杨氏模量实验报告模版
杨氏模量测定(实验报告范例)
![杨氏模量测定(实验报告范例)](https://img.taocdn.com/s3/m/fe0c59c2bcd126fff6050b66.png)
杨氏模量测定(横梁弯曲法)、实验目的1. 学习用弯曲法测量金属的杨氏模量2. 学习微小位移测量方法二、实验仪器JC-1读数显微镜待测金属片砝码片若干口三、实验原理宽度为b,厚度为a,有效长度为d的棒在相距dx的、02两点上横断面,在棒弯曲前相互平行,弯曲后则成一小角度dr,棒的下半部分呈拉伸状态,而上半部分呈压缩状态,棒的中间有薄层虽然弯曲但长度不变。
现在来计算一下与中间层相距为y ,厚度为dy,形变前长为dx的一段,弯曲后伸长了yd,,由胡克定律可计算它所到的拉力dF :对中心薄层所产生的力矩d& 2 dM = Eb y2dydx整个横断面产生力矩为:2 d -y dy =2Eb — sdx [3 一1 如果使得棒弯曲的外力作用在棒有效长度的中点上,那么棒的两端分别施加mg,才2一1 -能使棒平衡。
棒上距离中点为x,长度为dx的一段,由于mg力的作用产生弯曲下降:待测金属片支撑架可挂砝码片的刀dFdS 二dF = Eb —dS 二bdydxydyd a/2M =Eb一dx 12 dxo(d棒处于平衡状态时,有外力(d -mg 对该处产生的力矩1 mg — _ x2 2 122应该等于该处横断 面弯曲所产生的力矩。
1mg 丄 Ea 3b 巴二2 、、2 丿 12 dx<2 d 日= 6mg 'dEa 'b J 2--x dx 啤y uEa 3b ^2二警 d X 2dXEa 3b 0——XI <2丿X 3㊁ Ea 3b 三 o _ mgd 3 -4Ea 3b上式整理可得:6mg因此只要测定外力 mg 使金属片弯曲伸长量 金属片的有效长度 d ,宽度b ,厚度a 就可以测出金属片的杨氏模量。
四、实验步骤 1. 2. 3. 4. 5. 6.用支架支撑好金属片,并在有效长度的中点上挂上带有挂砝码的刀口(一定得确保 刀口挂在中心位置处)。
调节好读数显微镜的目镜, 判断标准是调好的目镜可以清晰地看到分划板和十字叉 丝。
测量杨氏模量实验报告
![测量杨氏模量实验报告](https://img.taocdn.com/s3/m/9b8af588f9c75fbfc77da26925c52cc58bd690ac.png)
测量杨氏模量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握用光杠杆法测量微小长度变化的原理和方法。
3、学会使用望远镜、标尺和螺旋测微计等测量仪器。
4、学习数据处理和误差分析的方法。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
设一根长度为L、横截面积为 S 的金属丝,在受到沿长度方向的拉力 F 作用下伸长了ΔL。
根据胡克定律,在弹性限度内,应力(F/S)与应变(ΔL/L)成正比,比例系数即为杨氏模量 Y,其表达式为:\Y =\frac{FL}{S\Delta L}\由于金属丝的伸长量ΔL 很小,难以用常规的测量工具直接测量,本实验采用光杠杆法进行测量。
光杠杆是一个带有可旋转的平面镜的支架,其前足置于固定平台上,后足置于金属丝的测量端。
当金属丝伸长或缩短时,光杠杆的后足会随之升降,带动平面镜旋转一个微小角度θ。
通过望远镜观察经平面镜反射的标尺像,可以测量出标尺像的移动距离 n。
根据几何关系,有:\\tan\theta \approx \theta =\frac{n}{D}\其中 D 为光杠杆平面镜到标尺的距离。
又因为\(\Delta L =\frac{b}{2D}n\),其中 b 为光杠杆后足到两前足连线的垂直距离。
将\(\Delta L =\frac{b}{2D}n\)代入杨氏模量的表达式,可得:\Y =\frac{8FLD}{S\pi d^2 n b}\其中 d 为金属丝的直径。
三、实验仪器1、杨氏模量测量仪:包括底座、立柱、金属丝、光杠杆等。
2、望远镜及标尺:用于观测光杠杆反射的标尺像。
3、螺旋测微计:测量金属丝的直径。
4、游标卡尺:测量光杠杆后足到两前足连线的垂直距离 b 和金属丝的长度 L。
5、砝码若干:提供拉力。
四、实验步骤1、调整仪器调节杨氏模量测量仪底座水平,使金属丝竖直。
调整望远镜与光杠杆平面镜高度大致相同,使望远镜光轴与平面镜中心等高。
调节望远镜目镜,看清十字叉丝;调节望远镜物镜,使能清晰看到标尺的像。
杨氏模量实验报告实验原理(3篇)
![杨氏模量实验报告实验原理(3篇)](https://img.taocdn.com/s3/m/b3bc3a0c7f21af45b307e87101f69e314232fa0e.png)
第1篇一、实验背景杨氏模量(Young's Modulus)是材料力学中的一个重要物理量,它表征了材料在受力时抵抗形变的能力。
在工程实践中,杨氏模量是衡量材料刚度的重要指标之一,对材料的选择和结构设计具有重要意义。
本实验旨在通过实验方法测定金属材料的杨氏模量,并掌握相关实验原理和操作步骤。
二、实验原理1. 杨氏模量的定义杨氏模量(E)是指材料在弹性变形范围内,单位面积上所承受的应力与相应的应变之比。
其数学表达式为:E = σ / ε其中,σ为应力,ε为应变。
应力(σ)是指单位面积上的力,其数学表达式为:σ = F / A其中,F为作用在材料上的力,A为受力面积。
应变(ε)是指材料形变与原始长度的比值,其数学表达式为:ε = ΔL / L其中,ΔL为材料形变的长度,L为原始长度。
2. 胡克定律在弹性变形范围内,杨氏模量与应力、应变之间存在线性关系,即胡克定律:σ = Eε该定律表明,在弹性变形范围内,材料的应力与应变成正比。
3. 实验原理本实验采用拉伸法测定金属材料的杨氏模量。
具体实验步骤如下:(1)将金属样品固定在实验装置上,使其一端受到拉伸力F的作用。
(2)测量金属样品的原始长度L0和受力后的长度L。
(3)计算金属样品的形变长度ΔL = L - L0。
(4)根据胡克定律,计算应力σ = F / A,其中A为金属样品的横截面积。
(5)计算应变ε = ΔL / L0。
(6)根据杨氏模量的定义,计算杨氏模量E = σ / ε。
三、实验仪器1. 拉伸试验机:用于施加拉伸力F。
2. 样品夹具:用于固定金属样品。
3. 量具:用于测量金属样品的原始长度L0、受力后的长度L和形变长度ΔL。
4. 计算器:用于计算应力、应变和杨氏模量。
四、实验步骤1. 将金属样品固定在实验装置上,确保其牢固。
2. 调整拉伸试验机,使其施加一定的拉伸力F。
3. 测量金属样品的原始长度L0。
4. 拉伸金属样品,使其受力后的长度L。
大学物理实验金属杨氏模量实验报告
![大学物理实验金属杨氏模量实验报告](https://img.taocdn.com/s3/m/2f9391a02dc58bd63186bceb19e8b8f67d1cef31.png)
大学物理实验金属杨氏模量实验报告一、实验目的1、学会用伸长法测量金属丝的杨氏模量。
2、掌握用光杠杆放大原理测量微小长度变化的方法。
3、学会用逐差法处理实验数据。
二、实验原理1、杨氏模量的定义杨氏模量是描述固体材料抵抗形变能力的物理量。
对于一根长度为L、横截面积为 S 的金属丝,在受到沿长度方向的拉力 F 作用时,伸长量为ΔL。
根据胡克定律,在弹性限度内,应力与应变成正比,即:\F/S = Y \times \Delta L/L\其中,Y 为杨氏模量。
2、光杠杆放大原理光杠杆是一个带有可旋转平面镜的支架。
将金属丝的微小伸长量ΔL 转化为光杠杆平面镜的转角θ,再通过测量平面镜反射光线在标尺上的移动距离Δn,就可以计算出微小伸长量ΔL。
根据几何关系,有:\\Delta L = b \times \Delta n / 2D \其中,b 为光杠杆前后脚的距离,D 为平面镜到标尺的距离。
三、实验仪器杨氏模量测量仪、光杠杆、望远镜、直尺、砝码、螺旋测微器、游标卡尺等。
四、实验步骤1、调整仪器(1)将杨氏模量测量仪的底座调水平,使金属丝竖直。
(2)调整光杠杆平面镜与平台垂直,望远镜与平面镜等高,并使望远镜水平对准平面镜。
2、测量金属丝长度 L用直尺测量金属丝的长度,重复测量三次,取平均值。
3、测量金属丝直径 d用螺旋测微器在金属丝的不同位置测量直径,共测量六次,取平均值。
4、测量光杠杆前后脚距离 b用游标卡尺测量光杠杆前后脚的距离,测量一次。
5、测量平面镜到标尺的距离 D用直尺测量平面镜到标尺的距离,测量一次。
6、加砝码测量依次增加砝码,每次增加相同质量,记录对应的标尺读数。
7、减砝码测量依次减少砝码,记录对应的标尺读数。
五、实验数据记录与处理1、原始数据记录(1)金属丝长度 L =______ cm(2)金属丝直径 d(单位:mm)|测量次数|1|2|3|4|5|6||||||||||直径|_____|_____|_____|_____|_____|_____|(3)光杠杆前后脚距离 b =______ cm(4)平面镜到标尺的距离 D =______ cm(5)砝码质量 m =______ kg|砝码个数|0|1|2|3|4|5|6|7|8||||||||||||增加砝码时标尺读数 n1(单位:cm)|_____|_____|_____|_____|_____|_____|_____|_____||减少砝码时标尺读数 n2(单位:cm)|_____|_____|_____|_____|_____|_____|_____|_____|2、数据处理(1)计算金属丝直径的平均值\d_{平均} =\frac{d_1 + d_2 +\cdots + d_6}{6}\(2)计算金属丝横截面积 S\S =\frac{\pi d_{平均}^2}{4}\(3)计算增加砝码时的伸长量Δn1\\Delta n_1 =\frac{n_1 n_0}{8} \(4)计算减少砝码时的伸长量Δn2\\Delta n_2 =\frac{n_8 n_7}{8} \(5)计算平均伸长量Δn\\Delta n =\frac{\Delta n_1 +\Delta n_2}{2} \(6)计算杨氏模量 Y\ Y =\frac{8mgLD}{\pi d_{平均}^2 b \Delta n} \3、不确定度计算(1)测量金属丝长度 L 的不确定度\\Delta L =\frac{\Delta L_1 +\Delta L_2 +\Delta L_3}{3} \(2)测量金属丝直径 d 的不确定度\\Delta d =\sqrt{\frac{\sum_{i=1}^6 (d_i d_{平均})^2}{6(6 1)}}\(3)测量光杠杆前后脚距离 b 的不确定度\\Delta b =\Delta b_1 \(4)测量平面镜到标尺的距离 D 的不确定度\\Delta D =\Delta D_1 \(5)计算伸长量Δn 的不确定度\\Delta \Delta n =\sqrt{\frac{\sum_{i=1}^8 (n_i \overline{n})^2}{8(8 1)}}\(6)计算杨氏模量 Y 的不确定度\\Delta Y = Y \sqrt{(\frac{\Delta L}{L})^2 +(\frac{2\Delta d}{d})^2 +(\frac{\Delta b}{b})^2 +(\frac{\Delta D}{D})^2 +(\frac{\Delta \Delta n}{\Delta n})^2} \4、实验结果表达\ Y = Y_{平均} \pm \Delta Y \六、误差分析1、测量误差(1)测量金属丝长度、直径、光杠杆前后脚距离、平面镜到标尺的距离时存在读数误差。
杨氏模量测量实验报告
![杨氏模量测量实验报告](https://img.taocdn.com/s3/m/a81e8415492fb4daa58da0116c175f0e7cd1192b.png)
杨氏模量测量实验报告【实验名称】:杨氏模量测量实验【实验目的】:1.了解杨氏模量的定义和物理意义;2.掌握用实验方法测量杨氏模量的原理和步骤;3.熟练掌握实验仪器的使用方法和注意事项;4.学会分析处理实验数据,计算出被测物体的杨氏模量。
【实验仪器】:万能试验机、游标卡尺、数显卡尺、电子天平等。
【实验原理】:杨氏模量是描述物体抗拉性质的一个重要指标,它可以衡量物体在受到拉伸或压缩作用下的刚性程度。
在实验中,我们采用悬挂法来测量杨氏模量,具体步骤如下:1. 将被测物体悬挂在两个支点之间,保持水平,使其自由悬挂;2. 加上一定的负荷,在达到恒定的应力状态后,记录物体的长度变化量;3. 根据胡克定律,计算出物体所受的拉力大小,并根据形变和拉力的关系求出物体的杨氏模量。
【实验步骤】:1.准备工作(1)清洗被测物体表面,去除污垢和氧化层。
(2)使用游标卡尺或数显卡尺等测量被测物体的直径、长度等尺寸参数,并记录下来。
(3)悬挂被测物体到万能试验机的上夹具,保证其自由悬挂并水平。
2.实验操作(1)在万能试验机上加负荷,使被测物体达到恒定的应力状态。
(2)记录被测物体的长度变化量,并计算出拉力大小。
(3)根据拉力和形变的关系,求出被测物体的杨氏模量。
3.数据处理(1)根据实验所得数据,绘制出应力-应变曲线。
(2)通过斜率法或者曲线拟合法,求出被测物体的杨氏模量。
4.实验注意事项(1)掌握好实验仪器的使用方法,严格按照实验流程进行操作,以免发生意外。
(2)保持被测物体的表面光滑干净,避免影响实验结果。
(3)在实验过程中,需要注意对温度、湿度等因素的控制,以保证实验结果的准确性。
【实验结果】:本实验所测得被测物体的杨氏模量为XXX。
根据计算结果和应力-应变曲线,可以看出所测物体具有较好的抗拉性能和刚性特性。
大学实验报告模板三篇(完整版)
![大学实验报告模板三篇(完整版)](https://img.taocdn.com/s3/m/8d17299d31126edb6f1a10cb.png)
报告编号:YT-FS-7377-42大学实验报告模板三篇(完整版)After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas.互惠互利共同繁荣Mutual Benefit And Common Prosperity大学实验报告模板三篇(完整版)备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。
文档可根据实际情况进行修改和使用。
篇一:大学物理实验报告格式实验名称:杨氏弹性模量的测定院专业学号姓名同组实验者20XX年月日实验名称一、实验目的。
二、实验原理。
三、实验内容与步骤。
四、数据处理与结果。
五、附件:原始数据****说明:第五部分请另起一页,将实验时的原始记录装订上,原始记录上须有教师的签名。
篇二:大学实验报告册模板实验课程名称开课学院理学院指导老师姓名学生姓名学生专业班级200— 200 学年第学期实验课程名称:实验课程名称:篇三:浙江大学实验报告模板专业:____姓名:____实验报告学号:____ 日期:____ 地点:____ 课程名称:_______指导老师:____成绩:____ 实验名称:_______实验类型:____同组学生姓名:____一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得实验名称:_______姓名:____学号:____这里填写您企业或者单位的信息Fill In The Information Of Your Enterprise Or Unit Here。
高中物理奥林匹克竞赛实验报告--杨氏模量模版
![高中物理奥林匹克竞赛实验报告--杨氏模量模版](https://img.taocdn.com/s3/m/abd0b27ffab069dc51220146.png)
次数
1
2
3
4
5
平均值
修正值
3、钢丝长度变化记录
I
F(g)
(cm)
(cm)
1
2
3
4
5
6
7
8
用逐差法计算每增加4个砝码钢丝伸长量
, , ,
1
2
3
4
平 均
六、数据处理:
计算杨氏模量E并计算
七、实验结果与讨论:
实验结果:钢丝的杨氏模量 ()
P=
讨论:
八:问答题
1、各种不同长度用不同仪器测定,是如何进行的?为什么?
2、本实验中哪一个ຫໍສະໝຸດ 的测量误差对结果影响最大?试作具体讨论。
3、用光杠杆把测 变成测 等量,若把 称为光杠杆的“放大率”,由(5-22)知 ,能不能增加 ,减小 来提高 ,这样有没有好处?有没有限度?
4、采用逐差法处理数据外,能否用作图法求杨氏模量?若能,应怎样作图?
批阅意见:
成绩评定:
注1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
实 验 报 告
实验名称:杨氏模量的测量
实验时间:年月日星期
一、实验目的
二、实验原理:
四、实验内容和步骤:.
五、数据记录:
组号:;姓名
1、金属丝长度: 钢卷尺仪器误差:
光杠杆与标尺的距离:D=
光杠杆常数:b=卡尺的仪器误差:
砝码质量: 360g/1个砝码;砝码质量误差:1g/ 1个砝码
标尺的仪器误差:
杨氏模量_实验报告
![杨氏模量_实验报告](https://img.taocdn.com/s3/m/661517737275a417866fb84ae45c3b3567ecddd3.png)
一、实验目的1. 了解杨氏模量的概念及其在材料力学中的应用。
2. 掌握杨氏模量的测定方法,即拉伸法。
3. 培养实验操作技能和数据处理能力。
二、实验原理杨氏模量(E)是描述材料在受到拉伸或压缩时抵抗形变的能力的物理量。
根据胡克定律,在弹性限度内,材料的相对伸长(或压缩)量与外力成正比,即:ΔL/L = F/S E其中,ΔL为材料的伸长量,L为材料的原始长度,F为施加在材料上的外力,S为材料的横截面积,E为杨氏模量。
本实验采用拉伸法测定杨氏模量,通过测量材料在拉伸过程中产生的伸长量,结合材料的原始长度和横截面积,计算出杨氏模量。
三、实验仪器与材料1. 杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺)2. 螺旋测微器3. 游标卡尺4. 钢直尺5. 金属丝(直径约为0.5mm)四、实验步骤1. 将金属丝一端固定在杨氏模量测定仪的拉伸仪上,另一端连接到重物托盘。
2. 调整螺栓,使金属丝处于铅直状态。
3. 使用游标卡尺测量金属丝的直径,并记录数据。
4. 将望远镜和标尺放置在光杠杆前方约1.2m处。
5. 调节望远镜和标尺,使标尺铅直,光杠杆平面镜平行于标尺。
6. 观察望远镜中的标尺像,记录初始像的位置。
7. 挂上重物,使金属丝产生一定的伸长量。
8. 观察望远镜中的标尺像,记录新的像的位置。
9. 计算金属丝的伸长量,并记录数据。
10. 重复步骤7-9,进行多次测量,取平均值。
五、数据处理与结果分析1. 计算金属丝的横截面积S,S = π (d/2)^2,其中d为金属丝直径。
2. 计算金属丝的相对伸长量ΔL/L,ΔL/L = ΔL/L0,其中L0为金属丝的原始长度,ΔL为金属丝的伸长量。
3. 根据公式E = F/S ΔL/L,计算杨氏模量E。
4. 计算多次测量的平均值,并求出标准偏差。
六、实验结果1. 金属丝直径d:0.48mm2. 金属丝原始长度L0:500mm3. 金属丝伸长量ΔL:0.5mm4. 金属丝横截面积S:0.185mm^25. 杨氏模量E:2.10×10^11 Pa七、结论通过本实验,我们成功地测定了金属丝的杨氏模量,结果为2.10×10^11 Pa。
杨氏模量实验报告
![杨氏模量实验报告](https://img.taocdn.com/s3/m/6ec94a1076232f60ddccda38376baf1ffc4fe3b3.png)
0.00578 2
0.000578 2
0.000578 2
2 × 0.000000547 2
0.0011 2
) +(
) +(
) +(
) +(
)
40
0.555
2.028
0.000062
0.06576
≈ 2.433%
∆E = E ×
∆E
= 1.6 × 1011 × 0.02433 = 0.0389 × 1011 (N ∙ m−2 )
度要求较大,故使用游标卡尺;钢丝伸长量不大且精度要求不高,故使用标尺;金属丝直径较小而且而且
精度要求较大故使用千分尺。
2、利用光杠杆把测微小长度△L 变成测 b,光杠杆放大率为 2D/L,根据此式能否以增加 D 减小 l 来提高放
大率,这样做有无好处?有无限度?应该怎样考虑这个问题?
利用光杠杆把测微小长度∆变成测 b,可以使用下面的公式:
E
七、思考题
1、本实验中共几个长度量?为什么用不同仪器来测量?
本实验共 5 个长度量:金属丝长度 L、光杠杆与标尺的距离 D、光杠杆常数 b、金属丝直径 d、钢丝伸长量
l。因为不同的测量长度的仪器通常具有不同的测量范围、精度和灵敏度,因此适合测量不同范围和精度的
长度量。金属丝长度 L 和光杠杆与标尺的距离 D 测量范围较大所以需要卷尺;光杠杆常数 b 相对较小,精
4
(2)
利用(1)和(2)式计算即可,其中
F:可由实验中钢丝下面悬挂的砝码的重力给出
L:可由米尺测量
d:为细铁丝的直径,可用螺旋测微仪测量
ΔL: 是一个微小长度变化量,本实验利用光杠杆的光学放大作用实现对金属丝微小伸长量L 的间接测量。
杨氏模量测定实验报告
![杨氏模量测定实验报告](https://img.taocdn.com/s3/m/1bbcce8e6529647d272852be.png)
杨氏模量的测定【实验目的】1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。
2. 掌握各种长度测量工具的选择和使用。
3. 学习用逐差法和作图法处理实验数据。
【实验仪器】MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。
【实验原理】 一、杨氏弹性模量设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。
实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即LLYS F ∆= (1) 则LL SF Y ∆=(2) 比例系数Y 即为杨氏弹性模量。
在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。
Y 的国际单位制单位为帕斯卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。
本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S42d S π=则(2)式可变为L d FLY ∆=24π (3)可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。
式中L (金属丝原长)可由米尺测量,d (钢丝直径),可用螺旋测微仪测量,F (外力)可由实验中钢丝下面悬挂的砝码的重力F=mg 求出,而ΔL 是一个微小长度变化(在此实验中 ,当L ≈1m时,F 每变化1kg 相应的ΔL 约为0.3mm)。
因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL 的间接测量。
二、光杠杆测微小长度变化尺读望远镜和光杠杆组成如图2所示的测量系统。
光杠杆系统是由光杠杆镜架与尺读望远镜组成的。
光杠杆结构见图2(b )所示,它实际上是附有三个尖足的平面镜。
三个尖足的边线为一等腰三角形。
前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。
杨氏模量的测量实验报告23页
![杨氏模量的测量实验报告23页](https://img.taocdn.com/s3/m/94a8851f7275a417866fb84ae45c3b3567ecdd81.png)
杨氏模量的测量实验报告23页杨氏模量是一个物体在一定的静力学状态下,它的伸展长度与受到的拉力成正比的比例系数。
它在材料力学中十分重要,是用来衡量一个材料的刚度的。
本次实验旨在通过测量铜、铝、钢三种材料的伸长量和受力大小,求出它们的杨氏模量。
实验仪器和材料:1. 弹簧秤2. 两个垂直挂钩3. 细线4. 千分尺5. 表面光洁的拉伸杆6. 标尺7. 铜、铝、钢的样品实验步骤:1. 将挂钩固定在杠杆两端的支架上2. 将细线和拉伸杆分别悬挂在挂钩上3. 将样品夹在细线上并固定4. 吊钩的重量和细线本身的拉力对铜、铝、钢的拉伸值产生的影响可以忽略不计,否则应先对细线、吊钩的质量进行校正。
5. 分别用千分尺测量杆的初始长度和悬挂样品后的长度,并记录数据。
6. 测量拉力大小。
7. 重复实验3-6步骤,以获得可靠的数据,计算出每个样品的平均拉力和平均伸展长度。
实验结果:铜样品:实验次数初长度(mm)终长度(mm) 拉力(N)伸长长度(mm)1 199.82 201.70 1.96 1.882 199.84 201.71 1.97 1.873 199.84 201.72 1.96 1.88平均拉力:1.96N平均伸长长度:1.87mm计算杨氏模量:杨氏模量的计算公式为E=FL/AS,其中F为拉力,L为伸长长度,A为样品横截面积,S 为样品初长度。
三个样品的横截面积分别为1.31×10-5、1.31×10-5、1.16×10-5。
根据数据可以得到铜、铝、钢的杨氏模量分别为1.116×1011Pa、6.673×1010Pa、2.078×1011Pa。
此外,还需要计算相对误差的大小,相对误差的计算公式为|(测量值-标准值)/标准值|×100%。
铜、铝、钢的相对误差分别为0.43%、2.93%、4.88%。
本次实验测得铜、铝、钢的杨氏模量分别为1.116×1011Pa、6.673×1010Pa、2.078×1011Pa。
杨氏模量的测量实验报告
![杨氏模量的测量实验报告](https://img.taocdn.com/s3/m/020d4325de80d4d8d15a4f80.png)
由于物体受力后和撤销外力后不是马上能恢复原状,而会产生弹性滞后效应,所以为了减小该效应带来的误差,应该在增加拉力和减小拉力过程中各测一次对应拉力下标尺读书,然后取两次结果的平均值。
2、根据量程及相对不确定度大小,用钢卷尺测量L和H,千分尺测量D,游标卡尺测量b。考虑到钢丝直径因为钢丝截面不均匀而产生误差,应该在钢丝的不同位置测量多组D在取平均值。
首先调节望远镜目镜旋轮,使“十”字叉丝清晰成像;然后调节望远镜物镜焦距,直到标尺像和“十”字叉丝无视差。 3、细调光路水平
观察望远镜水平叉丝所对应的标尺读数和光杠杆在标尺上的实际位置是否一致,若明显不同,则说明入射光线与反射光线未沿水平面传播,可以适当调节平面镜的俯仰,直到望远镜读出的数恰好为其实际位置为止。调节过程中还应该兼顾标尺像上下清晰度一致,若清晰度不同,则可以适当调节望远镜俯仰螺钉。 (2)测量数据
(3)数据处理
由于在测量C时采取了等间距测量,适合用逐差法处理,故采用逐差法对视伸长C求平均值,并估算不确定度。其中L、H、b只测量一次,由于实验条件的限制,其不确定度不能简单地由量具仪器规定的误差限决定,而应该根据实际情况估算仪器误差限。
6?r2和b3?r7?r3并
系 学号姓名 日期
求出平均值和误差。
将测得的各量代入式(5)计算E,并求出其误差(ΔE/E和ΔE),正确表述E的测量结果。 (2) 作图法
把式(5)改写为
ri?2DLFi/(SlE)?MFi(6)
其中M?2DL/(SlE),在一定的实验条件下,M是一个常量,若以ri为纵坐标,Fi为横坐标作图应得一直线,其斜率为M。由图上得到M的数据后可由式(7)计算杨氏模量
实验报告-杨氏模量
![实验报告-杨氏模量](https://img.taocdn.com/s3/m/cb0ce596a0116c175f0e48f4.png)
【实验题目】杨氏模量的测定【实验记录】1.实验仪器2.钢丝应变数据记录表2.其它各量数据记录表【数据处理与计算】 1.直接测量量的数据处理1)细丝直径d (测量次数=n 10)A ()()()u d s d f n ===7.600*10-6mB ()u d ∆==3.415*10-7mC ()u d =-6m==dd u d )()(δ7.400*10-3 2)光杠杆足距k (测量次数=n 1)==kk u k )()(δ 5.146*10-3 3)金属丝长度L (测量次数=n 1)==LL u L )()(δ9.27*10-4 4)镜尺距离D (测量次数=n 1)==DD u D )()(δ0.97*10-3 5)负荷1kg 时读数差∆(测量次数=n 4,注意直接测量量为x ,i i n i x x +∆=-)=∆=∆nx -3.11*10-3m A ()()()s u x f n n∆∆=⋅=6.04*10-4mB ()u x ∆==6.830*10-4mB ()()B x u x n∆==2.414*10-4mC ()u x ∆=-4mxx u x )()(∆=∆δ=7.46*10-22.E 的计算xk d LDmgE ∆⋅=28π=1.02*1011N/M 2()E δ==0.0762=⨯=)()(E E E u δ0.078*1011N/M 2【总结与讨论】实验结果:=E ( 1.02 ± 0.078 )* 1011N/M 2 , P=0.683。
讨论:杨氏模量的计算误差大致在%5左右,满足理论数值,故实验较好地完成了测量。
【复习思考题】为什么要增、减负荷各测一次?实验中,当L ,D ,d ,K 选定后,Δx 唯有随砝码的重量F 的增减作用相应的增减。
根据胡克定律,在弹性限度内,Δx 随F 的增减线性变化。
所以F/Δx 的值是不变的,便于用逐差法计算数据。
报告成绩(满分30分):⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 指导教师签名:⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 日期:⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽。
杨氏模量光杆实验报告
![杨氏模量光杆实验报告](https://img.taocdn.com/s3/m/3155395790c69ec3d4bb753e.png)
杨氏模量光杆实验报告篇一:杨氏模量实验报告一、实验目的1.用伸长法测定金属丝的杨氏模量2.学习光杠杆原理并掌握使用方法二、实验原理物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。
设有一截面为S,长度为l的均匀棒状(或线状)材料,受拉力F拉伸时,伸长了?,其单位面积截?F面所受到的拉力称为胁强,而单位长度的伸长量称为胁变。
根据胡克定律,在弹性形变范围内,棒Sl状(或线状)固体胁变与它所受的胁强成正比:F??E Sl其比例系数E取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。
A4Fl(1) ?d2?上图是光杠杆镜测微小长度变化量的原理图。
左侧曲尺状物为光杠杆镜,M是反射镜,d1为光杠杆镜短臂的杆长,d2为图光杠杆原理光杆杆平面镜到尺的距离,当加减砝码时,b边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M 镜法线的方向,使得钢丝原长为l时,从一个调节好的位于图右侧的望远镜看M镜中标尺像的读数为A0;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为Ai。
这样,钢丝的微小伸长量?,对应光杠杆镜的角度变化量?,而对应的光杠杆镜中标尺读数变化则为ΔA。
由光路可逆可以得知,?A对光杠杆镜的张角应为2?。
从图中用几何方法可以得出:tg?d1(2)tg2??2??(3) d2将(2)式和(3)式联列后得:d1?A(4) 2d28mgld2所以:E?, 2?d?Ad18gld2故:E??d2Kd1??这种测量方法被称为放大法。
由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用。
三、实验仪器杨氏模量仪;光杆杆;螺旋测微器;游标尺;钢卷尺和米尺;望远镜(附标尺)。
四、实验内容1.用2kg砝码挂在钢丝下端钢丝拉直,调节杨氏模量仪底盘下面的3个底脚螺丝,同时观察放在平台上的水准尺,直至中间平台处于水平状态为止。
杨氏模量测定实验报告(总7页)
![杨氏模量测定实验报告(总7页)](https://img.taocdn.com/s3/m/bc965a9964ce0508763231126edb6f1afe00714c.png)
杨氏模量测定实验报告(总7页)引言杨氏模量是用来描述材料刚性特性的一项重要参数,它是指材料在受到弹性形变时,单位面积内所受的弹性应力与应变之比。
杨氏模量是材料力学性能指标之一,通常用来描述材料的强度和韧性等方面的性质。
杨氏模量测定实验可以通过实验手段来确定材料弹性形变下的特性。
本次实验将进一步深入研究松木的组成结构和强度特性,测定杨氏模量。
材料与设备松木直棒、荷重盘、钢尺、白色胶带、微型计算机、松木直棒保持夹、对称杠杆读数器、普适电源、短接电线、电阻箱实验原理当材料受到外部载荷牵引时,它就会发生一定的形变,一旦载荷从材料上移动,材料就会恢复到原来的形状和长度。
如果载荷的大小尽可能小,在应力和应变的关系线上,这个线性段的倾角可以得到一个确定的值,它被称为弹性模量或杨氏模量,是一种材料的基本力学性能指标。
在实验中,松木直棒保持夹紧在实验台上。
在离松木直棒2/5处约250mm远的位置处,使用荷重盘作用在松木直棒上,同时在离松木直棒的端面约10cm处粘贴了一块白色胶带,以便后续读数。
当荷重盘通过对称杆杠向下施力1N时,松木直棒上出现一定程度的弯曲,胶带上的两个点之间的距离变化,通过读数器记录下来。
实验步骤1. 初始设置实验仪器。
插好对称杆杠的插头,保证插头加紧。
打开微型计算机,打开对称杆杠读数器电源,并调整电源电压使其符合显示器显示的点亮亮度,打开普适电源并选好电压、电流。
2. 安装松木直棒。
将松木直棒保持夹固定在实验台上,用铅笔单平衡松木直柄保持夹,保障保持夹紧密稳定。
3. 安装荷重盘。
用短接电线连接荷重盘以确保电路的正常通路。
4. 安装白色胶带。
用白色胶带将托架边缘所指示的粘贴长度随机放在松木直棒的中间,然后使用胶带紧贴棒面,并按照标准要求和示例放置测量点,5. 上盘加重。
为保证测量结果足够准确,需要等待测量值稳定,选好打好盘的荷重盘,放置在示例板上,然后记录下显示器显示的松木直棒的初始值。
重复该过程,直到测量值达到稳定状态。
杨氏模量的实验报告
![杨氏模量的实验报告](https://img.taocdn.com/s3/m/39240328c4da50e2524de518964bcf84b9d52df9.png)
杨氏模量的实验报告【实验报告】实验名称:杨氏模量测量实验实验目的:通过测量钢丝绳拉伸时的应变形变来计算出杨氏模量,了解杨氏模量的意义和测量方法。
实验原理:杨氏模量是材料抵抗形变的能力指标,表示材料内部分子之间的相互作用力,是一种反映物质力学特性的量。
在一定条件下,弹性变形与受力之间是成正比关系,即:F=kx,其中F为受力大小,x为变形量,k为比例常数,若能测定出比例常数,就可以通过这个比例常数来计算杨氏模量。
实验步骤:1. 准备工作:将实验桌面平整,准备材料,包括弹簧秤、红外线测距仪、刻度尺、钢丝绳等。
2. 测量钢丝绳初始长度:将钢丝绳悬挂于实验台上,使用刻度尺测量它的初始长度。
3. 挂起不同质量的钢丝绳:将不同质量的钢丝绳挂在弹簧秤上,并用红外线测距仪测定它们的形变量,即钢丝绳的拉伸量。
4. 统计数据:将测得的数据记录下来,得到每个钢丝绳的受力大小和形变量。
5. 计算杨氏模量:通过公式E=F*L/(A*deltal)来计算杨氏模量,其中E表示杨氏模量,F表示受力大小,L表示加力长度,A表示钢丝绳的截面积,deltal表示钢丝绳的形变量。
实验结果:通过实验测量和数据统计,我们得到了以下几组数据:质量受力大小形变量(kg)(N)(mm)0.05 2.4 10.1 4.8 2.30.15 6.2 3.40.2 7.6 4.6通过计算,我们得到杨氏模量的值为E=1.73×10^12N/m²。
分析和结论:杨氏模量是钢丝绳内部分子之间的相互作用力之大小,计算出来的杨氏模量可以用来判断钢丝绳的弹性变形程度。
在实验中,我们通过测量钢丝绳拉伸的变形量和受力大小来计算出杨氏模量的值,得到的结果比较准确。
这个实验不仅帮助我们了解了杨氏模量的意义和测量方法,还通过实际操作锻炼了我们的动手操作能力和数据处理能力,具有较强的指导意义。
杨氏模量实验报告(总8页)
![杨氏模量实验报告(总8页)](https://img.taocdn.com/s3/m/59410e59dcccda38376baf1ffc4ffe473368fdca.png)
杨氏模量实验报告(总8页)本实验旨在探究弹性力学的杨氏模量,并通过测量金属丝的伸长量和施加的力来计算杨氏模量。
一、实验原理弹性力学是一种研究固体物体在外力作用下发生形变时的物理现象和规律的学科。
其中杨氏模量是弹性力学的重要参数之一,它是描述材料的刚性和弹性的重要指标。
设一根长度为L,截面积为A,杨氏模量为E的金属丝,在其两端施加一个拉力F时,其伸长量ΔL可以用下式计算:通过测量金属丝的伸长量和施加的力,可以计算出该金属丝的杨氏模量。
二、实验仪器本实验使用的仪器有:螺旋千分尺、直尺、金属丝弯曲杆、弹簧测力计等。
三、实验步骤1.准备材料。
本实验采用的金属丝为不锈钢丝,其直径为0.5mm,弯曲杆长度为20cm。
2.测量截面积。
使用螺旋千分尺和直尺测量金属丝的直径,计算出其截面积。
3.称重。
称量一定量的砝码,并记录其质量。
4.固定金属丝。
将金属丝用弯曲杆固定在实验台上。
5.挂砝码。
在金属丝下方挂上砝码,记录下施加的力。
6.测量伸长量。
使用螺旋千分尺测量金属丝的伸长量,并记录下来。
7.重复实验。
重复以上实验步骤多次,得到一组数据。
四、实验数据处理根据实验数据和杨氏模量的计算公式,可以得出每次实验的杨氏模量,并取均值作为最终结果。
计算过程如下:设金属丝的长度为L,截面积为A,挂上的砝码重量为F,测得的伸长量为ΔL。
则金属丝的杨氏模量可以计算如下:根据以上公式,计算出每次实验的杨氏模量如下表所示:实验次数|挂挑砝码重量F/g|伸长量ΔL/mm|杨氏模量E/GPa-|-|-|-1|10|0.45| 1962|20|0.92| 2033|30|1.39| 2014|40|1.86| 1985|50|2.33| 202平均值| | |200.0五、实验分析与讨论通过本实验,我们可以得出本金属丝的杨氏模量约为200GPa。
这个数据与之前的理论预期值相似,说明实验结果的精度较高,并且能够验证弹性力学理论的正确性。
此外,我们还可以通过对比不同金属丝的杨氏模量来了解不同金属的弹性特性。
杨氏模量测量实验报告
![杨氏模量测量实验报告](https://img.taocdn.com/s3/m/3d5e52a2f605cc1755270722192e453610665bbd.png)
一、实验目的1. 掌握用光杠杆装置测量微小长度变化的原理和方法。
2. 学习一种测量金属杨氏弹性模量的方法。
3. 学会用逐差法处理实验数据。
4. 了解实验误差的来源及减小误差的方法。
二、实验仪器1. 杨氏模量测定仪(包括望远镜、测量架、光杠杆、标尺、砝码)2. 钢丝(直径已知)3. 砝码4. 光杠杆5. 望远镜及标尺6. 螺旋测微器7. 游标卡尺8. 卷尺三、实验原理杨氏模量(E)是描述材料在弹性限度内应力与应变的比值,即E = F/S,其中F 为外力,S为材料的截面积。
本实验通过测量钢丝在受到外力作用下的伸长量,计算杨氏模量。
根据胡克定律,在弹性限度内,弹性体的相对伸长(L/L)与外施应力(F/S)成正比,即L/L = (F/S)/E。
设金属丝的直径为d,截面积为S = πd²/4,将此式代入上述公式,可得:E = 4FL/d²由于L是一个微小的长度变化,难以用普通测长器具测准,本实验采用光杠杆装置放大L的测量值,提高测量精度。
四、实验步骤1. 将杨氏模量测定仪调整水平,确保望远镜、标尺、光杠杆在同一高度。
2. 将钢丝一端固定在测量仪上,另一端连接光杠杆。
3. 调节光杠杆,使平面镜与标尺垂直。
4. 调节望远镜,使叉丝位于目镜的焦平面上,观察标尺的像。
5. 记录标尺的初始读数D₀。
6. 在钢丝上施加不同大小的外力,记录对应的标尺读数D和望远镜中观察到的标尺刻度值的变化量n。
7. 重复步骤5-6,进行多次测量。
五、数据处理1. 计算钢丝的截面积S = πd²/4。
2. 计算每次实验的外力F = 砝码质量× 重力加速度。
3. 计算每次实验的伸长量L = n × 光杠杆放大倍数。
4. 计算每次实验的杨氏模量E = 4FL/d²。
5. 计算杨氏模量的平均值E_avg和标准差σ。
六、实验结果与分析通过多次实验,得到钢丝的杨氏模量E_avg和标准差σ。
杨氏模量实验报告
![杨氏模量实验报告](https://img.taocdn.com/s3/m/c92349f3c77da26924c5b035.png)
杨氏模量实验报告开展实验自然要写实验报告,杨氏模量实验报告怎样写呢?那么,下面是给大家整理收集的杨氏模量实验报告相关范文,仅供参考。
杨氏模量实验报告1【实验目的】1.1.掌握螺旋测微器的使用方法。
2.学会用光杠杆测量微小伸长量。
3.学会用拉伸法金属丝的杨氏模量的方法。
【实验仪器】杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。
1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。
这圆形夹头可以在支架的下梁的圆孔内自由移动。
支架下方有三个可调支脚。
这圆形的气泡水准。
使用时应调节支脚。
由气泡水准判断支架是否处于垂直状态。
这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。
2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。
当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。
图1 图2 图33、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。
使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。
这是表明标尺通过物镜成像在分划板平面上。
由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。
标尺是一般的米尺,但中间刻度为0。
【实验原理】1、胡克定律和杨氏弹性模量固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。
如果外力后仍有残余形变,这种形变称为塑性形变。
应力:单位面积上所受到的力(F/S)。
应变:是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。
用公式表达为: (1)2、光杠杆镜尺法测量微小长度的变化在(1)式中,在外力的F的拉伸下,钢丝的伸长量DL是很小的量。
用一般的长度测量仪器无法测量。
在本实验中采用光杠杆镜尺法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属丝的直径为 d ,则 S 1 d 2 ,杨氏模量可表示为:
4
2.基本测量。 本实验是测定某一种型号钢丝的杨氏弹性模量,其中 F 可以由所挂的砝码的重量求出,直径 d 可以通过螺旋测微
计测量(或游标卡尺), L 可用米尺等常规的测量器具测量,但Δ L 由于其值非常微小,用常规的测量方法很难精确 测量。本实验将用放大法——“光杠杆镜”来测定这一微小的长度改变量Δ L L 可用米尺等常规的测量器具测量,但
二、实验原理:
1.胡克定律和杨氏模量: 在弹性形变范围内,棒状(或线状)固体应变与它所受的应力成正比,即
其比例系数 E 取决于固体材料的性质,反应了材料形变和内应力之间的关系
称为杨氏弹性模量。它的单位为 N / m2 。 实验证明,杨氏模量与外力 F 、物体的长度 L 和截面积 S 的大小无关,只取决于被测物的材料特性,它是表征
5.对称法消除系统误差。 为了消除弹性滞后效应引起的系统误差,测量中应包括增加拉伸力以及对应地减少拉伸力这一对称测量过程,实
验中可以采用增加和减少砝码的办法实现。只要在增、减相应重量时,金属丝伸缩量取平均,就可以消除滞后量Li 的 影响。即
Li
1 2
L增 L减
1 2
L0
Li
(5)测量光杠杆镜前后脚距离 b。把光杠杆镜的三只脚在白纸上压出凹痕,用尺画出两前脚的连线,再用游标卡 尺量出后脚到该连线的垂直距离。
(6)测量钢丝直径 d。用螺旋测微计在钢丝的不同部位测 5 次,取平均值。 (7)测量光杠杆镜镜面到望远镜附标尺的距离 D。用钢卷尺量出光杠杆镜镜面到望远镜附标尺的距离,作单次测 量。 (8)测量钢丝原长 L0。用钢卷尺单次测量钢丝的原长。
七、思考题:
(1)本实验应如何采用作图法来求得实验结果 E 的值?
答:
,令 x=
,作出 F 关于 x 的函数图像,其斜率就是杨氏模量。
(2)在本实验中,你是如何考虑尽量减小系统误差的? 答:本实验采用“对称测量”的方法来尽量减小系统误差,即拉力增加时,测量一次,然后依次减少砝码即拉力 减小时又测量一次,这样就尽可能的减小系统误差。
n6 n2 4
n7 n3 4
0.28 0.29 0.30 0.29
0.29
其中
,
S 1d2 4
故
的绝对误差 n 0.01 0.00 0.01 0.00
0.005
其中力的单位用牛顿,长度单位用 m。 相对误差
不确定度
E%=
≈0.05
得
E=1.785*1011±8.9*109(N/m2)
Li
L0
Li
Li
L0
Li
三、实验仪器:
杨氏模量仪测量仪(附标尺、光杠杆镜);螺旋测微器;游标尺;钢卷尺和米尺;望远镜(附反射镜)
四、实验内容和步骤:
(1)调节光杠杆镜位置。将光杆镜放在平台上,两前脚放在平台横槽内,后脚放在固定钢丝下端圆柱形套管上, 并使光杠杆镜镜面基本垂直或稍有俯角。
南昌大学物理实验报告
课程名称: 大学物理实验
实验名称: 金属丝杨氏弹性模量的测定
学院: 建筑工程学院 专业班级: 工程力学 161 班
学生姓名: 连彬彬
学号: 6034016027
实验地点: 基础实验大楼 610
座位号: 29
实验时间: 第 2 周星期 5 下午 15:45 开始
一、实验目的:
1.学会测量杨氏模量的一种方法,掌握光“光杠杆镜”测量微小长度变化的原理。 2.学会用“对称测量”消除系统误差。 3.学会如何依实际情况对各个测量量进行误差估算。 4.练习用逐差法、作图法处理数据。
6.000
n6
5.20
n6
5.20
7.000
n7
5.45
n7
5.50
(4)实验结果的计算:
平均值 n ni ni
2
n0
3.48
n1
3.73
n2
4.00
n3
4.30
n4
4.63
n5
4.93
n6
5.20
n7
5.48
n nm nn mn
(cm)
n4 n0 4
n5 n1 4
八、附上原始数据:
(3)本实验中使用了哪些长度测量仪器? 选择它们的依据是什么?它们的仪器误差各为多少? 答:螺旋测微器,选择螺旋测微器的原因是其精确度比较高,可以使实验更为成功,仪器误差为 0.004mm。 游标卡尺,选择游标卡尺的主要依据是其量程比螺旋测微器大,精确度较高,仪器误差为 0.02mm。 钢尺卷,选择钢尺卷的主要依据是根据量程,仪器误差为 1mm。
(6)在实验逐差法时,如何充分利用所测得的数据? 答:把每个数据点都用上,而且逐差法先求的是跨度为 n/2 的数据差值的平均值(n 是数据总数),肯定比相邻数 据点的差值大,由于基数较大,随机误差酿成的涨落不明显,结果更精确。
(7)若增重时,标读数与减重时对应荷重的标度数不吻合,其主要原因是什么? 答: 1.若标度数相差不大,其主要原因可能有 2 个: 一是金属丝晃动较为剧烈,读数有偏差;二是由于金属丝自身弹性滞后效应的影响; 2.若标度数相差较大时,考虑到操作时本身可能遇到的情况,原因可能: 操作者不慎触碰了望远镜,导致观察角度偏差巨大。
(3)观测伸长变化。以钢丝最初的读数作为开始拉伸的基数 n0,然后每加上 1kg 砝码,待钢丝渐趋平稳后读取一 次数据, 这样依次可以得到 n0 ,n1 ,n2 ,n3 ,n4 ,n5 ,n6 ,n7 , 这是钢丝拉伸过程中的读数变化。到第 8 次加砝码时无需读数, 待稳定后撤下 1kg 砝码,待钢丝渐趋平稳后读取一次数据。如此依次依次得到 n7 ,n6 ,n5 ,n4 ,n3 ,n2 ,n1 ,n0 ,这是钢丝收 缩过程中的读数变化。
五、实验数据与处理:
(1)长度的测量(表 1)。
表 1 数据表
金属丝的直径:螺旋测微计的零位误差_____-0.010_____(mm);示值误差____0.004_____(mm)
测量次数 1
2
3
4
5
平均值
直径 d
0.790
0.789
0.788
0.788
0.789
0.7888
不确定度: d 2仪+Sd2
(4)本实验应用的“光杠杆镜”放大法与力学中杠杆原理有哪些异同点? 答:光杠杆和杠杆在端点位移与悬臂长度的比例相等上,用的是相同的原理,纯几何关系;杠杆的受力可用做功 大小相等推导出力与受力点位移乘积相等,进而推出与悬臂长成反比。
(5)本实验待测各量都是长度,为何采用不同的测量仪器? 答:分别使用不同的测量仪器是因为,对于不同的数据,要求测量仪器的量程不同,且要求的精确度不同,所以 使用的测量仪器也不同。
远镜上看到的标尺像的读数变为 n2 。这样,钢丝的微小伸长量ΔL ,对应光杠杆镜的角度变化量 ,而对应的光杠杆 镜中标尺读数变化则为Δ n n1 n2 。由光的反射原理易得, n 对光杠杆镜的张角应为 4 。从图 2 中用几何方法可
以得出:
(1)
联立(1)、(2)两式可得
(2)
式中 n n2 n1 ,相当于光杠杆镜的长臂端 D 的位移。
4D 其中的 b 叫做光杠杆镜的放大倍数,由于 D >> b,所以 n >> L,从而获得对微小量的线性放大,提高了 L 的
测量精度。
4. 金属丝的弹性滞后效应。 金属丝在受到拉伸力作用时,并不能立即伸长到应有的长度 Li ( Li L0 Li ),而只能伸长到 Li Li 。同样,当 钢丝受到的拉伸力一旦减小时,也不能马上缩短到应有的长度 Li,仅缩短到 Li+δLi。因此实验时测出的并不是金属丝 应有的伸长或收缩的实际长度。
Δ L 由于其值非常微小,用常规的测量方法很难精确测量。
3.放大法。 本实验将用放大法——“光杠杆镜”来测定这一微小的长度改变量Δ L ,图 1 是光杠杆镜的实物示意图。
图2
图 2 是光杠杆镜测微小长度变化量的原理图。P0 端为光杠杆镜短臂的固定端(设该短臂的杆长为 b),短臂的另一 端则随被测钢丝的伸长、缩短而下降、上升,从而改变了反射镜 A 法线的方向,使得钢丝原长为 L0 时,从一个调节 好的位于图右侧的望远镜看 A 镜中标尺像的读数为 n1;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望
结果: d d (mm)=
mm
光杠杆镜臂长:游标卡尺的零位误差___0.00___(mm),示值误差___0.02____(mm)
结果: b b (mm) =
mm
(2)钢丝长度 L 和标尺到镜面距离的测量。
L L (mm) =
mm
D D (mm) =
mm
(3)增减重量时钢丝伸缩量的记录参考数据(表 2)
(2)望远镜调节。将望远镜置于距光杆镜合适距离处,松开望远镜固定螺钉,上下移动使得望远镜和光杠杆镜的 镜面基本等高。从望远镜筒上方沿镜筒轴线瞄准光杠杆镜面,移动望远镜固定架位置,直至可以看到光杠杆镜中标尺 的像。然后再从目镜观察,先调节目镜使十字叉丝清晰,最后缓缓旋转调焦手轮,使物镜在镜筒内伸缩,直至从望远 镜里可以看到清晰的标尺刻度为止。
六、误差分析:
1. 测量光杠杆镜镜面到望远镜附标尺的距离 D 时的误差分析: ①由于钢卷尺受重力作用下中部会下垂而引起误差; ②由于两端位置不正以及视觉偏差会引起误差。 2. 测量钢丝的原长 L0 时可能的误差: 测量的起点与终点没有完全对正而引起误差。 3. 测量钢丝伸缩量时可能的误差: ①实验桌面不稳定,导致读数时产生偏差; ②若读数时间过早,此时钢丝的形变过程未完成,导致读数的结果与理论实际值有偏差; ③操作者有可能在测量过程中无意触碰到望远镜,将直接导致 D、θ的值发生改变。