湖北省黄冈市罗田一中2020年自主招生考试数学试卷

合集下载

湖北省罗田县一2019-2020学年高一入学考试数学试卷附答案(推广版)

湖北省罗田县一2019-2020学年高一入学考试数学试卷附答案(推广版)

1 47 10 13 16 19 22 25 28 31 34 37 40 43 …… ……
则第 20 行第 19 个数 _____________________
三、解答题(本题共 9 小题,共 72 分)
是 17.
18.先化简,再求值:2x − 6 5 − x − 2,其中x = −1.
3 4
3
即恰好选中一名男生和一名女生的概率是 2 .................8 分 3
23、【详解】(1)设当走路慢的人再走 600 步时,走路快的人的走 x 步, 由题意得 x:600=100:60, ∴x=1000,
添加于龙老师微信号yulong5160,留言“资料”二字,加入资料群
八千万中学生家庭,人人分享,人人受益(资料来源于网络)
9.分解因式:
_________________
10.分式方程:
的解为__________________
11.如图,在平面直角坐标系中,边长为 2 的正方形 的边 在 轴上, 边的中点是坐 标原点 ,将正方形绕点 按逆时针方向旋转 90°后,点 的对应点 的坐标是
________________
12.已知反比例函数 的图象分别位于第二、第四象限,
添加于龙老师微信号yulong5160,留言“资料”二字,加入资料群
八千万中学生家庭,人人分享,人人受益(资料来源于网络)
在 Rt△ACE 中,∵∠CAE=30°, ∴tan30°= CE
AE
即 3= x , 3 x + 40
解得,x=20 3 +20≈20×1.732+20=54.64(m)
∴CD=CE+ED=54.65+1.5=56.15≈56(m) 答:该建筑物的高度约为 56m........................8 分

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题五(pdf版,含解析)

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题五(pdf版,含解析)

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题五一、选择题(共5小题,每题4分,满分20分)1.(4分)下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B. C. D.2.(4分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.43.(4分)如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.84.(4分)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15 B.20 C.25 D.305.(4分)已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.6二、填空题(共6题,每小题5分,满分30分)6.(5分)满足方程|x+2|+|x﹣3|=5的x的取值范围是.7.(5分)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b ﹣7c,则m的最小值为.8.(5分)如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC于P,Q两点,且=m,=n,则+=.9.(5分)在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有个.10.(5分)如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A (0,),∠OCB=60°,∠COB=45°,则OC=.(第10题图) (第11题图)11.(5分)如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是.三、简答题(共4小题,满分50分)12.(12分)九年级(1)、(2)、(3)班各派4名代表参加射击比赛,每队每人打两枪,射中内环得50分,射中中环得35分,射中外环得25分,脱靶得0分.统计比赛结果,(1)班8枪全中,(2)班1枪脱靶,(3)班2枪脱靶,但三个班的积分完全相同,都是255分.请将三个班分别射中内环、中环、外环的次数填入下表并简要说明理由:班级内环中环外环(1)班(2)班(3)班13.(12分)设二次函数y=ax2+bx+c的开口向下,顶点落在第二象限.(1)确定a,b,b2﹣4ac的符号,简述理由.(2)若此二次函数图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为3,求抛物线的解析式.14.(12分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD=60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).15.(14分)在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x 于点M,BC边交x轴于点N(如图1).(1)求边AB在旋转过程中所扫过的面积;(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题五参考答案与试题解析一、选择题(共5小题,每题4分,满分20分)1.(4分)下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.C.D.【分析】先把算式的值求出,然后根据函数的性质分别求出四个图中的阴影部分面积,看是否与算式的值相同,如相同,则是要选的选项.【解答】解:原式=++==.A、作TE⊥X轴,TG⊥Y轴,易得,△GTF≌△ETD,故阴影部分面积为1×1=1;B、当x=1时,y=3,阴影部分面积1×3×=;C、当y=0时,x=±1,当x=0时,y=﹣1.阴影部分面积为[1﹣(﹣1)]×1×=1;D、阴影部分面积为xy=×2=1.故选B.【点评】解答A时运用了全等三角形的性质,B、C、D都运用了函数图象和坐标的关系,转化为三角形的面积公式来解答.2.(4分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.4【分析】连接O′C,O′B,O′D,OO′,则O′D⊥BC.因为O′D=O′B,O′C平分∠ACB,可得∠O′CB=∠ACB=×60°=30°,由勾股定理得BC=2.【解答】解:当滚动到⊙O′与CA也相切时,切点为D,连接O′C,O′B,O′D,OO′,∵O′D⊥AC,∴O′D=O′B.∵O′C平分∠ACB,∴∠O′CB=∠ACB=×60°=30°.∵O′C=2O′B=2×2=4,∴BC===2.故选:C.【点评】此题主要考查切线及角平分线的性质,勾股定理等知识点,属中等难度题.3.(4分)如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.8【分析】先把12分成2个因数的积的形式,共有6总情况,所以对应的p值也有6种情况.【解答】解:设12可分成m•n,则p=m+n(m,n同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6个值.故选C.【点评】主要考查了分解因式的定义,要熟知二次三项式的一般形式与分解因式之间的关系:x2+(m+n)x+mn=(x+m)(x+n),即常数项与一次项系数之间的等量关系.4.(4分)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15 B.20 C.25 D.30【分析】设容易题有x道,中档题有y道,难题有z道,然后根据题目数量和三人解答的题目数量列出方程组,然后根据系数的特点整理即可得解.【解答】解:设容易题有x道,中档题有y道,难题有z道,由题意得,,①×2﹣②得,z﹣x=20,所以,难题比容易题多20道.故选B.【点评】此类题注意运用方程的知识进行求解,观察系数的特点巧妙求解更简便.5.(4分)已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.6【分析】根据题中所给的条件,在直角三角形中解题.根据角的正切值与三角形边的关系,结合勾股定理求解.【解答】解:过点B作BE⊥AC交AC于点E.如下图设BE=x,∵∠BDA=45°,∠C=30°,∴DE=x,BC=2x,∵tan∠C=,∴=tan30°,∴3x=(3+x),解得x=,在Rt△ABE中,AE=DE﹣AD=﹣3=,由勾股定理得:AB2=BE2+AE2,AB==3.故选C.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.二、填空题(共6题,每小题5分,满分30分)6.(5分)满足方程|x+2|+|x﹣3|=5的x的取值范围是﹣2≤x≤3.【分析】分别讨论①x≥3,②﹣2<x<3,③x≤﹣2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.【解答】解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x﹣3=5,解得:x=3;第二种:当﹣2<x<3时,原方程就可化简为:x+2﹣x+3=5,恒成立;第三种:当x≤﹣2时,原方程就可化简为:﹣x﹣2+3﹣x=5,解得:x=﹣2;所以x的取值范围是:﹣2≤x≤3.【点评】解一元一次方程,注意最后的解可以联合起来,难度很大.7.(5分)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b ﹣7c,则m的最小值为﹣.【分析】解方程组,用含m的式子表示出a,b,c的值,根据a≥0,b≥0,c≥0,求得m的取值范围而求得m的最小值.【解答】解:由题意可得,解得a=﹣3,b=7﹣,c=,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴﹣≥m≥﹣.=﹣.所以m最小值故本题答案为:﹣.【点评】本题考查了三元一次方程组和一元一次不等式的解法.8.(5分)如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC 于P,Q两点,且=m,=n,则+=1.【分析】根据三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.可以分别过点B,C作BE∥AD,CF∥AD,交PQ 于点E,F,根据平行线等分线段定理和梯形中位线定理可得到两个等式,代入所求代数式整理即可得到答案.【解答】解:分别过点B,C作BE∥AD,CF∥AD,交PQ于点E,F,则BE ∥AD∥CF,∵点D是BC的中点,∴MD是梯形的中位线,∴BE+CF=2MD,∴+==+===1.【点评】此题考查了重心的概念和性质,能够熟练运用平行线分线段成比例定理、平行线等分线段定理以及梯形的中位线定理.9.(5分)在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有25个.【分析】找到函数图象与x轴的交点,那么就找到了相应的x的整数值,代入函数求得y的值,那么就求得了y的范围.【解答】解:将该二次函数化简得,y=﹣[(x﹣4)2﹣],令y=0得,x=或.则在红色区域内部及其边界上的整点为(2,0),(3,0),(4,0),(5,0),(6,0),(2,1),(2,2),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2)共25个,故答案为:25.【点评】本题涉及二次函数的图象性质,解决本题的关键是得到相对应的x的值.10.(5分)如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A (0,),∠OCB=60°,∠COB=45°,则OC=1+.【分析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.【解答】解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.【点评】此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.11.(5分)如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是16+12.【分析】此题首先能够把问题转化到三角形中进行分析.根据锐角三角函数的概念可以证明三角形的面积等于相邻两边的乘积乘以夹角的正弦值,根据这一公式分析面积的最大值的情况.然后运用勾股定理以及直角三角形的斜边上的高等于两条直角边的乘积除以斜边求得长方形的长和宽,进一步求得其周长.【解答】解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N.根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD=6,根据三角形的面积公式求得OM=4,即AB=8.则矩形ABCD的周长是16+12.【点评】本题考查的是矩形的定理以及垂径的性质,考生应注意运用勾股定理来求得边长继而才能求出周长.三、简答题(共4小题,满分50分)12.(12分)九年级(1)、(2)、(3)班各派4名代表参加射击比赛,每队每人打两枪,射中内环得50分,射中中环得35分,射中外环得25分,脱靶得0分.统计比赛结果,(1)班8枪全中,(2)班1枪脱靶,(3)班2枪脱靶,但三个班的积分完全相同,都是255分.请将三个班分别射中内环、中环、外环的次数填入下表并简要说明理由:班级内环中环外环(1)班(2)班(3)班【分析】本题可以通过设出内环、中环、外环射中的枪数为x,y,z;设脱靶数为t,根据等量关系“总得分=内环得分+中环得分+外环得分”列出函数方程进行分析,从而确定出各中枪数.【解答】解:填表如下:班级内环中环外环(1)班134(2)班232(3)班330理由如下:可设t枪脱靶,x枪射中内环,y枪射中中环,则有(8﹣x﹣y﹣t)枪射中外环,所以50x+35y+25(8﹣x﹣y﹣t)=255化简得y=5+2(t﹣x)+(1+t﹣x)对于(1)班,t=0,y=5﹣2x+(1﹣x),x为奇数,只能取x=1,得y=3;对于(2)班,t=1,y=7﹣2x+(2﹣x),x为偶数,只能取x=2,得y=3;对于(3)班,t=2,y=9﹣2x+(3﹣x),x为奇数,只能取x=3,得y=3;【点评】此题考查的是学生对函数方程的分析讨论并对某些值确定,同学们要注意细心分析.13.(12分)设二次函数y=ax2+bx+c的开口向下,顶点落在第二象限.(1)确定a,b,b2﹣4ac的符号,简述理由.(2)若此二次函数图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为3,求抛物线的解析式.【分析】(1)根据抛物线的开口向下判断a的符号,再根据第二象限点的坐标特点及二次函数的顶点坐标列出不等式组,确定出解答a,b,b2﹣4ac的符号即可.(2)根据抛物线过原点及顶点在直线x+y=0上求出其顶点坐标及一次项系数,再根据顶点与原点的距离为3求出二次项系数,进而求出其解析式.【解答】解:(1)∵抛物线开口向下,∴a<0;∵顶点在第二象限,∴,∴b<0,b2﹣4ac>0.(2)由题意可得c=0,此时顶点坐标为(﹣,﹣),因顶点在直线x+y=0上,所以﹣﹣=0,b=﹣2.此时顶点坐标为(,﹣),由+=18,a=﹣,则抛物线的解析式为y=﹣x2﹣2x.【点评】本题考查的是二次函数的图象与系数的关系及用待定系数法求二次函数的解析式,掌握二次函数的特点是解题的关键.14.(12分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD=60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).【分析】(1)根据圆内接四边形的性质和三角形的内角和定理进行证明;(2)根据三角形的外心到三角形的三个顶点的距离相等的性质只需证明AB=AF=AE,根据等腰三角形的性质和判定进行证明.【解答】证明:(1)∠ABF=∠ADC=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,(4分)而∠F=60°﹣∠ACF,(6分)因为∠ACF=∠ADE,(7分)所以∠ABF=∠F,所以AB=AF.(8分)(2)四边形ABCD内接于圆,所以∠ABD=∠ACD,(10分)又DE=DC,所以∠DCE=∠DEC=∠AEB,(12分)所以∠ABD=∠AEB,所以AB=AE.(14分)∵AB=AF,∴AB=AF=AE,即A是三角形BEF的外心.(16分)【点评】综合运用了圆内接四边形的性质、三角形的内角和定理以及三角形的外心的性质.15.(14分)在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x 于点M,BC边交x轴于点N(如图1).(1)求边AB在旋转过程中所扫过的面积;(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.【分析】(1)S阴=S△OAB+S扇形OBB′﹣S△OAA′﹣S扇形OAA′,根据公式即可求解.(2)延长BA交y轴于E点,可以证明:△OAE≌△OCN,△OME≌△OMN 证得:OE=ON,AE=CN,MN=ME=AM+AE=AM+CN.从而求得:P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.即可求解.(3)Rt△BMN中,BM2+BN2=MN2,所以(1﹣n)2+(1﹣m+n)2=m2⇒m2﹣mn+2﹣m=0.把这个方程看作关于n的方程,根据一元二次方程有解得条件,即可求得.【解答】解:(1)如图,S阴=S△OAB+S扇形OBB'﹣S△OA'B′﹣S扇形OAA'=S扇形OBB′﹣S扇形OAA′=π﹣π×12=(2)p值无变化证明:延长BA交y轴于E点,在△OAE与△OCN中,∴△OAE≌△OCN(AAS)∴OE=ON,AE=CN在△OME与△OMN中,∴△OME≌△OMN(SAS)∴MN=ME=AM+AE=AM+CN∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2;(3)设AM=n,则BM=1﹣n,CN=m﹣n,BN=1﹣m+n,∵△OME≌△OMN,=S△MOE=OA×EM=m∴S△MON在Rt△BMN中,BM2+BN2=MN2∴(1﹣n)2+(1﹣m+n)2=m2⇒n2﹣mn+1﹣m=0∴△=m2﹣4(1﹣m)≥0⇒m≥2﹣2或m≤﹣2﹣2,∴当m=2﹣2时,△OMN的面积最小,为﹣1.此时n=﹣1,则BM=1﹣n=2﹣,BN=1﹣m+n=2﹣,∴Rt△BMN的内切圆半径为=3﹣2.【点评】本题综合运用了扇形的面积公式,全等三角形的判定,三角形的面积公式以及勾股定理的综合应用,难度较大.。

2020年黄冈中学自主招生考试数学试题(含答案)

2020年黄冈中学自主招生考试数学试题(含答案)

第1页共11页数学试题试卷满分120分,考试时间120分钟一、选择题(本大题8小题,每小题4分,共32分)在每小题列出的四个选项中,只有一个是正确的,请选出正确选项,在答题卡上相应位置用2B 铅笔涂黑.1.2020年的春天至今,一种被称为新型冠状病毒肺炎的肺部疾病在全球爆发,这次突如其来的疫情给世界各国人民生命安全和身体健康带来严重威胁,对世界经济社会发展带来严重冲击.疫情严重,请尽量不要聚会,避免出入公共场所.截止7月10日,全球大约有12300000人感染新冠肺炎.12300000用科学计数法表示为()A .612.310⨯B .512310⨯C .80.12310⨯D .71.2310⨯2.一把直尺和一块三角板ABC (含45︒角)按如图1所示摆放,直尺一边与三角板的两直角边分别交于点D 和点E ,另一边与三角板的两直角边分别交于点F 和点A ,25CED ∠=︒,则BFA ∠的大小为()A .115︒B .110︒C .105︒D .120︒3.已知a ,b 两数在数轴上的位置如图2所示,则化简222b a a b ab a b -++--的结果是()A .1a b --B .1a b -++C .1a b +-D .1a b --+4.假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A .8分钟B .7分钟C .6分钟D .5分钟5.构建几何图形解决代数问题体现了“数形结合”的重要思想.在计算tan15︒时,如图3,在Rt ACB ∆中,90C ∠=︒,30ABC ∠=︒,延长CB 使BD AB =,连接AD ,得15D ∠=︒,所以123tan152323(23)(23)AC CD -︒====-++-.类比这种方法,计算tan 22.5︒的值为()A .21+B .21-C .2D .126.设,,a b c 分别是ABC ∆的三条边,对应的角分别为,,A B C ,若3,2,30b c C === ,则可以作出符合条图2图3图1第2页共11页件的三角形的个数为()A .0B .1C .2D .不确定7.如图4,有一电路连着三个开关,每个开关闭合与断开是等可能的,若不考虑元件的故障因素,则电灯点亮的概率为()A .12B .34C .23D .388.数独是源自18世纪瑞士的一种数学游戏.如图5是数独的一个简化版,由3行3列9个单元格构成.玩该游戏时,需要将数字1,2,3(各3个)全部填入单元格,每个单元格填一个数字,要求每一行、每一列均有1,2,3这三个数字,则不同的填法有()A .12种B .24种C .72种D .216种二、填空题(本大题8小题,每小题4分,共32分)请把下列各题正确的答案填写在答题卡的相应的位置上.9.若函数6xy x =-在实数范围内有意义,则函数x 的取值范围是_____________.10.某商场销售额4月份为25万元,6月份为36万元,该商场5、6两个月销售额的平均增长率是%.11.已知3232x -=+,3232y +=-,则22x y x y ++=_____________.12.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,则222ab bc ca a b c ++++的值为.13.若[]x 表示不超过x 的最大整数(例如[2.3]=2),{}[]x x x =-,方程2{}3[]x x x +=的解为.14.如图6,ABC ∆的顶点是正方形网格的格点,则sin A 的值为________.15.如图7,在锐角三角形ABC 中,8AB =,ABC ∆的面积为40,BD 平分ABC ∠,若M 、N 分别是BD 、BC 上的动点,则CM MN +的最小值为________.16.n 个单位小立方体叠放在桌面上,所得几何体的主视图和俯视图均如图8所示.那么n 的最大值与最小值的积是.三、解答题(一)(本大题4小题,每小题8分,共32分).图5图6图7图4图8。

2020年黄冈中学重点高中自主招生考试数学模拟试卷八及答案解析

2020年黄冈中学重点高中自主招生考试数学模拟试卷八及答案解析

O x y A B C DM N (第3题图) 2020年黄冈中学重点高中自主招生考试数学模拟试卷八一、填空题(共5题,每题5分,共25分)1.设532x -=,则代数式(1)(2)(3)x x x x +++的值是( ) (A) -1 (B) 0 (C) 1 (D)22. 程序框图如图所示.当E =0.96时,则输出的k =( ) (A)20 (B)22 (C)24 (D)253. 如图,矩形ABCD 的对角线BD 经过坐标原点O ,矩形的边分别平行于坐标轴,反比例函数ky x=(k >0)的图象分别与BC 、CD 交于点M 、N .若点A(-2,-2),且△OMN 的面积为32,则k =( )(A)2.5 (B)2 (C)1.5 (D)14. 如图,AB 是⊙O 的直径,弦CD⊥AB 于点G ,点F 是CD 上一点,且满足13CF FD =,连接AF 并延长交⊙O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=52; ④S △DEF =45.其中正确的是结论的个数是( ) (A)1 (B)2 (C)3 (D)45.如图,点D 、E 分别在AB 、AC 上,BE 、CD 相交于点F ,设S 四边形EADF =S1,S △BDF =S2, S △BCF =S3,S △CEF =S 4,则S 1S 3与S 2S 4的大小关系是( )(A) 不能确定 (B) S 1S 3<S 2S 4 (C) S 1S 3=S 2S 4 (D) S 1S 3>S 2S 4开始k=1,S=01(1)S S k k =++S ≥E ?输出kk=k+1否是(第2题图)(第4题图) (第5题图)二、填空题(共4题,每题5分,共20分)6. 关于x 的分式方程11mx =-+的解是负数,则m 的取值范围是__________.7.一枚质地均匀的正方形骰子的六个面上的数字分别是1、2、2、3、3、4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1、3、4、5、6、8.同时掷这两枚骰子,则其朝上的面两数字之和为5的概率是_______.8.如图,在Rt△ABC 两直角边AC 、BC 上分别作正方形ACDE 、正方形CBFG ,连结DG .线段AB 、BF 、FG 、GD 、DE 、EA 的中点依次为P 、L 、K 、I 、H 、Q .若AC =14,BC =28,则六边形HIKLPQ 的面积为_______.9.如图,已知菱形ABCD 的顶点D 、C 在直线y =x 上,且顶点A 、B 在抛物线y =x 2上,DA 平行于y 轴,则S 菱形ABCD =_______.(第8题图)ABCDEF GIH LKPQ(第9题图)OxyABCD三、解答题(共2题,第10题15分,第11题15分)10.如图①,梯形ABCD 中,AB∥CD,∠C=90°,AB =BC =4, CD =6.(1)点E 是BC 边上的点,EF∥AD 交CD 于点F ,FG∥EA 交AD 边于点G .若四边形AEFG 是矩形,求BE 的长;(2)在(1)的条件下,将∠AEF 绕着点E 逆时针旋转为∠A'EF',交CD 边于点F'(与D 不重合),射线EA'交AB 边于点M ,作F'N∥EA'交AD 边于点N ,如图②.设BM =x ,△NF'D 的F'D 边上的高为y .求y 与x 的函数关系式,并直接写出y 的最大值.(图①)ABC DEFG(图②)AB C DEF ’NMA ’11.已知,如图,二次函数2y ax bx c =++的图象经过点(1,0)A ,(3,0)B ,(0,3)C . ⑴求该二次函数的解析式;⑵在该抛物线对称轴上一点P ,使得三条线段PA 、PB 、PC 与一个等边三角形的三条边对应相等(即这三条线段能构成等边三角形),请求出点P 的坐标. ⑶若线段DE 两端点的坐标分别为3(3,)2D 、3(4,)2E .将线段DE 向左平移t 个单位后,在平移后的像''D E 上都存在点P ,使得三条线段PA 、PB 、PC 能与某个等腰三角形的三条边对应相等.请直接写出t 的取值范围.(第11题图)(备用图)2020年黄冈中学重点高中自主招生考试数学模拟试卷八答题卡第Ⅰ部分 数学题号 一 二 三 总分 10 11 得分一、填空题(共5题,每题5分,共25分)1 2 3 4 5二、填空题(共4题,每题5分,共20分)6 7 8 9三、解答题(共2题,第10题15分,第11题15分)10.(图①)ABC DEFG(图②)ABC DEF ’NMA ’11.(第11题图)(备用图)2020年黄冈中学重点高中自主招生考试 数学模拟试卷八参考答案及评分标准一、填空题(共5题,每题5分,共25分) 1 2 3 4 5 ACBCD二、填空题(共4题,每题5分,共20分) 678 9 m>-1且m ≠0191004.517224-三、解答题(共2题,第10题15分,第11题15分) 10.(1)作AH ⊥CD 于H ,则AH=BC=AB=4,HD=2. ∵∠AEB+∠CEF=90°,∠EFC+∠CEF=90° ∴∠AEB=∠EFC 同理∠EFC=∠D ∴∠AEB=∠D∴Rt △ABE ≌Rt △AHD ∴BE=HD=2---------5'(2)∵∠BEM=∠CF'E ,∠B=∠C=90° ∴△BEM ∽△CF'E 作NP ⊥CD 于P ,同理△CF'E ∽△PNF'∴''BM CE PF BE CF PN ==∴CF'=4x ,PF'=2xy 由(1)知tanD=2y PD = ∴PD=2y∵CD=CF'+PF'+PD=422xy yx++=6 ∴2128x y x x-=+--------------------------10' y 最大值=28810--------------------15' 11. ⑴2343333y x x =-+;------------5' ⑵(2,3)P ---------------------10' ⑶712t ≤≤------------------------15。

黄冈中学自主招生预录数学模拟试题

黄冈中学自主招生预录数学模拟试题

黄冈中学自主招生预录数学试题一、 选择题(每小题5分,共20分)1. 方程023x =+-x x 实根个数为( )A 1B 2C 3D 4 2.=+++=-=6,231,23122b a b a 则( ) A 3 B 4 C 5 D 63.已知一个六边形六个内角都是1200,连续四条边长依次是1,3,3,2则该六边形的周长是( )A 13B 15C 14D 164.实数a,b 满足()()111a 22=----b b a ,说法:(1)a=b, (2)a=-b, (3)ab=1,(4)ab=-1中正确的有( )个A 1B 2C 3D 4 二、填空题(每小题5分,共40分)5.若a,b 都是正实数,0111=+--b a b a ,则=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛33b a a b 6.不论m 为任何实数,抛物线1222-+++=m m mx x y 的顶点都在一条直线上,则这条直线的解析式是7.甲从A 地到B 地,乙从B 地到A 地,甲,乙同时出发相向匀速而行,经t 小时相遇于C 地,相遇后二人继续前进,甲又用了4小时到达B 地,乙又用了9小时到达A 地,则t= 8.75+的小数部分是a ,75-的小数部分是b ,则ab-2a+3b-12=9.设a ax -=1,则24x x += 10.如果一个三位数,百位数字与个位数字都大于十位数字,则称这个三位数为“凹数”,从所有三位数中任取一个三位数是“凹数”的概率是11.化简:=++⎪⎪⎭⎫ ⎝⎛+--+-+-b a ab ab a a ab b b b ab a 21b 12.同心圆半径分别为6,8,AB 为小圆的弦,CD 为大圆的弦,且ABCD 为矩形,圆心在矩形ABCD 内,当矩形ABCD 面积最大时,矩形ABCD 的周长为三、解答题(13、14题各13分,15题14分)13.一号列车从甲站开往乙站,一小时后二号列车从乙站开往甲站,二号列车每小时比一号列车多行10千米,两列车刚好在甲乙两站中点处相遇。

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题一(pdf版,含答案)

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题一(pdf版,含答案)

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题一一、选择题(每小题3分,共30分)1.在直角坐标系中,若一点的横坐标与纵坐标互为相反数,则该点一定不在( ) A .直线y =﹣x 上 B .抛物线y =x 2上 C .直线y =x 上 D .双曲线xy =1上 2.以等速度行驶的城际列车,若将速度提高25%,则相同距离的行车时间可节省k %,那么k 的值是( ) A .35 B .30C .25D .203.若﹣1<a <0,则a ,a ³,3a ,1a一定是( ) A .1a最小,a 3最大 B .3a 最小,a 最大 C .1a 最小,a 最大 D .1a最小,3a 最大4.如图,菱形ABCD 的边AB =20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO =10,则⊙O 的半径长等于( ) A .25 B .5 C .6 D .325.将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象.若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为( )A . -4≤b ≤-2 B. -6≤b ≤2 C.-4≤b ≤2 D. -8≤b ≤-26.设a ,b 是实数,定义@的一种运算如下:a @b =(a +b )2﹣(a ﹣b )2,则下列结论:①若a @b =0,则a =0或b =0 ②a @(b +c )=a @b +a @c③不存在实数a ,b ,满足a @b =a 2+5b 2④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,a @b 最大. 其中正确的有( )第4题图 第5题图xOyC 1D 1A 1B 1E 1 E 2 E 3 E 4 C 2 D 2 A 2B 2C 3D 3A 3B 3第7题图A .②③④B .①②④C .①③④D .①②③7.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……则正方形A 2018B 2018C 2018D 2018的边长是( )A .201712()B .201812()C .201733()D .201833()8. 如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣2,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a ﹣b =0;②c <0;③﹣3a +c >0;④4a ﹣2b >at 2+bt (t 为实数);⑤点(﹣29,y 1),(﹣25,y 2),(﹣21,y 3)是该抛物线上的点,则y 1<y 2<y 3. 其中说法正确的有( )A .4个B .3个C .2个D .1个9.若关于x 的方程22240224x x x ax x x +-+++=-+-只有一个实数根,则符合条件的所有实数a 的值的总和为( )A .6-B .30-C .32-D .38-10.如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE =FD ,连接BE ,CF . BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是( )第8题图①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE④S △HDG :S △HBG =tan ∠DAG ;⑤线段DH 的最小值是25﹣2. A .2 B .3C .4D .5二、填空题(每小题4分,共20分)11.在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P '(﹣y +1,x +2),我们把点P '(﹣y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2018的坐标为 . 12. 如图, 点A ,C 都在函数的图象上,点B ,D 都在轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为 .13.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .14. 已知有理数x 满足:31752233x x x -+-≥-,若32x x --+的最小值为a ,最大值为b ,则ab = . 15.如图,在三角形纸片ABC 中,∠A =90°,∠C =30°,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),减去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 cm .33(0)y x x=>x 第12题图 第13题图第15题图三、解答题(每题10分,共50分) 16. (本题满分10分)已知非零实数a ,b 满足a b a b a a =++-+-++-4)1)(5(316822,求1-b a 的值17. (本题满分10分)如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”. (1)请你直接写出3个四位“和谐数”;(2)猜想任意一个四位“和谐数”能否被11整除,并说明理由;(3) 已知一个能被11整除的三位“和谐数”,设个位上的数字为x (,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.14x ≤≤18. (本题满分10分)边长为22的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;3(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=8 BC;(3)猜想PF与EQ的数量关系,证明你的结论.第18题图18备用图1 18备用图219. (本题满分10分)如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE(1)求证:AC2=AE•AB;(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;(3)在(2)的条件下,设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ 的最小值.第19题图19备用图1 19备用图220. (本题满分10分)如图,已知抛物线y =ax 2+bx 经过点A (10,0)和B (8,4).点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线段,与直线OB 交于点C ,延长PC 到Q ,使QC =PC .过点Q 的直线分别与x 轴、y 轴相交于点D 、E ,且OD =OE ,直线DE 与直线OB 相交于点F .设OP =t . (1)请直接写出抛物线和直线OB 的函数解析式; (2)当点Q 落在抛物线上时,求t 的值; (3)连结BD :①请用含t 的代数式表示点F 的坐标;②当以点B 、D 、F 为顶点的三角形与△OEF 相似时, 求t 的值.OA Bx ByP Q C ED F第20题图2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题一答案一、 选择题(每题3分,共30分)1.D2.D3.A4.A5.A6.B7.C8.B9.D 10.C 二、填空题(每题4分,共20分) 11. (1,4);12. (,0);13. 11133y x =-+;14. 5;15. 40或三、解答题(每小题10分,共50分) 16. (本题满分10分)由题意得:5,0)1)(5(2≥≥+-a b a ………………………………………. 2分44)4(16822-=-=-=+-a a a a a ……………………………… 3分)1)(5(3)1)(5(34)1)(5(344)1)(5(316822222=+-+-=+-+-+=++-+-+-=++-+-++-b a b a b a b a b a b a b a b a a……………6分又因为03≥-b ,0)1)(5(2≥+-b a 故0)1)(5(32=+-=-b a b ……… 8分则5,3==a b , ………………………………… 9分故1-b a =25 .............................. .............................. (10)分17.(本题满分10分)解:⑴、四位“和谐数”:1221,1331,1111,6666…(答案不唯一)……………………2分(2)任意一个四位“和谐数”都能被11整数,理由如下: 设任意四位“和谐数”形式为:abcd ,则满足:最高位到个位排列:a ,b ,c ,d 个位到最高位排列:d,c,b,a26由题意,可得两组数据相同,则:a =d ,b =c 则1000100101000100101001110911011111111abcd a b c d a b b a a ba b +++++++====+为正整数∴ 四位“和谐数” abcd 能被11整数 又∵a ,b ,c ,d 为任意自然数, ∴任意四位“和谐数”都可以被11整除…………………………………………5分 (3)设能被11整除的三位“和谐数”为,zyx ,则满足:个位到最高位排列:x,y,z 最高位到各位排列:z,y,x .由题意得,两组数据相同,则:x =z .故10110zyx xyx x y ==+10110991122911111111zyx x y x y x y x y x y +++--===++为正整数 ∴y =2x ()……………………………………………………8分 18. (本题满分10分)(1)证明:如图1,∵线段BP 绕点B 顺时针旋转90°得到线段BQ , ∴BP =BQ ,∠PBQ =90°. ∵四边形ABCD 是正方形, ∴BA =BC ,∠ABC =90°. ∴∠ABC =∠PBQ .∴∠ABC ﹣∠PBC =∠PBQ ﹣∠PBC ,即∠ABP =∠CBQ . 在△BAP 和△BCQ 中, ∵,∴△BAP ≌△BCQ (SAS ).∴CQ =AP ;………………………………………………………………………………3分(2)解:如图1,∵四边形ABCD 是正方形, ∴∠BAC =∠BAD =45°,∠BCA =∠BCD =45°,∴∠APB +∠ABP =180°﹣45°=135°, ∵DC =AD =2,14x ≤≤由勾股定理得:AC==4,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,………………………………………………………………………………5分∴,∴,∴y=x(4﹣x)=﹣x(0<x<4),由CE=BC==,∴y=﹣x=,……………………………………………………6分x2﹣4x=3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=BC;……………………………………………………7分(3)解:结论:PF=EQ,…………………………………………………………8分理由是:如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.…………………………………9分当F在AD的延长线上时,如图3,同理可得:PF=PG=EQ.…………………………………10分19. (本题满分10分)证明:(1)如图1,连接BC,∵CD为⊙O的直径,AB⊥CD,∴=,∴∠A=∠ABC,∵EC=AE,∴∠A=∠ACE,∴∠ABC=∠ACE,∵∠A=∠A,∴△AEC∽△ACB,∴,∴AC2=AE•AB;………………………………………………………………………………3分(2)PB=PE,……………………………………………………………………………4分理由是:如图2,连接OB,∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∴∠PBN+∠OBN=90°,∵∠OBN+∠COB=90°,∴∠PBN=∠COB,∵∠PEB=∠A+∠ACE=2∠A,∠COB=2∠A,∴∠PEB=∠COB,∴∠PEB=∠PBN,∴PB=PE; (7)分(3)如图3,∵N为OC的中点,∴ON=OC=OB,R t△OBN中,∠OBN=30°,∴∠COB=60°,∵OC=OB,∴△OCB为等边三角形,∵Q为⊙O任意一点,连接PQ、OQ,因为O Q为半径,是定值4,则PQ +OQ 的值最小时,PQ 最小, 当P 、Q 、O 三点共线时,PQ 最小, ∴Q 为OP 与⊙O 的交点时,PQ 最小, ∠A =∠COB =30°, ∴∠PEB =2∠A =60°, ∠ABP =90°﹣30°=60°, ∴△PBE 是等边三角形, Rt △OBN 中,BN ==2,∴AB =2BN =4,设AE =x ,则CE =x ,EN =2﹣x , Rt △CNE 中,x 2=22+(2﹣x )2, x =,∴BE=PB=4﹣=, Rt △OPB 中,OP ===,∴PQ =﹣4=.则线段PQ 的最小值是.……………………………………………………10分20. (本题满分10分) 解:(1)抛物线的函数解析式是21542y x x =-+,………………………2分 直线OB 的函数解析式是12y x =; ………………3分By E(2)∵OP =t ,PC ⊥x 轴于点P ,交直线OB 于点C , ∴PC =12t ,∴PQ =t ,即Q (t ,t ),………………4分 当点Q 落在抛物线上时,21542t t t =-+,解得:6t =; -…………………………………………6分(3)①作FG ⊥x 轴于点G ,设FG =n , 由(2)得:PQ =t ,∵OD =OE ,OD ⊥OE , ∴45ODE ∠=︒,∴△PDQ 是等腰直角三角形∴PD = PQ =t ,∴OD =2t ,同理可得:FG = DG =n ,∴OG =2t n -, 将x =2t n -,y=n 代入12y x =得:23n t =,∴OG =43t ,∴F (43t ,23t ); ………………………………………8分 ②由(3)①得:OF =22253FG OG t +=,22223FD FG DG t =+=, ∵22ED t =,45OB =, ∴BF =25453OB OF t -=-,423EF ED FD t =-=, Ⅰ.当点F 在射线OB 的点B 的右侧时:∠BFD >90°,而△OEF 中无钝角,故此时△OEF 与△DBF 不相似; Ⅱ.当点F 在线段OB 上时:∵∠OFE =∠BFD ,∴OE 和BD 是对应边,当△OEF ∽△DBF 时,OF EF DF BF =,即25423322254533t tt t =-,解得:103t =,当△OEF ∽△BDF 时,OF EF BF DF =,即25423325224533t tt t=-,解得:4t =. ∴103t =或4. …………………………………10分。

2020年黄冈中学重点高中自主招生考试数学模拟试卷二及答案解析(PDF版)

2020年黄冈中学重点高中自主招生考试数学模拟试卷二及答案解析(PDF版)

2020年黄冈中学重点高中自主招生考试数学模拟试卷二一.选择题(共10小题,满分40分,每小题4分)1.是整数,正整数n的最小值是()A.0 B.2 C.3 D.42.如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A.①③B.①④C.②④D.③④3.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则折痕MN的长是()A.4cm B.4cm C.4cm D.4cm4.已知﹣=5,则分式的值为()A.1 B.5 C.D.5.已知一次函数y=﹣x+b,过点(﹣8,﹣2),那么一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6 C.y=﹣x﹣10 D.y=﹣x﹣16.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3 B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3 D.a=4,b=﹣5,c=﹣37.已知α为锐角,则m=sinα+cosα的值()A.m>1 B.m=1 C.m<1 D.m≥18.已知二次函数y=2x2+8x+7的图象上有点A(﹣2,y1),B(﹣5,y2),C(﹣1,y3),则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y2>y19.如图,直线y=﹣x+3与x轴,y轴交于A,B两点.点P是线段OB上的一动点(能与点O,B重合),若能在斜边AB上找到一点C,使∠OCP=90°.设点P的坐标为(m,0),则m的取值范围是()A.3≤m≤4 B.2≤m≤4 C.0≤m≤D.0≤m≤310.二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0 B.0<y<m C.y>m D.y=m二.填空题(共6小题,满分30分,每小题5分)11.若a﹣b=1,ab=﹣2,则(a﹣2)(b+2)=.若二次三项式x2﹣(m﹣2)x+16是一个完全平方式,则字母m的值是.12.若a,b为实数,且|a+1|+=0,则(ab)2014的值为.13.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=.14.反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1>y2,则m的取值范围是.15.已知抛物线y=﹣4x2+4mx﹣4m﹣m2(m是常数),若0≤x≤1时,函数y有最大值﹣5,则m的值为.16.如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是;②若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=.三.解答题(共5小题,满分50分)17.(10分)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.18.(8分)已知二次函数y=ax2﹣4ax+3a.(Ⅰ)求该二次函数的对称轴;(Ⅱ)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;(Ⅲ)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合图象,直接写出t的最大值.19.(8分)在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等边三角形DEF从初始位置(点E与点B重合,EF落在BC上,如图1所示)在线段BC上沿BC方向以每秒1个单位的速度平移,DE、DF分别与AB相交于点M、N.当点F运动到点C 时,△DEF终止运动,此时点D恰好落在AB上,设△DEF平移的时间为x.(1)求△DEF的边长;(2)求M点、N点在BA上的移动速度;(3)在△DEF开始运动的同时,如果点P以每秒2个单位的速度从D点出发沿DE⇒EF运动,最终运动到F点.若设△PMN的面积为y,求y与x的函数关系式,写出它的定义域;并说明当P点在何处时,△PMN的面积最大?20.(12分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣+c且过顶点C(0,5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)21.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.2020年黄冈中学重点高中自主招生考试数学模拟试卷二参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵是整数,∴正整数n的最小值为2,故选:B.2.证明:①∵AB为直径,∴∠ACB=90°,∴AC垂直BF,但不能得出AC平分BF,故①错误,②如图1,连结CD,∵AB为直径,∴∠ADB=90°,∴∠BDF=90°,假设AC平分∠BAF成立,则有DC=BC,∴在RT△FDB中,DC=BC=FC,∴AC⊥BF,且平分BF,∴AC垂直BF,但不能得出AC平分BF,与①中的AC垂直BF,但不能得出AC平分BF相矛盾,故②错误,③如图2:∵AB为直径,∴∠ACB=90°,∠ADB=90°,∴D、P、C、F四点共圆,∴∠CFP和∠CDB都对应,∴∠CFP=∠CDB,∵∠CDB=∠CAB,∴∠CFP=∠CAB,又∵∠FPC=∠APM,∴△AMP∽△FCP,∠ACF=90°,∴∠AMP=90°,∴FP⊥AB,故③正确,④∵AB为直径,∴∠ADB=90°,∴BD⊥AF.故④正确,综上所述只有③④正确.故选:D.3.解:如图,连接DE.由题意,在Rt△DCE中,CE=4cm,CD=8cm,由勾股定理得:DE===cm.过点M作MG⊥CD于点G,则由题意可知MG=BC=CD.连接DE,交MG于点I.由折叠可知,DE⊥MN,∴∠NMG+MIE=90°,∵∠DIG+∠EDC=90°,∠MIE=∠DIG(对顶角相等),∴∠NMG=∠EDC.在△MNG与△DEC中,∴△MNG≌△DEC(ASA).∴MN=DE=cm.故选:D.4.解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选:A.5.解:把(﹣8,﹣2)代入y=﹣x+b得:﹣2=8+b,解得:b=﹣10,则一次函数解析式为y=﹣x﹣10,故选:C.6.解:∵﹣4x2+3=5x∴﹣4x2﹣5x+3=0,或4x2+5x﹣3=0∴a=﹣4,b=﹣5,c=3或a=4,b=5,c=﹣3.故选:B.【点评】此题考查了公式法解一元二次方程的应用条件,首先要把方程化为一般形式.7.解:设在直角三角形ABC中,∠A=α,∠C=90°,故sinα=,cosα=;则m=sinα+cosα=>1.故选:A.8.解:∵二次函数y=2x2+8x+7中a=2>0,∴开口向上,对称轴为x=﹣=﹣=﹣2,∵A(﹣2,y1)中x=﹣2,y1最小,B(﹣5,y2),点B关于对称轴的对称点B′横坐标是2×(﹣2)﹣(﹣5)=1,则有B′(1,y2),因为在对称轴得右侧,y随x得增大而增大,故y2>y3.∴y2>y3>y1.故选:C.9.解:令y=0,则﹣x+3=0,解得x=4,所以,点B的坐标为(4,0),过点C作CD⊥x轴于D,设点C的坐标横坐标为a,则OD=a,PD=m﹣a,∵∠OCP=90°,∴△OCD∽△CPD,∴=,∴CD2=OD•DP,∴(﹣a+3)2=a(m﹣a),整理得,m=a+﹣,所以,m≥2﹣=3,∵点P是线段OB上的一动点(能与点O,B重合),∴OC⊥AB时,点P、B重合,m最大,∴m的取值范围是3≤m≤4.故选:A.10.解:∵对称轴是x=,0<x1<故由对称性<x2<1当x=a时,y<0,则a的范围是x1<a<x2,所以a﹣1<0,当x时y随x的增大而减小,当x=0时函数值是m.因而当x=a﹣1<0时,函数值y一定大于m.故选:C.二.填空题(共6小题,满分30分,每小题5分)11.解:(1)(a﹣2)(b+2)=ab+2a﹣2b﹣4=ab+2(a﹣b)﹣4=﹣2+2﹣4=﹣4(2)∵(x±4)2=x2±8x+16,∴﹣(m﹣2)=±8,∴m=10或m=﹣6故答案为:﹣4;10或﹣612.解:∵|a+1|+=0,又∵|a+1|≥0,≥0,∴a+1=0,b﹣1=0,∴a=﹣1,b=1,ab=﹣1,∴(ab)2014=(﹣1)2014=1.故答案为1.13.解:∵DF=DC,DE=DB,且∠EDF+∠BDC=180°,过点A作AI⊥EH,交HE的延长线于点I,∴∠I=∠DFE=90°,∵∠AEI+∠DEI=∠DEI+∠DEF=90°,∴∠AEI=∠DEF,∵AE=DE,∴△AEI≌△DEF(AAS),∴AI=DF,∵EH=EF,=S△DEF,∴S△AHE=S△GFI=S△DEF,同理:S△BDCS△AHE+S△BDC+S△GFI=S1+S2+S3=3×S△DEF,S△DEF=×3×4=6,∴S1+S2+S3=18.故答案为:18.14.解:∵x1<0<x2,∴A(x1,y1),B(x2,y2)不同象限,y1>y2,∴点A在第二象限,B在第四象限,∴1﹣2m<0,m>.故答案为m>.15.解:∵y=﹣4x2+4mx﹣4m﹣m2=﹣4(x﹣)2﹣4m,∴抛物线开口向下,对称轴为直线x=.当<0,即m<0时,x=0时y取最大值(如图1所示),∴﹣4m﹣m2=﹣5,解得:m1=﹣5,m2=1(不合题意,舍去);当0≤≤1,即0≤m≤2时,x=时y取最大值(如图2所示),∴﹣4m=﹣5,解得:m3=;当>1,即m>2时,x=1时y取最大值(如图3所示),∴﹣4+4m﹣4m﹣m2=﹣5,解得:m4=﹣1(不合题意,舍去),m5=1(不合题意,舍去).综上所述,m的值为﹣5或.故答案为:﹣5或.16.解:①如图,根据圆和正方形的对称性可知:GH=DG=GF,H为半圆的圆心,不妨设GH=a,则GF=2a,在直角三角形FGH中,由勾股定理可得HF=.由此可得,半圆的半径为a,正方形边长为2a,所以半圆的半径与正方形边长的比是a:2a=:2;②因为正方形DEFG的面积为100,所以正方形DEFG边长为10.切点分别为I,J,连接EB、AE,OI、OJ,∵AC、BC是⊙O的切线,∴CJ=CI,∠OJC=∠OIC=90°,∵∠ACB=90°,∴四边形OICJ是正方形,且边长是4,设BD=x,AD=y,则BD=BI=x,AD=AJ=y,在直角三角形ABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2①;在直角三角形AEB中,∵∠AEB=90°,ED⊥AB,∴△ADE∽△BDE∽△ABE,于是得到ED2=AD•BD,即102=x•y②.解①式和②式,得x+y=21,即半圆的直径AB=21.三.解答题(共5小题,满分50分,每小题10分)17.解:(1)△ABC的面积=3×3﹣×2×1﹣×3×1﹣×2×3,=9﹣1﹣1.5﹣3,=9﹣5.5,=3.5;(2)△DEF如图2所示;面积=2×4﹣×1×2﹣×2×2﹣×1×4,=8﹣1﹣2﹣2,=8﹣5,=3;(3)∵△ABE是等腰直角三角形,∴AB=AE,∠BAE=90°,∴∠PAE+∠BAG=180°﹣90°=90°,又∵∠AEP+∠PAE=90°,∴∠BAG=∠AEP,在△ABG和△EAP中,,∴△ABG≌△EAP(AAS),同理可证,△ACG≌△FAQ,∴EP=AG=FQ;(4)如图4,过R作RH⊥PQ于H,设RH=h,在Rt△PRH中,PH==,在Rt△RQH中,QH==,∴PQ=+=6,=6﹣,两边平方得,25﹣h2=36﹣12+13﹣h2,整理得,=2,两边平方得,13﹣h2=4,解得h=3,=×6×3=9,∴S△PQR∴六边形花坛ABCDEF的面积=25+13+36+4×9=74+36=110m2.故答案为:(1)3.5;(2)3;(4)110.18.解:(Ⅰ)对称轴x=﹣=2.(Ⅱ)∵该二次函数的图象开口向下,且对称轴为直线x=2,∴当x=2时,y取到在1≤x≤4上的最大值为2,即P(2,2),∴4a﹣8a+3a=2,∴a=﹣2,∴y=﹣2x2+8x﹣6,∵当1≤x≤2时,y随x的增大而增大,∴当x=1时,y取到在1≤x≤2上的最小值0.∵当2≤x≤4时,y随x的增大而减小,∴当x=4时,y取到在2≤x≤4上的最小值﹣6.∴当1≤x≤4时,y的最小值为﹣6,即Q(4,﹣6).∴△OPQ的面积为4×(2+6)﹣2×2÷2﹣4×6÷2﹣(4﹣2)×(2+6)÷2=10;(Ⅲ)∵当t≤x1≤t+1,x2≥5时,均满足y1≥y2,∴当抛物线开口向下,点P在点Q左边或重合时,满足条件,∴t+1≤5,∴t≤4,∴t的最大值为4.19.解:(1)当F点与C点重合时,如图1所示:∵△DEF为等边三角形,∴∠DFE=60°∵∠B=30°,∴∠BDF=90°∴FD=BC=3;(2)过E点作EG⊥AB,∵∠DEF=60°,∠B=30°,∴∠BME=30°,∴EB=EM在Rt△EBG中,BG=x×cos30°=x,∴BM=2BG=x,∴M点在BA上的移动速度为=,F点作FH⊥F1D1,在Rt△FF1H中,FH=x×cos30°=x,点N在BA上的移动速度为=;(3)在Rt△DMN中,DM=3﹣x,MN=(3﹣x)×cos30°==(3﹣x),当P点运动到M点时,有2x+x=3,∴x=1①当P点在DM之间运动时,过P点作PP1⊥AB,垂足为P1在Rt△PMP1中,PM=3﹣x﹣2x=3﹣3x,∴PP1=(3﹣3x)=(1﹣x),∴y与x的函数关系式为:y=×(3﹣x)×(1﹣x)=(x2﹣4x+3)(0≤x≤1),②当P点在ME之间运动时,过P点作PP2⊥AB,垂足为P2,在Rt△PMP2中,PM=x﹣(3﹣2x)=3(x﹣1),∴PP2=(1﹣x),∴y与x的函数关系式为:y=×(3﹣x)×(1﹣x),=﹣(x2﹣4x+3)(1<x≤).③当P点在EF之间运动时,过P点作PP3⊥AB,垂足为P3,在Rt△PMP3中,PB=x+(2x﹣3)=3(x﹣1),∴PP3=(x﹣1),∴y与x的函数关系式为:y=×(3﹣x)×(x﹣1),=﹣(x2﹣4x+3)(≤x≤3),∴y=﹣(x﹣2)2+,=,∴当x=2时,y最大而当P点在D点时,y=×3××=,∵>,∴当P点在D点时,△PMN的面积最大.20.解:(1)抛物线的解析式为y=﹣+c,∵点(0,5)在抛物线上∴c=5;(2)由(1)知,OC=5,令y=0,即﹣+5=0,解得x1=10,x2=﹣10;∴地毯的总长度为:AB+2OC=20+2×5=30,∴30×1.5×20=900答:购买地毯需要900元.(3)可设G的坐标为(m,﹣+5)其中m>0则EF=2m,GF=﹣+5,由已知得:2(EF+GF)=27.5,即2(2m﹣+5)=27.5,解得:m1=5,m2=35(不合题意,舍去),把m1=5代入,﹣+5=﹣×52+5=3.75,∴点G的坐标是(5,3.75),∴EF=10,GF=3.75,在Rt△EFG中,tan∠GEF===0.375,∴∠GEF≈20.6°.21.解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.。

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题二及答案解析

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题二及答案解析

则点 P 到点 M 与到边 OA 的距离之和的最小值是

三、解答题(共 78 分)
19.(10 分)(1)计算:(
)-1+(π﹣3.14)0﹣2sin60°﹣ +|1﹣3 |;
(2)先化简,再求值:(a+1﹣
)÷(
),其中 a=2+ .
20.(10 分)如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别 是 BC、CD,测得 BC=6 米,CD=4 米,∠BCD=150°,在 D 处测得电线杆顶端 A 的仰角为 30°,试求电线杆的高度(结果保留根号)
13. 若关于 x 的方程
+
=3 的解为正数,则 m 的取值范围是___________
14. 如图,正五边形 ABCDE 放入某平面直角坐标系后,若顶点 A,B,C,D 的坐标分 别是 (0,a),(﹣3,2),(b,m),(c,m),则点 E 的坐标是_________
第 14 题图
第 15 题图
第 16 题图
第 17 题图
15. 如图,△ABC 是等边三角形,AB=2,分别以 A,B,C 为圆心,以 2 为半径作弧,则图
中阴影部分的面积是

16. 如图,在平面直角坐标系中,函数 y=2x 和 y=﹣x 的图象分别为直线 l1,l2,过点(1,0)
作 x 轴的垂线交 l1 于点 A1,过点 A1 作 y 轴的垂线交 l2 于点 A2,过点 A2 作 x 轴的垂线交 l1
A.k<1
B.k≤1 C.k>﹣1 D.k>1
4. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十
五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为 8 步,股(长

2020年黄冈中学重点高中自主招生考试数学模拟试卷三套合集(含答案)

2020年黄冈中学重点高中自主招生考试数学模拟试卷三套合集(含答案)

2020年黄冈中学重点高中自主招生考试数学模拟试卷一一.选择题(共8小题,满分40分,每小题5分)1.如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD:BD=2:1,点F在AC上,AF:FC=1:2,联结BF,交DE于点G,那么DG:GE等于()A.1:2 B.1:3 C.2:3 D.2:5.2.如图将△ABC沿着直线DE折叠,点A恰好与△ABC的内心I重合,若∠DIB+∠EIC=195°,则∠BAC的大小是()A.40°B.50°C.60°D.70°(第1题图)(第2题图)(第3题图)3.如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为()A.ab=﹣2 B.ab=﹣3 C.ab=﹣4 D.ab=﹣54.某单位在一快餐店订了22盒盒饭,共花费183元,盒饭共有甲、乙、丙三种,它们的单价分别为10元、8元、5元.那么可能的不同订餐方案有()A.1个B.2个C.3个D.4个5.若关于x,y的方程组有实数解,则实数k的取值范围是()A.k>4 B.k<4 C.k≥4 D.k≤46.如图,⊙O1与⊙O2的半径均为5,⊙O1的两条弦长分别为6和8,⊙O2的两条弦长均为7,则图中阴影部分面积的大小关系为()A.S1>S2B.S1<S2C.S1=S2 D.无法确定7.7条长度均为整数厘米的线段:a1,a2,a3,a4,a5,a6,a7,满足a1<a2<a3<a4<a5<a6<a7,且这7条线段中的任意3条都不能构成三角形.若a1=1厘米,a7=21厘米,则a6能取的值是()A.18厘米B.13厘米C.8厘米D.5厘米8.徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元.则平均每次降低成本的百分率是()A.8.5% B.9% C.9.5% D.10%二.填空题(共8小题,满分40分,每小题5分)9.解方程:.x=.10.某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当住在第n层楼时,上下楼造成的不满意度为n,但高处空气清新,噪音较小,因此随楼层升高,环境不满意程度降低,设住在第n层楼时,环境不满意程度为,则此人应选楼.11.已知有理数a,b满足ab<0,|a|>|b|,2(a+b)=|b﹣a|,则的值为.12.如图所示,P1(x1,y1)、P2(x2,y2),…P n(x n,y n)在函数y=(x>0)的图象上,△OP1A1,△P2A1A2,△P3A2A3…△P n A n﹣1A n…都是等腰直角三角形,斜边OA1,A1A2…A n﹣1A n,都在x轴上,则y1+y2+…y n=.13.数学课上,小刚动手制作了一个圆锥,他量圆锥的母线与高的夹角为30°,母线长为8 cm,则它的侧面积应是cm2(精确到0.1 cm2).14.如图,长方形ABCD中,BC=2,DC=1,如果将该长方形沿对角线折叠,使点C落在点C′处,那么图中重叠部分的面积是.15.数据a,4,2,5,3的平均数为b,且a和b是方程x2﹣4x+3=0的两个根,则这组数据的标准差是.16.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.过点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,点P的坐标为.三.解答题(共5小题,满分40分)17.(7分)设x1,x2是关于x的一元二次方程x2+2ax+a2+4a﹣2=0的两实根,当a 为何值时,x12+x22有最小值?最小值是多少?18.(7分)抛物线y=ax 2+bx +3(a ≠0)经过点A (﹣1,0),B (,0),且与y轴相交于点C .(1)求这条抛物线的表达式; (2)求∠ACB 的度数;(3)设点D 是所求抛物线第一象限上一点,且在对称轴的右侧,点E 在线段AC 上,且DE ⊥AC ,当△DCE 与△AOC 相似时,求点D 的坐标.19.(7分)某企业为了激励员工参与技术革新,设计了技术革新奖,这个奖项分设一、二、三等,按获奖等级颁发一定数额的奖金,每年评选一次,下表是近三年技术革新获奖人数及奖金总额情况.获一等奖人 数(名)获二等奖人 数(名)获三等奖人 数(名)奖金总额(万元) 1999年 10 20 30 41 2000年 12 20 28 42 2001年 14254054那么技术革新一、二、三等奖的奖金数额分别是多少万元?20.(9分)为了做好防控H1N1甲型流感工作,我县卫生局准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某乡镇预防H1N1甲型流感工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.21.(10分)如图1,等腰直角三角形ABC的腰长是2,∠ABC=90度.以AB为直径作半圆O,M是BC上一动点(不运动至B、C两点),过点M引半圆为O的切线,切点是P,过点A作AB的垂线AN,交切线MP于点N,AC与ON、MN分别交于点E、F.(1)证明:△MON是直角三角形;(2)当BM=时,求的值(结果不取近似值);(3)当BM=时(图2),判断△AEO与△CMF是否相似?如果相似,请证明;如果不相似,请说明理由.2020年黄冈中学重点高中自主招生考试数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.解:∵DE∥BC,∴==2,∴CE:CA=1:3,==,∵AF:FC=1:2,∴AF:AC=1:3,∴AF=EF=EC,∴EG:BC=1:2,设EG=m,则BC=2m,∴DE=m,DG=m﹣m=m,∴DG:GE=m:m=1:3,故选:B.2.解:∵I是△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠BCA,∵∠DIB+∠EIC=195°,∴∠DIE+∠BIC=165°,由折叠过程知∠BAC=∠DIE,∴∠BAC+∠BIC=165°∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠BAC,∴∠IBC+∠ICB=90°﹣∠BAC,又∵∠BIC+(∠IBC+∠ICB)=180°,∠BIC+(90°﹣∠BAC)=180°,∴∠BIC=90°+∠BAC,∴∠BAC+90°+∠BAC=165°,∴∠BAC=50°故选:B.3.解:令x=0,得:y=b.∴C(0,b).令y=0,得:ax2+b=0,∴x=±,∴A(﹣,0),B(,0),∴AB=2,BC==.要使平行四边形AC1A1C是矩形,必须满足AB=BC,∴2=.∴4×(﹣)=b2﹣,∴ab=﹣3.∴a,b应满足关系式ab=﹣3.故选:B.4.解:设甲盒饭、乙盒饭分别有x盒、y盒,则丙盒饭有(22﹣x﹣y)盒.根据题意,得10x+8y+5(22﹣x﹣y)=183,整理,得5x+3y=73,.又0<x<22,0<y<22,0<22﹣x﹣y<22,则3.5<x<14.6,且x、y为整数,则x=5,8,11,或14.故选:D.5.解:∵xy=k,x+y=4,∴根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程m2﹣4m+k=0的实数根.△=b2﹣4ac=16﹣4k≥0解不等式16﹣4k≥0得k≤4.故选:D.6.解:通过旋转,拼接得到下面图形.∵62+82=102,∴△ABC是直角三角形,S△ABC=24,右边图中,DE=EF=7,作O2M⊥DE,连接O2E交DF于H.∵sin∠EDH=sin∠MO2E,∴=,∴EH=4.9,DF=2DH≈10,∴S△DEF ≈>S△ABC,∴S2>S1,故选:B.7.解:若a1=1厘米,则后边的一个一定大于或等于前边的两个的和,则一定有:a2=2,a3=3,a4=5,a5=8,a6=13,a7=21,故选:B.8.解:设平均每次降低成本的百分率为x,根据题意得100(1﹣x)(1﹣x)=81,解得x=0.1或1.9(不合题意,舍去)即x=10%故选:D.二.填空题(共8小题,满分40分,每小题5分)9.解:设=u≥0,则x=u2,代入原式得:u2+u++u=3,∴=﹣u,两边平方整理得:8u2+10u﹣7=0,解得:u=或u=﹣(舍去),∴x=u2=.故答案为:.10.解:不满意度:n+≥2=4≈5.666.仅当n=2≈3时取得,故选三楼.故答案为:3.11.解:∵有理数a,b满足ab<0,∴a>0,b<0或a<0,b>0,①当a>0,b<0时,∵|a|>|b|,∴b﹣a<0,∵2(a+b)=|b﹣a|,∴2a+2b=a﹣b,a=﹣3b;=﹣3;②当a<0,b>0时,∵|a|>|b|,∴b﹣a>0,∵2(a+b)=|b﹣a|,∴2a+2b=b﹣a,3a=﹣b,此时不符合|a|>|b|,舍去,故答案为:﹣3.12.解:如图,过点P1作P1M⊥x轴,∵△OP1A1是等腰直角三角形,∴P1M=OM=MA1,设P1的坐标是(a,a),把(a,a)代入解析式y=(x>0)中,得a=3,∴A1的坐标是(6,0),又∵△P2A1A2是等腰直角三角形,设P2的纵坐标是b,则P2的横坐标是6+b,把(6+b,b)代入函数解析式得b=,解得b=3﹣3,∴A2的横坐标是6+2b=6+6﹣6=6,同理可以得到A3的横坐标是6,A n的横坐标是6,根据等腰三角形的性质得到y1+y2+…y n等于A n点横坐标的一半,∴y1+y2+…y n=.故答案为:.13.解:母线与高的夹角为30°,母线长为8 cm,则底面半径=8×sin30°=4,∴底面周长=8π,∴圆锥的侧面面积=×8π×8=32π≈100.5cm2.15.解:∵数据a,4,2,5,3的平均数为b,其中a,b是方程x2﹣4x+3=0的两个根,∴,解得;∴这组数据的标准差是=;故答案为:.16.解:连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在直角△AOC中,OC=OA=4,根据等腰三角形的性质,D是AC的中点时,OD⊥AC.又∵DF∥OC,∴DF=OC=2,∴点P的纵坐标是2.则﹣x2+3x+4=2,解得:x=,∴当EF最短时,点P的坐标是:(,2)或(,2).故答案为:(,2)或(,2).三.解答题(共5小题,满分40分)17.解:∵△=(2a)2﹣4(a2+4a﹣2)≥0,∴又∵x1+x2=﹣2a,x1x2=a2+4a﹣2.∴x12+x22=(x1+x2)2﹣2x1x2=2(a﹣2)2﹣4.设y=2(a﹣2)2﹣4,根据二次函数的性质.∵∴当时,x12+x22的值最小.此时,即最小值为.18.解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).19.解:设一二、三等奖的奖金额分别为x万元,y万元和z万元.可得,解这个方程组得.20.解:(1)用列表法表示所有可能结果如下:(2)P(恰好选中医生甲和护士A)=,∴恰好选中医生甲和护士A的概率是.21.(1)证明:连接OP;∵MB和MP是圆的切线,∴MP=MB;又∵OP=OB,OM=OM,∴Rt△MOP≌Rt△MOB;∴∠POM=∠BOM,同理∠AON=∠PON;∵∠POM+∠BOM+∠AON+∠PON=180°,∴2(∠NOP+∠POM)=180°即∠NOP+∠POM=90°;∴△NOM是直角三角形.(2)解:∵△ABC是等腰直角三角形,AB=BC=2,∴AO=OB=1,CM=BC﹣BM=2﹣;∵∠MOB+∠AON=∠AON+∠ANO=90°∴∠BOM=∠ANO;∴Rt△OBM∽Rt△NAO,∴OB:AN=BM:AO,得AN=;∵AN⊥AB,CB⊥AB,∴AN∥BC;∴CF:AF=CM:AN=(2﹣):=2﹣3;(3)解:∵BM=,OB=1,∴tan∠MOB=MB:OB=,即∠MOB=30°;∴∠FMC=∠OMB=60°;∴∠CMF=180°﹣2∠OMB=60°,∠EOA=180°﹣∠NOM﹣∠MOB=60°;又∵∠C=∠OAE=45°∴△AEO∽△CMF.2020年黄冈中学重点高中自主招生考试数学模拟试卷二一.选择题(共10小题,满分40分,每小题4分)1.是整数,正整数n的最小值是()A.0 B.2 C.3 D.42.如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A.①③B.①④C.②④D.③④3.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则折痕MN的长是()A.4cm B.4cm C.4cm D.4cm4.已知﹣=5,则分式的值为()A.1 B.5 C.D.5.已知一次函数y=﹣x+b,过点(﹣8,﹣2),那么一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6 C.y=﹣x﹣10 D.y=﹣x﹣16.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3 B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3 D.a=4,b=﹣5,c=﹣37.已知α为锐角,则m=sinα+cosα的值()A.m>1 B.m=1 C.m<1 D.m≥18.已知二次函数y=2x2+8x+7的图象上有点A(﹣2,y1),B(﹣5,y2),C(﹣1,y3),则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y2>y19.如图,直线y=﹣x+3与x轴,y轴交于A,B两点.点P是线段OB上的一动点(能与点O,B重合),若能在斜边AB上找到一点C,使∠OCP=90°.设点P的坐标为(m,0),则m的取值范围是()A.3≤m≤4 B.2≤m≤4 C.0≤m≤D.0≤m≤310.二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0 B.0<y<m C.y>m D.y=m二.填空题(共6小题,满分30分,每小题5分)11.若a﹣b=1,ab=﹣2,则(a﹣2)(b+2)=.若二次三项式x2﹣(m﹣2)x+16是一个完全平方式,则字母m的值是.12.若a,b为实数,且|a+1|+=0,则(ab)2014的值为.13.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=.14.反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1>y2,则m的取值范围是.15.已知抛物线y=﹣4x2+4mx﹣4m﹣m2(m是常数),若0≤x≤1时,函数y有最大值﹣5,则m的值为.16.如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是;②若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=.三.解答题(共5小题,满分50分)17.(10分)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.18.(8分)已知二次函数y=ax2﹣4ax+3a.(Ⅰ)求该二次函数的对称轴;(Ⅱ)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;(Ⅲ)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合图象,直接写出t的最大值.19.(8分)在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等边三角形DEF从初始位置(点E与点B重合,EF落在BC上,如图1所示)在线段BC上沿BC方向以每秒1个单位的速度平移,DE、DF分别与AB相交于点M、N.当点F运动到点C 时,△DEF终止运动,此时点D恰好落在AB上,设△DEF平移的时间为x.(1)求△DEF的边长;(2)求M点、N点在BA上的移动速度;(3)在△DEF开始运动的同时,如果点P以每秒2个单位的速度从D点出发沿DE⇒EF运动,最终运动到F点.若设△PMN的面积为y,求y与x的函数关系式,写出它的定义域;并说明当P点在何处时,△PMN的面积最大?20.(12分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣+c且过顶点C(0,5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)21.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.2020年黄冈中学重点高中自主招生考试数学模拟试卷二参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵是整数,∴正整数n的最小值为2,故选:B.2.证明:①∵AB为直径,∴∠ACB=90°,∴AC垂直BF,但不能得出AC平分BF,故①错误,②如图1,连结CD,∵AB为直径,∴∠ADB=90°,∴∠BDF=90°,假设AC平分∠BAF成立,则有DC=BC,∴在RT△FDB中,DC=BC=FC,∴AC⊥BF,且平分BF,∴AC垂直BF,但不能得出AC平分BF,与①中的AC垂直BF,但不能得出AC平分BF相矛盾,故②错误,③如图2:∵AB为直径,∴∠ACB=90°,∠ADB=90°,∴D、P、C、F四点共圆,∴∠CFP和∠CDB都对应,∴∠CFP=∠CDB,∵∠CDB=∠CAB,∴∠CFP=∠CAB,又∵∠FPC=∠APM,∴△AMP∽△FCP,∠ACF=90°,∴∠AMP=90°,∴FP⊥AB,故③正确,④∵AB为直径,∴∠ADB=90°,∴BD⊥AF.故④正确,综上所述只有③④正确.故选:D.3.解:如图,连接DE.由题意,在Rt△DCE中,CE=4cm,CD=8cm,由勾股定理得:DE===cm.过点M作MG⊥CD于点G,则由题意可知MG=BC=CD.连接DE,交MG于点I.由折叠可知,DE⊥MN,∴∠NMG+MIE=90°,∵∠DIG+∠EDC=90°,∠MIE=∠DIG(对顶角相等),∴∠NMG=∠EDC.在△MNG与△DEC中,∴△MNG≌△DEC(ASA).∴MN=DE=cm.故选:D.4.解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选:A.5.解:把(﹣8,﹣2)代入y=﹣x+b得:﹣2=8+b,解得:b=﹣10,则一次函数解析式为y=﹣x﹣10,故选:C.6.解:∵﹣4x2+3=5x∴﹣4x2﹣5x+3=0,或4x2+5x﹣3=0∴a=﹣4,b=﹣5,c=3或a=4,b=5,c=﹣3.故选:B.【点评】此题考查了公式法解一元二次方程的应用条件,首先要把方程化为一般形式.7.解:设在直角三角形ABC中,∠A=α,∠C=90°,故sinα=,cosα=;则m=sinα+cosα=>1.故选:A.8.解:∵二次函数y=2x2+8x+7中a=2>0,∴开口向上,对称轴为x=﹣=﹣=﹣2,∵A(﹣2,y1)中x=﹣2,y1最小,B(﹣5,y2),点B关于对称轴的对称点B′横坐标是2×(﹣2)﹣(﹣5)=1,则有B′(1,y2),因为在对称轴得右侧,y随x得增大而增大,故y2>y3.∴y2>y3>y1.故选:C.9.解:令y=0,则﹣x+3=0,解得x=4,所以,点B的坐标为(4,0),过点C作CD⊥x轴于D,设点C的坐标横坐标为a,则OD=a,PD=m﹣a,∵∠OCP=90°,∴△OCD∽△CPD,∴=,∴CD2=OD•DP,∴(﹣a+3)2=a(m﹣a),整理得,m=a+﹣,所以,m≥2﹣=3,∵点P是线段OB上的一动点(能与点O,B重合),∴OC⊥AB时,点P、B重合,m最大,∴m的取值范围是3≤m≤4.故选:A.10.解:∵对称轴是x=,0<x1<故由对称性<x2<1当x=a时,y<0,则a的范围是x1<a<x2,所以a﹣1<0,当x时y随x的增大而减小,当x=0时函数值是m.因而当x=a﹣1<0时,函数值y一定大于m.故选:C.二.填空题(共6小题,满分30分,每小题5分)11.解:(1)(a﹣2)(b+2)=ab+2a﹣2b﹣4=ab+2(a﹣b)﹣4=﹣2+2﹣4=﹣4(2)∵(x±4)2=x2±8x+16,∴﹣(m﹣2)=±8,∴m=10或m=﹣6故答案为:﹣4;10或﹣612.解:∵|a+1|+=0,又∵|a+1|≥0,≥0,∴a+1=0,b﹣1=0,∴a=﹣1,b=1,ab=﹣1,∴(ab)2014=(﹣1)2014=1.故答案为1.13.解:∵DF=DC,DE=DB,且∠EDF+∠BDC=180°,过点A作AI⊥EH,交HE的延长线于点I,∴∠I=∠DFE=90°,∵∠AEI+∠DEI=∠DEI+∠DEF=90°,∴∠AEI=∠DEF,∵AE=DE,∴△AEI≌△DEF(AAS),∴AI=DF,∵EH=EF,=S△DEF,∴S△AHE=S△GFI=S△DEF,同理:S△BDCS△AHE+S△BDC+S△GFI=S1+S2+S3=3×S△DEF,S△DEF=×3×4=6,∴S1+S2+S3=18.故答案为:18.14.解:∵x1<0<x2,∴A(x1,y1),B(x2,y2)不同象限,y1>y2,∴点A在第二象限,B在第四象限,∴1﹣2m<0,m>.故答案为m>.15.解:∵y=﹣4x2+4mx﹣4m﹣m2=﹣4(x﹣)2﹣4m,∴抛物线开口向下,对称轴为直线x=.当<0,即m<0时,x=0时y取最大值(如图1所示),∴﹣4m﹣m2=﹣5,解得:m1=﹣5,m2=1(不合题意,舍去);当0≤≤1,即0≤m≤2时,x=时y取最大值(如图2所示),∴﹣4m=﹣5,解得:m3=;当>1,即m>2时,x=1时y取最大值(如图3所示),∴﹣4+4m﹣4m﹣m2=﹣5,解得:m4=﹣1(不合题意,舍去),m5=1(不合题意,舍去).综上所述,m的值为﹣5或.故答案为:﹣5或.16.解:①如图,根据圆和正方形的对称性可知:GH=DG=GF,H为半圆的圆心,不妨设GH=a,则GF=2a,在直角三角形FGH中,由勾股定理可得HF=.由此可得,半圆的半径为a,正方形边长为2a,所以半圆的半径与正方形边长的比是a:2a=:2;②因为正方形DEFG的面积为100,所以正方形DEFG边长为10.切点分别为I,J,连接EB、AE,OI、OJ,∵AC、BC是⊙O的切线,∴CJ=CI,∠OJC=∠OIC=90°,∵∠ACB=90°,∴四边形OICJ是正方形,且边长是4,设BD=x,AD=y,则BD=BI=x,AD=AJ=y,在直角三角形ABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2①;在直角三角形AEB中,∵∠AEB=90°,ED⊥AB,∴△ADE∽△BDE∽△ABE,于是得到ED2=AD•BD,即102=x•y②.解①式和②式,得x+y=21,即半圆的直径AB=21.三.解答题(共5小题,满分50分,每小题10分)17.解:(1)△ABC的面积=3×3﹣×2×1﹣×3×1﹣×2×3,=9﹣1﹣1.5﹣3,=9﹣5.5,=3.5;(2)△DEF如图2所示;面积=2×4﹣×1×2﹣×2×2﹣×1×4,=8﹣1﹣2﹣2,=8﹣5,=3;(3)∵△ABE是等腰直角三角形,∴AB=AE,∠BAE=90°,∴∠PAE+∠BAG=180°﹣90°=90°,又∵∠AEP+∠PAE=90°,∴∠BAG=∠AEP,在△ABG和△EAP中,,∴△ABG≌△EAP(AAS),同理可证,△ACG≌△FAQ,∴EP=AG=FQ;(4)如图4,过R作RH⊥PQ于H,设RH=h,在Rt△PRH中,PH==,在Rt△RQH中,QH==,∴PQ=+=6,=6﹣,两边平方得,25﹣h2=36﹣12+13﹣h2,整理得,=2,两边平方得,13﹣h2=4,解得h=3,=×6×3=9,∴S△PQR∴六边形花坛ABCDEF的面积=25+13+36+4×9=74+36=110m2.故答案为:(1)3.5;(2)3;(4)110.18.解:(Ⅰ)对称轴x=﹣=2.(Ⅱ)∵该二次函数的图象开口向下,且对称轴为直线x=2,∴当x=2时,y取到在1≤x≤4上的最大值为2,即P(2,2),∴4a﹣8a+3a=2,∴a=﹣2,∴y=﹣2x2+8x﹣6,∵当1≤x≤2时,y随x的增大而增大,∴当x=1时,y取到在1≤x≤2上的最小值0.∵当2≤x≤4时,y随x的增大而减小,∴当x=4时,y取到在2≤x≤4上的最小值﹣6.∴当1≤x≤4时,y的最小值为﹣6,即Q(4,﹣6).∴△OPQ的面积为4×(2+6)﹣2×2÷2﹣4×6÷2﹣(4﹣2)×(2+6)÷2=10;(Ⅲ)∵当t≤x1≤t+1,x2≥5时,均满足y1≥y2,∴当抛物线开口向下,点P在点Q左边或重合时,满足条件,∴t+1≤5,∴t≤4,∴t的最大值为4.19.解:(1)当F点与C点重合时,如图1所示:∵△DEF为等边三角形,∴∠DFE=60°∵∠B=30°,∴∠BDF=90°∴FD=BC=3;(2)过E点作EG⊥AB,∵∠DEF=60°,∠B=30°,∴∠BME=30°,∴EB=EM在Rt△EBG中,BG=x×cos30°=x,∴BM=2BG=x,∴M点在BA上的移动速度为=,F点作FH⊥F1D1,在Rt△FF1H中,FH=x×cos30°=x,点N在BA上的移动速度为=;(3)在Rt△DMN中,DM=3﹣x,MN=(3﹣x)×cos30°==(3﹣x),当P点运动到M点时,有2x+x=3,∴x=1①当P点在DM之间运动时,过P点作PP1⊥AB,垂足为P1在Rt△PMP1中,PM=3﹣x﹣2x=3﹣3x,∴PP1=(3﹣3x)=(1﹣x),∴y与x的函数关系式为:y=×(3﹣x)×(1﹣x)=(x2﹣4x+3)(0≤x≤1),②当P点在ME之间运动时,过P点作PP2⊥AB,垂足为P2,在Rt△PMP2中,PM=x﹣(3﹣2x)=3(x﹣1),∴PP2=(1﹣x),∴y与x的函数关系式为:y=×(3﹣x)×(1﹣x),=﹣(x2﹣4x+3)(1<x≤).③当P点在EF之间运动时,过P点作PP3⊥AB,垂足为P3,在Rt△PMP3中,PB=x+(2x﹣3)=3(x﹣1),∴PP3=(x﹣1),∴y与x的函数关系式为:y=×(3﹣x)×(x﹣1),=﹣(x2﹣4x+3)(≤x≤3),∴y=﹣(x﹣2)2+,=,∴当x=2时,y最大而当P点在D点时,y=×3××=,∵>,∴当P点在D点时,△PMN的面积最大.20.解:(1)抛物线的解析式为y=﹣+c,∵点(0,5)在抛物线上∴c=5;(2)由(1)知,OC=5,令y=0,即﹣+5=0,解得x1=10,x2=﹣10;∴地毯的总长度为:AB+2OC=20+2×5=30,∴30×1.5×20=900答:购买地毯需要900元.(3)可设G的坐标为(m,﹣+5)其中m>0则EF=2m,GF=﹣+5,由已知得:2(EF+GF)=27.5,即2(2m﹣+5)=27.5,解得:m1=5,m2=35(不合题意,舍去),把m1=5代入,﹣+5=﹣×52+5=3.75,∴点G的坐标是(5,3.75),∴EF=10,GF=3.75,在Rt△EFG中,tan∠GEF===0.375,∴∠GEF≈20.6°.21.解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.2020年黄冈中学重点高中自主招生考试数学模拟试卷三一.选择题(共10小题,满分30分,每小题3分)1.数学家发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b+1.例如把(3,﹣2)放入其中,就会得到32+(﹣2)+1=8.现将实数对(﹣2,3)放入其中得到实数m,再将实数对(m,1)放入其中后,得到的实数是()A.8 B.55 C.66 D.无法确定2.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.3.在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,AB=AE,AC=AD.那么在下列四个结论中:(1)AC⊥BD;(2)BC=DE;(3)∠DBC=∠DAB;(4)△ABE是正三角形,其中正确的是()A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)4.如图,△ABD中,EF∥BD交AB于点E、交AD于点F,AC交EF于点G、交BD =S四边形EBCG,则的值为()于点C,S△AEGA.B.C.D.5.假设五个相异正整数的平均数是15,中位数是18,则这五个相异正整数中的最大数的最大值为()A.24 B.32 C.35 D.406.如图,正方形ABCD中,P为对角线上的点,PB=AB,连PC,作CE⊥CP交AP的延长线于E,AE交CD于F,交BC的延长线于G,则下列结论:①E为FG的中点;②FG2=4CF•CD;③AD=DE;④CF=2DF.其中正确的个数是()A.1个B.2个C.3个D.4个7.随地震波而来的是地底积蓄已久的能量.因为里氏震级并不像摄氏温度一样是等分性的指标,因此每两级地震所释放的能量也相差巨大.根据里克特在1953年提出的公式计算,每一级地震释放的能量都是次一级地震的倍.这意味着,里氏震级每高出0.1级,就会多释放出0.4125倍的能量(如7.8级比7.7级会多释放出0.4125倍的能量).那么5月12日下午2时28分四川汶川地区发生的8.0级大地震与5月25日下午4时21分四川青川一带发生的6.4级余震相比,前次所释放的能量约是后次的()A.22倍B.34倍 C.40倍D.251倍8.对于二次函数y=(x﹣3)2﹣4的图象,给出下列结论:①开口向上;②对称轴是直线x=﹣3;③顶点坐标是(﹣3,﹣4);④与x轴有两个交点.其中正确的结论是()A.①②B.①④C.②③D.③④9.“下滑数”是一个数中右边数字比左边数字小的自然数(如:32,641,8531等),任取一个两位数,是“下滑数”的概率是()A.B.C.D.10.如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆⊙O,则弧AC的长等于()A.πB.C.D.二.填空题(共10小题,满分30分,每小题3分)11.如图所示,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,相对于点O,机器人走到A6时是位置.12.如果三个连续自然数的和不大于9,那么这样自然数共有组.13.直角三角形的三边为a,b,c,其中c为斜边,若,直角三角形的面积为,则c=.14.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.15.将边长为2的5个正方形拼成图1的形状,然后将图1按斜线剪开,再将剪开后的图形拼成图2所示的正方形,那么图2中大正方形的边长是.16.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆O n与直线l相切.设半圆O1,半圆O2,…,半圆O n的半径分别是r1,r2,…,r n,则当直线l与x轴所成锐角为30°,且r1=1时,r2018=.17.如图,∠BAC=90°,点B是射线AM上的一个动点.点C是射线AN上一个动点,且线段BC的长度不变,点D是点A关于直线BC的对称点,连接AD,若2AD=BC,则∠ABD的度数是.18.已知﹣=5,则=.19.已知,直线y=x+2与y轴交于点A,与直线y=﹣x交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣x上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是.20.5个正方形如图摆放在同一直线上,线段BQ经过点E、H、N,记△RCE、△GEH、△MHN、△PNQ的面积分别为S1,S2,S3,S4,已知S1+S3=17,则S2+S4=.三.解答题(共6小题)21.如图,方格纸上的每个小方格都是边长为1小正方形,我们把格点连线为边的三角形称为“格点三角形”,图中的△ABC就是一个格点三角形.(1)填空:AC=,tanB=;(2)请先在方格纸中画出一个格点三角形DEF,使△DEF∽△ABC,并且DE:AB=3:1.再回答:△DEF与△ABC的周长之比为.22.A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?23.设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).24.已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.25.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.26.如图,△ABC是边长为a的等边三角形,O为△ABC的中心.将△ABC绕着中心O旋转120°.①直接写出△ABC的内切圆半径r和外接圆半径R分别是多少?②设点D、E、F分别在边AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,试画出△DEF,说明它的形状,并计算它的周长;③根据“线动成面”的道理,△ABC的三条边AB、BC和CA在旋转过程中扫过的部分组成的平面图形的形状是什么?并计算出此图形的面积.2020年黄冈中学重点高中自主招生考试数学模拟试卷三参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b+1.∴实数对(﹣2,3)放入其中得到实数m=4+3+1=8.则再将实数对(8,1)放入其中,得到的实数是64+1+1=66.故选:C.2.解:方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a>﹣,∴﹣<a<0,故选:D.3.解:∵AB=AE,一个三角形的直角边和斜边一定不相等,∴AC不垂直于BD,(1)错误;利用边角边定理可证得△ADE≌△ABC,那么BC=DE,(2)正确;由△ADE≌△ABC可得∠ADE=∠ACB,那么A,B,C,D四点共圆,∴∠DBC=∠DAC=∠DAB,(3)正确;△ABE不一定是等边三角形,那么(4)不一定正确;(2)(3)正确,故选:B.4.解:∵S△AEG=S四边形EBCG,=S△ABC,∴S△AEG又∵EF∥BD,∴=(平行线截线段成比例),∠EAG=∠BAC,∴△AEG∽△ABC,∴==(相似三角形面积的比等于相似比的平方);。

湖北省罗田县一2019-2020学年高一入学考试数学试卷

湖北省罗田县一2019-2020学年高一入学考试数学试卷

罗田一中2019级新生入学考试数学试题一、选择题共(本题共8小题,每小题3分,共24分)1.下列四个数:,,,中,绝对值最大的数是()A. B. C. D.2.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个3.如图是由5个相同的小正方体组成的几何体,该几何题的左视图是()A. B. C. D.4.国际行星命名委员会将紫金山天文台于2007年9月11日发现的编号为171448的小行星命名为“谷超豪星”,则171448用科学计数法可表示为()A. B.C. D.5.化简结果是()A. B. C. D.6.式子在实数范围内有意义,则的取值范围是()A. B. C. D.7.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大小和尚各几人?设大、小和尚各有x、y人,则可以列方程组()A.131003100x yx y⎧+=⎪⎨⎪+=⎩B.11003100x yx y⎧+=⎪⎨⎪+=⎩C.33100100x yx y+=⎧⎨+=⎩D.1110033100x yx y⎧+=⎪⎨⎪+=⎩8.如图所示,在这个数据运算程序中,若开始输入的x 的值为2,结果输出的是1,返回进行第二次运算则输出的是6,……,则第2019次输出的结果是()A. 1B. 3C. 6D. 8二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:_________________10.分式方程:的解为__________________11.如图,在平面直角坐标系中,边长为2的正方形的边在轴上,边的中点是坐标原点,将正方形绕点按逆时针方向旋转90°后,点的对应点的坐标是________________12.已知反比例函数的图象分别位于第二、第四象限,、两点在该图象上,下列命题:①过点作轴,为垂足,连接.若的面积为3,则;②若,则;③若,则其中真命题个数是_____13.如图,菱形ABCD中,EF⊥AC于点H,分别交AD及CB的延长线交于点E、F,且AE:FB=1:2,则AH:HC的值为_____14.从1、2、3、4四个数中随机选取两个不同的数,分别记为、,则关于的一元二次方程有实数解的概率为__________15.如图,在中,、是对角线上两点,,,,则的大小为___________16.将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵14 710 13 1619 22 25 2831 34 37 40 43…………则第20行第19个数是_____________________ 三、解答题(本题共9小题,共72分) 17..1x,225262.18-=⎪⎭⎫ ⎝⎛---÷--其中先化简,再求值:x x x x19.若点的坐标为,其中满足不等式组,求点所在的象限.20.已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.21.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(3≈1.732,2≈1.414)22.为了弘扬传统文化,提高学生文明意识,育红学校组织全校80个班级进行“诵经典,传文明”演讲赛,比赛后对各班成绩进行了整理,分成4个小组(x表示成绩,单位:分):A 组:60≤x<70;B组:70≤x<80;C组:80≤x<90;D组:90≤x<100,并且绘制了如右不完整的扇形统计图.请根据图中信息,解答下列问题:(1)求扇形统计图中,B组对应的圆心角是多少度?(2)学校从D组中选取了2名男生和2名女生组成代表队参加了区级比赛,由于表现突出,被要求再从这4名学生中随机选取两名同学参加市级比赛,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.23.“今有善行者行一百步,不善行者行六十步”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步,假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?24.如图,是的直径,点在的延长线上,、是上的两点,,,延长交的延长线于点(1)求证:是的切线;(2)求证:(3)若,,求弦的长.25.如图,已知抛物线经过点、.(1)求抛物线的解析式,并写出顶点的坐标;(2)若点在抛物线上,且点的横坐标为8,求四边形的面积(3)定点在轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点在新的抛物线上运动,求定点与动点之间距离的最小值(用含的代数式表示)入学考试数学参考答案1、A 2、B 3、A 4、B 5、D 6、C 7、A 8、B9、10、11、12、3 13、1 514、15、21°. 16、62517、【详解】原式=1+-1-2×+3=3.............5分18、【详解】解:原式2(x3)5(x2)(x2)2(x3)x22x2x2x2(x3)(x3)x3--+---=÷=⋅=-----+-+,当x=﹣1时,原式=﹣1......................6分19、【详解】,解①得:x≥4,解②得:x≤4,则不等式组的解是:x=4,∵=1,2x-9=-1,∴点P的坐标为(1,-1),∴点P在的第四象限........................7分20、【详解】(1)∵关于x的一元二次方程x2-6x+(4m+1)=0有实数根,∴△=(-6)2-4×1×(4m+1)≥0,解得:m≤2;.............................4分(2)∵方程x2-6x+(4m+1)=0的两个实数根为x1、x2,∴x1+x2=6,x1x2=4m+1,∴(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1..............................8分21、【详解】设CE的长为xm,在Rt△CBE中,∵∠CBE=45°,∴∠BCD=45°,∴CE=BE=xm,∴AE=AB+BE=40+x(m)在Rt△ACE中,∵∠CAE=30°,∴tan30°=CE AE即3340xx=+,解得,x=203+20≈20×1.732+20=54.64(m)∴CD=CE+ED=54.65+1.5=56.15≈56(m)答:该建筑物的高度约为56m........................8分22、【详解】解:(1)B组的班级数为:80﹣80×40%﹣20﹣80×5%=24,扇形统计图中,B组对应的圆心角是:360°×2480=108°,即扇形统计图中,B组对应的圆心角是108°;.................4分(2)由题意可得,树状图如下图所示,恰好选中一名男生和一名女生的概率是22222343 +++=⨯,即恰好选中一名男生和一名女生的概率是23.................8分23、【详解】(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60,∴x=1000,∴1000-600-100=300,答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步; (4)分(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y,∴y=500,答:走路快的人走500步才能追上走路慢的人. (8)分24、【详解】(1)连,∵,∴,又,,∴,∵是的直径,∴,∴,,∴,且过半径的外端点,∴是的切线;........................................................3分(2)在和中,,,为公共边,∴,∴,又,∴; ................................................................................................................................6分(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴△CBD∽△DCA,∴,∴,∴DA=2,∴AB=AD-BD=2-1=1,设BC=a,AC=a,由勾股定理可得:a2+(a)2=12,解得:a=,∴AC=. (10)分25、【详解】(1)函数的表达式为:y=(x+1)(x-5)=(x2-4x-5)=,点M坐标为(2,-3); (3)分(2)当x=8时,y=(x+1)(x-5)=9,即点C(8,9),S四边形AMBC=AB(y C-y D)=×6×(9+3)=36; (7)分(3)y=(x+1)(x-5)=(x2-4x-5)=(x-2)2-3,抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,则新抛物线表达式为:y=x2,则定点D与动点P之间距离PD=,∵>0,PD有最小值,当x2=3m-时,PD最小值d=. (12)分。

2020年黄冈中学重点高中自主招生考试数学模拟试卷五及答案解析

2020年黄冈中学重点高中自主招生考试数学模拟试卷五及答案解析

2020年黄冈中学重点高中自主招生考试数学模拟试卷五一、选择题(共6小题,每小题5分,满分30分)1.方程x2﹣5|x|﹣6=0实根的个数为()A.1 B.2 C.3 D.42.如图,在以O为圆心的两个同心圆中,A为大圆上任意一点,过A作小圆的割线AXY,若AX•AY=4,则图中圆环的面积为()A.16πB.8πC.4πD.2π3.已知mn<0且1﹣m>1﹣n>0>n+m+1,那么n,m,,的大小关系是()A. B. C.D..A,B,C,D四人参加某一期的体育彩票兑奖活动,现已知:如果A中奖,那么B也中奖:如果B中奖,那么C中奖或A不中奖:如果D不中奖,那么A中奖,C不中奖:如果D中奖,那么A也中奖则这四个人中,中奖的人数是()A.1 B.2 C.3 D.45.已知三条抛物线y1=x2﹣x+m,y2=x2+2mx+4,y3=mx2+mx+m﹣1中至少有一条与x轴相交,则实数m的取值范围是()A.<m<2 B.m≤且m≠0C.m≥2 D.m≤且m≠0或m≥26.如图,在正△ABC中,D为AC上一点,E为AB上一点,BD,CE交于P,若四边形ADPE 与△BPC面积相等,则∠BPE的度数为()A.60°B.45°C.75°D.50°二、填空题(共6小题,每小题5分,满分30分)7.在△ABC中,∠C=90°,若∠B=2∠A,则tanB=.8.已知|x|=4,|y|=,且xy<0,则的值等于.9.按照一定顺序排列的数列,一般用a1,a2,a3,…,a n表示一个数列,可简记为{an},现有一数列{an}满足关系式:a n+1=a n2﹣na n+1(n=1,2,3,…,n),且a1=2,试猜想a n=(用含n的代数式表示).10.如图,在△ABC中,AB=AC=,BC=2,在BC上有50个不同的点P1,P2,…,P50,过这50个点分别作△ABC的内接矩形P1E1F1G1,P2E2F2G2,…,P50E50F50G50,每个内接矩形的周长分别为L1,L2,…,L50,则L1+L2+…+L50=.11.已知x为实数,且,则x2+x的值为.12.如图,在梯形ABCD中,∠A=90°,AB=7,AD=2,BC=3,如果直线AB上的点P使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似,那么这样的点P有个.三、解答题(共4小题,满分38分)13.(10分)如图,BE是△ABC的外接⊙O的直径,CD是△ABC的高.(1)求证:;(2)已知:AB=11,AD=3,CD=6,求⊙O的直径BE的长.14.(10分)商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场用9万元同时购进三种不同型号的电视机50台,请你研究一下是否可行?若可行,请给出设计方案;若不可行,请说明理由.15.(8分)阅读材料解答问题:如图,在菱形ABCD中,AB=AC,过点C作一条直线,分别交AB,AD的延长线于M,N,则(1)试证明:;(2)如图,0为直线AB上一点,0C,OD将平角AOB三等分,点P1,P2,P3分别在射线OA,OD,OB上,0P1=r1,0P2=r2,OP3=r3,r与r′分别满足,用直尺在图中分别作出长度r,r′的线段.16.(10分)已知:如图,抛物线y=ax2+bx+c(a≠O)经过X轴上的两点A(x1,0)、B(x2,0)和y轴上的点C(0,),⊙P的圆心P在y轴上,且经过B、C两点,若b=a,AB=2,(1)求抛物线的解析式;(2)设D在抛物线上,且C,D两点关于抛物线的对称轴对称,问直线BD是否经过圆心P,并说明理由;(3)设直线BD交⊙P于另一点E,求经过E点的⊙P的切线的解析式.2020年黄冈中学重点高中自主招生考试数学模拟试卷四参考答案与试题解析1.解:当x≥0时:方程x2﹣5|x|﹣6=0,即x2﹣5x﹣6=0解得x=6或﹣1(﹣1应舍去);当x<0时:方程x2﹣5|x|﹣6=0,即x2+5x﹣6=0解得x=﹣6或1(1应舍去);∴此方程有两个不相等的实数根.故选B.2.解:过点A作圆的切线AD,切点是D,∵AD2=AX•AY,AX•AY=4,∴AD=2,∴圆环的面积=πAD2=4π.故选C.3.解:∵mn<0,∴m,n异号,由1﹣m>1﹣n>0>n+m+1,可知m<0,0<n<1,|m|>|n|.假设符合条件的m=﹣4,n=0.2则=5,n+=0.2﹣=﹣则﹣4<﹣<0.2<5故m<n+<n<.故选D.4.解:根据题意,可将已知条件大致分为三类:(为叙述方便,将中奖简写为“中”)①如果A中,则B中;②如果B中,则C中或A不中;③如果D不中,则A中且C不中;已知了A中且D中,当A中时,由①知:B也中;当B中时,由②知C也中(由于A已中奖,因此A不中的条件可以舍去);因此A、B、C、D四人都中奖了,由此可得出中奖的人数为4人,故选D.5.解:三个函数的判别式中至少一个非负:1﹣4m≥0,或4(m2﹣4)≥0,或m(4﹣3m)≥0;解得m≤;m≤﹣2或m≥2;0≤m≤.取其交集:m≤且m≠0或m≥2,故选D.6.解:作EN⊥AC,DM⊥BC,垂足为N、M,∵四边形ADPE与△BPC面积相等,∴它们都加上△PDC的面积也相等.即△AEC与△CDB面积相等,∴×EN×AC=×DM×BC,AC=BC,∴EN=DM,∴△AEN≌△CDM,∴AE=DC,∵在正△ABC中,AC=BC,∠A=∠BCD,可得△AEC≌△CDB,∴∠ACP=∠DBC,∴∠BPE=∠DBC+∠ECB=∠ACP+∠ECB=60°,故选A.7.解:∵在△ABC中,∠C=90°,∠B=2∠A,∴∠A+∠B=3∠A=180°﹣90°=90°.∴∠A=30°,∠B=60°.∴tanB=.8.解:∵|x|=4,|y|=,∴x=±4,y=±;又∵xy<0,∴x=4,y=﹣或x=﹣4,y=,则=﹣8.故答案为:﹣8.9.解:根据题目给出的关系式可得:n=1,a2=a12﹣a1+1=22﹣2+1=3,n=2,a3=a22﹣2a2+1=32﹣2×3+1=4,n=3,a4=a32﹣3a3+1=42﹣3×4+1=5,…由此可以猜测a n=n+1.10.解:根据题意,过A作AD垂直于BC,交BC于点D;易得BD=1,设E1F1与AD交于M,则E1M=AM•tan∠BAD=AM,∴AM=E1F1,因此矩形E1F1G1P1的周长L1=2E1F1+2E1P=2AM+2DM=2AD=4,同理可求得△ABC其它的内接矩形的周长均为4,因此L1+L2+…+L50=4×50=200.故答案为200.11.解:设x2+x=y,则原方程变为﹣y=2,方程两边都乘y得:3﹣y2=2y,整理得:y2+2y﹣3=0,(y﹣1)(y+3)=0,∴y=1或y=﹣3.当x2+x=1时,即x2+x﹣1=0,△=12+4×1=5>0,x存在.当x2+x=﹣3时,即x2+x+3=0,△=12﹣4×3=﹣11<0,x不存在.∴x2+x=1.12.解:①若点P在线段AB上,∵∠A=∠B=90°∴当时,△PAD∽△PBC∴,解得PA=x=;当时,△PAD∽△CBP∴,∴x2﹣7x+6=0,∴(x﹣6)(x﹣1)=0,解得:PA=x=1或6;②若点P在线段BA的延长线上,∵∠PAD=∠B=90°当PA:PB=AD:BC时,△PAD∽△PBC ∴,解得:PA=x=14;当时,△PAD∽△CBP∴,∴x2+7x﹣6=0,解得:PA=x=;③若点P在线段AB的延长线上,∵∠A=∠CBP=90°∴当AD:PB=PA:BC时,△PAD∽△CBP ∴,∴x2﹣7x﹣6=0,解得:PA=x=,综上,满足题意的P有6种情况.13.(1)证明:连接EC,∵BE是直径,∴∠BCE=∠ADC=90°,又∵∠A=∠E,∴△ADC∽△ECB,∴CD:BC=AC:BE.(2)解:由题意知,BD=11﹣3=8,在Rt△ACD中,由勾股定理知,AC==3,在Rt△BCD中,由勾股定理知,BC==10,由(1)知,CD:BC=AC:BE,∴BE==5.14.解:(1)设购买电视机甲种x台,乙种y台,丙种z台,由题意得:①x+y=50,1500x+2100y=90000,解得x=25,y=25;②y+z=50,2100y+2500z=90000,解得y=87.5,z=﹣37.5,(舍去)③x+z=50,1500x+2500z=90000,解得x=35,z=15.(2)x+y+z=50,1500x+2100y+2500z=90000解得(8分)∵均大于0而小于50的整数∴x=27,y=20,z=3;x=29,y=15,z=6;x=31,y=10,z=9;x=33,y=5,z=1215.证明:(1)∵四边形ABCD是菱形,∴BC∥AD,∴,(1分)又∵CD∥AM,∴,(2分)∴,(3分)又∵AB=AD=AC,∴;(4分)(2)连接P1,P2交OC于点E,则0E=r,(6分)连接EP3交OD于点F,则0F=﹣r′.(8分)16.解:(1)∵轴上的点C(0,),∴c=,又∵b=a,AB=2,令ax2+ax﹣=0,|x1﹣x2|=,解得:a=,b=;∴抛物线的解析式是:y=.(4分)(2)D(﹣,﹣),直线B D为:y=,连接BP,设⊙P的半径为R,,R=1,P(0,﹣),(7分)点P的坐标满足直线BD的解析式y=.∴直线B D经过圆心P.(8分)(3)过点E作EF⊥y轴于F,得△OPB≌△FPE,E(),(9分)设经过E点⊙P的切线L交y轴于点Q.则∠P EQ=9 0°,EF⊥PQ,∴P E2=P F•PQ,∴PQ=2,Q(0,﹣2.5),(11分)∴切线L为:y=﹣.(12分)。

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题三及答案

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题三及答案
2020 年黄冈中学自主招生(理科实验班)预录考试
数学模拟试题三
一.选择题:
1. 方程 x= 3x 5 5 3 5- 3
的根是 x=( )
A.4- 15
B.4+ 15 C. 15 -4 D. 5 - 3
2. 将自然数 1~22 分别填在下面的“□”内(每个“□”只能填一个数), 在形成的 11 个 分数中, 分数值为整数的最多能有( )个
因为
a b c (a b c)x2 (a 2b 3c)x 2c (a b c)x2 (a 2ac 2 3c)x 2c
P
C
N
M
I
B
T
A
Q
2020 年黄冈中学自主招生(理科实验班)预录考试
数学模拟试题三答案
一试
一.选择题:
题号 1
2
3
4
5
6
7
8
9
10
答案 B
C
A
B
D
C
A
D
B
C
二.填空题:
11.__3960________;
12.__2009__________;
13.__(3,0)(2,2)_____;
14.___8___________;
xmin
2, 3
当 y z 1 满足 3
18.解:(1)当 x = c 时,y = 0,即 ac2 bc c 0, c( ac b1) 0,又 c>1,所以
ac b 1 0 设一元二次方程 ax2 bx c 0 两个实根为 x1, x2 (x1 x2 )
由 x1
x2
c a
0 ,及 x = c>1,得
15.___ 9 3 ______; 4

黄冈中学2020年春自主招生数学模拟试题(附答案)

黄冈中学2020年春自主招生数学模拟试题(附答案)

黄冈中学2020年春自主招生模拟试题数 学 试 题(考试时间:120分钟 总分120分)一、选择题(每题3分,共24分)1.一元二次方程x 2+bx +c =0的一实根是另一实根的2倍,则以下结论错误的是( )A .b 2-4c ≥0B .b ≤0C .c ≥0D .2b 2=9c2.关于x 的不等式组1532223x x x x a ⎧+>-⎪⎪⎨+⎪<+⎪⎩,只有4个整数解,则a 的取值范围是( )A .-5≤a ≤143-B .-5≤a ≤143-C . -5<a ≤143-D . -5≤a <143- 3.双曲线y =k x (k <0)上有A ,B 两点,直线AB 交y 轴于点D ,交x 轴于点C ,且OD =OC ,若A (43-,1),则点B 的坐标为( )A .(-1,43) B .(-1,34) C .(-1,23) D .(-1,32)4.已知函数f (x )=x 2+λx ,p ,q ,r 为△ABC 的三边,且P <q <r ,若所有的正整数p ,q ,r 都满足f (p )<f (q )<f (r ),则λ的取值范围是( )A . λ>-2B . λ>-3C . λ>-4D . λ>-55.如图,△ABC 的面积为60,点D 在BC 上,BD =2CD ,连接AD 点E 为AD 中点,连接BE 并工交AC 于点,则△AEF 的面积为( )A . 2B . 4C . 5D . 86.记S n =a 1+a 2+…+a n , 令T n =12nS S S n+++,称T n 为a 1,a 2…,a n 这列数的“理想数”.已知a 1,a 2,…,a 500的“理想数”为2004,那么8,a 1,a 2,…,a 500的“理想数”为( )A . 2004B .2006C . 2008D . 20107.如图,△ABC 内接于⊙O ,且AB =AC ,直线AD 交BC 于点E ,F 是OE 的中点,如果BD ∥CF ,BC =25,则线段CD 的长为( )A . 2B .5C .6D . 238.已知x ,y ,z ,a ,b 均为非零的实数,且满足331xy x y a b =+-,31yz y z a=+,331xz x z a b =++,112xyz xy yz zx =++,则a 的值为( ) A . 2 B .-2 C .1 D . -1二、填空题(每题3分,共24分)9.已知a+b+c=0, a 2+b 2+c 2=6,那么a 4+b 4+c 4的值为_________10.用三种边长相等的正多边形地转铺地,其顶点在一起,刚好能完全铺满地面,已知正多边形的边数为x 、y 、z ,则111x y z++的值为 .11. 将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组322ax by x y +=⎧⎨+=⎩,只有正数解的概率为 .12.如图,在平面直角坐标系中,四边形ABCD 是平行四边形,顶点B 在的比例函数y =2(0)x x-<上,点A 在反比例函数3(0)y x x=>上,C ,D 在x 轴上,则平行四边形ABCD 的面积是_______. 13. 设[x ]表示不超过x 的最大整数(例如:[2]=2,[1.25]=1),则方程3x -2[x ]+4=0的解为________ .14.使不等式|2x 3-|+k <x 有解的实数k 的取值范围是______.15.如图,⊙O 中,直径AB =10,C ,D 是上半圆⌒AB上的两个动点,弦AC 与BD 交于点E ,则AE ·AC +BE ·BD =__________16.如图所示,点A 、C 都在函数y =2(0)x x>的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等腰直角三角形,则D 点的坐标为________ 三、解答题17.(8分)已知实数x ,y满足(2x +1)2+y 2+(y -2x )2=13,求x +y . 18.(8分)设m 是不小于-1的实数,关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个不相等的实数根x 1,x 2 (1)若22126x x +=,求m 的值.(2)求22121211mx mx x x +--的最大值. 19.(8分)如图,已知△ABC ,D 是BC 的延长线上的点,F 是AB 延长线上的点,∠ACD 的平分线交BA的延长线于点E ,∠FBC 的平分线交AC 的延长线于点E ,∠FBC 的平分线交AC 的延长线于点G ,若CE =BC =BG ,求∠ABC .2y x =-3y x=第5题图第7题图第16题图第15题图第12题图20.(8分)如图,已知A,B 两点的坐标分别为A(0,23),B(2,0),直线AB与反比例函数y=mx的图象交于点C和点D(-1,a).(1)求直线AB和反比例函数的解析式.(2)求∠ACO的度数.21.(9分)如图,在锐角△ABC中,AC是最短边,以AC的中点O为圆心,12AC长为半径作⊙O,交BC于点E,过O作OD∥BC交O于点D,连结AE、AD、DC.(1)求证:D是⌒AE的中点;(2)求证:∠DAO=∠B+∠BAD;(3)若=12CEFOCDSS∆∆=,且AC=4,求CF的长.22.(9分)提高过江大桥的车辆通行能力可改善整个城市的交通状况。

湖北省黄冈中学2020年春自主招数学模拟试题及参考答案

湖北省黄冈中学2020年春自主招数学模拟试题及参考答案

黄冈中学2020年春自主招生模拟试题数 学 试 题(考试时间:120分钟 总分120分)一、选择题(每题3分,共24分)1.一元二次方程x 2+bx+c=0的一实根是另一实根的2倍,则以下结论错误的是( )A.b 2-4c ≥0B.b ≤0C.c ≥0D.2b 2=9c2.关于x 的不等式组1532223x x x x a ⎧+>-⎪⎪⎨+⎪<+⎪⎩,只有4个整数解,则a 的取值范围是( )A.-5≤a ≤143-B.-5≤a ≤143-C. -5<a ≤143-D. -5≤a<143- 3.双曲线y=k x (k<0)上有A ,B 两点,直线AB 交y 轴于点D ,交x 轴于点C ,且OD=OC ,若A (43-,1),则点B 的坐标为( )A.(-1,43) B.(-1,34) C.(-1,23) D .(-1,32)4.已知函数f(x)=x 2+λx ,p ,q ,r 为△ABC 的三边,且P<q<r ,若所有的正整数p ,q ,r 都满足f(p)<f(q)<f(r),则λ的取值范围是( )A. λ>-2B. λ>-3C. λ>-4D. λ>-55.如图,△ABC 的面积为60,点D 在BC 上,BD=2CD ,连接AD 点E 为AD 中点,连接BE 并工交AC 于点,则△AEF 的面积为( )A. 2B. 4C. 5D. 86.记S n =a 1+a 2+…+a n , 令T n =12nS S S n+++,称T n 为a 1,a 2…,a n 这列数的“理想数”.已知a 1,a 2,…,a 500的“理想数”为2004,那么8,a 1,a 2,…,a 500的“理想数”为( )A. 2004B.2006C. 2008D. 20107.如图,△ABC 内接于⊙O ,且AB=AC ,直线AD 交BC 于点E ,F 是OE 的中点,如果BD ∥CF ,BC=25,则线段CD 的长为( )A. 2B.5C.6D. 238.已知x ,y ,z ,a ,b 均为非零的实数,且满足331xy x y a b =+-,31yz y z a =+,331xz x z a b=++,112xyz xy yz zx =++,则a 的值为( ) A. 2 B.-2 C.1 D. -1二、填空题(每题3分,共24分)9.已知a+b+c=0, a 2+b 2+c 2=6,那么a 4+b 4+c 4的值为_________.第5题图第7题图10.用三种边长相等的正多边形地转铺地,其顶点在一起,刚好能完全铺满地面,已知正多边形的边数为x、y、z,则111x y z++的值为.11.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为b,则使关于x,y的方程组322ax byx y+=⎧⎨+=⎩,只有正数解的概率为.12.如图,在平面直角坐标系中,四边形ABCD是平行四边形,顶点B在的反比例函数y=2(0)xx-<上,点A在反比例函数3(0)y xx=>上,C,D在x轴上,则平行四边形ABCD的面积是_______.13. 设[x]表示不超过x的最大整数(例如:[2]=2,[1.25]=1),则方程3x-2[x]+4=0的解为________ .14.使不等式|2x3-|+k<x有解的实数k的取值范围是______.15.如图,⊙O中,直径AB=10,C,D是上半圆⌒AB上的两个动点,弦AC与BD交于点E,则AE·AC+BE·BD=__________.16.如图所示,点A、C都在函数y=2(0)xx>的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等腰直角三角形,则D点的坐标为________.三、解答题17.(8分)已知实数x,y满足(2x+1)2+y2+(y-2x)2=13,求x+y.18.(8分)设m是不小于-1的实数,关于x的方程x2+2(m-2)x+m2-3m+3=0有两个不相等的实数根x1,x2(1)若22126x x+=,求m的值;(2)求22121211mx mxx x+--的最大值.第16题图第15题图2yx=-3yx=第12题图19.(8分)如图,已知△ABC,D是BC的延长线上的点,F是AB延长线上的点,∠ACD的平分线交BA的延长线于点E,∠FBC的平分线交AC的延长线于点E,∠FBC的平分线交AC的延长线于点G,若CE=BC=BG,求∠ABC.20.(8分)如图,已知A,B两点的坐标分别为A(0,23),B(2,0),直线AB与反比例函数y=mx的图象交于点C和点D(-1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数.21.(9分)如图,在锐角△ABC中,AC是最短边,以AC的中点O为圆心,12AC长为半径作⊙O,交BC于点E,过O作OD∥BC交O于点D,连结AE、AD、DC.(1)求证:D是⌒AE的中点;(2)求证:∠DAO=∠B+∠BAD;(3)若=12CEFOCDSS∆∆=,且AC=4,求CF的长.22.(9分)提高过江大桥的车辆通行能力可改善整个城市的交通状况。

2020年黄冈中学自主招生考试数学试题答案

2020年黄冈中学自主招生考试数学试题答案

数学答案一、选择题(本大题8小题,每小题4分,共32分)1.D2.A 3.B 4.C 5.B 6.C 7.D 8.A二、填空题(本大题8小题,每小题4分,共32分)9.6x >10.2011.495(或写成8.9)12.12-13.0或5314.6515.1016.126三、解答题(一)(本大题4小题,每小题8分,共32分)17.解:(1)12D B E D ∠=∠+∠=∠+∠+∠ ,1180A C ∠+∠+∠=︒,180A B C D E ∴∠+∠+∠+∠+∠=︒;…………………………………………………………………………3分(2)12F B E F ∠=∠+∠=∠+∠+∠ ,1360A C D ∠+∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒;……………………………………………………………………6分(3)根据图中可得出规律180A B C D E ∠+∠+∠+∠+∠=︒,每截去一个角则会增加180度,所以当截去5个角时增加了1805⨯度,则180********A B C D E F G H M N ∠+∠+∠+∠+∠+∠+∠+∠+∠+∠=︒⨯+︒=︒.……………………8分18.解:(1)补充图象另一部分如下:………………………………………………………………………2分(2)从图象看,当y 随x 增大而减小时,则x 的取值范围是:10x -<<,1x >;故答案是:10x -<<,1x >;…………………………………………………………………………………4分(3)从图象看①函数图象与x 轴有3个交点,所以对应方程22||0x x -+=有3个实数根;②方程22||1x x -+=-有2个实数根;③若关于x 的方程22||x x n -+=有4个实数根,则n 的取值范围是01n <<,故答案为:3,3;2;01n <<.(注:一个1分)…………………………………………………………8分19.解:(1)证明:如图,连接OC ,20.AB 是O 的直径,C 是弧AB 的中点,OC AB∴⊥CD AC = ,OA OB =,OC ∴为ABD ∆的中位线,//OC BD ∴,BD AB ∴⊥,BD ∴是O 的切线;……………………………………………………………………………………………………………………4分(2)E 是OB 的中点,OE BE ∴=,//OC BD ,OCE BFE ∴∆∆∽,∴OC OE BF BE=,1BF = ,1OC ∴=,∴在Rt ABF ∆中,2AB =,1BF =,由勾股定理得:AF ==AB 是O 的直径,90AHB ∴∠=︒,1122AF BH AB BF = ,BH ∴==BH ∴的长为5.……………………………………8分20.解:(1)如图,作AH x ⊥轴于H .在Rt AOH ∆中,OA = 1tan2AOH ∠=,2AH ∴=,4OH =,(4,2)A ∴-,(4,2)A - 在k y x=的图象上,8k ∴=-,……………………………2分(,4)B m - ,在8y x =-的图象上上,2m ∴=,把A 、B 坐标代入y kx b =+,则4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,∴反比例函数的解析式为8y x=-,一次函数的解析式为2y x =--.……………………………………………………………………………………………………………………4分(2)由2y x =--,令0x =,则2y =-;令0y =,则2x =-,(0,2)D ∴-,(2,0)C -,12(42)62AOB AOD BOD S S S ∆∆∆∴=+=⨯⨯+=,若点E 在y 轴上,设(0,)E y ,则|(2)|DE y =--.由3AED AOB S S ∆∆=,可得1|(2)|4362y ⨯--⨯=⨯.解得7y =或11-,∴点E 的坐标为(0,7)或(0,11)-;……………………6分若点E 在x 轴上,设(,0)E x ,则|(2)|CE x =--.由2AED AOB S S ∆∆=,可得1|(2)|4362x ⨯--⨯=⨯.解得7x =或11-,∴点E 的坐标为(7,0)或(11,0)-;综上所述,点E 的坐标为(0,7)或(0,11)-或(7,0)或(11,0)-.………………………………………………8分四、解答题(二)(本大题2小题,每小题12分,共24分).21.解:(1)∵10BC =,∴=5AB ①当点D 落在线段AB上,52BD AB AD =-=-,当点D 落在线段BD 的延长线上时,52BD AB AD =+=+,BD ∴的长为52-或52+.……………………………………………………………………………2分②显然ABD ∠不能为直角,当ADB ∠为直角时,222AD BD AB +=,∴3BD =,当BAD ∠为直角时,222AB AD BD +=,∴7BD =,BD ∴长为3或7.…………………………………………………………………………………………4分(2)如图1,连接12D D ,1D C ,则△12AD D 为等腰直角三角形,∴12122D D AD ==,12AD AD ∴=,AB AC =,21BAC D AD ∠=∠ ,21BAD CAD ∴∠=∠,在2ABD ∆和1ACD ∆中,2121AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,21()BAD CAD SAS ∴∆≅∆,21BD CD ∴=,……………………………………………………………………6分又2135AD C ∠=︒ ,122211354590D D C AD C AD D ∴∠=∠-∠=︒-︒=︒,∴2212125CD CD D D =+=,∴25BD =.………………………………………………………………8分(3)存在最大值和最小值.理由:如图2,所示,连接1CD ,点P 、M 分别是2CD ,21D D 的中点,∴112PM CD =,1//PM CD , 点N 、P 分别是BC ,2CD 的中点,∴212PN BD =,2//PN BD ,21BD CD = ,PM PN ∴=,MPN ∴∆是等腰三角形,1//PM CD ,221D PM D CD ∴∠=∠,2//PN BD ,2PNC D BC ∴∠=∠,2222D PN D CB PNC D CB D BC ∠=∠+∠=∠+∠ ,22MPN D PM D PN ∴∠=∠+∠2122D CD D CB D BC =∠+∠+∠12BCD D BC =∠+∠12ACB ACD D BC=∠+∠+∠22ACB ABD D BC =∠+∠+∠ACB ABC =∠+∠.90BAC ∠=︒ ,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒.MPN ∴∆为等腰直角三角形.……………10分∴212PMN S PN ∆==2211()22BD =,∴当2BD 取最大时,PMN ∆的面积最大,此时最大面积2117[228S +==;当2BD 取最小时,PMN ∆的面积最小,此时最小面积2117[228S -==.……………12分22.解:(1)对于抛物线211433y x x =-++,令0y =得2114033x x -++=,解得3x =-或4.令0x =得4y =,(3,0)A ∴-,(4,0)B ,(0,4)C ,5x = 时,83y =-,8(5,)3E ∴-,设直线AD 的解析式为y kx b =+,则有30853k b k b -+=⎧⎪⎨+=-⎪⎩,解得131k b ⎧=-⎪⎨⎪=-⎩,∴直线AD 的解析式为113y x =--.…………………………………………………………………………4分(2)如图1中,设211(,4)33F m m m -++,则1(,1)3G m m --,212533FG m m =-++,//FG CD ,//FH AC ,FHD CAD ∴∠=∠,FGH CDA ∠=∠,FGH ∴∠,FHG ∠是定值,∴当FG 最大时,FGH ∆的周长最短,22121165(1)3333FG m m m =-++=--+ ,103-< ,1m ∴=时,FG 有最大值,此时(1,4)F ,………………………………………………………6分作点F 关于y 轴的对称点F ',连接AF ',由此AF '交y 轴于T ,此时||TA TF -最大,(3,0)A - ,(1,4)F '-,∴直线AF '的解析式为26y x =+,∴点T 坐标(0,6).………………………………………………………………………………………………8分(3)①如图2中,当90MNP ∠=︒,重叠部分是MNP ∆是直角三角形,FMN COA ∆∆ ∽,∴FN FM CO AC =,211433FN m m =-++ ,25511(4)4433FM PM PG FN m m ∴====-++,2FN PG FG += ,22211511122(4)(4)53343333m m m m m m ∴-+++-++==-++,整理得295960m m --=,解得329m =或3-(舍弃),图22132132236(43939243FN ∴=-+⨯+=.…………………………………………………………………………10分②如图3中,当PM GF ⊥时,重叠部分是MNK ∆是直角三角形.::3:4:5KM FK FM = ,PM PG =,:2:5PK PG ∴=,:2KG PK ∴=,21111(1):(3)43233m m m ∴+-++=,(3):(3)(4)4m m m ∴++-+=,解得421m =-或3-(舍弃),166363FK ∴=.::5:3FN NK FM MK == ,510863FN FK ∴==.③当90NMF ∠=︒,不可能得到PM PG =,故此种情形不存在.综上所述,当PMN ∆与FGH ∆重叠部分图形为直角三角形,且PM PG =时,线段FN 的长为2362431063.………………………………………………………12分。

2020年黄冈中学重点高中自主招生考试数学模拟试卷十及答案解析

2020年黄冈中学重点高中自主招生考试数学模拟试卷十及答案解析

的图象如上图所示,那么水瓶的形状是
()
8、甲、乙、丙 3 位同学选修课程,从 4 门课程中,甲选修 2 门,乙、丙各选修 3 门,则不同的选修
方案共有
()
A.36 种
B.48 种
C.96 种
D.192 种
.9,有依次排列的 3 个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写
(第 16 题图)
17、(本题满分 14 分)观察一列数 2,4,8,16,32,…,发现从第二项开始,每一项与前一项之
比是一个常数,这个常数是
;根据此规律,如果 an ( n 为正整数)表示这个数列的第 n
项,那么 a18
, an

(2)如果欲求1 3 32 33 320 的值,可令
C1
B1
C B
上爬到点 C1,已知 AB=5cm,BC=3 cm CC1 =4 cm,则这只蚂蚁爬行的最短路程是________.
三、解答题(本大题共 5 小题,共 66 分)
16(本小题 12 分)如图,正方形 ABCD 的边长为 1,点 E 是 AD 边上的动点,从点 A 沿 AD 向 D 运.动.,以 BE 为边,在 BE 的上方作正方形 BEFG,连接 CG。请探究: (1)线段 AE 与 CG 是否相等?请说明理由: (2)若设 AE=x,DH=y,当 x 取何值时,y 最大? (3)连接 BH,当点 E 运动到 AD 的何位置时,△BEH∽△BAE?

x x

y y
12 6
的解的个数为
()
A. 1
B. 2
C. 3
D. 4
3、如图,边长为 1 的正方形 ABCD 绕点 A 逆时针旋转 30 到正方形

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题八(pdf版,含答案)

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题八(pdf版,含答案)

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题八一.选择题(共8小题,满分40分,每小题5分)1.若实数x满足|x﹣3|+=7,化简2|x+4|﹣的结果是()A.4x+2 B.﹣4x﹣2 C.﹣2 D.22.△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.a=5,b=12,c=13C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:53.一根长30cm、宽3cm的长方形纸条,将其按照图示的过程折叠,为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,MA的长应为()A.7.5cm B.9cm C.12cm D.10.5cm4.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()A.5.4 B.5.7 C.7.2 D.7.55.抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位6.在打靶中,某运动员每发子弹都是命中8、9、10环,他打了多于11发子弹,共得100环,那么,他命中10环的次数是()A.0 B.1 C.2 D.不能确定7.如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()A.1 B.C.D.8.点C是半径为1的半圆弧AB的一个三等分点,分别以弦AC、BC为直径向外侧作2个半圆,点D、E也分别是2半圆弧的三等分点,再分别以弦AD、DC、CE、BE为直径向外侧作4个半圆.则图中阴影部分(4个新月牙形)的面积和是()A.B.C.D.二.填空题(共10小题,满分40分,每小题4分)9.已知扇形的半径为2cm,面积是cm2,则扇形的弧长是cm.10.如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于.11.若直线y=2x+3与直线y=mx+5平行,则m+2的值为.12.已知对于任意正整数n,都有a1+a2+…+a n=n3,则=.13.取大小、质地都相同的四张卡片,正面分别写有数字﹣1,1,2,3,充分洗匀后任取两张,取卡片上标注的两个数作为点的坐标,那么该点刚好在一次函数y=x﹣2图象上的概率是14.若关于x的不等式组的所有整数解的和是﹣9,则m的取值范围是.15.如图,菱形ABCD的边长是2cm,∠A=60°,点E、F分别是边AB、CD上的动点,则线段EF的最小值为cm.16.如图,Rt△ABC,∠BCA=90°,AC=BC,点D为△ABC外一点,且AC=CD,连接DB交AC于点H,∠DCA的平分线交DH于点F,过B点作FC的垂线交FC的延长线于点E.已=8,则CE的长为.知tan∠DBC=,S△ACD17.方程|x2﹣3x+2|+|x2+2x﹣3|=11的所有实数根之和为.18.已知实数a,b满足等式a2﹣2a﹣1=0,b2﹣2b﹣1=0,则的值是.三.解答题(共4小题,满分40分,每小题10分)19.(10分)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.②若AD=EC,求的值.20.(10分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C (4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.21.(10分)若关于x的分式方程的解为负数,求a的取值范围.22.(10分)如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC 于点D,交⊙O于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.(1)求证:BC∥FG;(2)探究:PE与DE和AE之间的关系;(3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG的长.2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题八参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.解:∵|x﹣3|+=7,∴|x﹣3|+|x+4|=7,∴﹣4≤x≤3,∴2|x+4|﹣=2(x+4)﹣|2x﹣6|=2(x+4)﹣(6﹣2x)=4x+2,故选:A.2.解:A、a2+b2=c2,是直角三角形,错误;B、∵52+122=132,∴此三角形是直角三角形,故本选项正确;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项正确;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项正确;故选:D.3.解:将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm,下底等于纸条宽的2倍,即6cm,两个三角形都为等腰直角三角形,斜边为纸条宽的2倍,即6cm,故超出点P的长度为(30﹣15)÷2=7.5,AM=7.5+3=10.5.故选D.4.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选:C.5.解:原抛物线的顶点为(0,1),新抛物线的顶点为(﹣2,1),∴是抛物线y=x2+1向左平移2个单位得到,故选:B.6.解:设环数为8,9,10的次数分别为x,y,z,∴x+y+z>11,8x+9y+10z=100,∵若x+y+z≥13,则8x+9y+10z≥8×13>100,故x+y+z=12.∴该运动员打靶的次数为:12.当x=10时,y=0,z=2,当x=9时,y=2,z=1,当x=8时,y=4,z=0.故他命中10环的次数分别为:0,1,2.故选:D.7.解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°,∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC∥DE,∴∠CBF=∠BED=30°,在Rt△BCF中,CF==,BF=2CF=,∴EF=2﹣,在Rt△DEF中,FD=EF=1﹣,ED=FD=﹣1,∴S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE=2×BC•AD+AD•ED=2××1×(﹣1)+×(﹣1)(﹣1)=1.故选:A.8.解:易知D、C、E三点共线,点C是半径为1的半圆弧AB的一个三等分点,∴对的圆心角为=60°,∴∠ABC=30°,∵AB是直径,∴∠ACB=90°,∴AC=AB=1,BC=AB•COS30°=,BE=BC•COS30°=,CE=DC=,AD=,且四边形ABED为直角梯形,外层4个半圆无重叠.从而,S阴影=S梯形ABED+S△ABC﹣,=S△ADC+S△BCE,=.故选:B.二.填空题(共10小题,满分40分,每小题4分)9.解:设弧长为l,∵扇形的半径为2cm,面积是cm2,∴•2•l=π,∴l=πcm.故答案为=π.10.解:将线段AP绕点A顺时针旋转60°得到线段AM,连接PM,作AH⊥BP于H.∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∵AM=AP,∠MAP=60°,∴△AMP是等边三角形,∵∠MAP=∠BAC,∴∠MAB=∠PAC,∴△MAB≌△PAC,∴BM=PC=10,∵PM2+PB2=100,BM2=100,∴PM2+PB2=BM2,∴∠MPB=90°,∵∠APM=60°,∴∠APB=150°,∠APH=30°,∴AH=PA=3,PH=3,BH=8+3,∴AB2=AH2+BH2=100+48,∴菱形ABCD的面积=2•△ABC的面积=2××AB2=50+72,故答案为50+72.11.解:∵两直线平行∴两直线的k值相同∴m=2∴m+2=4.12.解:∵当n≥2时,有a1+a2+…+a n﹣1+a n=n3,a1+a2+…+a n﹣1=(n﹣1)3,两式相减,得a n=3n2﹣3n+1,∴==(﹣),∴++…+,=(1﹣)+(﹣)+…+(﹣),=(1﹣),=.故答案为:.13.解:画出树状图如下:当x=﹣1时,y=﹣1﹣2=﹣3,当x=1时,y=1﹣2=﹣1,点(1,﹣1)在函数图象上,当x=2时,y=2﹣2=0,当x=3时,y=3﹣2=1,点(3,1)在函数图象上,所以,共有12个点的坐标,其中在一次函数y=x﹣2图象上的有2个,P(在一次函数y=x﹣2图象上)==,故答案为:.14.解:∵解不等式①得:x≥﹣4,又∵不等式组的所有整数解得和为﹣9,∴﹣4+(﹣3)+(﹣2)=﹣9或(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1=﹣9,∴﹣2<m≤﹣1或1<m≤2,故答案为:﹣2<m≤﹣1或1<m≤2.15.解:作DM⊥AB与M,∴∠AMD=90°.∵四边形ABCD是菱形,∴AD=AB=BC=CD=2cm.∵∠A=60°,∴∠ADM=30°.∴AM=AD=1cm.在Rt△AMD中,由勾股定理,得DM=cm.∴线段EF的最小值为.故答案为:.16.解:延长CF交AD于M,连接AF,以C为圆心OA为半径作⊙C.∵CD=CA,CF平分∠ACD,∴CM⊥AD,DM=AM,∴FD=FA,∵∠ADB=∠ACB=45°,∴∠FDA=∠FAD=45°,∴∠AFD=∠AFB=∠ACB=90°,∴A、F、C、B四点共圆,∵tan∠DBC==,设CH=3k,则BC=4k,BH=5k,AB=4k,∴AH=AC﹣CH=k,FH k,AF=k,AD=k,∵△FHC∽△AHB,∴==,∴CF=k,∴CM=CF+FM=k,=8,∵S△ACD∴×k×k=8,∴k=,∴AM=,∵∠AMC=∠E=90°,AC=BC,∠ACM=∠CBE,∴△AMC≌△CEB,∴CE=AM=.故答案为.17.解:分段讨论知(1),解得x=(舍去);(2),解得x=﹣;(3),解得x=(舍去);(4),解得x=.∴(﹣)+=.故答案为:.18.解:因为实数a,b满足等式a2﹣2a﹣1=0,b2﹣2b﹣1=0,(1)当a=b=1+或1﹣时,原式==2﹣2或﹣2﹣2;(2)当a≠b时,可以把a,b看作是方程x2﹣2x﹣1=0的两个根.由根与系数的关系,得a+b=2,ab=﹣1.则原式=﹣2.故填空答案:﹣2或2﹣2或﹣2﹣2.三.解答题(共4小题,满分40分,每小题10分)19.解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°﹣∠BCD=31°;(2)①由勾股定理得,AB==,∴AD=﹣a,解方程x2+2ax﹣b2=0得,x==﹣a,∴线段AD的长是方程x2+2ax﹣b2=0的一个根;②∵AD=AE,∴AE=EC=,由勾股定理得,a2+b2=(b+a)2,整理得,=.20.解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.21.解:分式方程去分母得:(x+1)(x﹣1)﹣(x﹣2)2=2x+a,整理得:x2﹣1﹣x2+4x﹣4=2x+a,解得:x=,根据题意得:<0,解得:a<﹣5,再将x=2代入方程得:a=﹣1;将x=﹣1代入得:a=﹣7,则a的取值范围为a<﹣5且a≠﹣7.22.(1)证明:连接BE,∵点P是△ABC的内心,∴∠BAD=∠CAD.又∵FG切⊙O于E,∴∠BEF=∠BAD.又∵∠DBE=∠CAD,∴∠BEF=∠DBE.∴BC∥FG.(2)解:连接BP,则∠ABP=∠CBP.∵∠BPE=∠BAP+∠ABP=∠PBC+∠EBD,∴∠BPE=∠PBE.∴BE=PE.在△ABE和△BDE中,∠BAE=∠EBD,∠BED=∠AEB,∴△ABE∽△BDE.∴=.∴BE2=AE•DE.∴PE2=AE•DE.(3)解:∵FE2=FB•FA=FB(FB+AB),而FE=AB,∴AB2=3(3+AB).设AB=x,则x2﹣3x﹣9=0,解之得x=.∴AB=(取正值).由(1)在△AFG中,BC∥FG,∴.∴AC==×=1+.∴AG=AC+CG=3+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省黄冈市罗田一中2020年自主招生考试数学试卷一、填空题(4085=⨯分)1、方程组⎪⎩⎪⎨⎧=+=-++2621133y x y x 的解是2、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为3、设21≤≤-x ,则2212++--x x x 的最大值与最小值之差为 4、两个反比例函数x y 3=,x y 6=在第一象限内的图象点1P 、2P 、3P 、…、2007P 在反比例函数xy 6=上,它们的横坐标分别为1x 、2x 、3x 、…、2007x ,纵坐标分别是1、3、5…共2007个连续奇数,过1P 、2P 、3P 、…、2007P 分别作y 轴的平行线,与xy 3=的图象交点依次为)','(111y x Q 、)','(222y x Q 、…、),('2007'20072007y x Q , 则=20072007Q P5、如右图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是6、有一张矩形纸片ABCD ,9=AD ,12=AB ,将纸片折叠使A 、C 两点重合,那么折痕长是7、已知3、a 、4、b 、5这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是8、若抛物线1422++-=p px x y 中不管p 取何值时都通过定点,则定点坐标为 二、选择题(4085=⨯分)9、如图,ABC ∆中,D 、E 是BC 边上的点,1:2:3::=EC DE BD ,M 在AC 边上,2:1:=MA CM ,BM 交AD 、AE 于H 、G ,则GM HG BH ::等于 ( )A 、1:2:3B 、1:3:5C 、5:12:25D 、10:24:5110、若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A 、r c r 2+πB 、r c r +πC 、r c r +2πD 、22rc r +π 11、抛物线2ax y =与直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则实数a 的取值范围是 ( )A 、141≤≤a B 、221≤≤a C 、121≤≤a D 、241≤≤a 12、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需 ( ) A 、2.1元 B 、05.1元 C 、95.0元 D 、9.0元13、设关于x 的方程09)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实数a 的取值范围是 ( )A 、112-<a B 、5272<<-a C 、52>a D 、0112<<-a14、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是 ( )A 、12-πB 、41π- C 、13-π D 、61π-15、已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是 ( )A 、51<<x B 、135<<x C 、513<<x D 、155<<x16、某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了 ( ) A 、%2x B 、%21x + C 、%%)1(x x •+ D 、%%)2(x x •+ 三、解答题17、(15分)设m 是不小于1-的实数,关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x ,(1)若21x 622=+x ,求m r 值;(2)求22212111x mx x mx -+-的最大值。

18、(15分)如图,开口向下的抛物线a ax ax y 1282+-=与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA ∆∽OBC ∆,(1)求OC 的长及ACBC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式。

19、(15分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表家电名称 空调彩电冰箱工 时 2131 41 产值(千元)4 3 2位)?20、(10分)一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率。

21、(15分)如图,已知⊙O 和⊙'O 相交于A 、B 两点,过点A 作⊙'O 的切线交⊙O 于点C ,过点B 作两圆的割线分别交⊙O 、⊙'O 于E 、F ,EF 与AC 相交于点P ,(1)求证:PF PC PE PA •=•;(2)求证:PB PFPCPE =22;(3)当⊙O 与⊙'O 为等圆时,且5:4:3::=EP CE PC 时,求PEC ∆与FAP ∆的面积的比值。

[参考答案]一、 1、⎩⎨⎧==02611y x 或 ⎩⎨⎧=-=28222y x 2、0=a 0<b3、14、240135、336、4457、2 8、)33,4(二、9~16 DBDB DABD三、 17、(15分)解:Θ方程有两个不相等的实数根∴044)33(4)2(422>+-=+---=∆m m m m 1<∴m由题意知:11<≤-m(1)610102)33(2)2(42)(222212212221=+-=+---=-+=+m m m m m x x x x x x Θ2175±=∴m 11≤≤-m Θ 2175-=∴m (2)22212111x mx x mx -+-mm m m m m x x x x x x x x m --+-=--+-+=2232121212221)2882()1)(1()]([ 25)23(2)13(2)1()13)(1(2222--=+-=-+--=m m m m m m m m m )11(<≤-m1-=∴m y 取最大值为1018、(15分)解:(1)由题设知0<a ,且方程01282=+-a ax ax 有两二根6,221==x x 于是6,2==OB OAΘOCA ∆∽OBC ∆ 122=•=∴OB OA OC 即32=OC而322===∆∆OC OBS S ACBC OCA OBC 故 3=AC BC (2)因为C 是BP 的中点 BC OC =∴ 从而C 点的横坐标为3又32=OC )3,3(C ∴设直线BP 的解析式为b kx y +=,因其过点)0,6(B ,)3,3(C ,则有⎩⎨⎧+=+=b k b k 3360⎪⎩⎪⎨⎧=-=∴3233b k 3233+-=∴x y 又点)3,3(C 在抛物线上 a a a 122493+-=∴ 33-=∴a ∴抛物线解析式为:34338332-+-=x x y 19、(15分)解:设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,则有⎪⎪⎩⎪⎪⎨⎧≥++==++=++60)3(12190120413121360z y x z y x z y x总产值x x y x y x z y x z y x A -=-++=++++=++=1080)3(720)2()(223460≥z Θ 300≤+∴y x 而3603=+y x 3003360≤-+∴x x 30≥∴x1050≤∴A 即 30=x 270=y 60=z20、(10分)解:用B 和G 分别代表男孩和女孩,用“树状图”列出所有结果为:∴这个家庭有2个男孩和1个女孩的概率为83。

这个家庭至少有一个男孩的概率87。

21、(15分)解:(1)证明:连结AB CA Θ切⊙'O 于A ∴F CAB ∠=∠ ΘE CAB ∠=∠ ∴F E ∠=∠ CE AF //∴PAPCPF PE =∴PF PC PE PA •=•∴ ① (2)证明:在⊙O 中,PC PA PE PB •=• ②①×②得 PF PC PA PB PE PA ••=••22PBPF PC PE =∴22 (3)连结AE ,由(1)知PEC ∆∽PFA ∆,而5:4:3::=EP CE PC5:4:3::=∴PF FA PA 设x EP x CE x PC 5,4,3===222CE PC EP +=∴ 222FA PA PF += 090=∠=∠∴CAF C AE ∴为⊙O 的直径,AF 为⊙'O 的直径 Θ⊙O 与⊙'O 等圆 y AF AE 4==∴222AE CE AC =+Θ 222)4()4()33(y x y x =++∴ 即07182522=-+y xy x 即0))(725(=+-y x y x257=∴y x 62549:22==∴∆∆yx S S FAP ECP。

相关文档
最新文档