平行线的判定及性质基本图形
《平行线的性质》平行线的证明PPT课件
C
∵AB∥CD(已知)
∴∠1=∠D(两直线平行,内错角相等)
∵∠B=∠D(已知)
∴∠1=∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
例2:已知,如图,AB∥CD,∠B=∠D,求证:
AD∥BC.
证法三:
A
D
3
如图,连接BD(构造一组内错角)
4
∵AB∥CD(已知)
B 12
C
∴∠1=∠4(两直线平行,内错角相等)
所以∠BDF=∠EDF.
课堂小结
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
1ppt.
如果∠1 ≠ ∠2c,n AB与CD的位置P课P件T 关系会怎样呢/?kejia
存在两条直线AB和GH都与直线 CD平行.这与基本事实“过直线外 一点有且只有一条直线与这条直
n/ 语文
线平行”相矛盾.
课件
这说明∠1 ≠ ∠2的假设不成立,
/kejia n/yu
所以∠1 =∠2.
wen/
总结归纳
5.如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠C= 180 °-∠B=180°-115°=65°
所以梯形的另外两个角分别是80° 、 65°.
第七章 平行线的证明
平行线的性质
学习目标
1.理解并掌握平行线的性质公理和定理.(重点) 2.能熟练运用平行线的性质进行简单的推理证 明.(难点)
平行线的性质与判定
平行线的性质与判定平行线是几何学中的一个重要概念,我们都知道平行线永不相交。
在本文中,我们将介绍平行线的性质以及如何判定两条线是否平行。
同时,我们还会探讨平行线与其他图形之间的关系。
一、平行线的性质平行线的性质是几何学中的基础知识,下面我们将讨论几个与平行线相关的重要性质。
1. 对应角相等性质:当一条直线与两条平行线相交时,所形成的对应角相等。
这个性质在解决几何问题中具有重要意义,可以通过对应角的等量关系简化问题的解决过程。
2. 内错角相等性质:当两条平行线被一条截线所切割时,所产生的内错角相等。
这个性质常用于解决与平行线相关的证明问题。
3. 外错角相等性质:当两条平行线被一条截线所切割时,所产生的外错角相等。
这个性质也常用于证明和解决几何问题。
4. 交替内角相等性质:当两条平行线被一条截线所切割时,所形成的交替内角相等。
这个性质在证明平行线的存在性和解决几何问题中经常使用。
以上是平行线的一些重要性质,它们在几何学中被广泛应用,并且有助于解决各种类型的几何问题。
二、平行线的判定在几何学中,判定两条线是否平行是一种常见问题。
下面我们将介绍一些常用的判定方法。
1. 垂直判定:如果两条直线的斜率的乘积为-1,则它们互为垂直线,即相互垂直。
2. 角度判定:当一条直线与另一条直线所形成的内错角或外错角相等时,这两条直线是平行线。
3. 距离判定:如果两条直线上的任意两个点之间的距离在任意位置都相等,那么这两条直线是平行线。
这些判定方法都是基于几何学中的一些基本原理,通过应用这些原理,我们可以快速准确地判断两条线是否平行。
三、平行线与其他图形的关系平行线与其他图形之间存在着一些特殊的关系,下面我们将介绍一些常见的关系。
1. 平行线与平面角:当两条平行线被一条截线所切割时,所形成的平面角相等。
2. 平行线与四边形:在一个平行四边形中,两对相对的边是平行线,且两对相对的角相等。
3. 平行线与三角形:当一条直线平行于三角形的一边时,它将与另外两条边各自形成相似三角形。
平行线ppt课件
02
平行线判定方法的 误用
提醒学生注意不同判定方法的使 用条件和限制,避免误用或混淆。
03
忽略平行线的存在 性
提醒学生在解题时,不要忽略题 目中可能存在的平行线,否则可 能导致解题错误。
拓展延伸内容推荐
平行线与相似三角形的关系
探讨平行线与相似三角形之间的联系,以及如 何利用平行线的性质解决相似三角形的问题。
交通信号灯
交通信号灯中的红灯、绿灯、黄灯等灯光的排列 也遵循平行线的原则,使得驾驶员和行人能够清 晰地辨认交通信号。
导向标志 道路两侧的导向标志牌上的文字、图案等也采用 平行线排列,方便驾驶员快速获取道路信息。
日常生活用品设计美学体现
家居用品
家居用品中的桌子、椅子、床等家具的设计中经常运用到平行线, 使得家具外观简洁大方,符合现代审美。
图形示例
判定步骤
首先确定两条被截直线和截线,然后 找出同旁内角并测量其角度之和是否 为180度,如果是,则两条直线平行。
在图形中,画出两条被第三条直线所 截的直线,并标出同旁内角。
实际应用场景分析
建筑设计中
在建筑设计中,平行线的概念经常被用来确保建筑物的稳定性和美观性。例如,在设计墙壁、 地板和天花板时,需要确保它们是平行的,以避免出现倾斜或不平整的情况。
在物理学中,平行线的概念被广泛应用于光 学、力学等领域的研究中,如光的反射、折 射等现象都与平行线密切相关。
计算机图形学
工程测量与建设
在计算机图形学中,平行线的绘制和处理是 图形渲染、图像处理等任务中的重要环节之 一。
在工程测量与建设中,平行线的运用可以确 保建筑物的精确度和稳定性,提高工程质量。
05
预备工作
建议学生提前预习相关知识点,回顾平行线的定义、性质及判 定方法,并尝试思考一些与平行线相关的实际问题,为下一讲 的学习做好准备。
数学平行线图片
2. 【问题】请说明如何判定两条直线 是否平行。
2024/1/25
25
思考题及答案
【答案】可以通过以下三种方式判定两条直线是否平行:同位角相等,两直线平行;内错角 相等,两直线平行;同旁内角互补,两直线平行。
3. 【问题】请举出生活中应用平行线性质的实例。
【答案】生活中应用平行线性质的实例有很多,如铁轨的铺设、双杠的摆放、窗户的边框等 。这些实例都利用了平行线间距离相等和同位角、内错角相等的性质。
2024/1/25
另一组对边不平行
与平行的一组对边相对的 另一组对边不平行。
内角和性质
梯形的两个相邻角的内角 和为180度。
9
三角形中平行线性质
平行线与三角形的边相交
当一条平行线与三角形的两边相交时 ,它将三角形分成两个相似三角形。
相似三角形性质
平行线间距离相等
在三角形中,若两条线段平行于同一 条边,则这两条线段之间的距离相等 。
2024/1/25
5
平行线间距离公式
• 平行线间距离公式:两平行线间的距离等于其中一条直线上任 意一点到另一条直线的垂线段的长度。该公式可用于计算两条 平行线之间的距离,其中垂线段的长度可以通过勾股定理等方 法进行求解。
2024/1/25
6
CH024/1/25
7
平行四边形中平行线性质
01
02
03
对边平行
在平行四边形中,对边是 平行的,即两组对边分别 平行。
2024/1/25
对边相等
平行四边形的对边长度相 等,这是平行四边形的一 个基本性质。
内角和性质
平行四边形相邻两角的内 角和为180度。
8
七年级下第五章平行线判定和性质
平行线判定和性质一、重点和难点:重点:平行线的概念、平行公理、平行线的判定和平行线的性质。
难点:①平行线的性质与平行线的判定的区分②掌握推理论证的格式。
二、例题:这部分内容所涉及的题目主要是从已知图形中辨认出对顶角、同位角、内错角或同旁内角。
解答这类题目的前提是熟练地掌握这些角的概念,关键是把握住这些角的基本图形特征,有时还需添加必要的辅助线,用以突出基本图形的特征。
上述类型题目大致可分为两大类。
一类题目是判断两个角相等或互补及与之有关的一些角的运算问题。
其方法是“由线定角”,即运用平行线的性质来推出两个角相等或互补。
另一类题目主要是“由角定线”,也就是根据某些角的相等或互补关系来判断两直线平行,解此类题目必须要掌握好平行线的判定方法。
例1.已知如图,指出下列推理中的错误,并加以改正。
(1)∵∠1和∠2是内错角,∴∠1=∠2,(2)∵AD//BC,∴∠1=∠2(两直线平行,内错角相等)(3)∵∠1=∠2,∴AB//CD(两直线平行,内错角相等)分析:根据“三线八角”的概念,对(1),(2)可从内错角的条件入手;对(3)考虑平行线的判定和性质。
解:(1)因为没有直线CD//AB的条件,不能得出内错角∠1,∠2相等的结论。
(2)因为∠1,∠2不是AD,BC被AC所截得的内错角,所以得不出∠1=∠2的结论,应改为:∵CD//AB,∴∠1=∠2(两直线平行,内错角相等)(3)理由填错了,应改为:∵∠1=∠2,∴CD//AB (内错角相等,两直线平行)例2.如图,∠1=∠2,∠3=∠4,试问EF是否与GH平行?分析:要判断EF与GH是否平行,只要能找到与EF,GH有关的一对角(同位,内错,同旁内角都可以)相等或互补即可。
解:∵∠1=∠2(已知)又∵∠CGE=∠2(对顶角相等)∴∠1=∠CGE(等量代换)又∵∠3=∠4(已知)∴∠3+∠1=∠4+∠CGE(等量加等量,其和相等)即∠MEF=∠EGH,∴EF//GH(同位角相等,两直线平行)。
平行线的性质及尺规作图(基础)知识讲解
平行线的性质及尺规作图(基础)知识讲解【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、尺规作图1. 定义:尺规作图是指用没有刻度的直尺和圆规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.八种基本作图(有些今后学到):(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.(6)已知一角、一边做等腰三角形.(7)已知两角、一边做三角形.(8)已知一角、两边做三角形.【典型例题】类型一、平行线的性质1.已知:如图,AB∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE.【思路点拨】过E作EF∥AB,再由条件AB∥DC,可得EF∥AB∥CD,根据平行线的性质可得∠1=∠5,∠4=∠6,然后可得∠5+∠6=∠BEF+∠FEC=90°,进而得到结论.【答案与解析】证明:过E作EF∥AB,∵AB∥DC,∴EF∥AB∥CD,∴∠1=∠5,∠4=∠6,∵∠1=∠2,∠3=∠4,∴∠5+∠6=∠BEF+∠FEC=90°,∴AE⊥DE.【总结升华】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.举一反三:【变式】如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .【答案】140°.【解析】如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.类型二、两平行线间的距离2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( ) .A.S1>S2 B.S1=S2 C.S1<S2 D.不确定【答案】B【解析】因为l1∥l2,所以C、D两点到l2的距离相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.【总结升华】三角形等面积问题常与平行线间距离处处相等相结合.举一反三:【变式】如图,在两个一大一小的正方形拼成的图形中,小正方形的面积是10平方厘米,阴影部分的面积为平方厘米.【答案】5 (提示:连接BF,则BF∥AC)类型三、尺规作图3.已知:∠AOB.利用尺规作:∠A′O′B′,使∠A′O′B′=2∠AOB.【思路点拨】先作一个角等于∠AOB,在这个角的外部再作一个角等于∠AOB,那么图中最大的角就是所求的角.【答案与解析】作法一:如图(1)所示,(1)以点O圆心,任意长为半径画弧,交OA于点A′,交OB于点C;(2)以点C为圆心,以CA′的长为半径画弧,•交前面的弧于点B′;(3)过点B′作射线O B′,则∠A′O′B′就是所求作的角.作法二:如图(2)所示,(1)画射线O′A′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O′为圆心,以OC的长为半径画弧,交O′A•′于点E;(4)以点E为圆心,以CD的长为半径画弧,交前面的弧于点F,再以点F为圆心,•以CD 的长为半径画弧,交前面的弧于点B′;(5)画射线O′B′,则∠A′O′B′就是所求作的角.【总结升华】本题考查作一个倍数角等于已知角,需注意作第二个角的时候应在第一个角的外部.•作法一在已知角的基础上作图较为简便一些.类型四、平行的性质与判定综合应用4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180° B.270° C.360° D.540°【答案】C【解析】过点C作CD∥AB,∵ CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵ EF∥AB∴ EF∥CD.(平行公理的推论)∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【总结升华】这是平行线性质与平行公理的推论的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+∠CEF=360°.举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行。
平行线的判定(基础)知识讲解
平行线的判定(基础)知识讲解【要点梳理】要点一、平行线的画法及平行公理1.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.2.平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行公理及推论1.下列说法中正确的有 ( )①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥d,所以a∥d;④经过直线外一点有且只有一条直线与已知直线平行.A.1个 B 2个 C.3个 D.4个【答案】 A【解析】一条直线的平行线有无数条,故①错;②中的点在直线外还是在直线上位置不明确,所以②错,③中b与c的位置关系不明确,所以③也是错误的;根据平行公理可知④正确,故选A.【总结升华】本题主要考察的是“平行公理及推论”的内容,要正确理解必须要抓住关键字词及其重要特征,在理解的基础上记忆,在比较中理解.举一反三:【变式】直线a∥b,b∥c,则直线a与c的位置关系是 .【答案】平行类型二、平行线的判定2.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.21GF E D C BA【思路点拨】首先由BE ⊥FD ,得∠1和∠D 互余,再由已知,∠C=∠1,∠2和∠D 互余,所以得∠C=∠2,从而证得AB ∥CD .【答案与解析】证明:∵BE ⊥FD ,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D 互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB ∥CD .【总结升华】此题考查的知识点是平行线的判定,关键是由BE ⊥FD 及三角形内角和定理得出∠1和∠D 互余.举一反三:【变式1】如图,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE【答案】D.提示:A 、两个角不是同位角、也不是内错角,故选项错误;B 、两个角不是同位角、也不是内错角,故选项错误;C 、不是EC 和AB 形成的同位角、也不是内错角,故选项错误;D 、正确.【变式2】已知,如图,BE平分∠ABC,CF平分∠BCD,∠1=∠2,求证:AB//CD.【答案】∵∠1=∠2∴ 2∠1=2∠2 ,即∠ABC=∠BCD∴ AB//CD (内错角相等,两直线平行)3.如图所示,由(1)∠1=∠3,(2)∠BAD=∠DCB,可以判定哪两条直线平行.【思路点拨】试着将复杂的图形分解成“基本图形”.【答案与解析】解:(1)由∠1=∠3,可判定AD∥BC(内错角相等,两直线平行);(2)由∠BAD=∠DCB,∠1=∠3得:∠2=∠BAD-∠1=∠DCB-∠3=∠4(等式性质),即∠2=∠4可以判定AB∥CD(内错角相等,两直线平行).综上,由(1)(2)可判定:AD∥BC,AB∥CD.【总结升华】本题探索结论的过程采用了“由因索果”的方法.即在条件下探索由这些条件可推导出哪些结论,再由这些结论推导出新的结论,直到得出结果.4.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?【答案与解析】解:这两条直线平行.理由如下:如图:∵ b⊥a, c⊥a∴∠1=∠2=90°∴ b∥c (同位角相等,两直线平行) .【总结升华】本题的结论可以作为两直线平行的判定方法.举一反三:【变式】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图:∵ EF⊥EG,GM⊥EG (已知),∴∠FEQ=∠MGE=90°(垂直的定义).又∵∠1=∠2(已知),∴∠FEQ -∠1=∠MGE -∠2 (等式性质),即∠3=∠4.∴ AB∥CD (同位角相等,两直线平行).。
平行线的性质与判定
02 平行线判定方法
同位角相等法
定义
两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行。
图形语言
∵∠1=∠5(已知),∴a∥b(同位角相等,两直线 平行)。
符号语言
∵∠1=∠5,∴a∥b。
内错角相等法
定义
两条直线被第三条直线所截,如果内错角相等,那么这两条直线 平行。
图形语言
∵∠2=∠6(已知),∴a∥b(内错角相等,两直线平行)。
在罗巴切夫斯基几何中,通过直线外一点,可以作无数条不与该直线相交的直线,即存在多条“平行线”。
罗巴切夫斯基几何中的平行线性质
在罗氏几何中,平行线之间的距离可以无限缩小,三角形的内角和小于180度等。
黎曼几何中平行线理论
黎曼几何的基本假设
黎曼几何认为空间中不存在绝对的平行线,所有直线最终都会相交。这种观念与我们的日常经验相符 ,比如在地球表面,经线最终会在两极相交。
学生可以提出自己在学习过程 中遇到的问题和疑惑,并寻求 老师和同学的帮助和建议。
教师点评及建议
教师可以对学生的自我评价报告进行点评 ,肯定学生的努力和进步,指出需要改进 的地方,并提供具体的建议和指导。
教师可以鼓励学生积极参与课堂互动和 讨论,激发学生的学习兴趣和主动性, 培养学生的自主学习能力和合作精神。
相交线定义
在同一平面内,两条有且仅有一个交点的直线称为相交线。
平行线与相交线性质联系与区别
联系
平行线和相交线都是描述两条直线在 同一平面内的位置关系。
区别
平行线永不相交,没有交点;相交线 有一个交点。
典型例题解析
解析
此说法不正确。两条直线不相交并不意味着它们一定平行,因为它们可能不在同一平面内 。只有在同一平面内且不相交的两条直线才能称为平行线。
中考数学知识整理平行线与平行四边形的性质
中考数学知识整理平行线与平行四边形的性质中考数学知识整理:平行线与平行四边形的性质平行线和平行四边形是中考数学中一个重要的概念,它们具有一些独特的性质和关系。
掌握这些知识点,可以帮助我们更好地理解几何图形的性质和运用它们解题。
本文将对平行线和平行四边形的性质进行整理和总结。
一、平行线的性质在平面几何中,如果两条直线在同一个平面内,且不相交,那么它们被称为平行线。
平行线的性质有以下几个重要点:1. 平行线的判定:平行线有多种判定方法,常见的有以下两种:(1) 两条直线的斜率相等且不重合,即斜率相等的两条直线是平行线。
(2) 同一条横线的两条平行线上,二者任意一线与另一条的全部交点,都与另一条外一侧的交点全等。
即同位角相等。
2. 平行线之间的关系:(1) 平行线上的任意一组对应角都相等。
(2) 平行线上的任意一组同位角都相等。
(3) 平行线上的内错角(相交线的内错角)互补,即和为180度。
(4) 平行线上的外错角(相交线的外错角)相等。
3. 平行线和其他几何图形之间的关系:(1) 平行线和平行线之间相交的直线叫做平行线的转角线。
(2) 平行线和平行线之间的转角线与平行线上的对应角、内错角、外错角之间均有特定的关系。
二、平行四边形的性质平行四边形是指有四边且对应边都平行的四边形,平行四边形的性质如下:1. 平行四边形的基本性质:(1) 对边平行:平行四边形的对边是两两平行的。
(2) 对角线的性质:平行四边形的对角线互相平分,即两条对角线相交于各自的中点。
2. 平行四边形的特殊性质:(1) 相邻边的对角线分割成的小三角形全等。
(2) 对角线的长度关系:平行四边形的两条对角线的长度相等。
(3) 内角和:平行四边形的内角之和为360度,即四个内角之和等于360度。
(4) 体对角线的性质:平行六面体的对棱都是平行四边形。
三、应用举例在中考数学中,平行线和平行四边形的性质经常与解题相结合。
以下是一些常见的平行四边形的应用举例:1. 根据平行四边形的性质证明图形的性质。
平行线的判定与性质讲习
E 1
┏ ┏
G 2
D
B
F
C
分析问题的方法: 由已知看可知,扩大已知面。 由未知想需知,明确解题方向 识图的方法: 在定理图形中提炼基本图形, 在解题时把复杂图形分解为基本图形
如图,直线AD与AB,CD相交于A,D两 点,EC,BF与AB,CD相交于点E,C,B, F,如果∠ 1= ∠ 2, ∠ B= ∠ C,求证: ∠ A= ∠ D
∵AD∥BC( ∴∠1=∠ABC( ∠5=∠C( 又∵∠ABC=∠C ( ), ∴∠1=∠5( 即AD平分∠EAC。 ), ), )。
4
E
A
3
1
D
5
B 2 C
),
已知:CD∥EF, ∠1= ∠2,求证: ∠AGD= ∠ACB。 A
证明:∵CD ∥EF ( ∴ ∠2= ∠3 ( ∵ ∠1= ∠2 ( C D F 1 G ) )
A
F 形模式
引入 建模
Z 形模式
应用
小结
C 形模式
next
感悟模式
A ∵DE∥BC D B E C
∵ ∠B=∠ADE ∵ ∠C=∠AED
∴∠B=∠ADE ∴∠C=∠AED ∴∠B+∠BDE=180°
∴∠C+∠CED=180°
∴DE∥BC
∵ ∠B+∠BDE=180° ∵ ∠C+∠CED=180°
名称:
. ).
6.如图6,直线l1∥l2,AB⊥l1于O,BC与l2交于E,∠1 = 43°,则∠2 = 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB互余的角有 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有
. . 个.
1.如图1,若角A=角3,则 ∥ ; 若角2=角E,则 若角 +角 = 180°,则 ∥ .
八年级数学平行线的性质
02
平行线与相交线关系
平行线与相交线判定定理
内错角相等,两直线平 行
同旁内角互补,两直线 平行
同一平面内,垂直于同 一条直线的两条直线互 相平行
同位角相等,两直线平 行
平行线与相交角关系
02
01
03
两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补
公式、平行线间的角关系等。这些知识可以帮助我们更深入地理解平行
线的性质和应用。
THANK YOU
感谢聆听
通过同位角、内错角或同旁内角的关系,可以判定两条直 线是否平行。
平行线在几何图形中的应用
平行线在三角形、四边形等几何图形中有广泛应用,如平 行四边形的对边平行、三角形的中位线与底边平行等。
学生自我评价报告
知识掌握情况
通过本次课程的学习,我掌握 了平行线的定义、性质以及判 定方法,能够运用所学知识解 决相关问题。
坐标系中平行线间距离计算
距离公式
两条平行线 $Ax + By + C1 = 0$ 和 $Ax + By + C2 = 0$ 之间 的距离 $d$ 可以用公式 $d = frac{|C1 - C2|}{sqrt{A^2 + B^2}}$ 来计算。
特殊情况
当平行线垂直于x轴时,它们之间的距离等于纵截距之差的绝对值 。
坐标系中平行线与方程关系
平行于x轴
当一条直线平行于x轴时,它的方程可以表示为 $y = k$,其中 $k$ 是常数。
平行于y轴
当一条直线平行于y轴时,它的方程可以表示为 $x = k$,其中 $k$ 是常数。
平行线的判定与性质
平行线的判定与性质一、平行线的判定与性质的关系平行线的识别与性质,有不少同学由于刚刚接触,往往对其识别与性质容易混淆。
下面,咱们就从它们的意义和作用上进行辨析。
1、从意义上看平行线的识别就是要“判定”两条直线平行或不平行,也就是说从已知角相等(或角互补)的关系出发,推出两直线平行这一结论;而平行线的性质是在两直线平行的已知条件下得出角相等或互补的结论。
2、从作用上看平行线的识别是判断两条直线平行的依据,而平行线的性质是作为判断“两个同位角相等、内错角相等、同旁内角互补”等的依据。
二者所用文字完全相同,差别就是在于前后两句话的顺序的颠倒,而这个颠倒正是它们之间的本质区别。
所以,我们在学习中要注意两者的因果关系。
二、解决平行线问题的方法在解决有关平行线的问题中,我们可从下面几个方面入手.1.寻找基本图形在一个图形中有两组以上的平行线,先根据每一组平行线探索其中的结论,然后再找出所得结论之间存在的关系.2.构造基本图形当已知的图形中没有同位角、内错角或同旁内角时,可以通过适当的辅助线构造基本图形,利用平行线的特征解题.3. 综合运用平行线的特征与平行的条件图3平行线的特征与平行的条件的综合运用,是解决与平行线有关的问题的常用方法.先由“形”得到“数”,即应用特征得到角相等(或互补),再利用角之间的关系进行计算,得到新的关系.然后再由“数”到“形”得到一组新的平行.三、借助辅助线解决问题1.在解题过程中,有些题目由已知条件不能直接推出结论,需要添加适当的线,帮助解决问题,像这样的线叫辅助线。
添加的辅助线一般都用虚线表示,并且要说明作法。
添加辅助线是解题的一种手段,一般只有当题目中因已知不易或不能直接推出结论时,才要添加辅助线. 本章的辅助线通常是作平行线,目的是构造两条直线被第三条直线所截的基本图形,以便利用平行线的判定和性质.2.学习了平行线的特征,我们可以根据特征来解决一些与角度的计算以及探索角度关系的问题,但有一类问题不能根据已知条件直接求出角的度数或找到角的关系.需要先适当地引平行线,然后综合借助平行线的特征求解。
解析几何中的平行线与垂直线
解析几何中的平行线与垂直线在解析几何中,平行线和垂直线是两个基本的概念。
它们在几何图形的研究和计算中起着重要的作用。
本文将对平行线和垂直线进行解析,并探讨它们的性质和应用。
一、平行线的性质和特点平行线是指在同一个平面内,永远不相交的两条直线。
平行线有以下几个重要的性质和特点:1. 平行线的定义:如果两条直线在同一个平面内,且它们的任意两个点的连线都与另一条直线垂直,那么这两条直线就是平行线。
2. 平行线的判定定理:如果两条直线的斜率相等,那么它们是平行线。
这是平行线的一个重要判定方法。
3. 平行线的性质:平行线具有传递性,即如果直线a与直线b平行,直线b与直线c平行,那么直线a与直线c也平行。
4. 平行线的符号表示:通常用符号"||"表示平行线。
例如,直线l || 直线m表示直线l与直线m平行。
5. 平行线的应用:平行线的概念在几何图形的证明和计算中经常被使用。
例如,在计算平行四边形的面积时,可以利用平行线的性质进行简化。
二、垂直线的性质和特点垂直线是指与另一条直线相交时,形成的两条角度相等的直线。
垂直线也有一些重要的性质和特点:1. 垂直线的定义:如果两条直线相交时,形成的两个相邻角度都是90度,那么这两条直线就是垂直线。
2. 垂直线的判定定理:如果两条直线的斜率的乘积为-1,那么它们是垂直线。
这是垂直线的一个常用判定方法。
3. 垂直线的性质:垂直线具有对称性,即如果直线a与直线b垂直,那么直线b与直线a也垂直。
4. 垂直线的符号表示:通常用符号"⊥"表示垂直线。
例如,直线l ⊥直线m表示直线l与直线m垂直。
5. 垂直线的应用:垂直线的概念在几何图形的证明和计算中也经常被使用。
例如,在计算直角三角形的边长时,可以利用垂直线的性质进行求解。
三、平行线与垂直线的关系平行线和垂直线是两种特殊的关系,它们之间存在一定的对应关系:1. 平行线与垂直线的关系:如果两条直线既是平行线又是垂直线,那么这两条直线必须是同一条直线。
平行线的性质及尺规作图(基础)知识讲解
平行线的性质及尺规作图(基础)知识讲解【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念.3.了解尺规作图的基本知识及步骤;4. 通过用尺规作图活动,进一步丰富对“平行线及角”的认识.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、尺规作图1. 定义:尺规作图是指用没有刻度的直尺和圆规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.八种基本作图(有些今后学到):(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.(6)已知一角、一边做等腰三角形.(7)已知两角、一边做三角形.(8)已知一角、两边做三角形.【典型例题】类型一、平行线的性质1.(2015秋•昌邑市期末)已知:如图,AB∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE.【思路点拨】过E作EF∥AB,再由条件AB∥DC,可得EF∥AB∥CD,根据平行线的性质可得∠1=∠5,∠4=∠6,然后可得∠5+∠6=∠BEF+∠FEC=90°,进而得到结论.【答案与解析】证明:过E作EF∥AB,∵AB∥DC,∴EF∥AB∥CD,∴∠1=∠5,∠4=∠6,∵∠1=∠2,∠3=∠4,∴∠5+∠6=∠BEF+∠FEC=90°,∴AE⊥DE.【总结升华】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.举一反三:【变式】(2015•泰州)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.【答案】140°.【解析】如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.类型二、两平行线间的距离2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则() .A.S1>S2B.S1=S2C.S1<S2D.不确定【答案】B【解析】因为l1∥l2,所以C、D两点到l2的距离相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.【总结升华】三角形等面积问题常与平行线间距离处处相等相结合.举一反三:【变式】如图,在两个一大一小的正方形拼成的图形中,小正方形的面积是10平方厘米,阴影部分的面积为平方厘米.【答案】5 (提示:连接BF,则BF∥AC)类型三、尺规作图3.已知:∠AOB.利用尺规作:∠A′O′B′,使∠A′O′B′=2∠AOB.【思路点拨】先作一个角等于∠AOB,在这个角的外部再作一个角等于∠AOB,那么图中最大的角就是所求的角.【答案与解析】作法一:如图(1)所示,(1)以点O圆心,任意长为半径画弧,交OA于点A′,交OB于点C;(2)以点C为圆心,以CA′的长为半径画弧,•交前面的弧于点B′;(3)过点B′作射线O B′,则∠A′O′B′就是所求作的角.作法二:如图(2)所示,(1)画射线O′A′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O′为圆心,以OC的长为半径画弧,交O′A•′于点E;(4)以点E为圆心,以CD的长为半径画弧,交前面的弧于点F,再以点F为圆心,•以CD 的长为半径画弧,交前面的弧于点B′;(5)画射线O′B′,则∠A′O′B′就是所求作的角.【总结升华】本题考查作一个倍数角等于已知角,需注意作第二个角的时候应在第一个角的外部.•作法一在已知角的基础上作图较为简便一些.类型四、平行的性质与判定综合应用4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°【答案】C【解析】过点C作CD∥AB,∵CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵EF∥AB∴EF∥CD.(平行公理的推论)∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【总结升华】这是平行线性质与平行公理的推论的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+∠CEF=360°.举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行。
平行线的判定和性质
直线平行条件知识精点通过本节学习,要了解两条直线被第三条直线所截形成同位角、内错角、同旁内角定义,掌握平行线识别方法,理解由角关系得到两条直线平行关系.本节主要概念:1.同位角、内错角、同旁内角概念——两条直线被第三条直线所截,构成八个角,俗称“三线八角”.其中分别在两条直线同一侧,并且在第三条直线同旁一对角叫同位角;在两条直线之间.但分别在第三条直线两旁一对角叫内错角.在两条直线之间,并且在第三条直线同旁一对角,叫同旁内角.2.平行线判定方法:方法1:同位角相等,两直线平行; 方法2:内错角相等,两直线平行. 方法3:同旁内角互补,两直线平行.重、难、疑点:重点:同位角、内错角、同旁内角定义及平行线判定方法. 难点:1.同位角、内错角、同旁内角正确识别; 2.平行线判定方法运用.疑点:1.在不同图形中,识别同位角、内错角、同旁内角容易出现混淆; 2.平行线判定及性质在运用过程中易出现错误.典例精讲例1 根据右图,回答下列问题:(1)由∠C=∠1,可以判断哪两条直线平行?说明理由? (2)由∠1=∠2,可以判断哪两条直线平行?说明理由?(3)由∠D+∠C=180°,可以判断哪两条直线平行?说明理由?举一反三 (贵阳市中考题)如图,已知同一平面内直线1l 、2l 、3l ,如果3221,l l l l ⊥⊥,那么1l 及3l 位置关系是 ( ) A .平行 B .相交 C .垂直 D .以上全不对例2 如图,写出所有能够推得直线AB ∥CD 条件.举一反三 如图,直线c 及a 、b 相交,形成∠1、∠2、…、∠8,请你填上适合一个条件:____________,使得a ∥b .例3 (黄冈市中考题)如图,已知∠1=∠2,问:再添加什么条件可使AB ∥CD ?举一反三 如图,已知∠C=100°,若增加一个条件,使得AB ∥CD ,试写出所有符合要求条件.例4 如图,已知点O在直线AB上,OF平分∠BOC,OE平分∠AOC,CF⊥OF于点F,求证:FC∥OE.举一反三如图,已知CD⊥DA,DA⊥AB,∠1=∠2,求证:DF∥AE.例5 一个裁缝师傅随意地剪了一块六边形布料,如图所示,经测量他发现∠ABC、∠BCD、∠CDE三角之和等于360°,他然后就说布料两个边AB和ED是平行.你知道为什么吗?举一反三如图,已知∠B+∠E+∠D=360°,求证:AB∥CD.知识网络学法点津1.识别同位角、内错角、同旁内角是本节重点之一,掌握这项技能,首先要牢记“三线八角”基本特征,抓住同位角、内错角、同旁内角特征,找出哪条直线是截线,哪两条直线是被截直线,再得出正确判断.同时,要善于用比较法来理解三种角特征,培养自己在较复杂图形中识别三种角能力.2.在学习平行线三种判定方法时,要结合实际条件,观察图形,通过同学间合作、交流,将方法1、2、3融合贯通,培养自己会根据实际情况灵活选用判定方法能力.强化练习1.具有下列关系两角中,一定有公共顶点是().A.互为余角B.同位角C.邻补角D.内错角2.已知a,b,c是同一平面内三条直线,下列说法不正确是().A.若a⊥b,b⊥c,则a⊥cB.若a⊥b,b∥c,则a⊥cC.若a∥b,b∥c,则a∥cD.若a⊥b,b⊥c,则a∥c3.如图5-2-11,由A测B方向是().A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°4.一辆汽车在公路上行驶,两次拐弯后,仍按原来方向行驶,那么两次拐弯角度可能是().A.先右转50°,再右转40°B.先左转50°,再左转40°C.先右转50°,再左转130°D.先右转50°,再左转50°5.如图5-2-12,直线l截直线a,b,得到8个角,其中(1)对顶角有__________对,它们是___________;(2)邻补角有______________对,它们是_____________;(3)同位角有______________对,它们是_____________;(4)内错角有______________对,它们是______________;(5)同旁内角有______________对,它们是_____________.6.在同一平面内,及已知直线a平行直线有___________条,而经过直线a外一点P,及已知直线a平行直线有且只有_____________条.7.如图5-2-13所示,长方体ABCD—A′B′C′D′中及棱AB平行棱有____________条,它们是___________.8.如图5-2-14,若∠1=∠2,则_________∥____________;若∠3=∠4,则________∥_________;若∠5=∠6,则__________∥____________;若∠7=∠8,则___________∥_____________;若∠BAD+∠ABC=180°,则___________∥__________;若∠ABC+∠BCD=180°,则_________∥___________.9.如图5-2-15,因为∠1=∠3,∠2=∠3(已知),所以∠1=∠2(),所以AB∥__________().10.如图5-2-16,(1)如果∠B=∠1,那么根据______________,可得AD∥BC;(2)如果∠D=∠1,那么根据____________,可得AB∥CD.11.图5-2-17所示6个角中,有多少对同位角?写出每对这样角.有多少对内错角?写出每对这样角.有多少对同旁内角?写出每对这样角.12.如图5-2-18,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°.AC及BD平行吗?AE及BF平行吗?为什么?13.读下列语句,并在图5-2-19上画出图形. (1)过△ABC 顶点C ,画MN ∥AB ;(2)过△ABC 边AB 中点D ,画平行于AC 直线,交BC 于点E .14.如图5-2-20,(1)要判定AB ∥CD ,只需知道什么条件? (2)要判定AD ∥BC ,只需知道什么条件? (3)要判定AE ∥CF ,只需知道什么条件?15.如图5-2-21,已知∠1=∠2,∠3=∠4,说明AB ∥EF .16.图5-2-22所示为一条街道两个拐角∠ABC 和∠BCD ,若已知∠ABC=150°,要使街道AB 及CD 平行,∠BCD 应为多少度?为什么?17.如图5-2-23,已知∠BED=∠B+∠D .试问:AB 及CD 平行吗?若平行,请说明理由.探索直线平行性质一、学习目标1.掌握平行线三个性质,并能解决一些问题. 2.理解平行线判定及性质区别及应用二、学习重点会用“两直线平行,同位角相等”、“ 两直线平行,内错角相等”和“两直线平行,同旁内角互补”来解决问题.三、学习难点探索平行线性质和平行线性质运用四、学习过程交流合作、探索发现合作交流一:如图,猜一猜∠1和∠2相等吗?为什么?图中还有其它同位角吗?它们大小有什么关系?是不是任意一条直线去截平行线a 、b 所得同位角都相等呢? [结论] 两条平行线被第三条直线所截,___________________. 简单说成:_____________________.11 3 2abc 1234d符号语言:_________________________. 合作交流二:如图:已知a//b,那么∠2及∠ 3相等吗?为什么?[结论]两条平行线被第三条直线所截,____________________. 简单说成:________________________. 符号语言:_______________________________. 合作交流三:如图,已知a//b , 那么 ∠2及∠4有什么关系呢?[结论]两条平行线被第三条直线所截,______________________. 简单说成:_________________________________. 符号语言:______________________________. 五、例题讲解例1.如图1,已知直线a ∥b,∠1 = 500,求∠2度数. 变式1.已知条件不变,求∠3,∠4度数?变式2.如图2,已知∠3 =∠4, ∠1=47°, 求∠2度数?例2如图3,AD ∥BC ,∠A =∠C.试说明AB ∥CD.例3.如图4,在四边形ABCD 中,已知AB ∥CD ,∠B = 600。
平行线的性质和判定
平行线的性质与判定平行的传递性如果两条直线都与第三条直线平行,那么这两条直线互相平行.平行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等.那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角. 常见的几种两条直线平行的结论:(1)两条平行线被第三条直线所截,一组同位角的角平分线平行;(2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行.尺规作图只用没有刻度的直尺和圆规的作图的方法称为尺规作图.用尺规可以作一条线段等于已知线段,也可以作一个角等于已知角.利用这两种两种基本作图可以作出两条线段的和或差,也可以作出两个角的和或差.考点例析:题型一, 平行线的性质与判定例2(盐城市)已知:如图1,l 1∥l 2,∠1=50°,则∠2的度数是( )A.135°B.130°C.50°D.40°分析 要求∠2的度数,由l 1∥l 2可知∠1+∠2=180°,于是由∠1=50°,即可求解. 解 因为l 1∥l 2,所以∠1+∠2=180°,又因为∠1=50°,所以∠2=180°-∠1=180°-50°=130°.故应选B .说明 本题是运用两条直线平行,同旁内角互补求解.例3(重庆市)如图2,已知直线l 1∥l 2,∠1=40°,那么∠2= 度.分析 如图2,要求∠2的大小,只要能求出∠3,此时由直线l 1∥l 2,得∠3=∠1即可求解. 解 因为l 1∥l 2,∠1=40°,所以∠1=∠3=40°.又因为∠2=∠3,所以∠2=40°.故应填上40°.说明 本题在求解过程中运用了两条直线平行,同位角相等求解.例4(烟台市)如图3,已知AB ∥CD ,∠1=30°,∠2=90°,则∠3等于( )A.60°B.50°C.40°D.30°分析 要求∠3的大小,为了能充分运用已知条件,可以过∠2的顶点作EF ∥AB ,由有∠1=∠AEF ,∠3=∠CEF ,再由∠1=30°,∠2=90°求解.解 如图3,过∠2的顶点作EF ∥AB .所以∠1=∠AEF ,图2 图 1 E又因为AB ∥CD ,所以EF ∥CD ,所以∠3=∠CEF ,而∠1=30°,∠2=90°,所以∠3=90°-30°=60°.故应选A .说明 本题在求解时连续两次运用了两条直线平行,内错角相等求解.例5(南通市)如图4,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG =72°,则∠EGF 等于( )A.36°B.54°C.72°D.108°分析 要求∠EGF 的大小,由于AB ∥CD ,则有∠BEF +∠EFG =180°,∠EGF =∠BEG ,而EG 平分∠BEF ,∠EFG =72°,所以可以求得∠EGF =54°.解 因为AB ∥CD ,所以∠BEF +∠EFG =180°,∠EGF =∠BEG ,又因为EG 平分∠BEF ,∠EFG =72°,所以∠BEG =∠FEG =54°.故应选B .说明 求解有关平行线中的角度问题,只要能熟练掌握平行线的有关知识,灵活运用对顶角、角平分线等知识就能简洁获解.题型三 尺规作图例6(杭州市)已知角α和线段c 如图5所示,求作等腰三角形ABC ,使其底角∠B =α,腰长AB =c ,要求仅用直尺和圆规作图,写出作法,并保留作图痕迹.分析 要作等腰三角形ABC ,使其底角∠B =α,腰长AB =c ,可以先作出底角∠B =α,再在底角的一边截取BA =c ,然后以点A 为圆心,线段c 为半径作弧交BP 于点C ,即得.作法(1)作射线BP ,再作∠PBQ =∠α;(2)在射线BQ 上截取BA =c ;(3)以点A 为圆心,线段c 为半径作弧交BP 于点C ;(4)连接AC .则△ABC 为所求.如图6.例7(长沙市)如图7,已知∠AOB 和射线O ′B ′,用尺规作图法作∠A ′O ′B ′=∠AOB (要求保留作图痕迹).分析 只要再过点O ′作一条射线O ′A ′,使得∠A ′O ′B ′=∠AOB 即可.作法(1)以O 为圆心,任意长为半径,画弧,交OA 、OB 于点C 、D ;(2)以O ′为圆心,同样长为半径画弧,交O ′B ′于点D ′;A AO B ′ 图7 D C 图5 c α A图6 c α c B C P(3)以D′为圆心,CD长为半径画弧与前弧交于点C′;(4)过点O′C′作一条射线O′A′.如图7中的∠A′O′B′即为所求作.说明在实际答题时,根据题目的要求只要保留作图的痕迹即可了.相交线与平行线测试题一、选择题(本大题共12小题,每小题3分,共36分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)1.下列说法中,正确的是()A.一条射线把一个角分成两个角,这条射线叫做这个角的平分线;B.P是直线L外一点,A、B、C分别是L上的三点,已知PA=1,PB=2,PC=3,则点P•到L的距离一定是1;C.相等的角是对顶角; D.钝角的补角一定是锐角.2.如图1,直线AB、CD相交于点O,过点O作射线OE,则图中的邻补角一共有()A.3对 B.4对 C.5对 D.6对(1) (2) (3)3.若∠1与∠2的关系为内错角,∠1=40°,则∠2等于()A.40° B.140° C.40°或140° D.不确定4.如图,哪一个选项的右边图形可由左边图形平移得到()5.a,b,c为平面内不同的三条直线,若要a∥b,条件不符合的是()A.a∥b,b∥c; B.a⊥b,b⊥c;C.a⊥c,b∥c; D.c截a,b所得的内错角的邻补角相等6.如图2,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;(4)∠4=∠7,其中能判定a∥b的条件的序号是()A.(1)、(2) B.(1)、(3) C.(1)、(4) D.(3)、(4)7.如图3,若AB∥CD,则图中相等的内错角是()A.∠1与∠5,∠2与∠6; B.∠3与∠7,∠4与∠8;C.∠2与∠6,∠3与∠7; D.∠1与∠5,∠4与∠88.如图4,AB∥CD,直线EF分别交AB、CD于点E、F,ED平分∠BEF.若∠1=72°,•则∠2的度数为()A.36° B.54° C.45° D.68°(4) (5) (6)9.已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,•则符合条件的直线L的条数为()A.1 B.2 C.3 D.410.如图5,四边形ABCD中,∠B=65°,∠C=115°,∠D=100°,则∠A的度数为(• )A.65° B.80° C.100° D.115°11.如图6,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有()A.1个 B.2个 C.3个 D.4个12.若∠A和∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠B的度数为()A.30° B.70° C.30°或70° D.100°二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)13.如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB∥DC).•如果∠C=60°,那么∠B的度数是________.14.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将下列推理过程补充完整:(1)∵∠1=∠ABC(已知),∴AD∥______(2)∵∠3=∠5(已知),∴AB∥______,(_______________________________)(3)∵∠ABC+∠BCD=180°(已知),∴_______∥________,(________________________________)16.已知直线AB、CD相交于点O,∠AOC-∠BOC=50°,则∠AOC=_____度,•∠BOC=___度.17.如图7,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE 为_________.(7) (8) (9)18.如图8,已知∠1=∠2,∠D=78°,则∠BCD=______度.19.如图9,直线L 1∥L 2,AB ⊥L 1,垂足为O ,BC 与L 2相交于点E ,若∠1=43°,•则∠2=_______度.20.如图,∠ABD=•∠CBD ,•DF•∥AB ,•DE•∥BC ,•则∠1•与∠2•的大小关系是________.三、解答题(本大题共6小题,共40分,解答应写出文字说明,•证明过程或演算步骤)22.(7分)如图,AB ∥A ′B ′,BC ∥B ′C ′,BC 交A ′B ′于点D ,∠B 与∠B•′有什么关系?为什么?23.(6分)如图,已知AB ∥CD ,试再添上一个条件,使∠1=∠2成立(•要求给出两个答案).24.(6分)如图,AB ∥CD ,∠1:∠2:∠3=1:2:3,说明BA 平分∠EBF 的道理.25.(7分)如图,CD ⊥AB 于D ,点F 是BC 上任意一点,FE ⊥AB 于E ,且∠1=∠2,•∠3=80°.求∠BCA 的度数.26.(8分)如图,EF⊥GF于F.∠AEF=150°,∠DGF=60°,试判断AB和CD的位置关系,并说明理由.。
初步认识平行线的性质和判定方法
初步认识平行线的性质和判定方法平行线是初中数学中一个非常重要的概念,它在几何学中占据着重要的地位。
初步认识平行线的性质和判定方法,能够帮助我们更好地理解和运用这一概念。
本文将从平行线的定义、性质以及判定方法三个方面进行论述。
一、平行线的定义在几何学中,我们称两条直线为平行线,意味着它们在同一平面上,并且永远不会相交。
这是平行线最基本的定义。
需要注意的是,两条平行线之间的距离始终相等,在图形排列中有很重要的应用。
二、平行线的性质1. 平行线具有等角折射性质:当两条平行线被一条横线(称为割线)切割时,所产生的对应角相等。
这是平行线最重要的性质之一,也是判定平行线的基础。
2. 平行线具有交错性质:当一条直线与两条平行线相交时,所产生的内错角互为补角,外错角互为补角。
这一性质在证明平行线相关定理时经常使用。
3. 平行线具有等比例性质:当两条平行线被一条斜线切割时,所产生的截线与平行线之间的长度比例保持不变。
这个性质在割线定理中有广泛的应用。
三、平行线的判定方法根据平行线的性质,我们可以利用不同的条件来判定两条直线是否平行。
1. 定理一:同位角相等法则同位角是指两条平行线被一条割线切割所形成的对应角。
如果两个对应角相等,那么这两条直线就是平行线。
这个方法在证明平行线定理时经常使用。
2. 定理二:内错角补角法则当两条平行线被一条割线切割时,所形成的内错角互为补角。
如果两个内错角互为补角,那么这两条直线是平行线。
3. 定理三:等角斜线法则当两条平行线被一条斜线切割时,所产生的截线与平行线之间的长度比例相等。
根据这一比例关系,我们可以判定两条直线是否平行。
通过以上三个判定方法,我们可以初步认识平行线的性质和判定方法。
在实际应用中,我们可以结合具体的问题和知识点,灵活运用这些方法,解决与平行线相关的几何问题。
综上所述,平行线是几何学中的重要概念,具有丰富的性质和判定方法。
通过对平行线的初步认识,我们可以更好地理解、运用和证明涉及平行线的问题。
平行线的判定及性质课件
05
总结与展望
总结
01
02
03
04
05
直线平行的定义
直线平行的判定 方法
直线平行的性质
平行线在实际生 活中的应用
平行线在数学中 的地位
在同一平面内,不相交的 两条直线叫做平行线。
同位角相等,两直线平行 ;内错角相等,两直线平 行;同旁内角互补,两直 线平行。
两直线平行,同位角相等 ;两直线平行,内错角相 等;两直线平行,同旁内 角互补。
在几何图形中,平行线具 有非常重要的应用价值, 如矩形、菱形、正方形等 都有平行线的性质。
平行线是数学几何学中的 重要概念之一,是研究平 面图形性质的基础之一。 掌握平行线的判定方法和 性质对于学习数学几何学 非常重要。
展望
进一步探索平行线的性质
加强实际应用
除了已经学习的平行线的基本性质外,还 有许多复杂的性质和定理,值得进一步探 索和学习。
详细描述
在制造业中,机器人使用平行线来定位和移动物体,进行高效和精确的生产操作。例如 ,在汽车制造中,机器人通过使用平行线来定位和抓取车辆部件,以提高生产效率和质 量。在医疗领域,手术机器人使用平行线来精确控制手术器械,提高手术的准确性和安
全性。
04
平行线在数学问题中 的应用
代数中与平行线相关的知识点
在道路交通中,平行线是确保车辆安全行驶的重要标志。它们被用来划分车道、标识道路边缘以及引 导驾驶员在正确的车道上行驶。在高速公路上,平行线被用来表示应急车道和车道分隔线,帮助驾驶 员在紧急情况下做出正确的反应。
机器人在工作中的应用
总结词
机器人广泛应用于生产制造、医疗服务和军事等领域,平行线在机器人的工作中发挥着 重要作用。
初一平行线的判定与性质
B、邻补角的平分线 D、平行线的同位角的平分线
图5 4、如图 6, m // n ,那么∠1、∠2、∠3 的关系是( A、∠1+∠2+∠3=360° )
图6
B、∠1+∠2-∠3=180°
C、∠1-∠2+∠3=180°
D、∠1+∠2+∠3=180° )
5、一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯时( A、第一次向右拐 30°,第二次向右拐 30° B、第一次向右拐 30°,第二次向右拐 150° C、第一次向左拐 30°,第二次向右拐 150° D、第一次向左拐 30°,第二次向右拐 30° 6、下列命题中,是假命题的是( A、同旁内角互补 C、直角的补角仍然是直角 ) B、对顶角相等 D、两点之间,线段最短
E A 2 F B C D 1
ACF=800.
巩固练习 1. 如图所示,如果∠1=470,∠2=1330,∠D=470,那么 BC 与 DE 平行吗?AB 与 CD 平行吗?
A 2 C
1
B
D
E
2.如图所示,已知∠D=∠A,∠B=∠FCB,试问 ED 与 CF 平行吗?
E C D F
A
B
3.如图,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出图中互相平行的直线. m 2 3 5 4
直线平行的条件
判定方法:三种方法可以简单地说成:
例题 1 已知:如图,直线 AB ,CD,EF 被 MN 所截, ∠1=∠2, ∠3+∠1=180°,试说明 CD ∥EF. 解:因为∠1=∠2, 所以 AB ∥CD. 又因为 ∠3+∠1=180°, 所以 AB ∥ EF. 从而 CD ∥EF (为什么?). 例题 2 已知:如图,AB ∥CD,EF 分别交 AB、CD 于 E、F,EG 平分∠ AEF , FH 平分∠ EFD EG 与 FH 平行吗?为什么? 例题 3 如图所示,∠1=∠2,∠BAC=200,∠ (1)求∠2 的度数; (2)FC 与 AD 平行吗?为什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的判定与性质 基本图形
姓名:
例1:已知:AB ∕∕ CD ,求 的关系。
(三种方法) A B
C
D E
A B C D E
推广1:已知:AB ∕∕CD,求
的关系。
推广2:已知:AB CD,求的关系。
A B
E
F
G
H
D
C
对应练习:1、如图,AB∥CD,若∠ABE=120°,∠C=35°,则∠BEC=__________.
2、如图,已知直线a∥b,∠1=40°,∠2=60°.求∠3
3、如图,一条铁路修到一个村子边时,需拐弯绕道而过,如果第一次拐的角∠A 是105度,第二次拐的角∠B 是135度,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C 应为多少度? 135°
105°
A
B C D
4、如图:AB ∥CD ,求∠α
5、如图,已知AB ∥CD ,∠1=100°,∠2=120°,求∠α
6、已知:如图(2), AB ∥EF ∥CD ,EG 平分∠BEF ,∠B+∠BED+∠D =192°,∠B -∠D=24°,求∠GEF 的度数。
例2:如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,求∠E
对应练习:1、如图,已知直线AB CD ∥,115C ∠=°,25A ∠=°,则
G
2、如图所示,AB//CD ,∠E =37°,∠C =20°,求∠EAB 的度数
3、如图,已知AB ∥CD ,∠A =50°,∠C =∠E .求∠C
推广:1、如图所示,已知AB ∥DE ,∠ABC =60°,∠CDE =140°,求∠BCD 的度数. A B
C D
E
2、如图,CD ∥AB ,∠DCB =70°,∠CBF =20°,∠EFB =130°,问直线EF 与AB 有怎样的位置关系,为什么?
F
E
D
C B A
3、如图,已知21//l l ,AB ⊥1l ,∠ABC=130°,则∠α= .
2l 1
4、如图,直线AB ∥CD ,∠EFA=30°,∠FGH=90°,∠HMN =30°,∠CNP= 50°,则∠GHM 的大小是 .
B C
5、如图,若AB ∥CD ,求∠1,∠2,∠3的关系
A B C D E 50°。