时,这些 分量按一定的变换法则变换。
逆变基矢量的变换法则:
相伴度量张量的变换法则:
y i m y k n y i y k g ij g i g m g n g g mn m n x x x x
j
五、张量
在物理量或几何量中,有一些量与参考坐标无关,例如质量、温度、 长度等;另有一些量,它们的分量却与参考坐标的选择有关,例如位移、 速度等。前者称为标量,后者称为矢量。当坐标作容许变换时,矢量的 分量根据相应的 变换法则进行变换。
j k k eijk eimn m n nj m

第一章张量分析基础知识

第一章张量分析基础知识

第⼀章张量分析基础知识晶体物理性能南京⼤学物理系由于近代科学技术的发展,单晶体⼈⼯培养技术的成熟,单晶体的各⽅⾯物理性能(如⼒、声、热、电、磁、光)以及它们之间相互作⽤的物理效应,在各尖端科学技术领域⾥,都得到了某些应⽤.特别是⽯英⼀类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电⼦技术中,⽐较早地在⼯业规模上进⾏⼤批⽣产和⼴泛应⽤.激光问世的四⼗多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应⽤中,已成单晶体应⽤中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之⼀,⽬的就是希望对晶体特别是光电技术中使⽤的晶体(包括基质晶体与⾮线性光学晶体)的有关物理性能及其应⽤⽅⾯的基本知识,有⼀个了解.对今后从事光电晶体的⽣长、检测和应⽤的⼯作,在分析问题、解决问题⽅⾯有所帮助,同时要在今后⼯作中不断从实践和理论两个⽅⾯扩⼤知识领域,有⼀个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个⽅⾯作深⼊全⾯的介绍,也将侧重于激光晶体有关的⼀些性能及其应⽤.鉴于以上考虑,《晶体物理性能》讲义将以离⼦晶体为主要对象,以光电技术上应⽤为线索组织内容,共分为⼋章.着重于从宏观⾓度结合微观机制介绍晶体基本物理性能以及各种交互作⽤过程的物理效应和它们在光电技术中的某些应⽤,包括弹性与弹性波(第⼆章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第⼋章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、⽅便地描述这些物理性能必须使⽤张量来表⽰.因此,在第⼀章,我们介绍了关于张量分析基础知识⽅⾯的内容.由于⽔平有限,实践经验缺乏,时间仓促,因⽽内容安排不妥、取舍不当、错误之处⼀定很多,希望同学们提出宝贵意见,批评指正.第⼀章张量的基础知识§1.1标量、⽮量和⼆阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5⼆阶张量的变换与张量的定义………………………………………………………§1.6张量的⾜符互换对称…………………………………………………………………§1.7张量的矩阵表⽰和矩阵的代数运算…………………………………………………§1.8⼆阶对称张量的⼏何表⽰和⼆阶张量的主轴………………………………………§1.9⼆阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第⼆章晶体的弹性与弹性波§2.1弹性性质与原⼦间⼒…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应⼒……………………………………………………………………………………§2.4推⼴的虎克定律、弹性系数…………………………………………………………§2.5⽴⽅晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因⼦的测量⽅法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3⾼频电场的介电极化(光的⾊散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离⼦晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的⼀般性质…………………………………………………………………§4.2常⽤铁电体的实验规律……………………………………………………………§4.3铁电体的相变热⼒学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电⽅程和机电耦合系数…………………………………………………………§4.7压电晶体的应⽤实例――⽯英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲⾯……………………………………………………………§5.4晶体表⾯上的折射…………………………………………………………………§5.5晶体偏光⼲涉及其应⽤……………………………………………………………第六章倍频与参量频率转换§6.1⾮线性极化…………………………………………………………………………§6.2⾮线性极化系数……………………………………………………………………§6.3⾮线性介质中电磁场耦合⽅程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7⾓度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放⼤…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐⽅法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13⾮线性材料的性能要求……………………………………………………………第七章电光效应及其应⽤§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的⼏个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第⼋章声光效应及其应⽤§8.1弹光效应……………………………………………………………………………§8.2声光交互作⽤产⽣的衍射现象……………………………………………………§8.3声光交互作⽤的理论………………………………………………………………§8.4声光效应在⼀些物理常数测量中的应⽤…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散⾓α的推导………………………………………………………E.双轴晶体中双折射⾯相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第⼀章张量分析基础知识以前学的课程中,有关⼒学、热学、电学、光学等的性质都是以各向同性介质来表述的或以⼀维问题来说明问题,这对于突出某些物理现象的微观的物理原因⽅⾯是必要的,但晶体物理性能是讲晶体中的⼒学、电学、光学、声学、磁学、热学等物理性能,⽽晶体的各向异性却是⼀种很普遍的特性,特别是很多现象如热电、压电、电光、声光、⾮线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要⽅⾯。

《张量分析本科》课件

《张量分析本科》课件

2
流体力学
流体力学中的张量可描述液体和气体的流动性质,从而帮助工程师设计和优化流体系 统。
3
材料科学
张量在材料的力学行为、热膨胀和磁性等方面的研究中起着重要作用,有助于材料性 能的改进。
经济学中的张量应用
金融风险评估 市场分析 关联性, 对风险评估和投资决策具有重要意义。
《张量分析本科》PPT课 件
这个课程将介绍张量的定义、基本概念、运算和性质,以及它在物理学、工 程学和经济学等领域的应用。
张量的定义和基本概念
张量是一个多维数组,具有特定的变换规律。它在数学和物理学中扮演着重 要角色,能够描述物体在各个方向上的变化。
张量的运算和性质
张量可以进行加法、乘法等运算,还具有一些特殊的性质,如对称性、反对称性和行列式等。这些运算 和性质是研究和应用张量的基础。
学科交叉
张量分析作为一门综合性学科, 促进了不同学科之间的交流与 合作,推动了学科发展的跨越 性进展。
学习资源推荐
1 书籍和教材推荐
2 网上教程和视频
《张量分析导论》、《张量分析教程》等 是学习和研究张量分析的重要参考资源。
有许多免费的网上教程和视频,可以帮助 初学者快速入门和掌握张量分析的基本概 念和应用。
张量在市场需求、价格和产量之间的关系分 析中,能够提供深入洞察和科学决策支持。
张量分析可以用于挖掘大规模数据集中的模 式和趋势,为经济预测和决策提供准确和可 靠的依据。
张量分析的重要性
科学研究
张量分析在各个学科的科学研 究中发挥着重要作用,帮助解 决复杂问题和揭示自然规律。
技术发展
随着科技的发展和应用领域的 拓展,张量分析为新技术的发 展提供了关键理论基础。
张量的坐标表示和变换规律

张量分析

张量分析

张量分析研一 熊焕君 2017.9.281.引论:我们对标量和矢量都非常熟悉。

标量是在空间中没有方向的量,其基本特征是只需要一个数就可以表示,且当坐标系发生转动时这个数保持不变,因此也称其为不变量。

而矢量是个有方向的量,三维空间中矢量需要一组三个数(分量)来表示,其基本特征是当坐标系发生转动时,这三个数按一定规律而变化。

然而在数学物理问题中,还常出现一些更为复杂的量,如描述连续体中一点的应力状态或一个微元体的变形特征等,仅用标量和矢量不足以刻画出他们的性质。

要描述这些量则有必要将标量和矢量的概念加以引申和扩充,即引入新的量——张量。

在概念上,张量和矢量有许多类同之处。

一方面张量也表示某一客观存在的几何量或物理量,显然张量作为一个整体是与描述它所选取的坐标系无关,可像矢量代数那样,用抽象法进行描述;另一方面也可像矢量一样采用坐标法进行描述,此时张量包含有若干个分量元素,各个分量的取值与具体的坐标系相关联。

张量的主要特征是,在坐标系发生变化时,其分量取值遵守着一定的转化定律。

张量方法的核心内容是研究一个复杂的量集坐标转换规律。

我们知道,一个物理定律如果是正确的,就必须不依赖于用来描述它的任何坐标系,张量方法就是既采用坐标系,而又摆脱具体坐标系的影响的不变方法。

于是我们可以在简单的直角坐标系中建立描述某一运动法则的支配方程,如果需要可以用张量方法将其转换到任意一个曲线坐标系中去。

例如对于很大一类边值问题,若选用恰当的曲线坐标系,其边界条件可以简化的表达,那么我们就可以将支配方程用张量方法转化到所采用的坐标系中来,从而使问题的求解容易处理。

2.记号与约定张量是包含有大量分量元素的复杂量集,必须使用适当的记号和约定,才能使其表达形式简化紧凑,从而使分析和讨论有序地进行。

从某种意义上讲,可以说张量是对记号的研究。

所以我们必须熟悉各种约定记号,才能对张量这个工具运用自如。

在张量方法中对一个量的标记采用字母标号法。

【张量分析ppt课件】张量分析课件第四章 张量函数和张量分析PPT文档68页

【张量分析ppt课件】张量分析课件第四章 张量函数和张量分析PPT文档68页
【张量分析ppt课件】张量分析课件第四 章 张量函数和张量分析
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利

张量分析-第2讲

张量分析-第2讲
张量分析第2讲张量分析张量分析及其应用张量分析pdf张量分析黄克智pdf张量分析视频物理学中的张量分析张量分析简明教程张量分析及其应用pdf弹性力学与张量分析
张量分析 ( Tensor analysis)
华中科技大学力学系 罗俊
版权所有 2011 华中科技大学力学系
1
1.5 坐标变换
已知某物理量或数学物理方程在一个坐标系的表达式, 求它在其它坐标系的相应形式。 旧坐标系 新坐标系
10
3. n阶张量 设物理量T共有3 个分量,且满足坐标变换关系:
n
T
' ' i1 i n
T
' ' i1 in
' i1 j1
' i2 j2
' in j2
j1 j n
则称T为n阶张量。 T
称为n阶张量T的逆变分量。
总共多少种分量? 每种多少个分量? 坐标变换关系如何写? 指标升降关系如何写?
T ab 是二阶张量,将a, b在基矢上分解 :
T ab a i g i b j g j ai g i b j g j a i b j g i g j ai b j g i g j
相应地:
T T g i g Ti g g j T g i g j Tij g g
5
坐标变换系数求法
协变变换 旧---新
j x i 'j i ' x
j' x i j ' i x
逆变变换
i' x ij ' j x
i x ij ' j ' x
互逆
新---旧
4. 矢量分量的坐标变换关系 根据基矢的坐标变换关系可以得到矢量分量的坐标变 换关系:

张量分析-第4讲

张量分析-第4讲

又有: dx1 cos(x2, n) n2 ds
dx2 cos(x1, n) n1 ds
x2
n2 n
p
11
n1
12
21
x1
22
因此:
p ( 11e1 12e2 )n1 ( 21e1 22e2 )n2
又:
n2 n e2
n1 n e1
因此:
p ( 11e1 12e2 )e1 n ( 21e1 22e2 )e2 n
g
j
nkgk
i
j
n
k
kj g i
i
j
n
j
g
i
即: pi
i
j
n
j
2.主应力方向与主应力
假设某斜截面上只有正应力,无切应力,则该正应
力称为主应力,该斜截面的法向方向称为主应力方
向。即:
σ n n x2
p
n
采用分量形式:
n2
n g n g i j
j
i
i
11
i
12
n1
即:
i
j
n
j
ni
p ( 11e1e1 12e1e2 21e2e1 22e2e2 ) n
斜截面上的面力公式
p ijeie j n σ n
σ ijeie j为应力张量
在曲线坐标线下
p σn
分量表达式
p pigi
σ
ijgig j
i
j
g
ig
j
代入上式:
n nigi
pigi
i
j
gi
(det T)3 Tij 根据:
(det T)4 T ij

张量分析总结

张量分析总结

一、知识总结1张量概念1.1指标记法哑标和自由指标的定义及性质自由指标:在每一项中只出现一次,一个公式中必须相同。

性质:在表达式或方程中自由指标可以出现多次,但不得在同项内重复出现两次。

哑标:一个单项式内,在上标(向量指标)和下标(余向量指标)中各出现且仅出现一次的指标性质:哑标可以把多项式缩写成一项;自由指标可以把多个方程缩写成一个方程。

例:A11x1A12X2A13X3B1A21A22 X2A23X3B(1.1)A31 X1A32X2A33X3B3式(1.1)可简单的表示为下式:A j X jB (1.2)其中:i为自由指标,j为哑标。

特别区分,自由指标在同一项中最多出现一次,表示许多方程写成一个方程;而哑标j则在同项中可出现两次,表示遍历求和。

在表达式或者方程中自由指标可以出现多次,但不得在同项中出现两次。

1.2 Kron ecker 符号定义ij为:ij 1, i j0, i j(1.3)的矩阵形式为:1 0 0j0 1 0 (1.4)0 0 1可知j j ii »3。

S 符号的两指标中有一个与同项中其它因子的指标相同时,可把该因子的重指标换成S 的另一个指标,而S 符号消失。

如:ij jk ik ij jk kl il的作用:更换指标、选择求和1.3 Ricci 符号为了运算的方便,定义Ricci 符号或称置换符号:1, i, j,k 为偶排列 l jk 1, i,j,k 为奇排列0,其余情况图1.1 i,j,k 排列图l jk 的值中,有3个为1,3个为-1,其余为0。

Ricci 符号(置换符号)是 与任何坐标系都无关的一个符号,它不是张量。

1.4坐标转换图1.2坐标转换(1.5)(1.6)如上图所示,设旧坐标系的基矢为e,新坐标系的基矢为e。

有ee j e'e j j e在e下进仃分解:e i'i e,「2曳i 3氏i' j e j, Illie j在e 下进行分解:e j i'j e ?jQ 3,j e3 ^e其中,i'j cos(e,q) e e j e j e为新旧坐标轴间的夹角余弦,称为坐标转换系数。

R 张量分析讲稿谢锡麟 - 复旦大学精品课程

R 张量分析讲稿谢锡麟 - 复旦大学精品课程

g m (x) ∈ Rm×m ,

锡 麟
hp
曲线坐标系
谢锡麟
式中 g i (x)
λ→0
lim
X (x + λii ) − X (x) ∈ Rm , λ
其几何意义为物理空间中 xi 曲线在 X (x) 点的切向量. 由于 DX (x) 非奇异, 因此 {g i (x)}m i=1 为线性无关向量组, 亦即成为 Rm 中的一个基, 且这种基随空间位置变化, 称为曲线坐标系的局 及微分同胚, 有 ∂x1 ∂X 1 · · · . Dx(X ) = . . ∂xm ··· ∂X 1 ( =: g 1 · · · g i 式中 g (X )

f (x0 + h) − f (x0 ) = Df (x0 )(h) + o(|h|Rp ) ∈ Rq ,

˜ h ˜ x+h
其在 x0 ∈ Dx 的可微性定义如下 .


稿
yq f O
一般有限维 Euclid 空间之间的映照可以表示为 x1 f 1 (x) . . q . . f (x) : Rp ⊃ Dx ∋ x = . → f (x) = . ∈ R , xp f q (x)
谢锡麟
1. 首先有 ) ∂gij ∂ ( (x) = g i (x), g j (x) Rm = k k ∂x ∂x = Γki,j (x) + Γkj,i (x). 同理可得
(
∂ gi (x), g j (x) ∂xk
)
Rm
( ) ∂ gj + g i (x), k (x) ∂x Rm
∂gjk (x) = Γij,k (x) + Γik,j (x); ∂xi ∂gik (x) = Γjk,i (x) + Γji,k (x). ∂xj

张量分析第二讲精品PPT课件

张量分析第二讲精品PPT课件
i1,2,3
爱因斯坦求和约定
Sa 1x1a2x2anxn
n
n
S aixi ajxj
i1
j1
约定 Saixi ajxj
用拉丁字母表示3维,希腊字母表2

求和指
标与所用 的字母无

指标重
复只能一 次
指标范

33
Aij xi y j
i1 j1
双重求和
Aij xi yj A11x1y1A12x1y2 A13x1y3
i——自由指标,在每一项中只出现一次,一个公式 中必须相同
置换符号与克罗尼克尔记号
1 若i, j,k1,2,3,2,3,1,3,1,2 eijkeijk1 若i, j,k3,2,1,2,1,3,1,3,2
0 若有两个或三个等指
j i
1 0
当i j 当i j
ijaj i1a1i2a2i3a3ai imAmj i1A1j i2A2j i3A3j Aij
i
i
1 1
2 2
3 3
3
k
i
j
k
j i
j
i
i
j
i i
j j
3
j
i
k j
l k
l i
• 2. 张量相关的概念
P•g1(P1g1P2g2)•g1P1 P•g2(P1g1P2g2)•g2P2 P•g1(P1g1P2g2)•g1P1 P•g2(P1g1P2g2)•g2P2
gi gijgj
g i
gijg j
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More

《张量分析》报告(最新整理)

《张量分析》报告(最新整理)

。从上述两式可以看出标量的左右梯度相等。
设 为三维区域 中的向量场,关于 的左右散度为
, 从上面两式可以看出向量的左右散度相等。
关于向量场 的左右旋度为

对于 的左右旋度,有关系式

标量场 的 Laplace 算子 为,
向量场 的 Gauss 公式为
其中 为区域 的边界曲面, 外法向量。
向量场 的 Stokes 公式为
, 为 上的单位
这里 为任意曲面, 为 的边界曲线,在边界 上积分 的环向与 的外法向 依右手定向规则: 指向观察者,从观察者 来看,曲线沿反时针为正。
第二部分 张量的简单运用
张量分析在许多领域有着广泛的应用,现在所学的弹塑性力学就 有简单的运用介绍,而且张量分析在岩石流变中的应用也非常有意 义。
对称张量之和,即:
Cij Aij Bij
Aij
1 2
C ij
C ji
Aji
Bij
1 2
C ij
C ji
1 2
C ji
Cij
B ji
4)高阶张量的对称和反对称
高阶张量可以是关于一对下标(或上标)对称或反对称。例如置
换张量,它关于任一对下标是反对称的:
ijk jik ,ijk ikj ,ijk kji
2.3 张量的乘法
两个张量的外积是将它们的分量相乘。这样的运算产生一个新张
量,其阶数是相乘两张量的阶数之和。
设 Aij 、 Bk 是张量,则外积
Cikj Aij Bk
Aˆij y
Amn
x
x m y i
x n y j
Aˆij yBˆ k y
y k xl
x m y i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

张量分析总结一、知识总结1 张量概念1.1 指标记法哑标和自由指标的定义及性质自由指标:在每一项中只出现一次,一个公式中必须相同。

性质:在表达式或方程中自由指标可以出现多次,但不得在同项内重复出现两次。

哑标:一个单项式内,在上标(向量指标)和下标(余向量指标)中各出现且仅出现一次的指标。

性质:哑标可以把多项式缩写成一项;自由指标可以把多个方程缩写成一个方程。

例:333323213123232221211313212111B x A x A x A B x A x A x A B x A x A x A =++=++=++ (1.1)式(1.1)可简单的表示为下式:i j ij B x A =(1.2)其中:i 为自由指标,j 为哑标。

特别区分,自由指标在同一项中最多出现一次,表示许多方程写成一个方程;而哑标j 则在同项中可出现两次,表示遍历求和。

在表达式或者方程中自由指标可以出现多次,但不得在同项中出现两次。

1.2 Kronecker 符号定义ij δ为:⎩⎨⎧≠==j i ji ij ,0,1δ(1.3)ijδ的矩阵形式为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111ijδ(1.4)可知3ij ij ii jjδδδδ===。

δ符号的两指标中有一个与同项中其它因子的指标相同时,可把该因子的重指标换成δ的另一个指标,而δ符号消失。

如:ij jk ikij jk kl ilδδδδδδδ==(1.5)ijδ的作用:更换指标、选择求和。

1.3 Ricci符号为了运算的方便,定义Ricci符号或称置换符号:⎪⎩⎪⎨⎧-=其余情况为奇排列为偶排列,0,,,1,,,1kjikjilijk(1.6)图1.1 i,j,k排列图ijkl的值中,有3个为1,3个为-1,其余为0。

Ricci符号(置换符号)是与任何坐标系都无关的一个符号,它不是张量。

1.4 坐标转换图1.2 坐标转换如上图所示,设旧坐标系的基矢为i e ,新坐标系的基矢为'i e 。

有''i j i j ij e e e e δ=='i e 在i e 下进行分解:''11'22'33'i i i i i j j e e e e e ββββ=++=j e 在'i e 下进行分解:''''1'12'23'3'j j j j i j i e e e e e ββββ=++= 其中,''''cos(,)i j i j i j j i e e e e e e β==⋅=⋅ 为新旧坐标轴间的夹角余弦,称为坐标转换系数。

空间点P 在新老坐标系矢径:⎪⎩⎪⎨⎧'+='⋅='⋅'='0r r r e x r e x r j j i i (1.7)其中'0r 为上图中坐标原点的位移矢量。

将'r 向新坐标轴上投影的矢量的分量:'''''''''''''''''0000()()()()i k k i k ki i i k k i j j i k ki j i j i j i jr e x e e x x r r e x e e x e e x x x x δδββ⋅=⋅==+⋅=⋅+⋅=+=+即由此得新坐标用老坐标表示的公式:ij j i i x x x β+'='0)((1.8)类似地,将i 向老坐标上投影,可以推导出老坐标用新坐标表示的公式:''0()j j i ij x x x β=+(1.9)特别的,当新旧坐标原点重合时,也即坐标轴仅发生旋转,此时'0()0i x =,上两式的矩阵形式为:{}[]{}{}[]{}[]{}'1''Tx x x x x βββ-===(1.10)由上可知,[][][]TI ββ= ,[]β是正交矩阵,则'1i j β=。

综合以上可知:''''''''''''''''i j l k lk i l j k i l j k i k j k i k j k i j i j i j e e e e e e ββββδββββδδ⎫⋅=⋅==⎪⇒=⎬⋅=⎪⎭(1.11)同理,可推出:''ij k i k j ββδ=将老坐标到新坐标的坐标转换称为正转换,''()i i j x x x =; 将新坐标到老坐标的坐标转换称为正转换,'()j j i x x x =''i ij j x dx dx x ∂=∂,其中'i j x x ∂∂为常数,称'i jx J x ∂=∂为雅克比行列式。

若J 处处不为0,则说明存在相应的逆变化,即:'''ji i j j i x x x x β∂∂==∂∂ 1.5 张量的分量坐标转换规律 1.5.1 一阶张量一阶张量在新老坐标系中的分解为:j j i i e a e a a =''=(1.12)其中:i j i j e e '='β (1.13)则:i j i j i i e a e a a '=''='β (1.14)得到:j i j i a a '='β (1.15)同理:j j i i e e '='β (1.16)得:i j i j a a '='β (1.17)矢量是与一阶基矢相关联的不变量,可表示为一阶基矢的线性组合,此组合与坐标系的选择无关,故为一阶张量,标量为零阶张量。

1.5.2 二阶张量定义j i e e 为二阶基矢,写在一起,不作任何运算。

由下式:⎩⎨⎧'=='''i j i jjj i i e e e e ββ (1.18)可得坐标变换时二阶基矢的转换规律为:⎩⎨⎧''==''''''j i n j m i nm nm n j m i j i e e e e e e e e ββββ (1.19)又:j j i i j j i i e b e a e b e a ab ''''==(1.20)记:j i ij b a B =,j i ijb a B ''=' (1.21)则:j i ijj i ij e e B e e B ab '''== (1.22)该式表示 a 与 b 并乘为一个坐标不变量,称为二阶张量。

记为:j i ijj i ij e e B e e B B '''== (1.23)将式(1.13)代入上式可得:⎩⎨⎧'='='''''ij n j m i mnmn n j m i ijB B B B ββββ (1.24)此分量转换可进一步推广到高阶张量。

张量与坐标轴选择无关,故可独立于坐标系来表述。

2 张量的代数运算2.1 张量的加减假如A 、B 为同阶张量,将它们在同一坐标系下的同类型分量一一相加(减),得到的结果即为它们的和(差),记为)(B A B A -+,例如:ij ij B A B A ±=±(2.1)显然,同阶张量进行加减运算后仍为同阶张量。

2.2 标量与张量的积张量A ,标量λ,若A B λ=,则:ij ij A B λ=(2.2)2.3 张量的并积两个同维不同阶(同阶)张量A 、B 的并积C 是一个阶数为A 、B 阶数之和的高阶张量。

k j i ijk e e e A A =(2.3) m l lm e e B B = (2.4)m l k j i ijklm e e e e e C B A C ==(2.5)式(1.10)中:lm ijk ijklm B A C =(2.6)2.4 张量的缩并若对某张量中任意两个基矢量求点积,则张量将缩并为低二阶的新张量。

ijk i j k ijk ik j iji j j j A A e e e A e A e B e δ====,有iji j A B =。

取不同基矢量点积,缩并结果不同。

2.5 张量的点积两个张量先并乘后缩并的运算称为点积。

如下: k j i ijk e e e A A = (2.7) j l lj e e B B =(2.8)ijk lm i j k l m ijk lj i k l ikl i k l C AB A B e e e e e A B e e e C e e e ====(2.9)其中,ijk lj ikl A B C =(2.10)2.6 指标的转换对于张量k j i ijk e e e A A =,若对该张量的分量中任意两个指标交换次序,得到一个与原张量同阶的新张量。

如下式所示:k j i ijk k j i jik e e e B e e e A =(2.11)指标转换也可以通过交换相应的基矢量位置来得到,如下式所示:k j i ijk k j i jik k i j ijk e e e B e e e A e e e A ==(2.12)2.7 张量的商法则张量T ,如果它满足对于任意一个q 阶张量S 的内积均为一个p 阶张量U ,即在任意坐标系内以下等式U S T =成立,则T 必定是一个p+q 阶的张量。

以上规则称为张量的商法则。

3 二阶张量二阶张量是连续介质力学中最常遇到的一类张量,例如应力张量、应变张量、变形梯度张量和正交张量等。

3.1 二阶张量的矩阵(1) 任何一二阶张量T 总可以按其分量写成矩阵形式:111213212223313233ij T T T T T T T T T T T ⎡⎤⎢⎥⎡⎤==⎣⎦⎢⎥⎢⎥⎣⎦(3.1)二阶张量与矩阵虽然有上述对应关系,但它们并非全能一一对应。

首先,矩阵并非只包括方阵,而二阶张量只能对应方阵;其次,在一般坐标系中,转置张量与转置矩阵、对称(或反对称)张量与对称(或反对称)矩阵不能一一对应;第三,二阶张量的某些运算不完全能用矩阵的运算与之互相对应。

相关文档
最新文档