无源网络分析(
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 4 4
5
-I 2 + a3U 3 I 4 -U + a I U
3 4 4 5
a2 a3
a4 a5
a6
+
Uo
-
……
In-2 an-1U n-1 I o
U n-1 an I o
……
-I n-2 + an-1U n-1 I o
3 4 4 5
I in
+
Io
a1
I 2 a3U 3 I 4 U a I U
3 4 4
U in
-
a2 a3
a4 a5
a6
+
a7
Uo
-
5
……
Un-2 an-1 In-1 Uo
I n-1 anU o
……
U n-2 + an-1 In-1 U o
= K(2,n) = Uo 0
无源网络的分析
§1 梯形网络
一、梯形网络的几种形式
I in
+
Io
Z1 Z3 Y4 Z5 Y6 Z7 Y8
+ +
I in
Z2 Y3 Z4 Y5 Z6 Y7 Z8 Y9
Io
+
U in
-
Y2
Uo
-
U in Y1
-
Uo
-
串臂起头、并臂结尾,臂数n为偶数
I in
+
并臂起头、并臂结尾,臂数n为奇数
(1) 输出端开路 1 输出端开路时 U 0 U in
Δ
I in a1U in I 2
U in a2 I 2 U 3
a1U in I 2 I in U in + a2 I 2 U 3
- I 2 + a3U 3 I 4 U + a I U
0 U in I in I2 0 U3 0 I4 0 0 0 1 U n-1 an I 0 0
Uo 0
= K(2,n) =
U in A= Uo
I in C= Uo
= K(1,n -1) = Io 0
B an
B = K(2,n -1) = Io 0 a1an
令K(1,n) =△,系数矩阵行列式,则输出端短路时
1 I 0 U in Δ
YN - 2 Yn- 2
1 Yn
1 Z N -1
Z N - 3 Z n- 3
1 YN - 2
……
结合串、并联的分压、分流的概念,可建立输入电压、电流 与输出电压、电流的关系式。 I in Io 2、连续式 输出端空载时
U in Z1 I in U 2
+
Z1 Y2
0 1 Z3 0 1
0 1 0 -1
-1 Y4 0
0
-1 Z n-1
0 I in U in U2 0 I3 0 U4 0 0 1 I n-1 0 Yn U 0 0
I 3 Y4U 4 I 5
I 3 +Y4U 4 I 5
……
Un-2 Zn-1 In-1 Uo
I n-1 YnU o
……
Un-2 + Zn-1 In-1 Uo
Z1 1 -1 Y 2 0 -1 0 0
-Un-1 + an Io
(4) 输出端短路
I in D= Io
U in B= Io
Uo 0
= K(1,n)
D a1
a1 1 0 -1 a 1 0 2 0 -1 a3 1 0 -1 a4 0 0
0 1 0 -1 an-1 0 -1
I in
+
Io
Z1 Y2 Z3 Y4 Z5 Y6 Z7 Y8
+
U in
-
Uo
-
二、梯形网络的两个计算式
1、连分式
输入端阻抗:
Z in Z1 1 Y2 1 Z3 1 Y4 1 Yn-2 1 1 Z n-1 1 Yn
输出端空载时
Z N -1 Z n-1
a1
a1a2 1
-1 a3
-1 a4 0
a1 1
0
-1 an-1
1
0 1 a1a2 a3 a1 a3
-1 a2
K(1, 3) -1 a2 0
-1 a3
a1 K(1, 4) 0 0
1
0 1
0 0 1 a1a2 a3a4 a1a2 a3a4 a1a4 1
Z3 Y4
Z5 Y6
Z7 Y8
+
U in
-
Uo
-
Z1 I in U 2 U in
I in + Y2U 2 I 3 U 2 + Z 3 I 3 U 4
I in Y2U 2 I 3
U 2 Z3 I3 U4
归纳如下计算 △的规律,对于等式右边各项,可划分为: (1)第一类项,为对角线元素之积; (2)第二类项,为从第一类项中取去一个相邻成对因子后所 得的各余项的和; (3)第三类项,为从第一类项中取去两个相邻成对因子后所 得的各余项的和;
(4)以此类推,只有当n为偶数时,其最后一项必定为1。 低阶连续式 K(2,n)即为去掉第1行和第1列后的行列式; K(3,n)即为去掉第1、2行和第1、2列后的行列式; K(1,n-1)即为去掉第n行和第n列后的行列式; K(1,n-2)即为去掉第n、 n-1两行和第n 、 n-1两列后的行列式。
I in Io
Z2 Y3 Z4 Y5
+ +
Io
Z1 Y2 Z3 Y4 Z5 Y6 Z7
+
Z6
Y7
Z8
U in
-
Uo
-
U in Y1
-
Uo
-
串臂起头、串臂结尾,臂数n为奇数
并臂起头、串臂结尾,臂数n为偶数
从应用出发,以传输矩阵方程为典型进行分析 即
U in A B U o I in C D I o
Uo 0
= K(1,n)
B a1
a1 1 0 -1 a 1 0 2 0 -1 a3 1 0 -1 a4 0 0
0 1 0 -1 an-1 0 -1
0 I in U in U2 0 I3 0 U4 0 0 0 1 U n-1 an I 0 0
a1 I in U 2 U in
-I in + a2U 2 I 3
+
I in
a1 a2
Io
a3 a4
a5 a6 a7
+
U 2 a3 I 3 U 4 I aU I
3 4 4 5
-U 2 + a3 I 3 U 4 -I + a U I
I in a1U in I 2
U in a2 I 2 U 3
a1U in I 2 I in
-U in + a2 I 2 U 3
+
I in U in
-
Io
a1
I 2 a3U 3 I 4 U a I U
= K(2,n) = Io 0
Uo 0
I in D= Io U in B= Io
= K(1,n -1) =
C = K(2,n -1) = Uo 0 a1an
U in a1 I in U 2
I in a2U 2 I 3
In-1 +YnUo
来自百度文库
1 1 U 0 (-1)1+n (-1)n-1 U in U in Δ Δ
梯形网络的 连续式
将连续式写成一般形式:
a1 0 0
K(1, 2)
1
0 1 0 1
0 1 0 -1
0
-1 a2 0
1 ~ n的n阶的连续式
K(1,n) 0 1 an
U in B= Io
I in D= Io
I in
+
Io
+
Uo 0
I in C= Uo
Io 0
Uo 0
U in A B U o C D Io I in U in AU o BI o I CU DI
In-1 + anUo
(2) 输出端开路
I in C= Uo U in A= U
o Io 0
= K(1,n) C a1
C a1
a1 -1 0 0
1 a2 0
0 1 0 1
0 1 0
-1 a3
-1 a4 0
in o o
U in
-
Uo
-
U in A= = K(1,n) Io 0 Uo I in A C= = K(2,n) = U Io 0 a
o 1
I in
+
Io
a2 a3 a4 a5 a6 a7 a8
+
U in
-
Uo
-
U in A B= = K(1,n -1) == I o Uo 0 an I in A D= = K(2,n -1) = I o Uo 0 a1an
-1 an-1 0 -1
1 U 0 I in 令K(1,n) =△,系数矩阵行列式,则输出端开路时 Δ
0 U in I in I2 0 U3 0 I4 0 0 1 I n-1 0 an U 0 0
-1 a2 0
-1 a3
-1 a4
K(1, 5) a1a2a3a4a5 a1a2a3 a1a2a5 a1a4a5 a3a4a5 a1 a3 a5
K(1, 6) a1a2 a3 a4 a5 a6 a1a2a3a4 a1a2a3a6 a1a 2a5a6 a1a4a5a6 a 3a 4a 5a 6 a1a2 a1a6 a5 a6 a1a4 a3 a4 a3 a6 + 1
对于任何连续式,可以分解为其低阶连续式之和。 将△按第1行或第1列展开后可得:
K(1,n) a1K(2,n) K(3,n)
将△按第n行或第n列展开后可得: K(1,n) anK(1,n -1) K(1,n - 2) 三、连续式与传输矩阵之间的关系
U in A= Uo
Io 0
3 4 4 5
U in
-
Uo
-
……
In-2 an-1U n-1 I o
U n-1 an I o
……
-I n-2 + an-1U n-1 I o
-Un-1 + an Io
(3) 输出端短路
U in B= Io
I in D= Io
5
-I 2 + a3U 3 I 4 -U + a I U
3 4 4 5
a2 a3
a4 a5
a6
+
Uo
-
……
In-2 an-1U n-1 I o
U n-1 an I o
……
-I n-2 + an-1U n-1 I o
3 4 4 5
I in
+
Io
a1
I 2 a3U 3 I 4 U a I U
3 4 4
U in
-
a2 a3
a4 a5
a6
+
a7
Uo
-
5
……
Un-2 an-1 In-1 Uo
I n-1 anU o
……
U n-2 + an-1 In-1 U o
= K(2,n) = Uo 0
无源网络的分析
§1 梯形网络
一、梯形网络的几种形式
I in
+
Io
Z1 Z3 Y4 Z5 Y6 Z7 Y8
+ +
I in
Z2 Y3 Z4 Y5 Z6 Y7 Z8 Y9
Io
+
U in
-
Y2
Uo
-
U in Y1
-
Uo
-
串臂起头、并臂结尾,臂数n为偶数
I in
+
并臂起头、并臂结尾,臂数n为奇数
(1) 输出端开路 1 输出端开路时 U 0 U in
Δ
I in a1U in I 2
U in a2 I 2 U 3
a1U in I 2 I in U in + a2 I 2 U 3
- I 2 + a3U 3 I 4 U + a I U
0 U in I in I2 0 U3 0 I4 0 0 0 1 U n-1 an I 0 0
Uo 0
= K(2,n) =
U in A= Uo
I in C= Uo
= K(1,n -1) = Io 0
B an
B = K(2,n -1) = Io 0 a1an
令K(1,n) =△,系数矩阵行列式,则输出端短路时
1 I 0 U in Δ
YN - 2 Yn- 2
1 Yn
1 Z N -1
Z N - 3 Z n- 3
1 YN - 2
……
结合串、并联的分压、分流的概念,可建立输入电压、电流 与输出电压、电流的关系式。 I in Io 2、连续式 输出端空载时
U in Z1 I in U 2
+
Z1 Y2
0 1 Z3 0 1
0 1 0 -1
-1 Y4 0
0
-1 Z n-1
0 I in U in U2 0 I3 0 U4 0 0 1 I n-1 0 Yn U 0 0
I 3 Y4U 4 I 5
I 3 +Y4U 4 I 5
……
Un-2 Zn-1 In-1 Uo
I n-1 YnU o
……
Un-2 + Zn-1 In-1 Uo
Z1 1 -1 Y 2 0 -1 0 0
-Un-1 + an Io
(4) 输出端短路
I in D= Io
U in B= Io
Uo 0
= K(1,n)
D a1
a1 1 0 -1 a 1 0 2 0 -1 a3 1 0 -1 a4 0 0
0 1 0 -1 an-1 0 -1
I in
+
Io
Z1 Y2 Z3 Y4 Z5 Y6 Z7 Y8
+
U in
-
Uo
-
二、梯形网络的两个计算式
1、连分式
输入端阻抗:
Z in Z1 1 Y2 1 Z3 1 Y4 1 Yn-2 1 1 Z n-1 1 Yn
输出端空载时
Z N -1 Z n-1
a1
a1a2 1
-1 a3
-1 a4 0
a1 1
0
-1 an-1
1
0 1 a1a2 a3 a1 a3
-1 a2
K(1, 3) -1 a2 0
-1 a3
a1 K(1, 4) 0 0
1
0 1
0 0 1 a1a2 a3a4 a1a2 a3a4 a1a4 1
Z3 Y4
Z5 Y6
Z7 Y8
+
U in
-
Uo
-
Z1 I in U 2 U in
I in + Y2U 2 I 3 U 2 + Z 3 I 3 U 4
I in Y2U 2 I 3
U 2 Z3 I3 U4
归纳如下计算 △的规律,对于等式右边各项,可划分为: (1)第一类项,为对角线元素之积; (2)第二类项,为从第一类项中取去一个相邻成对因子后所 得的各余项的和; (3)第三类项,为从第一类项中取去两个相邻成对因子后所 得的各余项的和;
(4)以此类推,只有当n为偶数时,其最后一项必定为1。 低阶连续式 K(2,n)即为去掉第1行和第1列后的行列式; K(3,n)即为去掉第1、2行和第1、2列后的行列式; K(1,n-1)即为去掉第n行和第n列后的行列式; K(1,n-2)即为去掉第n、 n-1两行和第n 、 n-1两列后的行列式。
I in Io
Z2 Y3 Z4 Y5
+ +
Io
Z1 Y2 Z3 Y4 Z5 Y6 Z7
+
Z6
Y7
Z8
U in
-
Uo
-
U in Y1
-
Uo
-
串臂起头、串臂结尾,臂数n为奇数
并臂起头、串臂结尾,臂数n为偶数
从应用出发,以传输矩阵方程为典型进行分析 即
U in A B U o I in C D I o
Uo 0
= K(1,n)
B a1
a1 1 0 -1 a 1 0 2 0 -1 a3 1 0 -1 a4 0 0
0 1 0 -1 an-1 0 -1
0 I in U in U2 0 I3 0 U4 0 0 0 1 U n-1 an I 0 0
a1 I in U 2 U in
-I in + a2U 2 I 3
+
I in
a1 a2
Io
a3 a4
a5 a6 a7
+
U 2 a3 I 3 U 4 I aU I
3 4 4 5
-U 2 + a3 I 3 U 4 -I + a U I
I in a1U in I 2
U in a2 I 2 U 3
a1U in I 2 I in
-U in + a2 I 2 U 3
+
I in U in
-
Io
a1
I 2 a3U 3 I 4 U a I U
= K(2,n) = Io 0
Uo 0
I in D= Io U in B= Io
= K(1,n -1) =
C = K(2,n -1) = Uo 0 a1an
U in a1 I in U 2
I in a2U 2 I 3
In-1 +YnUo
来自百度文库
1 1 U 0 (-1)1+n (-1)n-1 U in U in Δ Δ
梯形网络的 连续式
将连续式写成一般形式:
a1 0 0
K(1, 2)
1
0 1 0 1
0 1 0 -1
0
-1 a2 0
1 ~ n的n阶的连续式
K(1,n) 0 1 an
U in B= Io
I in D= Io
I in
+
Io
+
Uo 0
I in C= Uo
Io 0
Uo 0
U in A B U o C D Io I in U in AU o BI o I CU DI
In-1 + anUo
(2) 输出端开路
I in C= Uo U in A= U
o Io 0
= K(1,n) C a1
C a1
a1 -1 0 0
1 a2 0
0 1 0 1
0 1 0
-1 a3
-1 a4 0
in o o
U in
-
Uo
-
U in A= = K(1,n) Io 0 Uo I in A C= = K(2,n) = U Io 0 a
o 1
I in
+
Io
a2 a3 a4 a5 a6 a7 a8
+
U in
-
Uo
-
U in A B= = K(1,n -1) == I o Uo 0 an I in A D= = K(2,n -1) = I o Uo 0 a1an
-1 an-1 0 -1
1 U 0 I in 令K(1,n) =△,系数矩阵行列式,则输出端开路时 Δ
0 U in I in I2 0 U3 0 I4 0 0 1 I n-1 0 an U 0 0
-1 a2 0
-1 a3
-1 a4
K(1, 5) a1a2a3a4a5 a1a2a3 a1a2a5 a1a4a5 a3a4a5 a1 a3 a5
K(1, 6) a1a2 a3 a4 a5 a6 a1a2a3a4 a1a2a3a6 a1a 2a5a6 a1a4a5a6 a 3a 4a 5a 6 a1a2 a1a6 a5 a6 a1a4 a3 a4 a3 a6 + 1
对于任何连续式,可以分解为其低阶连续式之和。 将△按第1行或第1列展开后可得:
K(1,n) a1K(2,n) K(3,n)
将△按第n行或第n列展开后可得: K(1,n) anK(1,n -1) K(1,n - 2) 三、连续式与传输矩阵之间的关系
U in A= Uo
Io 0
3 4 4 5
U in
-
Uo
-
……
In-2 an-1U n-1 I o
U n-1 an I o
……
-I n-2 + an-1U n-1 I o
-Un-1 + an Io
(3) 输出端短路
U in B= Io
I in D= Io