复变函数 留数和留数定理
高等数学课件-复变函数与积分变换 第五章 留数 §5.1 留数定理及留数的求法
0 z 1 1
内的罗朗展开式,由于
f
z
z
1
12
z
1
1
n0
1n
z
1n
,0
z 1
1
故 z 1只能是二级极点,且 Res f z,1 1 .
留数定理
定理1 设函数 f z在区域D内除有限个
孤立奇点 z1, z2,L ,zn 外处处解析,c为D内 包围诸奇点的一条正向简单闭曲线,那末
的二级极点,于是
Re s
f
z,1
lim z
z1
1
z
z
1 z
12
1 4
;
Re s
f
z , 1
lim z
z1
12
z
z
1 z
12
lim
z1
z
1
12
1 4
例1.6 求函数 f z tan z 在 z k (k
2
为整数)处的留数。
解因为 tan z sin z
cos z
sin
n
Ñc f zdz 2πiRes f z, zk (1.3) k 1
证 把在c内的孤立奇点 zk k 1,2,L ,n
用互不包含的正向简单闭曲线 ck 围绕起来 (如图5-1)
图5-1
蜒c f zdz
c1
f
z
dz
蜒 f c2
zdz L
cn
f
z dz
以 2 i 除等式两边,得
1
式中负一次幂项 z z0 1 的系数 C1 是在逐
项积分过程中唯一留下的系数。
定义1 设 f (z)在孤立奇点z0的去心邻域 0 z z0 R
《复变函数与积分变换》 留数—计算规则
三、在 ∞ 点的留数 定义 2.2 设 ∞ 是 f ( z ) 的孤立奇点 , 则 f ( z ) 在 R < z < +∞ 内解析 ,
C 是 R < z < +∞ 内一条简单闭
y C
O
§5.2 留 数 —— 在 ∞ 点的留数
R
x
定理 2.2 若 f ( z ) 在 C U {∞} 上有有限个奇点:z1 ,L , z n , ∞ , 则
1 P ( z ) , z = 0 是 f ( z ) 的 3 级极点 . z3 1
解二:把 f ( z ) 在 z = 0 点展成洛朗级数 :
z − sin z 1 = 6 z6 z = 1 3 1 5 1 7 z − z − 3! z + 5! z − 7! z + L
O
1 = − c1 . ∫ C f ( z ) dz, 则 Res f ( z ) , ∞ 2π i Ñ
× zn
f ( z ) ,∞ . = − 2π i Res
§5.2 留 数 —— 在 ∞ 点的留数
规则 IV Res [ f ( z ), ∞ ] = − Res f ( )
(5)
假设 z0 是 f ( z ) 的 k 级极点 , k < m ,
f ( z ) = c− k ( z − z0 )
−k
+ L + c−1 ( z − z0 ) + c0 + c1 ( z − z0 ) + L
−1 m− k
( z − z0 )
0
m
f ( z ) = c− k ( z − z0 )
§5.2 留 数 —— 计算规则
复变函数 留数和留数定理讲解
另解: f1(z) 在点 z0 0 的去心邻域 0 z 内的
Laurent级数为
e
z z5
1
1 z5
1
z
1 z4
1 2! z 3
z2 2! 1
3! z 2
z3 3!
1 4! z
z4 4! 1
5!
z5 5! z
6!
z6
,6!
,
Res[ f1(z), 0] 1 ; Res[ f1(z),1] 0 于是由留数定理得积分值为
I1 2i[1 0] 2i
20
(2)
I2
z 2
esin z dz z 2 (z 2 1)
解: f2 (z) esin z [z 2 (z 2 1)] 在圆 z 2 的内部有一
2 当z0为f(z)=g(z-z0) 的孤立奇点时,若 g 为偶
函数,则f(z)在点z0的留数为零.
3 若z0为f(z) 的一级极点,则有
Re
s
f
(
z),
z0
lim
zz0
(
z
z0
)
f
(
z)
4 若z0为f(z) 的m级极点,则对任意整数 n m有
Re s
f (z), z0
个二级极点 z 0和两个一级极点 z i ,
于是利用留数的计算规则 2 和 1得
Res[
f
2
(
z
),0]
lim
z 0
(
ze2sinz1)
lim
复变函数的留数定理与柯西公式
复变函数的留数定理与柯西公式复变函数是数学中一个重要的研究对象,它是指定义在复平面上的函数。
复变函数有很多特殊的性质和定理,其中留数定理和柯西公式是非常重要的两个定理。
在本文中,我们将详细介绍留数定理和柯西公式。
一、留数定理留数定理是关于复变函数在孤立奇点处的积分的定理。
设f(z)是函数在z0处的孤立奇点,那么函数f(z)在z0处的留数记作Res(f, z0)。
留数的计算可以通过洛朗展开公式来进行。
留数定理的表述如下:设f(z)是一个在复平面上减少了一条折线的闭曲线上都有定义的函数,除去闭曲线上的一个有限个奇点外,在每一孤立奇点z0处函数f(z)都有留数Res(f, z0)。
设γ是一个以奇点z0为中心的小圆环,那么函数f(z)在γ上的积分等于2πi乘以z0处的留数,即:∮γf(z)dz = 2πi Res(f, z0)留数定理的重要性在于它将复变函数的积分问题转化为留数的计算问题,从而简化了计算的过程。
利用留数定理,可以高效地求解很多积分,特别是当函数存在简单极点(即一阶极点)时。
二、柯西公式柯西公式是复变函数理论中的又一重要定理。
柯西公式的表述如下:设f(z)是一个在闭曲线C内连续,除去闭曲线C上的一个有限个奇点外,在C内部处处有导数的函数,那么对于闭曲线C内的每一个点z0,都有:f(z0) = 1/(2πi) ∮C f(z)/(z-z0)dz柯西公式可以理解为复变函数的积分和它在孤立奇点处的取值之间存在密切的关系。
具体地说,柯西公式表明,如果一个函数在某个区域内处处可导,在闭区域内部积分的结果等于在闭区域边界上积分的平均值。
柯西公式的应用非常广泛,它不仅可以用来计算复平面上的积分,还可以用于解析函数和傅里叶变换等。
三、留数定理和柯西公式的关系留数定理实际上是柯西公式的一个特殊情况。
当闭曲线C所围的区域内只有一个孤立奇点z0时,留数定理和柯西公式是等价的。
此时,柯西公式可以写为:f(z0) = 1/(2πi) ∮C f(z)/(z-z0)dz = Res(f, z0)也就是说,柯西公式表明了求取孤立奇点的留数可以通过对围绕该奇点的闭曲线求积分来实现。
复变函数-幅角原理及其应用
f (z) z a g(z)
g(z)
由此,a为 f '(z) 一阶极点且Res[ f '(z) ,a] = n。
f (z)
f (z)
4
引例2 设b为f (z)的m阶零点,证明:b 为 f '(z) 一阶极点
f (z) 且Res[ f '(z) ,a] = -m。
f (z)
证明 b为f(z)的m级极点,则在b的去心邻域内有
零点数为: N f ,C 3
6
定理1 设C一条周线,f(z)符合条件:1 f(z)在C内是亚纯的; 2 f(z)在C上解析且不为零,则有
另一方面
1
2 i
C
f '(z) dz f (z)
N( f ,C) P(
f ,C)
1
2 i
C
f '(z) dz f (z)
1
2 i
dCdz来自[lnf(z)]dz
1
arg P iy n
y( Z )
9
10
三、儒歇(Rouché)定理
z在C上时有:(z) f (z)
11
儒歇定理
(z) f (z)
注:儒歇定理的 典型用途之一是将一个复杂的解析函数g同
零点已知的解析函数比较,推出关于零点的一些信息。
例4 证明多项式 g(z) z4 3z+1 的全部4个零点都位 于 z 2 内。 例5 证明: 满足条件 at | a0 | | a1 | L | at1 | | at1 | | an|
4
8
在自动控制中,一些技术的稳定性归结为要求常系 数线性微分方程解的稳定性,而这类问题要求该方 程的特征多项式
P z a0zn a1zn1 L an
留数定理与复变函数的积分
留数定理与复变函数的积分留数定理与复变函数的积分留数定理与复变函数的积分是高等数学中关于函数积分的一种重要内容,它在应用数学、物理学和工程学等领域有着很大的用途。
下文介绍一下留数定理与复变函数的积分:一、留数定理1. 概念留数定理(ResidueTheorem)是18世纪荷兰数学家弗兰克·泰勒提出的理论,是用以解决复变函数的积分的一种方法,它可以将某一复变函数的积分问题转化为该函数的根的积分来解决,而这些根可以通过特殊的方法求出。
2.应用由于留数定理,可以把复变函数的积分问题,包括复杂的褶积列、无穷级数等,转换成一系列的极限,利用极限的简单特性,可以将复杂的积分准确合理地解决掉。
这样可以大大缩短计算时间,提高准确度,因此,在工程中有很多应用。
二、复变函数的积分1. 概念复变函数(Complex Function)积分,是指把复变函数分解为可导函数的积分,而复变函数同时又包括实函数积分和虚函数积分,是一种特殊的积分。
2. 公式复变函数积分公式为:$$\int_{\gamma}f(z)dz=\int_a^b(u(z)dx+v(z)dy)$$其中,$\gamma$表示所讨论的积分的边界,$u(z)$与$v(z)$分别是复变函数$f(z)$在$z$处取得实函数与虚函数值。
3. 应用复变函数积分的应用泛泛,在日常生活中有很多使用,比如物理学中单晶极化、多晶变形、电学等、数学与统计学中多元函数的积分及拉格朗日插值等等,复变函数积分在很多领域的应用都显得十分重要。
三、结论留数定理与复变函数的积分是一个关于高等数学中函数积分的重要内容,它在工程学、物理学等领域得以深入的应用,简化了一些复杂的积分问题带来的计算时间,提高了精度,从而起到事半功倍的效果。
复变函数公式及常用方法总结
复变函数公式及常用方法总结复变函数是指在复平面上定义域为复数集的函数。
复变函数与实变函数不同,其定义域和值域都是复数集合,因此需要引入复数的运算和性质来研究这类函数。
复变函数在数学以及物理、工程学等领域有广泛的应用,如电路分析、信号处理、流体力学等。
1.复变函数的定义与性质:复变函数可以用以下形式表示:f(z) = u(x, y) + iv(x, y),其中z = x + iy;u(x, y)和v(x, y)为实变量x和y的实函数。
复变函数的一些性质如下:(1)复变函数可以进行加减、乘法和除法运算;(2)复变函数的连续性:若f(z)在特定点z0处连续,则其实部和虚部在该点均连续;(3)复变函数的解析性:若f(z)在特定点z0处可导,则其在该点解析;若f(z)在定义域内每一点都解析,则称其为全纯函数;(4)复变函数的实部和虚部都满足拉普拉斯方程式:∂^2u/∂x^2+∂^2u/∂y^2=0和∂^2v/∂x^2+∂^2v/∂y^2=0。
2.常用的复变函数:(1)幂函数:f(z)=z^n,其中n为整数;(2) 指数函数:f(z) = e^z = e^(x+iy) = e^x * e^(iy) = e^x * (cosy + isiny);(3) 对数函数:f(z) = ln(z);(4) 三角函数:正弦函数f(z) = sin(z),余弦函数f(z) = cos(z),正切函数f(z) = tan(z)等;(5) 双曲函数:双曲正弦函数f(z) = sinh(z),双曲余弦函数f(z)= cosh(z),双曲正切函数f(z) = tanh(z)等。
3.复变函数的常用方法:(1)极坐标表示法:将复数z表示为模长r和辐角θ的形式:z=r*e^(iθ)。
在极坐标下,复变函数的运算更加方便,例如可以用欧拉公式将指数函数表示为e^(iθ)的形式。
(2) 复变函数的导数:复变函数的导数可以用极限的形式表示,即f'(z) = lim(h→0) [f(z+h) - f(z)] / h。
复变函数留数和留数定理
f
( z )]
说明 将函数的零阶导数看作它本身, 规则1可看作 规则2当n=m=1时的特殊情形, 且规则2可取m=1.
6
•规则3
设
f
(z)
P(z) Q(z)
,
P(z)
及
Q(z)
在
z0都解析,
如果 P(z0 ) 0,Q(z0 ) 0,Q(z0 ) 0, 那么 z0 为
f (z) 的一级极点, 且有
一Δ 、留数的定义和计算
设 z0 为 f (z)的一个孤立奇点;
C .z0
z0的某去心邻域 0 z z0 R 包含 z0 的任一条正向简单闭曲线C.
f (z) 在 0 z z0 R 内的 Laurent 级数: f (z) cn(z z0 )n c1(z z0 )1 c0
函数, 则f(z)在点z0的去心邻域内Laurent级数只含z-
z0的偶次幂, 其奇次幂系数都为0, 得
Re s f (z), z0 0
4
(2) 如果 z0为 f (z) 的本性奇点, 则需将 f (z)展开
成Laurent级数求 c1.
(3) 如果 z0为 f (z)的极点, 则有如下计算规则
9
例2
求
f
(z)
P(z) Q(z)
z
sin z6
z
在
z
0
的留数.
分析 P(0) P(0) P(0) 0, P(0) 0.
z 0 是 z sin z 的三级零点
所以 z 0是 f (z)的三级极点, 由规则2得
Res[
f
(z),0]
复变函数第六章留数理论及其应用知识点总结
注 2:条件可减弱为:f(z)连续到边界 C,且沿 C 有 f(z)≠0 4.(辅角原理):
5.(定理 鲁歇(Rouche)定理):设 C 是一条周线,函数 f(z)及 (z)满足条 件:
(1)它们在 C 的内部均解析,且连续到 C;
(2)在 C 上,|f(z)|>| (z)|
则函数 f(z)与 f(z)+ (z)在 C 内部有同样多(几阶算几个)的零点,即
§2.用留数定理计算实积分
一. 注:注意偶函数
→ 引入
二.
型积分
1.(引理 大弧引理): 上
则
2.(定理)设
为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有
注:
可记为
三.
型积分
3.(引理 若尔当引理):设函数 g(z)沿半圆周 上连续,且
在 上一致成立。则
2
4.(定理):设 (1)Q 的次数比 P 高; (2)Q 无实数解; (3)m>0 则有
(2)设 b 为 f(z)的 m 阶极点,则 b 必为函数 的一阶极点,并且
3
3.(定理 对数留数定理):设 C 是一条周线,f(z)满足条件: (1)f(z)在 C 的内部是亚纯的; (2)f(z)在 C 上解析且不为零。 则有
注 1:当条件更改为:(1)f 在 Int(C)+C 上解析;(2)C 上有 f≠0,有 ,即
,其中 P(z)及 Q(z)为互质多项式,且符合条件:
特别的,上式可拆分成: 及
四.计算积分路径上有奇点的积分 5.(引理 小弧引理):
于 上一致成立,则有
五.杂例 六.应用多值函数的积分
§3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数:
复变函数留数定理
复变函数留数定理复变函数留数定理(Residue Theorem)是复分析中的重要概念,用于计算对应于奇异点(singular point)的留数(residue)。
留数定理提供了计算复变函数沿闭曲线的积分的一种有效方法,它与复分析中其他重要的定理和方法相辅相成,对于解决实际问题具有重要意义。
一、留数的定义设函数f(z)在点z=a附近解析且具有洛朗展开式f(z)=∑(n=-∞)^∞ a(n)(z-a)^n其中a(n)是复数,令C为以a为圆心的半径为R的圆周,且其方向与实轴正方向一致。
如果函数f(z)在圆盘界上的点(除去a点)上解析,则称a点是函数f(z)的奇异点。
奇异点主要有三种形式:可去奇点、极点和本性奇点。
对于函数f(z)一个奇异点a,定义留数Res[f(z), a]为Res[f(z), a] = a(-1)即留数等于洛朗展开式的一次项系数a(-1)。
二、留数的求解方法1. 求可去奇点的留数当a点是函数f(z)的可去奇点时,即a点是f(z)的解析点,那么留数等于0。
2. 求一阶极点的留数当a点是函数f(z)的一阶极点时,即a点是f(z)的奇异点且它的最低零次是-1次,要求a(-1)≠0。
此时留数可以通过以下方法求解:Res[f(z), a] = lim(z→a) (z-a)f(z)3. 求高阶极点的留数当a点是函数f(z)的高阶极点时,即a点是f(z)的奇异点且它的最低零次大于等于-1次。
此时留数可以通过以下公式计算:Res[f(z), a] = a(-1) = 1/(n-1)! * d^(n-1)/dz^(n-1) [(z-a)^n * f(z)]其中,n为a点的零次。
三、留数定理的表述留数定理的基本表述为:设函数f(z)在闭合曲线C的内部除有限个奇异点外是全纯的,则有积分公式成立:∮[C] f(z)dz = 2πi * ∑ Res[f(z), a]其中,[C]代表C内部的积分,∑代表对所有奇异点求和。
复变函数积分的几种计算方法
复变函数积分的几种计算方法1.直接计算:直接计算是最基本的方法,通过对复变函数$f(z)$在积分路径上进行参数表示,然后将被积函数代入并对参数进行一定的变换和化简,最后进行求和或积分求解。
这种方法适用于被积函数的表达式简单,并且路径也比较简单的情况。
例如,对于一个简单的复变函数$f(z)=z^2$,可以沿着一个简单闭合的路径求积分。
2.共形映射:共形映射是一个重要而强大的工具,它可以将一个复平面上的路径映射到另一个复平面上的路径,并保持路径上的角度不变。
通过选择适当的共形映射,可以将复变函数$f(z)$在原路径上的复变积分变换为相对简单的形式。
例如,对于一条围绕原点的圆形路径,可以通过一个合适的共形映射将其映射为一条直线路径,这样原本的复变函数积分就可以转化为实变函数积分。
3.柯西-黎曼方程:柯西-黎曼方程是复变函数的基本性质之一,它表明对于任意一个复变函数$f(z)$,其满足柯西-黎曼方程的实部和虚部的偏导数存在且连续。
利用柯西-黎曼方程可以将复变函数$f(z)$表示为一个实部$f(x,y)$和虚部$g(x,y)$的形式,然后对实部和虚部分别进行求积分,最后进行合并得到原始的复变函数积分结果。
4.留数定理:留数定理是复变函数积分的重要工具,它给出了对于一个复变函数在围道内的积分结果与围道内的奇点有关。
根据留数定理,复变函数的积分结果可以表示为该函数在奇点处的留数与围道内奇点的总个数之和。
通过计算围道内的奇点的留数,可以得到复变函数的积分结果。
5.应用级数展开:对于一些复变函数,可以通过级数展开的方法进行计算。
例如,对于一个解析函数,可以将其展开为泰勒级数,并根据泰勒级数的性质进行积分。
通过截取级数展开的有限项,可以得到复变函数积分的近似解。
除了上述方法,还有一些特殊的积分计算方法,例如分部积分法、换元法等,这些方法在复变函数积分中同样适用。
关键在于选取合适的方法和工具,根据具体的被积函数和路径选择最合适的计算方法。
复变函数的基本概念和性质
复变函数的基本概念和性质复变函数是数学中一个极其重要的分支,它涵盖了复平面上的函数及其性质,是许多数学分支的基础,也是物理、工程、经济学等领域中许多问题的核心。
那么什么是复变函数呢?本文将从基本概念、阐述复变函数的性质、复变函数的应用等方面进行分析,为读者揭示复变函数的奥秘。
一、基本概念1. 复数复数是由实数和虚数构成的,形如a+bi(其中a和b都是实数,i是虚数单位,有i²=-1)。
在复平面上,复数a+bi对应于平面上的点(x,y),其中x=a,y=b。
实部a对应于x轴上的一个数,虚部b对应于y轴上的一个数,点(x,y)则对应于区域R²上的一个点。
2. 复变函数复变函数是定义在复数域上的函数。
它的自变量可以为复数,也可以为实数,但它的取值必须是复数。
从定义和性质上看,复变函数和实变函数有很大的区别,前者更具有复杂性和丰富性。
3. 解析函数解析函数是指在某个区域T内,函数f(z)对于其内部的所有复数点z都是可导的函数。
当f(z)在T内处处可导时,称f(z)是T内的解析函数,也称为全纯函数。
如果f(z)在实轴上处处满足某些条件,并在实轴的两侧有相同的极限,那么f(x)在实轴上的延拓可称为f(z)的柯西主值,这种函数称为正则函数。
二、性质1. 洛朗级数洛朗级数是复变函数研究中一个重要的概念。
它可以将一个复变函数在一个圆环区域内展开成一系列级数求和的形式,这个级数是由函数在那个区域内的任意一点展开所得。
洛朗级数包含有证明复变函数在那个区域内无极点、无本性奇点、无孤立奇点的必要条件等信息。
2. 留数定理留数定理也是复变函数研究中一个重要的定理。
留数是一个数学概念,它对于复变函数在某些奇点的积分有着重要的作用。
留数定理是用来计算一个复变函数在一个区域内沿着一个封闭曲线的积分,当函数在曲线上有奇点的时候,可以利用留数定理来计算出积分的值,进而得到很多省时省力又具有重要意义的结论。
3. 最大模定理最大模定理是指在一个区域内解析函数的模(或幅值)必须在边缘处取到最大值或最小值。
复变函数留数和留数定理
THANKS
感谢观看
理论支撑
复变函数留数和留数定理是数学领域 中非常重要的概念,它们在复分析、 积分方程、特殊函数等领域有着广泛 的应用。留数定理是解决复积分问题 的重要工具,它可以用来计算复平面 上的曲线积分,解决物理和工程领域 中的许多问题。
留数的计算方法包括直接法、参数法 和级数展开法等。其中,直接法是最 常用的方法,通过将函数在奇点附近 进行泰勒展开,然后利用展开式计算 留数。参数法和级数展开法则适用于 某些特殊情况,如函数具有特定的对 称性或周期性等。
2πi f(z0),其中z0是该开域内的点。
应用范围
02 柯西积分公式适用于解析函数,即在其定义域内可微
的函数。
特殊情况
03
当z0是奇点时,柯西积分公式不适用。
积分定理和路径的选取
积分定理
如果f(z)在包含z0的开
域内解析,则对于该开
域内的任何两个点z1和
z2,有∫f(z)dz
=
∫f(z)dz + f(z2)(z1-
留数定理是复分析中的核心定理之一 ,它建立了奇点、积分和留数之间的 联系。通过留数定理,我们可以将复 杂的积分问题转化为相对简单的留数 计算问题,从而简化计算过程。此外 ,留数定理还可以用来研究函数的奇 点性质和函数在无穷远点的行为等。
对未来研究和应用的展望
深入研究留数定理
应用领域的拓展
尽管我们已经对留数定理有了较为深 入的了解,但仍有许多未解决的问题 和需要进一步研究的方向。例如,对 于具有更复杂奇点的函数,如何更准 确地计算留数?如何利用留数定理解 决更广泛的积分问题?这些都是值得 探讨的问题。
02
复变函数基础知识
复数及其运算
复数
复变函数论钟玉泉第六章
2aπ 2π a 2 b 2 2 b b2
2 2 (a a 2 b 2 ). b
19
dx 例2 计算 0 2 ( a 0). a sin x π π dx dx 解 0 a sin2 x 0 1 cos 2 x a 2 1 π d2 x 令 2x t, 0 1 cos 2 x 2 a 2 1 1 dz 1 2π dt 2 2 0 a 1 cos t 2 z 1 1 ( z 1) 2 z iz a 2 2 dz 2i 2 . z 1 z 2( 2a 1) z 1
1 d 2 3 z sin z Res[ f ( z ),0] lim 2 z . 6 ( 3 1)! z 0 dz z
计算较麻烦.
7
解
如果利用洛朗展开式求 c1 较方便:
z sin z 1 z3 z5 6 z z 6 3! 5! z z
第六章 留数理论及其应用 第一节 留数
1. 留数的定以及留数定理 2. 留数的求法 3. 函数在无穷远点的留数
1
定义6.1 设f(z)以有限点a为孤立奇点,即 f(z)在 点a的某去心邻域0<|z-a|<R内解析,则称积分 1 f ( z )dz ( :| z a | ,0 R) 2i Re s f ( z ). 为f(z)在点a的留(残)数(residue),记为:
例1 计算积分
z5 I dz 6 1 z Z 2
例2 利用无穷远点的留数计算积分 z13 dz I | z| 3 ( z 2 5)3 ( z 4 1) 2
15
第二节 用留数定理计算实积分
某些实函数的积分难以直接计算,可设法化为复 变闭合曲线积分,然后在利用留数定理计算积分 值,这时计算某些实积分的有效途径之一。
复变函数 第五章 留数
m
g ( z ) , ) (
其中 g (z) = cm+ cm+1(zz0) + cm+2(zz0)2 +... , 在 |zz0|<d 内是解析的函数, 且 g (z0) 0 . 反过来, 当任何一个函数 f (z) 能表示为(*)的形式, 且 g (z0) 0 时, 则z0是 f (z)的m级极点.
c0=c1=...=cm1=0, cm0, 这等价于
f (n)(z0)=0, (n=0,1,2,...,m1), f (m)(z0)0 。
例如 z=1是f (z)=z31的零点, 由于 f '(1) = 3z2|z=1=3 0,
从而知 z=1是f (z)的一级零点.
由于f (z) = (zz0) m j (z)中的j (z)在z0解析, 且j (z0)0, 因
4.函数的零点与极点的关系
不恒等于零的解析函数 f (z)如果能表示成
f (z) = (zz0) m j (z), 其中j (z)在z0解析且j (z0) 0,
m为某一正整数, 则z0称为f (z)的m级零点.
例如当 f (z)=z(z1)3时, z=0与z=1是它的一级与三级零点.
根据这个定义, 我们可以得到以下结论:
例 3 对 m Z 讨论函数
m 0 : z 0 为解析点;
f (z)
e 1
z
z
m
在 z 0 处的性态。
m 1 : z 0 为可去奇点;
2 m m 1 1 z z z m 1 : f (z) m z 2! m! ( m 1 )! z
C C1 C2 Cn
复变函数 之 留数小结
1 f (z) f (z0 ) = d z. ∫ z z0 2πi C
12
解析函数f(z)的n阶导数为:
(n)
f
n! f (z) (0 ) = ∫ (z z0 )n+1 d z (n =1,2,) 2πi C
其中C为在函数f(z)的解析区域D内围绕z0 的任何一条正向简单曲线, 而且它的内部 全含于D.
k =1 n
1 1 = ∫ f (z) d z + 2π i C f (z) d z = 0. ∫ 2π i C
5
可去奇点
极点
本性奇点
有限远孤立 洛朗展开式 有限个负幂 无穷多个负 奇点 无负幂次项 次项 幂次项
Z → Z
lim
f (Z )
存在
0
Z → Z0
lim f ( Z ) = ∞
不存在且不为 无穷大
∫
C
f (z)d z = 2πi∑Res[ f (z), zk ].
k =1
n
D zn Cn C3 z3 C2 z1 z2 C
4
C1
留数定理二 如果函数f(z)在扩充复平面内 只有有限个孤立奇点, 那末f(z)在所有各奇 点(包括∞点)的留数总和必等于零.
Res[ f (z), ∞] + ∑Res[ f (z), zk ]
9
1 1 规则 IV Res[ f (z), ∞] = Res f i 2 ,0 z z
10
柯西-古萨基本定理 如果函数f(z)在单连通 域B内处处解析, 则它在B内任何一条封闭曲 线C的积分为零: ∫ f (z)d z = 0.
C
B C
11
柯西积分公式 如果f(z)在区域D内处处解析, C为D内的任 何一条正向简单闭曲线, 它的内部完全含于 D, z0为C内的任一点, 则
复变函数-留数定理资料
当 m 1时
z Re s[ f ( z ),1] lim( z 1) f ( z ) lim 1 z 1 z 1 z 2
当m 2时
( m 1) 1 m Re s[ f ( z ),1] lim( z 1) f ( z ) ( m 1)! z 1
z 例 求 dz | z| 3 ( z 1)( z 2)
z 解 :由于 f ( z ) 在圆周 | z | 3内部有一个一级 ( z 1)( z 2) 极点 z 1, 和一个一级极点z 2
ze z 例 求 Re s[ 2 ,1] z 1
解: 显然,z 1是f ( z )的一级极点,
ze z e ze z 所以 Re s[ f ( z ),1] lim ( z 1) 2 lim z 1 z 1 z 1 z 1 2
或者:取P ( z ) ze z , Q( z ) z 2 1
所以 而
C
f ( z )dz 2iRe s[ f ( z ),1] Re s[ f ( z ), 1]
ze z e Re s[ f ( z ),1] lim ( z 1) 2 z 1 z 1 2
ze z e1 Re s[ f ( z ), 1] lim( z 1) 2 z 1 z 1 2 于是得到 e e 1 ze z C z 2 1 dz 2i 2 2 2i ch 1
P (1) e Re s[ f ( z ),1] Q(1) 2
1 例 求 Re s[ 2 , i] 3 ( z 1)
解: 由于 f ( z )
1 ( z i )3 ( z i )3
所以z i是f ( z )的三级极点。
复变函数中的留数定理
复变函数中的留数定理
复变函数是指既定义在复数域上又取复数值的函数。
复变函数具有许多特殊的性质和定理,其中留数定理是其中一个重要的定理。
本文将介绍复变函数中的留数定理以及其应用。
一、留数的定义和计算方法
在复变函数中,留数(residue)是指当函数在某个点存在奇点时,即函数在该点不解析的情况下,奇点点内仍然具有一定的数值。
留数的计算方法可以通过洛朗级数展开或者柯西积分公式来实现。
对于一个圆心在奇点上的积分路径,留数的计算公式可以表示为:Res[f;z_0] = (1 / (2πi)) ∮ f(z)dz
二、留数定理的表述
留数定理是指当一个函数在一个环形区域上解析且没有奇点时,该函数的积分沿该闭合曲线的环形轮廓,等于沿环形区域内部孤立奇点的留数之和。
数学表述如下:
∮ f(z)dz = 2πi ∑Res[f;z_i]
三、留数定理的应用
1. 计算积分:留数定理是计算复变函数的积分的重要工具。
通过计算函数在奇点处的留数,可以将积分转化为留数之和的形式,从而简化计算过程。
2. 求解无穷级数:通过留数定理,可以将一个函数展开为洛朗级数,从而求解一些复杂的无穷级数。
3. 解析函数的奇点:留数定理可以帮助我们分析函数在复平面上的
奇点,并研究奇点的类型和性质。
总结:
复变函数中的留数定理是一个重要的工具,可以在计算积分、求解
无穷级数和分析奇点等方面发挥关键作用。
留数定理的应用不仅仅局
限于数学领域,而且在物理学、工程学和经济学等学科中也具有重要
的意义。
通过掌握留数定理的原理和计算方法,我们可以更好地理解
和应用复变函数的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z0的偶次幂, 其奇次幂系数都为0, 得
Re s f (z), z0 0
5
(2) 如果 z0为 f (z) 的本性奇点, 则需将 f (z)展开
成Laurent级数求 c1.
(3) 如果 z0为 f (z)的极点, 则有如下计算规则
•规则1 如果 z0为 f (z)的一级极点, 那么
Res[f
Res[
f1 ( z ),0]
1 lim
4! z0
d4 dz 4
(e z
1)
1 4!
14
例3.求下列函数在指定点处的留数 (1) f1(z) (ez 1) z5 , z0 0 ;
另解: f1(z) 在点 z0 0 的去心邻域 0 z 内的
Laurent级数为
ez 1 z5
1 z5
1
z
z2 2!
sin 1 (1)n z 2n1
z n0 (2n 1)!
显然 z0 为0 它的本性奇点,其中 ,于是得c1 1
内0的 Lzaurent级
n的项0的系数为
Res[sin1 z ,0] c1 1
16
(3) f3(z) z, sin2 .z z0 0
解:显然 z0 是0 f3(z) 的z一sin级2 极z 点;可是不能用规
lim [(z
zi
i)
esin z2(z2
z
] 1)
esin z
lim [
zi
z2
(
z
] i)
1 2i
esin(-i)
-i 2
e-ish1
最后由留数定理得积分值为
I2
2i[1
1 2i
(eish1
e-ish1 )]
2i[1 sin(sh1)]
22
例5
计算积分
z
C
z4
dz 1
,
C为正向圆周:
z 2.
则 求其留数3,由规则 得
1
Res[
f3
(z),
0]
lim( z 2
z0
sin2 z)
lim(2 z 2sin z cos z) (L'Hospital法则) z0
1
lim
1
z0 cos 2z
17
二、留数定理
• 留数概念的重要性在于下面的留数定理. 它使 得一些积分的计算变得十分容易.
定理1 若函数f(z)在正向简单闭曲线C上处处解析, 在C的内部除有限个孤立奇点z1,z2,…,zn外解析, 则有
24
Res[
f
(
z
),
1]
lim[(
z1
z
1)
z
3
(
z
z
2 1)(z
] 3)
1 2
Res[ f (z), 0] 1 lim[ z 2 ] 1 lim[ 1 1 ] 2 z0 (z 1)(z 3) 4 z0 z 1 z 3
因此
1 lim[
2 z0 (z
1 1)3
(z
1 3)3 ]
3 若z0为f(z) 的一级极点,则有
Re
s
f
(z),
z0
lim
zz0
(z
z0
)
f
(z)
4 若z0为f(z) 的m级极点,则对任意整数 n m有
Re s
f (z), z0
(n
1 1)!
lim
z z0
d n1 dz n1
[( z
z0 )n
f
( z )]
26
5 设f(z)=P(z)/Q(z),其中P(z)和Q(z)在点z0都解析。
2i
1 4
1 4
1 4
1 4
0
.
23
例6
计算积分
C
z
3
(
z
z
2 1)(z
3)
dz
,
C为正向圆周 : z 2.
解
被积函数
f
(z)
z3(z
z2 1)(z
3)
除 z 0,
1, 3 点外, 无其他奇点, z 3 在圆外。
z2
所以 C z3(z 1)(z 3) dz
2i{Res[ f (z), 0] Res[ f (z), 1]}
I1 2i[1 0] 2i
z 1
20
(2)
I2
z 2
esin z dz z 2 (z 2 1)
解: f2 (z) esin z [z 2在(z圆2 1)] 的内部z有一2 个二级极点
和两个一级极z 点 0 ,
z i
于是利用留数的计算规则 2和 得1
Res[
f
2
(
z
),0]
lim
z 0
(
ze2sinz1)
1.(1) (2) (6) (7) 8.(1) (2) (4) (7) 9. (1)(2) 13. (1)(3) (5)
28
若 P(z0 ) 0 ,Q(z0)=0且
级极点,且有 Re s f (z),
Q ' ( z0
z0
)P(0z,0 ) 则z0为f(z)
Q'(z0 )
的一
6 由Laurent级数展开定理,留数等于f(z)在环域 0 z z0 内Laurent级数的负一次幂系数c-1
27
第五章作业:P183
C
以 2i 后所得的数 称为 f (z)在 z0 的留数. (Residue)
记作 Res[ f (z), z0]. (即 f (z)在 z0 为中心的圆环 域内的Laurent级数中负幂项c1(z z0 )1的系数.)
4
2. 计算留数的一般公式
由Laurent级数展开定理, 定义留数的积分值是f(z)在环
n
C f (z)dz 2i Re s f (z), zk k 1
19
例4. 计算下列积分(1)
I1
z 2
e z dz z(z 1)2
解:被积函数 f1(z) ez [z的(z奇1点)2 ] 和 z 0
都在圆 z 的2 内部,由规则1,2可得以下结果
Res[ f1(;z), 0] 1 Res[ f1(z),1] 0 于是由留数定理得积分值为
Laurent级数中负幂项c1(z z0 )1的系数
3
即
c1
1 2i
C
f (z)dz
f (z)在 z0 的留数 Res[ f (z), z0]
1. 定义 如果 z0 为函数 f (z) 的一个孤立奇点, 则沿
z0的某个去心邻域0 z z0 R内,包含 z0 的
任意一条简单闭曲线 C 的积分 f (z)dz 的值 除
所以 z 0是 f (z)的三级极点, 由规则2得
Res[
f
(
z),0]
(3
1 lim
1)! z0
d2 dz 2
z
3
z
sin z6
z
.
计算较麻烦.
11
解 如果利用Laurent展开式求 c1 较方便:
z
sin z6
z
1 z6
z
z
z3 3!
z5 5!
z3 z1 , 3! 5!
Res
14 27
C
z
3
(
z
z
2 1)(z
3)
dz
2i( 14
27
1) 2
i
27
25
小结:留数的计算 Re s f (z), z0 0
1 若z0为函数f(z) 的可去奇点,(负幂项的项数为零 个),则它在点z0的留数为零.
2 当z0为f(z)=g(z-z0) 的孤立奇点时,若 g 为偶函
数,则f(z)在点z0的留数为零.
域 0 z z0 内Laurent级数的负一次幂系数c-1
Re s f (z), z0 c1
1
2i
C
f
zdz
(1)若z0为函数f(z) 的可去奇点, (负幂项的项数为零
个), 则它在点z0的留数为零.
注:当z0为f(z)=g(z-z0) 的孤立奇点时,若 g 为偶
函数, 则f(z)在点z0的去心邻域内Laurent级数只含z-
解
被积函数 z 有四个一级极点 1 , i 都 z4 1
在圆周 z 2 的内dz 1
2iRes[ f (z),1] Res[ f (z),1]
Res[ f (z), i] Res[ f (z),i]
由规则3
P(z) Q( z )
z 4z3
1 4z2
,
z
C
z4
1
dz
Res
f
(z),0
(6
1
d5
lim 1)! z0
dz
5
z
6
z
sin z6
z
1 5!
.
13
例3.求下列函数在指定点处的留数
(1) f1(z) (ez 1) z5 , z0 0 ;
解:z0 0是函数 e z 1 的一级零点,
又是函数 z 5 的五级零点.
于是它是 f1(z) 的四级极点, 可用规则 2计算其留数,其中 m 4,为了计算简便 应当取其中 n 5 ,这时有
解 因为 z 0 是 f (z)的n阶极点,
所以
Res
ez zn
,0
(n
1
lim 1)! z0
dn1 dz n1
zn
ez zn
1. (n 1)!
10
例2
求
f
(z)
P(z) Q(z)