2020最新高考数学模拟预测试题含答案

合集下载

2020高考数学模拟试卷含答案

2020高考数学模拟试卷含答案

2020⾼考数学模拟试卷含答案2020⾼考虽然延迟,但是练习⼀定要跟上,加油,少年!第1卷(选择题共60分)⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分 1.若全集U=R,集合M ={}24x x >,N =301x xx ?-?>??+??,则()U M N I e=( )A.{2}x x <-B. {23}x x x <-≥或C. {3}x x ≥D.{23}x x -≤<2.若21tan(),tan(),544παββ+=-=则tan()4πα+=()A.1318B.318C.322D.13223.条件p :“直线l 在y 轴上的截距是在x 轴上的截距的两倍” ;条件q :“直线l 的斜率为-2” ,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.⾮充分也⾮必要4.如果212nx x ??-的展开式中只有第4项的⼆项式系数最⼤,那么展开式中的所有项的系数和是()A.0B.256C.64D.1645.12,e e u r u u r 为基底向量,已知向量121212,2,3AB e ke CB e e CD e e =-=+=-u u u r u r u u r u u u r u r u u r u u u r u r u u r,若A,B,D 三点共线,则k 的值为() A.2 B.-3 C.-2 D.36.⼀个单位有职⼯160⼈,其中有业务员120⼈,管理⼈员24⼈,后勤服务⼈员16⼈.为了了解职⼯的⾝体健康状况,要从中抽取⼀定容量的样本.现⽤分层抽样的⽅法得到业务⼈员的⼈数为15⼈,那么这个样本容量为() A.19 B.20 C.21 D.227.直线1y kx =+与曲线3y x ax b =++相切于点A (1,3),则b 的值为()A.3B.-3C.5D.-58.在⼀个45o 的⼆⾯⾓的⼀平⾯内有⼀条直线与⼆⾯⾓的棱成45o ⾓,则此直线与⼆⾯⾓的另⼀个⾯所成的⾓为() A.30oB.45oC.60oD.90o9.只⽤1,2,3三个数字组成⼀个四位数,规定这三个数必须同时使⽤,且同⼀数字不能相邻出现,这样的四位数有()t A.6个 B.9个 C.18个 D.36个10.若椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,线段12F F 被22y bx =的焦点分成53?的两段,则此椭圆的离⼼率为()A.1617B. 17C. 45D. 511.对任意两实数,a b ,定义运算“*”如下:()(),,a a b a b b a b ≤??*=?>??,则函数122()log (32)log f x x x =-*的值域为()xA.(,0]-∞B.22log ,03C.22log ,3??+∞D.R 12.⼀种专门占据内存的计算机病毒,开机时占据内存2KB ,然后每3分钟⾃⾝复制⼀次,复制后所占据内存是原来的2倍,那么开机后,该病毒占据64MB (1MB =102KB )内存需经过的时间为() A.15分钟 B.30分钟 C.45分钟 D.60分钟第II 卷(⾮选择题共90分)⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分. 13.若指数函数()()x f x a x R =∈的部分对应值如下表:则不等式1()0f x -<的解集为 . 14.数列{}n a 满⾜11200613,,,1nn na a a n N a a *++==∈-则= .15.已知实数x,y 满⾜约束条件1020()1x ay x y aR x ì--+澄í??£,⽬标函数3z x y =+只有当1x y ì=??í=时取得最⼤值,则a 的取值范围是 . 16.请阅读下列命题:①直线1y kx =+与椭圆22124x y +=总有两个交点;②函数3()2sin(3)4f x x p=-的图象可由函数()2sin 3f x x =按向量(,0)4a p=-r 平移得到;③函数2()2f x x ax b =-+⼀定是偶函数;④抛物线2(0)x ay a =?的焦点坐标是1(,0)4a.回答以上四个命题中,真命题是_______________(写出所有真命题的编号).三、解答题(共6⼩题,17—21题每题12分,第22题14分,共74分)17.已知向量,cos ),(cos ,cos ),a x x b x x c ===v v v(I )若//a c v v,求sin cos x x ×的值;(II) 若0,3x p18.在⼀次历史与地理两门功课的联合考试中,备有6道历史题,4道地理题,共10道题⽬可供选择,要求学⽣从中任意选取5道作答,答对4道或5道即为良好成绩.(I )设对每道题⽬的选取是随机的,求所选的5道题中⾄少选取2道地理题的概率;(II) 若学⽣甲随机选定了5道题⽬,且答对任意⼀道题的概率均为0.6,求甲没有取得良好成绩的概率(精确到⼩数点后两位).19.已知:如图,直三棱柱111ABC A B C -中,AC BC ^,D 为AB 的中点,1AC BC BB ==(I )求证:11BC AB ^; (II) 求证:1//BC 平⾯1CA D ;(III )求异⾯直线1DC 与1AB 所成⾓的余弦值.20.设12,x x 是函数322()(0)32a b f x x x a x a =+->的两个极值点,且122x x +=.(I )求证:01a(II) 求证:9b £.21.已知数列{}n a 的前n 项和为n S ,且n S =22(1,2,3)n a n L -=,数列{}n b 中,11b =,点1(,)n n P b b +在直线20x y -+=上.(I )求数列{}{},n n a b 的通项n a 和n b ;(II) 记1122n n n S a b a b a b =+++…,求满⾜167n S <的最⼤正整数n .22.⼀条斜率为1的直线l 与离⼼率为的双曲线E:22221(0,0)x y a b a b -=>>交于 ,P Q 两点,直线l 与y 轴交于R ,且3,4OP OQPQ RQ ?-=u u u r u u u r u u u r u u u r,求直线l 与双曲线E的⽅程.⾼三联考数学(⽂科)参考答案⼀、选择题:(每⼩题5分,共60分)⼆、填空题:(每⼩题4分,共16分)13.(0,1); 14.-2; 15.a>0; 16.①④. 14.提⽰:归纳法得到{}n a 是周期为4的数列,200622a a ==- 15.提⽰:直线10x ay --=过定点(1,0),画出区域201x y x +≥??≤?后,让直线10x ay --=绕(1,0)旋转得到不等式所表⽰的平⾯区域,平移直线30x y +=观察图象可知,必须满⾜直线10x ay --=的斜率10a>才符号题意.故a 的范围是0.a > t三、解答题:17.解:(I ),,tan 23a c x x x ==r rQ L L ∥分222sin cos tan 2sin cos 6sin cos 1tan 5x x x x x x x x ∴===++L L 分(II)21(cos cos 2(1cos 2)2f x a b x x x x x ?=+=++r r )=1sin(2)926x π=++L L 分50,2,3666x x ππππ<≤<+≤Q 则x13sin(2)1,1(262x f x π∴≤+≤≤≤于是:),故函数(f x )的值域为31122??L L ,分18.解: (I )法⼀:所选的5道题中⾄少有2道地理题的概率为5041646455101011031116424242C C C C P C C -L L =-=--=分法⼆:所选的5道题中⾄少有2道地理题的概率为3223146464645551010101020131642424242C C C C C C P C C C =++=++=L L 分(II)甲答对4道题的概率为:44150.60.40.25928P C =??L L =;分甲答对5道题的概率为:550150.60.40.0777610P C =??L L =分故甲没有获得良好成绩的概率为:121()1(0.25920.07776)P P P =-+=-+ 0.6612≈L 分19.⽅法⼀:(I )证明:111,,.AC BC AC CC AC CC B B ⊥⊥⊥则平⾯四边形11CC B B 为正⽅形,连1B C ,则11C B B C ⊥由三垂线定理,得114BC AB ⊥L L 分(II )证明:连11.AC CA E DE 交于,连在△1AC B 中,由中位线定理得1DE BC ∥. ⼜11111,.8DE CA D BC CA D BC CA D ??∴L L 平⾯平⾯,∥平⾯分(III )解:取1111,.,BB F DF C F DF AB C DF ∠的中点连和则∥或它的补⾓为所求. 令1 2.,AC BC BB ===111在直⾓△FB C 中可求出C F=5在直⾓△1AB B 中可求出221123, 3.2(2) 6.AB DF DC ==+=则=在△1DFC 中,由余弦定理,得12cos 12236C DF ∠==??L L 分⽅法⼆:如图建⽴坐标系.设12,AC BC BB ===则(I )证:11(0,2,2),(2,2,2),BC AB =--=--u u u u r u u u r11110440..4BC AB BC AB ?=-+=∴⊥u u u u r u u u rL L 分(II )证:取1AC 的中点E ,连DE.E(1,0,1),则(0,1,1),ED =u u u r 1(0,2,2).BC =--u u u u r有112..ED BC ED BC =-u u u r u u u u r1⼜与不共线,则DF ∥AB⼜11111,,.8DE CA D BC CA D BC CA D ??L L 平⾯平⾯则∥平⾯分(III )()11,(1,1,2)AB DC =---u u u r u u u u r=-2,2,-2 112242cos ,12444114DC AB -+∴=++?++u u u u r u u u rL L 分<>=20.(I )证明:22(),1f x ax bx a '=+-L L 分32212,((0)32a bx x f x x x a x a +->Q 是函数)=的两个极值点,221212120,2bx x ax bx a x x x x a a∴+-=?=-L L ,是的两个根,于是+=-分212121220,0,424b a x x a x x x x a a>∴=-<∴+=-=+=Q L L ⼜分 2223244,440,016b a b a a a a+=∴=-≥∴<≤L L 即:分 111(2,0,2),(0,2,2),(0,0,2),(2,0,0),(0,2,0),(0,0,0),(1,1,2),2A B C A B C D L L L L 分(II )证明:设232()44,()8124(23)7g a a a g a a a a a '=-=-=-L L 则分220()0,()0933a g a g a '<<>∴L L 当时,在(,)上是增函数;分21()0,(),1113a g a g a ??'<≤<∴L L 2当时,在上是减函数;分3max 216()(),12327g a g b ∴==∴≤L L L 分21.解(1)*11122,22,2,)n n n n n n n S a S a S S a n n N ---=-=-≥∈Q ⼜-=,({}*1122,0,2,(2,),nn n n n n n a a a a a n n N a a --∴=-≠∴=≥∈Q 即数列是等⽐数列. 11111,22,223n n a S a a a a =∴=-∴=Q L L 即=,分11,)20n n n n P b b b b ++∴-Q 点(在直线x-y+2=0上,+={}112,1216n n n n b b b b b n +∴-=∴=-L L 即数列是等差数列,⼜=,分(II )231122123252(21)2,n n n n S a b a b a b n +++=?+?+?++-L L =23121232(23)2(21)2n n n S n n +∴=?+?++-+-L因此:23112222222)(21)2n n n S n +-=--L +(+++即:341112(222(21)2n n n S n ++-=?++++--L 1(23)2610n n S n +∴=-+L L 分111516167,23)26167,(23)21614(23)2(24321605(23)2(2532448167412n n n n n n S n n n n n n S n ++++<-+<-<=-=?=-=?""故满⾜条件的最⼤正整数为分22.解:由222222231(),2,12b x y b a a a a=+=-=L 2=e 得双曲线的⽅程设为①2L 分设直线l 的⽅程为y x m =+,代⼊①,得:2222()2x x m a -+=,即:2222(2)0x mx m a --+=221,1221212(),(,),2,25P x y Q x y x x m x x m a +=?=--L L 设则分222222212121212()()()222()6y y x m x m x x m x x m m a m m m a =++=+++=--++=-L 分2222121234,430OP OQ x x y y m a a m ∴?=+=-∴--=u u u r u u u rL -=②7L 分4,30PQ RQ R PQ R m =∴u u u r u u u r u u u rQ 点分所成的⽐为,点的坐标为(,),则:12121233()391344y y x m x m x x m m +++++===++L L 分 1212123,2,3,10x x x x m x m x m ∴=-+===-L L 代⼊得分代⼊2222222122,32,,12x x m a m m a m a =--=--∴=L L 得-分代⼊②得21,1a m ==±从⽽221,1142y l y x x ∴=±-=L L 直线的⽅程为双曲线的⽅程为分。

2020年全国高考数学题型预测及答案详解 精品

2020年全国高考数学题型预测及答案详解 精品

2020年高考数学题型预测(一)数学试卷(理科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设A ,B 是两个非空集合,定义A ×B=}|{B A x B A x x ∉∈且,已知},0,2|{},4|{2>==-==x y y B x x y y A x 则A ×B=( )A .),2(]1,0[+∞B .),2()1,0[+∞C .[0,1]D .[0,2]2.23(1)i -的值为( )A .32iB .32i - C .i D .i - 3.若nxx )1(+的展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .1204.若221()12,[()](0)x g x x f g x x x -=-=≠,则1()2f = ( )A .1B .3C .7D .155.设随机变量ξ服从正态分布(0,1)N ,若(1)P p ξ>=,则(10)P ξ-<<= ( )A .12p + B .1p - C .12p -D .12p - 6.已知A (-1,2),B (2,1),则)1,1(-=a AB 按平移后得到的向量的坐标为 ( ) A .(3,-1) B .(-3,1) C .(4,-2) D .(-2,0)7.把函数sin(2)4y x π=+的图象向右平移8π个单位,再把所得图象上各点的横坐标缩短到 原来的12,则所得图象的解析式为( )A .3sin(4)8y x π=+B .sin(4)8y x π=+C .sin 4y x =D .sin y x =8.设e <x <10,记a =ln(ln x ),b =lg(lg x ),c =ln(lg x ),d =lg(ln x ),则a ,b ,c ,d 的大小关系( ) A .a <b <c <d B .c <d <a <b C .c <b <d <a D .b <d <c <a 9.已知函数)0( log )(2>=x x x f 的反函数为,,且有2)()()(111=⋅---b fa fx f若a ,b>0则ba 41+的最小值为 ( )A .2B .4C .6D .910.两个实数集合A={a 1, a 2, a 3,…, a 15}与B={b 1, b 2, b 3,…, b 10},若从A 到B 的是映射f 使B中的每一个元素都有原象,且f (a 1)≤f (a 2) ≤…≤f (a 10)<f (a 11)<…<f (a 15), 则这样的映射共 有 ( )A .510C 个B .49C 个C .1015个D .1015105A ⋅11.已知二面角βα--l 的大小为60°,m 、n 为异面直线,且βα⊥⊥n m ,,则m 、n 所成的角为( )(A )30°(B )60°(C )90°(D )120°12.如果以原点为圆心的圆经过双曲线)0,0(12222>>=-b a by a x 的焦点,而且被该双曲线的右准线分成弧长为2:1的两段圆弧,那么该双曲线的离心率e 等于 ( ) A .5B .25 C .3 D .2第Ⅱ卷(非选择题 共90分)二、填空:本大题共4小题,每小题5分,共20分。

2020最新高考数学模拟测试卷含答案

2020最新高考数学模拟测试卷含答案

2020最新⾼考数学模拟测试卷含答案第Ⅰ卷(选择题共60分)⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.(1)化简?---160cos 120cos 20cos 20sin 212得()(A )-40sin 1(B )-?20sin 20cos 1(C )1 (D )-1(2)双曲线8822=-ky kx 的⼀个焦点是(0,-3),则k 的值是()(A )1 (B )-1(C )315(D )-315(3)已知)(1x fy -=过点(3,5),g (x )与f (x )关于直线x =2对称,则y =g (x )必过点()(A )(-1,3)(B )(5,3)(C )(-1,1)(D )(1,5)(4)已知复数3)1(i i z -?=,则=z arg()(A )4π(B )-4π(C )47π(D )4cos(=+πθρ的距离为1,则r 属于集合()(A )}97|{<(D ){9}(⽂)已知两条直线0:,:21=-=y ax l x y l ,其中a 为实数,当这两条直线的夹⾓在)12,0(π内变动时,a 的取值范围是()(A )(0,1)(B ))3,33((C ))3,1( (D ))3,1()1,33(Y 6.半径为2cm 的半圆纸⽚卷成圆锥放在桌⾯上,⼀阵风吹倒它,它的最⾼处距桌⾯()(A )4cm (B )2cm(C )cm 32 (D )cm 3 7.(理))4sin arccos(-的值等于()(A )42-π(B )234π-(C )423-π(D )4+π(⽂)函数23cos 3cos sin 2-+=x x x y 的最⼩正周期为()(A )4π(B )2π(C )π(D )2π②665646362C C C C +++③726-④26P 其中正确的结论为()(A )仅有①(B )有②和③(C )仅有②(D )仅有③ 9.正四棱锥P —ABCD 的底⾯积为3,体积为,2 2E 为侧棱PC 的中点,则PA 与BE 所成的⾓为()(A )6π(B )4π(C )3π(D )2π10.给出四个函数,分别满⾜①)()()(y f x f y x f +=+ ②)()()(y g x g y x g ?=+③)()()(y x y x +=? ④)()()(y x y x ωωω?=?⼜给出四个函数的图象则正确的配匹⽅案是()(A )①—M ②—N ③—P ④—Q (B )①—N ②—P③—M ④—Q(C )①—P ②—M ③—N ④—Q (D )①—Q ②—M③—N ④—P11.P 是双曲线)0,0(12222>>=-b a b为2c ,则21F PF ?的内切圆的圆⼼横坐标为()(A )a -(B )b -(C )c -(D )c b a -+12.某债券市场发⾏的三种值券:甲种⾯值为100元,⼀年到期本利共获103元;⼄种⾯值为50元,半年期本利共50.9元;丙种⾯值为100元,但买⼊时只付97元,⼀年到期拿回100元,这三种投资收益⽐例从⼩到⼤排列为()M QNN(A )⼄,甲,丙(B )甲、丙、⼄(C )甲、⼄、丙(D )丙、甲、⼄第Ⅱ卷 (⾮选择题)⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在题中横线上.13.⼀个球的内接长⽅体的长、宽、⾼分别为1,2,3,则这个球的表⾯积是.14.若26)1()1(ax x -+展开式中的x 3项的系数为20,则⾮零实数a = .15.△ABC 顶点在以x 轴为对称轴,原点为焦点的抛物线上,已知A (-6,8),且△ABC的重⼼在原点,则过B 、C 两点的直线⽅程为. 16.设正数数列{a n }的前n 项和为S n ,且存在正数t ,使得对于所有的⾃然数n ,有2nn a t tS +=成⽴,若t a S nn n <∞→lim ,则t 的取值范围是.三、解答题:本⼤题共6⼩题,共74分,解答应写出⽂字说明,证明过程或演算步骤. 17.(本题满分12分)设复数)23(sin cos 1πθπθθ<<+-=i z 且24arg θsin 21)4cos(2θπθ--的值.18.(理)(本题满分共12分)已知正三棱柱ABC —A 1B 1C 1的每条棱长均为,M为棱A 1C 1上的动点.(Ⅰ)当M 在何处时,BC 1//平⾯MB 1A ,并证明之;(Ⅱ)在(I )下,求平⾯MB 1A 与平⾯ABC 所成的⼆⾯⾓的⼤⼩;(Ⅲ)求B —AB 1M 体积的最⼤值. 18.(⽂)(图同理18,本题满分12分)已知正三棱柱ABC —A 1B 1C 1的每条棱长均为a ,M 为A BA 11棱A 1C 1的中点(Ⅰ)求证BC 1//平⾯MB 1A ;(Ⅱ)求平⾯MB 1A 与平⾯ABC 所成的⼆⾯⾓的正切值;(Ⅲ)求B —AMB 1的体积.19.(理)(本题满分12分)设常数,01>>>b a 不等式0)lg(>-x x b a 的解集为M (Ⅰ)当ab =1时,求解集M ;(Ⅱ)当M=(1,+∞)时,求出a ,b 应满⾜的关系. 19.(⽂)(本题满分12分)已知函数)1(log )(x a a x f -= (其中a >0,且a ≠1),解关于x 的不等式)1()1(log 1->-fa x a20.(本题满分12分)⼀家企业⽣产某种产品,为了使该产品占有更多的市场份额,拟在2001年度进⾏⼀系列的促销活动,经过市场调查和测算,该产品的年销量x 万件与年促销费⽤t 万元之间满⾜:3-x 与t +1(t ≥0)成反⽐例,如果不搞促销活动,该产品的年销量只能是1万件,已知2001年⽣产该产品的固定投资为3万tx x g 2)332(23)(++=时,则当年的产销量相等.(Ⅰ)将2001年的利润y 表⽰为促销费t 万元的函数;(Ⅱ)该企业2001年的促销费投⼊多少万元时,企业的年利润最⼤?(注:利润=收⼊-⽣产成本-促销费)21.(本题满分12分)A 、B 是两个定点,且|AB|=8,动点M 到A 点的距离是10,线段MB 的垂直平分线l 交MA 于点P ,若以AB所在直线为x 轴,AB 的中垂线为y 轴建⽴直⾓坐标系.(Ⅰ)试求P 点的轨迹c 的⽅程;(Ⅱ)直线)(04R m m y mx ∈=--与点P 所在曲线c 交于弦EF ,当m 变化时,试求△AEF 的⾯积的最⼤值.A22.(本题满分14分)已知函数f (x )在(-1,1)上有定义,1)21(-=f 且满⾜x 、y ∈(-1,1)有)1()()(xyy x f y f x f ++=+.(Ⅰ)证明:f (x )在(-1,1)上为奇函数;(Ⅱ)对数列,12,21211nn n x x x x +==+求)(n x f ;(Ⅲ)(理)求证;252)(1)(1)(121++->+++n n x f x f x f n Λ(⽂)求证.2)(1)(1)(121->+++n x f x f x f Λ数学试题参考答案⼀、选择题(理)CBACD DCBCD AB (⽂)CBACD DCBCD AB ⼆、填空题(13)14π(14)5 (15)084=-+y x (16)),22(3+∞ 三、解答题 17.解:)24(arg θπθπ+=∴+=tg z tg z (2分)即2121cos 1sin θθθθtgtg -+=- 即212121θθθtgtg tg-+=即012222=-+θθtgtg(6分)212±-=∴θtg2124322πθπtgΘ(8分))1(22cos )sin (cos 222sin 21)4cos(2θθθθθπθtg +=+=--∴2])21(1)21(21[22)21221(2222=------=-+=θθtg tg即22sin 21)4cos(2=--θπθ(12分)AA 1G18.(理)解:(I )当M 在A 1C 1中点时,BC 1//平⾯MB 1A ∵M 为A 1C 1中点,延长AM 、CC 1,使AM 与CC 1延长线交于N ,则NC 1=C 1C=a连结NB 1并延长与CB 延长线交于G ,则BG=CB ,NB 1=B 1G (2分)在△CGN 中,BC 1为中位线,BC 1//GN⼜GN ?平⾯MAB 1,∴BC 1//平⾯MAB 1 (4分)(II )∵△AGC 中, BC=BA=BG ∴∠GAC=90° 即AC ⊥AG ⼜AG ⊥AA 1 A AC AA =I 1平⾯(6分)∴∠MAC 为平⾯MB 1A 与平⾯ABC 所成⼆⾯⾓的平⾯⾓ 221==∠∴a a MAC tg ∴所求⼆⾯⾓为.2arg tg (8分)(Ⅲ)设动点M 到平⾯A 1ABB 1的距离为h M .3221232361213131111a a a h a h S V V M M ABB B AB M M AB B =?≤?=?==?--即B —AB 1M 体积最⼤值为.1233a 此时M 点与C 1重合.(12分)18.(⽂)(Ⅰ)同(理)解答,见上(Ⅱ)同理科解答:设所求⼆⾯⾓为θ,则2=θtg (Ⅲ)3224323213111a a a V V ABB M AMBB =??==--19.(理)解:(I )⾸先,0>-x x b a 即xx b a >即0,11)(>>∴>x baba x得由.1)1(1>-∴>-x x x x aa b a (3>--x x a a解得251-51+>x a251log +>∴a x ),251(log +∞+=∴a M (6分)(II )令x x b a x f -=)(,先证),0()(+∞∈x x f 在时为单调递增函数 )212112212211()()()(,0x x x x x x x x b b a a b a b a x f x f x x -+-=+--=-+∞<<<Θ0,,0,,,011212212121<-∴<<-<∴<>>>x x x x x x x xb b b b a a a a x x b a Θ).()(21x f x f <∴得证(8分)欲使解集为(1,+∞),只须f (1)=1即可,即a -b=1,∴a =b+1 (12分) 19.(⽂)解:)1(log )1().1(log )(1 1a fa x fa x a -=-=--由可知0<a <1 (4分)∴不等式)0()1(log )1(log )1()1(log即为(8分)10101110101<<<->-∴x aa a a a a a a x x xx ∴原不等式的解集为{x |0<x <1} (12分) 20.解:(I )由题意得21,0,1 3===+=-k x t t kx 代⼊得将(2分)123+-=∴t x从⽽⽣产成本为3)123(32++-t 万元,年收⼊为]2)332(23[)(xtx x x xg ++=(4分)]3)123(32[]2)332(23[]3)123(32[)(++--++?=++--=∴t x t x x t x xg y (6分))0()1(235982≥+++-=t t t t∴年利润为y )0()1(235982≥+++-=t t t t(8分)(II )y 4216250)13221(50)1(235982=-≤+++-=+++-=t t t t t (万元)当且仅当4271+y t t t 时即(12分)∴当促销费定为7万元时,利润最⼤.21.解(I )以AB 所在直线为x 轴,AB 中垂线为y 轴,则A (-4,0),B (4,0)|PA|+|PB|=|PA|+|PM|=10 (2分)∴2a =10 2c=8 ∴a =5,c=4 ∴P 点轨迹为椭圆19 2522=+y x(4分)(II )04=--m y mx 过椭圆右焦点B (4,0))0(192541925)4(2222≠=++=?=+-=m y x m yx y x x m y Θ092525)1681(9222=?-+++∴y y m y m整理得08172)259(22=-++y m y m(6分)2591814259724)(||2222122121+??+?+=-+=-∴m m m y y y y y y 2222190925m m m m +?+=*(8分)∵m 为直线的斜率,∴可令m=tg θ代⼊*得 )0sin (|sin 25cos 9sin 90|sec |25990192590||22222222221>?+=+=++=-θθθθθθθθθθθθθΘtg tg tg tg tg tg tg y y.4152490916290sin 9sin 1690sin 169sin 902==≤+=+=θθθθ当且仅当169sin sin 9sin 162==θθθ即即43sin =θ时,.415||max 21=-y y().15415821max =??=∴?AEF S (12分)22.证:(I )令,0==y x 则0)0(),0()0(2=∴=f f f令,x y -=则)()(,0)0()()(x f x f f x f x f -=-∴==-+ 为奇函数(4分)(II )1)2 1()(1-==f x f ,)(2)()()1()12()(21n n n n n nn nn n x f x f x f x x x x f x x f x f =+=?++=+=+ )}({.2)()(1n n n x f x f x f 即=∴+是以-1为⾸项,2为公⽐的等⽐数列.1xf (4分)(III )(理))2121211()(1)(1)(11221-++++-=+++n n x f x f x f ΛΛ2212)212(21121111->+-=--=---=--n n n⽽.2212)212(252-<+--=++-=++-n n n n 252)(1)(1)(121++->+++∴n n x f x f x f n Λ(6分)(III )(⽂))2121211()(1)(1)(11221-++++-=+++n n x f x f x f ΛΛ .2212)212(2 1121111->+-=--=---=--n n n。

2020最新高考数学模拟测试含解答(20200404103106)

2020最新高考数学模拟测试含解答(20200404103106)

平面 PAD
∴ BG ∥ 平 面 PAD
∵ EF ∥ BG ∴ EF ∥ 平 面 PAD
(7 分)
(II)∵ BG⊥平面 PDC,EF∥BG ∴EF⊥平面 PDC
2
(B) cos
1
2
1 sin
2
(D) sin
1
2
( C)
(文)已知曲线 C 与 C′ 关于直线 x y 2 0对称,若 C 的方程为
, x2 y2 4x 4y 7 0
则 C′的方程为
()
(A ) x 2 y2 8x 8y 31 0
(B) x 2 y2 8x 8y 31 0
(C) x2 y 2 8x 8 y 31 0
又 CD=2a, DP=a,
CP CD 2 DP2 5a
△ PBC 中, G 为 PC 中点,∴ BG⊥PC
易得 BG 3 a, HG 1 a, BH a
2
2
∴ △ BGH 为直角三角形,且
BG ⊥ GH ∴ GB ⊥平面 PDC
(5 分)
∴GB⊥CD 又 CD⊥HB ∴CD⊥平面 BGH ∴平面 BGH ∥
( 12 )有一位同学写了这样一个不等式: x 2 1 c 1 c ( x R) ,他发现,
x2 c
c
当 c=1 ,2 ,
3 时,不等式对一切实数 x 都成立,由此他作出如下猜测:
①当 c 为所有自然数时,不等式对一切实数 x 都成立;
②只存在有限个自然数 c,对 x R不等式都成立;
③当 c 1时,不等式对一切 x R都成立;
已 知 z1=3+4 i , z2=65 cos i sin ) (
2
5
sin(

2020高考数学预测卷及答案

2020高考数学预测卷及答案

一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.) 1. 复数2+i i 在复平面上对应的点在第 象限. 2. 某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 . 3. 已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命题“x B ∈”的充分不必要条件,则实数a 的取值范围是 . 4. 如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3M 为线段BB 1上的一动点,则当AM+MC 1最小时,△AMC 1的面积为 .(第4题).5. 集合2{3,log},{,},A a B a b ==若{2},A B =I 则A B =U .6. 阅读如图所示的程序框,若输入的n 是100,则输出的变量S 的值是 .7. 向量(cos10,sin10),(cos70,sin 70)==o o o o a b ,2-a b = .8. 方程lg(2)1x x +=有 个不同的实数根. 9. 设等差数列{}n a 的前n 项和为n S ,若1≤5a ≤4,2≤6a ≤3,则6S 的取值范围是 .10.过双曲线22221(0,0)x y a b a b-=>>的左焦点(,0)(0)F c c ->,作圆:2224a x y +=的切线,切点为E ,直线FE 交双曲线右支于点P ,若1()2OE OF OP =+u u u r u u u r u u u r,则双曲线的离心率为 . 11.若函数()2ln 2f x mxx x =+-在定义域内是增函数,则实数m 的取值范围是 .12.如果圆22()()4x a y a -+-=上总存在两个点到原点的距离为1,则实数a 的取值范围是 . 13.已知实数,x y满足13x x y y-+=+-,则x y+的最大值为 .14.当n 为正整数时,函数()N n 表示n 的最大奇因数,如(3)3,(10)5,N N ==⋅⋅⋅,设(1)(2)(3)(4)...(21)(2)n n n S N N N N N N =+++++-+,则n S = .二、解答题:本大题共六小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .已知3cos 24C =-.(1)求sin C ;(2)当2c a =,且b =,求a .16.(本题满分14分)如图, ABCD 是边长为3的正方形,DE ⊥平面ABCD ,DE AF //,AF DE 3=,BE 与平面ABCD 所成角为060.(1)求证:AC ⊥平面BDE ;(2)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.A BCDF EA CB17.(本题满分14分)已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l :2x =.⑴ 求椭圆的标准方程;⑵ 设O 为坐标原点,F 是椭圆的右焦点,点M 是直线l 上的动点,过点F 作OM 的垂线与以OM 为直径的圆交于点N ,求证:线段ON 的长为定值.18.(本题满分16分)如图,直角三角形ABC中,∠B =90o,AB =1,BC .点M ,N 分别在边AB 和AC上(M 点和B 点不重合),将△AMN 沿MN 翻折,△AMN 变为△A 'MN ,使顶点A '落在边BC 上(A '点和B 点不重合).设∠AMN =θ.(1) 用θ表示线段AM 的长度,并写出θ的取值范围; (2) 求线段A N '长度的最小值19.(本题满分16分) 已知k R ∈,函数()(01,01)xx f x mk n m n =+⋅<≠<≠.(1) 如果实数,m n 满足1,1m mn >=,函数()f x 是否具有奇偶性?如果有,求出相应的k 值,如果没有,说明为什么?(2) 如果10,m n >>>判断函数()f x 的单调性;(3) 如果2m =,12n =,且0k ≠,求函数()y f x =的对称轴或对称中心.20.(本题满分16分)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=c ,2S n =a n a n +1+r .(1)若r =-6,数列{a n }能否成为等差数列?若能,求c 满足的条件;若不能,请说明理由.(2)设32111234212n n n na a a P a a a a a a --=+++---L ,2242345221n n n n a a a Q a a a a a a +=+++---L ,若r >c >4,求证:对于一切n ∈N *,不等式2n n n P Q n n -<-<+恒成立.。

2020年高考数学模拟试题带答案

2020年高考数学模拟试题带答案

2020 年高考模拟试题 理科数学一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的1、若集合 A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数 为A.5B.4C.3D.22、复数在复平面上对应的点位于A 第一象限B 第二象限C 第三象限D 第四象限3、小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于 ,则周末去看电影;若此点到圆心的距离小于 ,则去打篮球; 否则,在家看书.则小波周末不在家看书的概率为A.B.C.D.JPA.B.C.8、已知数列 为等比数列, 是是它的前 n 项和,若D. ,且 与 2 的等差中项为 ,则A.35B.33C.31D.299、某大学的 8 名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐 4 名同学(乘同一辆车的 4 名同学不考虑位置), 其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的 4 名同学中恰有 2 名同学是来自同一年级的乘坐方式共有A.24 种B.18 种C.48 种D.36 种10 如图,在矩形 OABC 中,点 E、F 分别在线段 AB、BC上,且满足,,若(),则4、函数如图示,则将 图象解析式为的部分图象 的图象向右平移 个单位后,得到的A.B.5、已知,A.B.C.,,则C.D. D.6、函数的最小正周期是A.B.C.D.11、如图,F1,F2 分别是双曲线 C:(a,b>0)的左右焦点,B 是虚轴的端点,直线 F1B 与 C 的两条渐近线分别交于 P,Q 两点,线段 PQ 的垂直平分线与 x 轴交于点 M,若|MF2|=|F1F2|,则 C 的离心率是A.B.C.D.12、函数 f(x)=2x|log0.5x|-1 的零点个数为A.1B.2C.3D.4二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.请把正确答案填在题中横线上A.πB.C.7、函数 y=的图象大致是D.2π13、设θ为第二象限角,若,则 sin θ+cos θ=__________14、(a+x)4 的展开式中 x3 的系数等于 8,则实数 a=_________15、已知曲线 y x ln x 在点 1,1 处的切线与曲线 y ax2 a 2 x 1 相切,则 a=16、若 x ,则函数 y tan 2x tan3 x 的最大值为42三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都必须作答;第 22、23 题为选考题,考生依据要求作答.17、已知数列 的前 项和为 ,且,对任意 N ,都有.(1)求数列 的通项公式;(2)若数列 满足,求数列 的前 项和 .18、如图,四棱锥 P-ABCD 中,PA⊥底面 ABCD,BC=CD=2,AC=4,∠ACB=∠ACD= ,F 为 PC 的中点,AF⊥PB。

2020普通高等学校招生考试综合模拟预测卷理科数学试题(含答案)

2020普通高等学校招生考试综合模拟预测卷理科数学试题(含答案)

2020普通高等学校招生考试综合模拟预测卷理科数学试题(含答案)2020普通高等学校招生考试综合模拟预测卷数学理科注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分;2.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

3.全部答案答在答题卡上,答在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回第I 卷一、选择题:本题共12小题,每小题5分,共60分在每小出的四个选项中只有一项是符合题目求的。

1.若a ,b 均为实数,且3i 2i 1i a b +=+-,则ab =()A .2- B .2C .3-D .3 2.已知集合2{|20}A x x x =-≥,{}1B y y =-,则A B =I ()A .(1,0]-B .11,2⎛⎛- ⎛⎛⎛C .1,2⎛⎛+∞⎛⎛⎛⎛D .(]11,0,2⎛⎛-+∞⎛⎛⎛⎛U 3.为了计算11111123420192020S =-+-++-L ,设计如图所示的程序框图,则在空白框中应填入()A .1i i =+B .2i i =+C .3i i =+D .4i i =+4.已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则()A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-< 5.已知各项均为正数的等差数列{}n a 的公差为2,等比数列{}n b 的公比为-2,则()A .14n n a a b b --= B .14n n a a b b -= C .14n n a a b b --=- D .14nn a a b b -=-6.大学生小徐、小杨、小蔡通过招聘会被教育局录取并分配到一中、二中、三中去任教,这三所学校每所学校分配一名老师,具体谁被分配到哪所学校还不清楚.他们三人任教的学科是语文、数学、英语,且每个学科一名老师,现知道:(1)小徐没有被分配到一中;(2)小杨没有被分配到二中;(3)教英语的没有被分配到三中;(4)教语文的被分配到一中;(5)教语文的不是小杨.据此判断到三中任教的人和所任教的学科分别是A .小徐语文B .小蔡数学C .小杨数学D .小蔡语文7.某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。

2020年高考数学模拟试卷含答案详解

2020年高考数学模拟试卷含答案详解

2020年高考数学模拟试卷含答案详解数学(文)试卷学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(本题共12道小题,每小题0分,共0分)1.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,若cos cA b<,则△ABC 的形状为( ) A. 钝角三角形 B. 直角三角形C. 锐角三角形D. 等边三角形 2.在△ABC 中,已知90BAC ∠=o ,6AB =,若D 点在斜边BC 上,2CD DB =,则AB AD ⋅u u u r u u u r的值为 ( ).A. 6B. 12C. 24D. 483.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A. a ,b ,c 中至少有两个偶数B. a ,b ,c 中至少有两个偶数或都是奇数C. a ,b ,c 都是奇数D. a ,b ,c 都是偶数 4.已知函数2(),2x f x x x +=∈+R ,则()22(2)f x x f x -<- 的解集是( ) A. [-1,2) B.(-1,2)C.(0,2]D. (0,2)5.在区间[-6,9]内任取一个实数m ,设()2f x x mx m =-++,则函数()f x 的图像与x 轴有公共点的概率等于() A. 815B.35C.23D.11156.已知β为锐角,角α的终边过点((),sin αβ+=cos β=( ) A.12B.4C.4D.7.设集合A ={0,1},B ={-1,0},则A △B =() A.{0,1} B. {-1,0,1}C. {0}D. {-1,0}8.设1,(2)()2(1),(2)xx f x f x x ⎧⎛⎫⎪ ⎪=⎨⎝⎭⎪+<⎩…,则()2log 3f 的值是( ) A. 16B. -6C.13D. -39.设x ∈R ,则“21x <”是“31x <”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件10.()()131i i +-=()A. 42i +B. 24i +C. 22i -+D. 22i -11.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程ˆy=0.67x +54.9,表中有一个数据模糊不清,请你推断出该数据的值为( )12.a =0是复数z =a +bi (a ,b ∈R )为纯虚数的( ) A. 必要但不充分条件 B. 充分但不必要条件 C. 充要条件D. 既不充分也不必要条件第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(本题共4道小题,每小题0分,共0分)13.已知函数22,(2)()log (1),(2)x t t x f x x x ⎧⋅<=⎨-≥⎩,且(3)3f =,则[(2)]f f = ____. 14.已知P 为△ABC 所在平面内一点,且2355A APB AC =+u u u vu u uv u u u v ,则:PAB ABC S S ∆∆=_____ 15.已知两点A (2,1)、B (1,)满足12AB u u u r =(sin α,cos β),α,β△(﹣2π,2π),则α+β=_______________ 16.已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.三、解答题(本题共6道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,共0分) 17.已知函数()13f x x x =-++,()g x x a =+. (1)求不等式()6f x ≥的解集;(2)对x R ∀∈,都有()()0f x g x -≥,求实数a 的取值范围. 18.在四棱锥P -ABCD 中,四边形ABCD 是矩形,平面P AB △平面ABCD ,点E 、F 分别为BC 、AP 中点.(1)求证:EF ∥平面PCD ; (2)若1AD AP PB AB ===,求三棱锥P -DEF 的体积.19.在直角坐标系xOy 中,曲线C 的参数方程为为参数),坐标原点O为极点,x 轴的正半轴为极轴,取相同长度单位建立极坐标系,直线l 的极坐标方程为.(1)求曲线C 和直线l 的直角坐标方程;(2)直线l 与y 轴的交点为P ,经过点P 的动直线m 与曲线C 交于A 、B 两点,证明:||||PA PB ⋅为定值.20.某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕成本为50元,每个蛋糕的售价为100元,如果当天卖不完,剩余的蛋糕作垃圾处理.现搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图所示的柱状图.100天记录的各需求量的频率作为每天各需求量发生的概率.(1)若该蛋糕店某一天制作生日蛋糕17个,设当天的需求量为,则当天的利润y (单位:元)是多少?(2)若蛋糕店一天制作17个生日蛋糕.①求当天的利润y (单位:元)关于当天需求量n 的函数解析式; ②求当天的利润不低于600元的概率;(3)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的平均值作为决策依据,应该制作16个还是17个生日蛋糕?21.如图,三棱锥D -ABC 中,△ABC 是正三角形,. (1)证明:;(2)若,,求点C 到平面ABD 的距离.cos (sin x y ααααα⎧=⎪⎨=⎪⎩cos()26πρθ+=()n n ∈N DA DC =AC BD ⊥90BAD ∠=︒2AB AD ==22.已知45cos α=-,且α为第二象限角. (Ⅰ)求22cos πα⎛⎫- ⎪⎝⎭的值;(Ⅱ)求24tan πα⎛⎫+⎪⎝⎭的值.试卷答案1.A 【分析】由已知结合正弦定理可得sin sin cos A C B <利用三角形的内角和及诱导公式可得,sin()sin cos A B B A +<整理可得sin cos sin cos sin cos A B B A B A +<从而有sin cos 0A B <结合三角形的性质可求【详解】解:A Q 是ABC ∆的一个内角,0A π<<,sin 0cos A cA b∴><Q 由正弦定理可得,sin sin cos C B A <sin()sin cos sin cos sin cos sin cos sin cos 0A B B AA B B A B A A B ∴+<∴+<∴< 又sin 0A >,cos 0B ∴<,即B 为钝角,故选:A 。

2020高考理科数学模拟预测试卷含答案

2020高考理科数学模拟预测试卷含答案

2020高考虽然延迟,但是练习一定要跟上,加油,孩子们!一、选择题(12×5分=60分)1.复数Z=1的共轭复数是()1-iA.1-1iB.-1+1iC.1+1iD.-1-1i222222222.(4x2-2x-5)(1-1)4的展开式中,常数项为()x2A.21B.-5C.-16D.-213.设集合A=[-π,π],B=[-1,1],f:x→sinx是从集合A到2集合B的映射,则在映射f作用下,像1的原像有()2A.1个B.2个C.3个D.4个4.在首项为81,公差为-7的等差数列{a}中,值最接近零的项n是()A.第11项B.第12项C.第13项D.第14项5.圆x2+y2-4x-2y+c=0与y轴交于A、B两点,圆心为P,若APB=900,则c的值为()∠A.-8B.8C.-3D.36.已知f(x)=lg(a x-b x),当a>1>b>0时,f(x)在(1,+∞)的值恒大于零,则a、b应满足的充要条件是()A.a-b≥1B.a-b>1C.a-b=1D.0<a-b<17.设m、n是两条不重合的直线,α、β是两个不重合的平面,则下列四个命题:aaa b a b ab a b b(1) 若 m ⊥ n, m ⊥ α , n ⊄ α , , 则 n∥α(2) 若 m∥α , α ⊥ β ,则 m ⊥ β(3) 若 m ⊥ β , α ⊥ β , 则 m∥ α 和 m ⊂ α(4) 若 m ⊥ n,m ⊥ α , n ⊥ β , 则 α ⊥ β . 其中正确的命题是()A. 仅(1)B. (2), (3)C. (2), (4)D.(1), (3), (4)8. 已知 lim (1+ 1 ) n =e(e 为常数), 则 lim (1+ 1 ) n 等于()n →∞nn →∞2nA. 1B. eC.eD. e 29. 函数 f(x)= 1 + x 2 , 若 a>b>c>0, 则 f (a) ,f (b ) , f (c) 的大小 ab c关系是()A. f (a) < f (b ) < f (c)B. f (a) > f (b ) > f (c)a b c b cC.f (b ) > f (a) > f (c)D. f (a) > f (c) > f (b )b ac c b10.已知非零向量 → 、 → 不共线 , 令 p=| → - → |, g=| → -t → |(t ∈ R 且 t ≠ 1), 若( → - → )· →=0, 则( )A. p<gB. p=gC. p>gD. 不能确定11.曲线 y=x 3 过点( 2 , 0)的切线的方程是()3A. y=0B. 3x -y -2=0C. y=0 或 3x -y -2=0D. x=0 和 3x -y -2=0 12.在 100, 101, 102, …, 999 这些数中, 各位数字按严格递增或严格递减顺序排列的数共有( )A. 216 个B. 204 个C. 168 个D. 120 个⎪4 x - 3 y - 6 ≤ 0 13. ⎧x + y + 2 ≥ 0⎨ a ba b a二、填空题(4×4 分=16 分)已知实数 x 、y 满足 ⎪ y ≤ 2 , 则集合 A={(x, y)|⎩x 2 +y 2 ≤r 2 , r>0}表示的图形面积的最大值是______________14.若不等式|x -1|<a 2 +a+1 成立的充分条件是 0<x<4, 则实数 a 的取值范围是______________15.数列{a }中, 从第二项起每一项与前一项的差成等比数列,n则称该数列为差等比数列. 现已知 a =1, 若差数列公比为 1,1差数列首项为 2, 则 a =_____________n16.设 →=(cosx - sinx, 2sinx),→=(cosx+sinx, cosx),f(x)= → · →, 给出下列四个命题:(1) 函数在区间[ π , 5π ]上是减函数;8 8(2) 直线 x= π 是函数图象的一条对称轴; 8(3) 函数 f(x)的图像可由函数 y= 2 sin2x 的图像按 →=(- π , 40)平移而得到;(4) y=|f(x)|的最小正周期是π .其中正确的命题序号是_________________三、解答题17.(本小题12分)△ABC中,AB=3,AC=4,∠BAC=600.(1)求cos∠ABC;(2)cos(∠ABC+x)=-10(-π<x<0),求cosx.1318.(本小题12分)如图,A、B两点由5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2,现记从中任取三条线且在单位时间内都通过的最大信息总量为.(1)求的分布列及数学期望;(2)把≥10的并联网称为信息畅通,把=8或9的并联网称为信息基本畅通,试分别求信息畅通、信息基本畅通的概2率.A3B219.(本小题12分)如图,已知多面体ABCDE中,AB平面ACD,DE平面ACD,AC=AD=CD=DE=2a,AB=a,F为CD的中点.(1)求证:AF⊥平面CDE;BA(2)求异面直线AC、BE所成角余弦值的大小;(3)求平面BCE和平面ACD所成锐二面角的大小.ECFD20.(本小题12分)设f(x)=ln(x+m),x∈[2-m,+∞),x=α是方程f(x)=x的一根.(1)求f(x)-2x的最大值;(2)定理:设f(x)定义域为I,对任意[a,b]⊆I,存在x∈[a,b],0使等式f(b)-f(a)=(b-a)·f/(x).求证:方程f(x)=x有唯一解x=α.21.(本小题12分)已知F(-1,0),F(1,0),点P满足|PF|+|PF|=42.1212(1)写出点P的轨迹C的方程;1S 2(2) 曲线 C 上点 M 满足: |MF |=d+1, d 表示 M 点到曲线 C211的左准线的距离, 过点 F 的直线 l 交曲线 C 于 A 、B 两点,12且△ABF 被 x 轴分成的两个三角形面积比 S∆AF 1F 2 = λ ( 1 ≤ λ2 ∆BF 1F 2≤3), 求直线 l 的倾斜角的取值范围.22.(本小题14分)正项数列{a}满足a=1,n·a2+(n-1)·a·a-a2=0(n≥n1n n n-1n-12)(1)求a,a,a及a;234n(2)试确定一个正整数N,使当n>N时,不等式a+a+2a+3a+…+(n-1)·a>241成立;1234n121(3)求证:(1+1)n<1+a+a+…+a.n12n参考答案ADCAA CB 一、选择题(12×5分=60分)ADBCC二、填空题(4×4分=16分)1 113. 2 π ; 14. -2≤a≤-1 或 0≤a≤1; 15. a =2n+1(n ∈ N*)n16. (1), (2)三、解答题(共 6 小题, 总分 76 分)17. (1)BC=AB 2 + AC 2 - 2 A B ⋅ AC ⋅ cos ∠BAC =13 ………… 2 分(2)sinB= 2 3cosB= AB 2 + BC 2 - AC 2 = 1 >0 …2 A B ⋅ BC 13………………5 分∵ cosB>0, ∴ B 为 锐 角 ,………7 分13∵- π <B+x< π , cos(B+x)=- 10 < 02∴-π<B+x<π 13, ∴ sin(B+x)= -23 ………9 分13∴cosx=cos[(B+x) - B]= … = -6 + 10………12 分1318. (1) P( ξ =7)= C 2 C 2 = 1 ,P( ξ =8)=C 355C 2 C 1 + C 2 C 2 = 1 ,C 3 105P(ξ=9)=P( ξ =10)= C 2 C 1 = 1C 3105C 1C 1C 1 2 2 1 C 35= 25…………7 分,Eξ=8.4…………8分(2)信息畅通的概率P=P(ξ=10)1=1…………10分10信息基本畅通的概率P=P(ξ=8或ξ2 =9)=7………12分1019.(1)∵DE⊥平面ACD,∴DE⊥AF又∵AC=AD=CD,F为CD的中点∴AF⊥CD∴AF⊥平面CDE………4分(2)取DE的中点G,连AG、CG,则∠CAG或其补角就是异面直线AC、BE所成角…………6分由题设可以求出:CG=AG=5a,AC=2a∵cos∠CAG=AC2+AG2-CG2=52A C⋅AG5∴异面直线AC、BE所成角的余弦值为5………8分5(3)延长DA、EB交于H点,连CH,则CH∥AF,又由AF⊥平面DCE,故HC⊥平面DCE,从而∠DCE就是平面BCE和平面ACD所成锐二面角………10分(x)= -由平面几何知: △CDE 为等腰直角三角形∴ ∠ DCE=45 0∴ 平 面BCE 和 平 面 ACD 所 成 锐 二 面 角 为45 0…………12 分.注: 采用向量法求解答题各小问的得分给出相应分数.20. (1) 令 g(x)=f(x) - 2x=ln(x+m) - 2x, 则 g / (x)=2………2 分∵x≥2-m∴x+m≥2 ∴ 1 ≤ 1 x + m 21 - x + m从而g/1x + 12 ≤ 12-2<0………4 分∴g(x)在[2-m, + ∞ ) 上单调递减∴x=2-m 时,g(x)=f(x) - 2x最 大 值 =ln(2 - m+m) - 2(2 -m)=ln2+2m -4…………6 分(2) 假设 f(x)=x 还有另一解 x= β (α≠β ) 由假设知β - α =f( β ) - f( α )=f / (x ) · ( β - α ) x ∈ [2 - m,+ ∞ )……………8 分故 f/(x)=1, 又 ∵ f/(x)= 1 ≤ 1 <1 矛x + m 2盾…………11 分故f(x)=x 有 唯 一解x= α………12 分⎨2于是:42λ21. (1) P 的 轨 迹 椭 圆 C:1x 2 + y 2 =1 ……………4 分 8 7(2) 椭圆 C 的左准线方程为 x=-8,F (-1, 0),1 1由|MF |=d+1 知曲线 C 是以 F (-1, 0)为焦点, x=-9 为准1线的抛物线故 C21的 方 程 为 :2y 2 =16(x+5) (6)分设 l : x=ay -1, A(x , y ), B(x , y ),1122由 ⎧x = ay - 1⎩ y 2= 16( x + 5)消去 x 得 y 2 -16ay -64=0,S S∆AF 1F 2∆BF 1F 2= λ⇔AF1 = λ 即BF1AF = λ BF 1y =- λ y① 12又 y +y =16a ②12y ·y =-64 ③,12由 ① ② ③ 消 去 y , y 得 : a 2 = 1 ( λ + 1 - 2), ( 1 ≤ λ ≤1 23)………9 分当 1 ≤ λ ≤1 时, a 2 ∈ [0, 1 ],28当 1≤ λ ≤3 时, a 2 ∈ [0, 1 ],3∴a2 ∈[0,1 ] ……………3)⋃ (π(k - 1)! (n - 1)!10 分从而当 a=0 时, 倾斜角为 π ,2当 a ≠ 0 时, k 2 = 1 ≥3 故 k≥ 3 或 k≤- 3 , 倾斜角 α ∈ [ π ,a 2 3π22,2π 3] , 故 倾 斜 角 范 围 为 :[ π , 2π ] (12)33分22.(1) n·a2 n+(n - 1) ·an·an -1-a2 n -1=0⇒(n · a n -an -11)( a n +1)=0,an -1又∵ an -1>0, an>0, 故 a nan -1= 1n,a =1…………2 分1a= 1 = 1 , a= 1 , a= 1 , … ,222!33!44!a = 1………4 分nn !(2) 由(k -1)a = k - 1 =1 - 1 (k≥2),kk! k!a +a +2a +3a +…+(n -1) ·a1234n=1+( 1 - 1 )+( 1 - 1 )+ …+(1 - 1 )=2 - 1!2! 2! 3!n !1 …… 6 分n !从而有 2- 1 > 241 , n !121∴ 1 < 1 , 即 n !>121,n ! 121∵5!=120, 6!=720,n∴n>5 取 N=5, n>N 时, 原不等式成立.…………8 分(3) (1+ 1 ) n 展开式通项:nT =C r ·( 1 ) rr +1n= n · n - 1 · n - 2 · … · n - r + 1 · 1 < 1 (r=0, 1, 2, 3, …,n n n n r! r!n) … … … … 12 分 (1+ 1 ) n < 1 + 1 + 1 + 1 + …n0! 1! 2! 3!+ 1 =1+a +a + … +a……14 分n !12n。

2020年高考数学模拟试题(附答案)

2020年高考数学模拟试题(附答案)

2020年高考数学模拟试题(附答案)姓名:__________ 班级:__________考号:__________一、选择题:本卷共8小题,每小题5分,共40分。

(共8题;共40分)1.设集合,则()A. B. C. D.2.若实数满足则的最小值是()A. B. C. D.3.设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4.执行如图所示的程序框图,则输出的值为()A. 5B. 12C. 27D. 585.已知奇函数是定义在上的减函数,且,,,则的大小关系为()A. B. C. D.6.已知P为双曲线上一点,为双曲线C的左、右焦点,若,且直线与以C的实轴为直径的圆相切,则C的渐近线方程为()A. B. C. D.7.将函数的图像向右平移个单位长度后,得到函数的图像,则函数的单调增区间为()A. B.C. D.8.已知函数若关于的方程恰有两个互异的实数解,则的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。

(共6题;共30分)9.已知复数,其中为虚数单位,则复数的模是________.10.集合A={x|x2﹣3x﹣4<0,x∈Z}用列举法表示为________11.已知为奇函数,当时,,则曲线在点处的切线方程为________.12.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.13.若,,,则的最小值为________.14.在△ABC中,tanA=﹣3,△ABC的面积S△ABC=1,P0为线段BC上一定点,且满足CP0=BC,若P为线段BC上任意一点,且恒有,则线段BC的长为________.三、解答题:本大题共6小题,共80分.(共6题;共80分)15.某单位开展“党员在线学习” 活动,统计党员某周周一至周日(共天)学习得分情况,下表是党员甲和党员乙学习得分情况:党员甲学习得分情况党员乙学习得分情况(1)求本周党员乙周一至周日(共天)学习得分的平均数和方差;(2)从本周周一至周日中任选一天,求这一天党员甲和党员乙学习得分都不低于分的概率;(3)根据本周某一天的数据,将全单位名党员的学习得分按照,, ,,进行分组、绘制成频率分布直方图(如图)已知这一天甲和乙学习得分在名党员中排名分别为第和第名,请确定这是根据哪一天的数据制作的频率分布直方图.(直接写结果,不需要过程)16.如图四边形中,分别为的内角的对边,且满足.(1)证明:;(2)若,设, 求四边形面积的最大值.17.如图,平面ABCD⊥平面ABE,四边形ABCD是边长为2的正方形,AE=1,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)线段AD上是否存在一点M,使平面ABE与平面MCE所成二面角的余弦值为?若存在,试确定点M的位置;若不存在,请说明理由.18.已知数列满足.(Ⅰ)若成等差数列,求的值;(Ⅱ)是否存在,使数列为等比数列?若存在,求出所有这样的;若不存在,说明理由.19.已知函数f(x)=x-1+ (a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)当a=1时,若直线l:y=kx-1与曲线y=f(x)相切,求l的直线方程.20.已知函数f(x)=kx,(1)求函数的单调递增区间;(2)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求k的取值范围;(3)求证:.答案一、选择题:本卷共8小题,每小题5分,共40分。

2020年山东省新高考预测卷数学参考答案及解析

2020年山东省新高考预测卷数学参考答案及解析

2020年山东省新高考预测卷数学 参考答案及解析参考答案:1-4:DCBA 5-8:DBCB 9:AC 10:ABD 11:ACD 12:ACD 13:14 14:22+2 15:2 23 16:[25-4,25+4]解析:1、z =(2+i)(3-2i)=8-i ,所以复数z 在复平面内对应的点的坐标为(8,-1),故选D.2、由题意得,A ={x |y =ln(x -1)}={x |x >1},B ={x |x 2-4≤0}={x |-2≤x ≤2},所以A ∩B ={x |1<x ≤2},故选C.3、根据线面垂直的判定和性质,可知由后者可推前者,但由前者不能推后者,故“直线l 与平面α内的无数条直线垂直”是“直线l 与平面α垂直”的必要不充分条件,选B.4、∵f (-x )=f (x ),∴f (x )是偶函数,故排除B ,D.∵f ⎝ ⎛⎭⎪⎫π2=2>1,∴排除C.故选A.5、法一 设AB →=a ,AD →=b ,则a·b =0,a 2=16,AC →=AD →+DC →=b +12a ,AE →=12(AC →+AB →)=12⎝ ⎛⎭⎪⎫b +12a +a =34a +12b ,所以AB →·(AC →+AE →)=a ·⎝ ⎛⎭⎪⎫b +12a +34a +12b =a ·⎝ ⎛⎭⎪⎫54a +32b =54a 2+32a ·b =54a 2=20,故选D.法二 以A 为坐标原点建立平面直角坐标系(如图所示),设AD =t (t >0),则B (4,0),C (2,t ),E ⎝ ⎛⎭⎪⎫3,12t ,所以AB →·(AC →+AE →)=(4,0)·⎣⎢⎡⎦⎥⎤(2,t )+⎝ ⎛⎭⎪⎫3,12t =(4,0)·⎝ ⎛⎭⎪⎫5,32t =20,故选D.6、由题意知,八卦中含1根与2根阴线的卦各有3种,含0根与3根阴线的卦各有1种,故从8种卦中取2卦的取法总数为C 28种,2卦中恰含4根阴线的取法为C 23+C 13·1=6种,所以所求概率P =6C 28=314,故选B.7、由抛物线的定义知|AF |=p 4+p2=3,解得p =4,所以抛物线C 的方程为y 2=8x ,A (1,a ),则a 2=8,解得a =22或a =-22(舍去),所以A (1,22).又焦点F (2,0),所以直线AF 的斜率为-22,直线AF 的方程为y =-22(x -2),代入抛物线C 的方程y 2=8x ,得x 2-5x +4=0,所以x A +x B =5,|AB |=x A +x B +p =5+4=9,故选C.8、根据AB ⊥BC 可知AC 为三角形ABC 所在截面圆O 1的直径,又平面PAC ⊥平面ABC ,△APC 为等边三角形,所以P 在OO 1上,如图所示,设PA =x ,则AO 1=12x ,PO 1=32x ,所以PO 1=32x =OO 1+2=4-⎝ ⎛⎭⎪⎫12x 2+2⇒⎝ ⎛⎭⎪⎫32x -22=4-⎝ ⎛⎭⎪⎫12x 2⇒x 2-23x =0⇒x =23,所以AO 1=12×23=3,PO 1=32×23=3,当底面三角形ABC 的面积最大时,即底面为等腰直角三角形时三棱锥P -ABC 的体积最大,此时V =13S △ABC ×PO 1=13×⎝ ⎛⎭⎪⎫12×23×3×3=3.9、因为a 2,a 3+1,a 4成等差数列,所以a 2+a 4=2(a 3+1),因此,a 1+a 2+a 3+a 4=a 1+3a 3+2=a 1+14,故a 3=4.又{a n }是公比为q 的等比数列,所以由a 2+a 4=2(a 3+1),得a 3⎝⎛⎭⎪⎫q +1q =2(a 3+1),解得q =2或12.10、由条形统计图知,B —自行乘车上学的有42人,C —家人接送上学的有30人,D —其他方式上学的有18人,采用B ,C ,D 三种方式上学的共90人,设A —结伴步行上学的有x 人,由扇形统计图知,A —结伴步行上学与B —自行乘车上学的学生占60%,所以x +42x +90=60100,解得x =30,故条形图中A ,C 一样高,扇形图中A 类占比与C 一样都为25%,A 和C 共占约50%,故D 也正确.D 的占比最小,A 正确.11、g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π8+π12=cos ⎝ ⎛⎭⎪⎫2x +π3.g (x )的最小正周期为π,选项A 正确;当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,故g (x )在⎣⎢⎡⎦⎥⎤0,π2上有增有减,选项B 错误;g ⎝ ⎛⎭⎪⎫π12=0,故x =π12不是g (x )图象的一条对称轴,选项C 正确.当x ∈⎣⎢⎡⎦⎥⎤-π6,π6时,2x +π3∈⎣⎢⎡⎦⎥⎤0,2π3,且当2x +π3=2π3,即x =π6时,g (x )取最小值-12,D 正确.12、∵φ(x )=e x·f (x )-g (x )ex只有一个零点,∴2m (x 2+1)-e x-(m +2)(x 2+1)2e x=0只有一个实数根,即(m +2)⎝ ⎛⎭⎪⎫x 2+1e x 2-2m ·x 2+1e x +1=0只有一个实数根.令t =x 2+1e x ,则t ′=(x 2+1)′e x -(x 2+1)e x (e x )2=-(x -1)2e x≤0,∴函数t =x 2+1ex在R 上单调递减,且x →+∞时,t →0,∴函数t =x 2+1ex的大致图象如图所示,所以只需关于t 的方程(m +2)t 2-2mt +1=0(*)有且只有一个正实根. ①当m =2时,方程(*)为4t 2-4t +1=0,解得t =12,符合题意;②当m =3时,方程(*)为5t 2-6t +1=0,解得t =15或t =1,不符合题意;③当m =-3时,方程(*)为t 2-6t -1=0,得t =3±10,只有3+10>0,符合题意. ④当m =-4时,方程(*)为2t 2-8t -1=0,得t =4±322,只有4+322>0,符合题意.故选A ,C ,D.13、根据题意得:f (-2)=(-2)2=4, 则f (f (-2))=f (4)=24-2=16-2=14. 14、由题意得2b a +1b =2b a +a +2b b =2b a +ab+2≥22b a ·ab+2=22+2,当且仅当a =2b =2-1时,等号成立,所以2b a +1b的最小值为22+2.15、由已知可得(2-12)(1+a )3=27,则a =2,∴(2-x 2)(1+ax )3=(2-x 2)(1+2x )3=(2-x 2)(1+6x +12x 2+8x 3),∴展开式中含x 2的项的系数是2×12-1=23.16、由题意可知,直线OP 的方程为y =k 1x ,OQ 的方程为y =k 2x ,因为OP ,OQ 与圆M 相切,所以|k 1x 0-y 0|1+k 21=22,|k 2x 0-y 0|1+k 22=22, 分别对两个式子进行两边平方,整理可得k 21(8-x 20)+2k 1x 0y 0+8-y 20=0,k 22(8-x 20)+2k 2x 0y 0+8-y 20=0,所以k 1,k 2是方程k 2(8-x 20)+2kx 0y 0+8-y 2=0的两个不相等的实数根,所以k 1k 2=8-y 208-x 20.又k 1·k 2=-1,所以8-y 208-x 20=-1,即x 20+y 20=16.又|TO |=4+16=25,所以|TO |-4≤|TM |≤|TO |+4,所以25-4≤|TM |≤25+4. 答案 [25-4,25+4]17. (1)由题意,⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2. ∴a n =2+(n -1)×2=2n .(2)选条件①:b n =42n ·2(n +1)=1n (n +1),S n =11×2+12×3+…+1n (n +1)=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=nn +1. 选条件②:∵a n =2n ,b n =(-1)na n , ∴S n =-2+4-6+8-…+(-1)n·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2×2=n ;当n 为奇数时,n -1为偶数, S n =(n -1)-2n =-n -1.∴S n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -1,n 为奇数.选条件③:∵a n =2n ,b n =2a n ·a n ,∴b n =22n ·2n =2n ·4n, ∴S n =2×41+4×42+6×43+…+2n ×4n,① 4S n =2×42+4×43+6×44+…+2(n -1)×4n +2n ×4n +1,②由①-②得,-3S n =2×41+2×42+2×43+…+2×4n -2n ×4n +1=8(1-4n )1-4-2n ×4n +1=8(1-4n )-3-2n ×4n +1,∴S n =89(1-4n )+2n 3·4n +1.18. (1)法一 因为m ∥n ,所以3a cos C =(2b -3c )cos A , 由正弦定理得3sin A cos C =2sin B cos A -3cos A sin C , 得3sin(A +C )=2sin B cos A ,所以3sin B =2sin B cos A ,因为sin B >0,所以cos A =32,又A ∈(0,π),所以A =π6. 法二 因为m ∥n ,所以3a cos C =(2b -3c )cos A ,易知cos C =a 2+b 2-c 22ab ,cos A =b 2+c 2-a 22bc ,代入上式得,3a ×a 2+b 2-c 22ab =(2b -3c )×b 2+c 2-a 22bc,整理得,3bc =b 2+c 2-a 2,所以cos A =b 2+c 2-a 22bc =32,又A ∈(0,π),所以A =π6.(2)由(1)得3bc =b 2+c 2-a 2,又b 2-a 2=12c 2,所以c =23b ,又S △ABC =12bc sin A =12b ×23b ×12=332,得b 2=9,所以b =3. 19. (1)E ,F 分别为BP ,CD 的中点,证明如下: 连接ME ,MF ,EF ,∵M ,F 分别为AD ,CD 的中点,∴MF ∥AC .又E 为BP 的中点,且四边形PBCD 为梯形,∴BC ∥EF .∵MF ⊄平面ABC ,AC ⊂平面ABC , ∴MF ∥平面ABC ,同理EF ∥平面ABC , 又∵MF ∩EF =F ,MF ,EF ⊂平面MEF , ∴平面MEF ∥平面ABC .(2)由题意知AP ,BP ,DP 两两垂直,以P 为坐标原点,PB ,PD ,PA 所在的直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,∵在等腰梯形ABCD 中,AB =2,BC =1,AD =3,BP ⊥AD ,∴AP =1,BP =1,PD =2, ∴M ⎝ ⎛⎭⎪⎫0,1,12,P (0,0,0),C (1,1,0),A (0,0,1),PC →=(1,1,0),PM →=⎝⎛⎭⎪⎫0,1,12.设平面MPC 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·PC →=0,n 1·PM →=0,即⎩⎪⎨⎪⎧x +y =0,y +12z =0,令z =-2,则y =1,x =-1,∴n 1=(-1,1,-2)为平面MPC 的一个法向量. 同理可得平面PAC 的一个法向量为n 2=(-1,1,0). 设二面角M -PC -A 的平面角为θ,由图可知θ∈⎝⎛⎭⎪⎫0,π2,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=26×2=33.∴二面角M -PC -A 的余弦值为33. 20. (1)根据表中数据,描点如图:(2)由已知数据得t -= 1+2+3+4+5+66=3.5,y -=3+5+8+11+13+146=9,∑6i =1t i y i =3+10+24+44+65+84=230,∑6i =1t 2i =1+4+9+16+25+36=91, b ^=∑6i =1t i y i -6t - y-∑6i =1t 2i -6t-2=230-6×3.5×991-6×3.52≈2.34,a ^=y --b ^ t -=9-2.34×3.5=0.81, 所以y 关于t 的线性回归方程为y ^=2.34t +0.81.(3)由(2)可知,当t =1时,y ^1=3.15;当t =2时,y ^2=5.49;当t =3时,y ^3=7.83;当t=4时,y ^4=10.17;当t =5时,y ^5=12.51;当t =6时,y ^6=14.85.与年利润数据y i 对比可知,满足y ^i -y i <0的数据有3个,所以X 的所有可能取值为0,1,2,则P (X =0)=C 23C 26=15,P (X =1)=C 13C 13C 26=35,P (X =2)=C 23C 26=15,X 的分布列为数学期望E (X )=0×15+1×35+2×5=1.21. (1)由椭圆x 2a 2+y 2b 2=1的右焦点为(3,0),知a 2-b 2=3,即b 2=a 2-3,则x 2a 2+y 2a 2-3=1,a 2>3.又椭圆过点M (-2,1),∴4a 2+1a 2-3=1,又a 2>3,∴a 2=6.∴椭圆Γ的标准方程为x 26+y 23=1.(2)设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 26+y 23=1,y =k (x -1)得x 2+2k 2(x -1)2=6,即(1+2k 2)x 2-4k 2x +2k 2-6=0,∵点N (1,0)在椭圆内部,∴Δ>0, ∴⎩⎪⎨⎪⎧x 1+x 2=4k21+2k2, ①x 1x 2=2k 2-62k 2+1, ②则t =MA →·MB →=(x 1+2)(x 2+2)+(y 1-1)(y 2-1) =x 1x 2+2(x 1+x 2)+4+(kx 1-k -1)·(kx 2-k -1) =(1+k 2)x 1x 2+(2-k 2-k )(x 1+x 2)+k 2+2k +5 ③, 将①②代入③得,t =(1+k 2)·2k 2-62k 2+1+(2-k 2-k )·4k22k 2+1+k 2+2k +5,∴t =15k 2+2k -12k 2+1,∴(15-2t )k 2+2k -1-t =0,k ∈R , 则Δ1=22+4(15-2t )(1+t )≥0,∴(2t -15)(t +1)-1≤0,即2t 2-13t -16≤0, 由题意知t 1,t 2是2t 2-13t -16=0的两根, ∴t 1+t 2=132.22.(1) ∵a =0时,∴f (x )=e x -ln x ,f ′(x )=e x-1x(x >0),∴f (1)=e ,f ′(1)=e -1,∴函数f (x )的图象在(1,f (1))处的切线方程为:y -e =(e -1)(x -1),即(e -1)x -y +1=0.(2)证明 ∵f ′(x )=ex +a-1x(x >0),设g (x )=f ′(x ),则g ′(x )=e x +a+1x2>0,∴g (x )是增函数,∵ex +a>e a ,∴由e a >1x⇒x >e -a,∴当x >e -a时,f ′(x )>0; 若0<x <1⇒ex +a<ea +1,由ea +1<1x⇒x <e -a -1,∴当0<x <min{1,e -a -1}时,f ′(x )<0,故f ′(x )=0仅有一解,记为x 0,则当0<x <x 0时,f ′(x )<0,f (x )递减;当x >x 0时,f ′(x )>0,f (x )递增;∴f (x )min =f (x 0)=e x 0+a -ln x 0,而f ′(x 0)=e x 0+a -1x 0=0⇒e x 0+a =1x 0⇒a =-ln x 0-x 0,记h (x )=ln x +x , 则f (x 0)=1x 0-ln x 0=h ⎝ ⎛⎭⎪⎫1x 0,a >1-1e ⇔-a <1e-1⇔h (x 0)<h ⎝ ⎛⎭⎪⎫1e,而h (x )显然是增函数, ∴0<x 0<1e ⇔1x 0>e ,∴h ⎝ ⎛⎭⎪⎫1x 0>h (e)=e +1. 综上,当a >1-1e时,f (x )>e +1.。

2020高考数学预测模拟试卷含答案

2020高考数学预测模拟试卷含答案

4)的一条对称轴是(4 ,Bx =3Cx = - 3D x = -第Ⅰ卷(选择题共 60 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、在等比数列{a n }中, 若 a 1a a a a = 1 , 则 ( )2 3 4 5Aa 1=1B a 3=1C a 4=1D a 5=12、对于任意实数 a 、b 、c 、d ,命题:① 若a > b , c < 0, 则ac > bc ;② 若a > b , 则ac 2 > bc 2 ;③ 若ac 2 < bc 2 , 则a < b ; ④ 若a > b , 则 1 < 1 ;⑤ 若a > b > 0, c > d > 0, 则ac > bd . a b其中真命题的个数是) (A 、1B 、2C 、3D 、43、若 tan α =2 , 则 sin α cos α 的 值为D1A1 2B 23C 254、函数y=sin(2x- π)A x =π π π π 8⋅ = ( )2,-⎨ 的解集为( )⎧⎪log ( x 2 - 1) > 15、 2sin 2αcos 2α 1 + cos 2α cos2α Atan αBtan 2α C 1D1 26、.已知等差数列{a n }的前 20 项的和为 100,公差是-2,则数列前( )项的和最大。

A.12D.107、已知函数 y =小值分别是()B.13C.12 或 132 cosx, x ∈[- π ,3π ] ,则函数 y 的最大值、最3 4A. 2 2,-1 B. 1, -1 C. 2 2 D. 2 ,-18、不等式组2⎪⎩ x - 2 < 2A (0,3)B ( 3, 2)C ( 3, 4)D (2, 4)9 、已知函数 y = f ( x ) 图象如图n →∞< 3 , 1 + 1 + 1 < 5 , 1 + 1 + 1 + 1 <10、给出① lim x 3 + 3x 2 + 2 x ;②曲线 y = x 4+5 在 x=0 处的切x →-2 x 2 - x - 6线的斜率值;③数列{a n }中, a n = (-1) n n ,则 lim a 的值;④函数 ny=x 4-2x 2+5 在[-2,2]上的最小值。

2020届全国普通高等学校招生统一考试(江苏卷)模拟预测卷数学试题及答案解析

2020届全国普通高等学校招生统一考试(江苏卷)模拟预测卷数学试题及答案解析

2020届全国普通高等学校招生统一考试模拟预测卷数学试题一、填空题1.现有7名数理化成绩优秀者,分别用1A ,2A ,3A ,1B ,2B ,1C ,2C 表示,其中1A ,2A ,3A 的数学成绩优秀,1B ,2B 的物理成绩优秀,1C ,2C 的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则1A 和1B 不全被选中的概率为______________.2.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积是________3cm .3.求值:()00sin 50180=______________.4.已知数列{}n a 成等差数列,且17134a a a π++=,则()212tan a a +=5.已知向量,a b 满足22b a ==,a 与b 的夹角为120,则4a b -=________.6.若曲线x y e =上点P 处的切线平行于直线210x y -+=,则点P 的坐标为______.7.阅读如图所示的程序框图,运行相应的程序,输出的结果i = .8.抛物线212y x =-的准线与双曲线22162x y -=的两条渐近线所围成的三角形的面积等 于 .9.已知一组数据6,7,8,9,m 的平均数是8,则这组数据的方差是_________.10.波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有ABC ∆,4,sin 2sin AC C A ==,则当ABC ∆的面积最大时,AC 边上的高为_______________. 11.设集合{1,2,3}A =,{2,4,6}B =,则A B =__________.12.如图,三个相同的正方形相接,则tan ABC ∠的值为__________.13.下列四个命题中,正确命题的个数是___________.①0比i 小②两个复数互为共轭复数,当且仅当其和为实数③1x yi i +=+的充要条件为1x y ==④如果实数a 与ai 对应,那么实数集与纯虚数集一一对应14.已知函数()2ln 3a f x x x =+-,()322332g x x x x =-+-,对任意的1,23m ⎡⎤∈⎢⎥⎣⎦,都存在1,23n ⎡⎤∈⎢⎥⎣⎦,使得()()g m f n ≤成立,则实数a 的取值范围是______.二、解答题15.已知α,β为锐角,()12cos 13αβ+=,()3cos 25αβ+=,求cos α的值. 16.某单位科技活动纪念章的结构如图所示,O 是半径分别为1cm ,2cm 的两个同心圆的圆心,等腰△ABC 的顶点A 在外圆上,底边BC 的两个端点都在内圆上,点O ,A 在直线BC 的同侧.若线段BC 与劣弧BC 所围成的弓形面积为S 1,△OAB 与△OAC 的面积之和为S 2, 设∠BOC =2θ.(1)当3πθ=时,求S 2﹣S 1的值;(2)经研究发现当S 2﹣S 1的值最大时,纪念章最美观,求当纪念章最美观时,cos θ的值.(求导参考公式:(sin 2x )'=2cos 2x ,(cos 2x )'=﹣2sin 2x )17.已知四点12341112(3,),),(),(2223P P P P --中只有三点在椭圆C :22221x y a b +=上. (1)求椭圆C 的方程;(2)若直线l 的斜率为1,直线l 与圆221x y +=相切,且与椭圆C 交于点,A B ,求线段AB 的长.18.已知正项等差数列{}n a 满足:233312n n S a a a =+++,其中n S 是数列{}n a 的前n 项和. (1)求数列{}n a 的通项公式;(2)令()()()1412121n n n n n b a a -=--+,证明:122221n n b b b n ++++≤+. 19.现有6名奥运会志愿者,其中志愿者12,A A 通晓日语,12,B B 通晓俄语,12,C C 通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求1A 被选中的概率;(2)求1B 和1C 不全被选中的概率;(3)若6名奥运会志愿者每小时派两人值班,现有两名只会日语的运动员到来,求恰好遇到12,A A 的概率.20.在等腰直角三角形ABC 中,AB =AC =3,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图),光线QR 经过ABC 的重心,若以点A 为坐标原点,射线AB ,AC 分别为x 轴正半轴,y 轴正半轴,建立平面直角坐标系.(1)AP 等于多少?(2)D (x ,y )是RPQ 内(不含边界)任意一点,求x ,y 所满足的不等式组,并求出D (x ,y )到直线2x +4y +1=0距离的取值范围.21.已知函数()2121f x x x =-++.(1)求函数()f x 的最小值m ;(2)若正实数,a b满足11a b +=,求证:2212m a b +≥. 22.已知曲线11:C y x=绕原点逆时针旋转45︒后可得到曲线222:2C y x -=, (I )求由曲线1C 变换到曲线2C 对应的矩阵1M ;.(II )若矩阵22003M ⎛⎫=⎪⎝⎭,求曲线1C 依次经过矩阵12,M M 对应的变换12,T T 变换后得到的曲线方程. 23.已知数列{}n a 满足22,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数,且*12,1,2n N a a ∈==. (1)求 {}n a 的通项公式;(2)设*1,n n n b a a n N +=⋅∈,求数列{}n b 的前2n 项和2n S ;(3)设()2121n n n n c a a -=⋅+-,证明:123111154n c c c c ++++< 24.已知函数12()4-=+x f x e ax ,曲线()y fx =在1x =处的切线方程为1y bx =+.(1)求实数a b 、的值;(2)0x >且1x ≠时,证明:曲线()y f x =的图象恒在切线1y bx =+的上方;(3)证明:不等式:12432ln 0----x xe x x x .25.如图所示,平面ABCD ⊥平面BCE ,四边形ABCD 为矩形, BC CE =,点F 为CE 的中点.(1)证明: //AE 平面BDF .(2)点M 为CD 上任意一点,在线段AE 上是否存在点P ,使得PM BE ⊥?若存在,确定点P 的位置,并加以证明;若不存在,请说明理由.【答案与解析】1.56列出从这7人中选出数学、物理、化学成绩优秀者各1名所有样本点,求出满足事件的样本点个数,即可求出结论.从这7人中选出数学、物理、化学成绩优秀者各1名,所有可能的结果组成的12个样本点为()111,,A B C ,()112,,A B C ,()121,,A B C ,()122,,A B C ,()211,,A B C ,()212,,A B C ,()221,,A B C ,()222,,A B C ,()311,,A B C ,()312,,A B C ,()321,,A B C ,()322,,A B C .“1A 和1B 全被选中”有2个样本点()111,,A B C ,()112,,A B C ,“1A 和1B 不全被选中”为事件N 共有10个样本点,概率为105126=. 故答案为:56. 本题考查古典概型的概率,列举样本点是解题的关键,属于基础题.2.144由三视图可知:该几何体是由一个长方体和正四棱台组成.其中长方体的长为4,宽为4,高为2,正四棱台的上底边长为4,下底边长为8,高为3,分别求得体积求和即可.由三视图可知:该几何体是由一个长方体和正四棱台组成.长方体的长为4,宽为4,高为2,所以V 长方体44232=⨯⨯= ;正四棱台的上底边长为4,下底边长为8,高为3,所以V 正四棱台()()1211166411233S S =++=++=. 所以该几何体的体积是144.故答案为:144本题主要考查三视图的应用以及几何体体积的求法,还考查了空间想象和运算求解的能力,属于基础题.3.1先利用同角基本关系将原式切化弦,再利用两角和的正弦公式,结合二倍角的正弦公式化简分子,进而再利用诱导公式变形,约分后即可得到结果.因为()()00sin501sin501︒=︒+=sin501︒+(1010sin cos ︒︒) =sin50︒=sin50︒•1210102210cos sin cos ⎛⎫︒+︒ ⎪⎝⎭︒=sin50︒•24010sin cos ︒︒ 2404010sin cos cos ︒︒=︒ 8010sin cos ︒=︒ 1010cos cos ︒=︒=1.故答案为1.本题考查了三角函数的化简求值问题,考查了两角和的正弦公式、同角三角函数间的基本关系,以及诱导公式的运用,熟练掌握公式是解本题的关键.4.先根据等差数列的等差中项的性质利用1713a a a ++的值求得7a 的值,进而利用等差中项的性质求得212a a +的值,代入()212tan a a +答案可得.1713734a a a a π++==743a π∴= ()212782tan tan 2tan tan 33a a a ππ∴+====故答案为本题主要考查了等差数列的性质、等差中项.作为等差数列的常用性质,在高考中常以填空和选择题出现. 解等差数列问题要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=).5结合数量积的运算律可求得24a b -,进而求得结果. 2222248168cos12016186473a b a a b b a a b b -=-⋅+=-⋅+=++=, 473a b ∴-=.本题考查平面向量模长的求解问题,关键是熟练应用平面向量数量积的运算律求得模长的平方. 6.(ln 2,2)先设P (x ,y ),求出函数的导数,利用x e =2,求出x 并代入解析式求出y 可得P 的坐标. 设P (x ,y ),由题意得x y e =,∵'x y e =在点P 处的切线与直线210x y -+=平行,∴x e =2,解得x =ln 2,∴2x ln y e e ===2,故P (ln 2,2).故答案为:(ln 2,2).本题考查了导数的几何意义,即曲线在某点处切线的斜率是该点处的导数值,属于基础题. 7.5框图首先给变量a 和变量i 赋值,4a =,1i =.判断104=不成立,判断10是奇数不成立,执行1052a ==,112i =+=; 判断54=不成立,判断5是奇数成立,执行35116a =⨯+=,213i =+=;判断164=不成立,判断16是奇数不成立,执行1682a ==,314i =+=; 判断84=不成立,判断8是奇数不成立,执行842a ==,415i =+=; 判断44=成立,跳出循环,输出i 的值为5.8.试题分析:抛物线的准线方程为3x =,双曲线的渐近线方程为y x =,所以所要求的三角形的面积为132⨯⨯=;考点:1.抛物线的几何性质;2.双曲线的几何性质;9.2由平均数求得m ,根据方差计算公式求得结果. 由题意得:678985m ++++=,解得:10m = ∴方差()()()()()222222116878889810810255s ⎡⎤=⨯-+-+-+-+-=⨯=⎣⎦ 故答案为:2本题考查平均数与方差的计算方法,属于基础题.10.83ABC ∆,4,sin 2sin AC C A ==,即2c a=.根据阿波罗尼斯圆可得:点B 的轨迹为圆, 以线段AC 中点为原点,AC 所在直线为x 轴建立直角坐标系,求出B 的轨迹方程,进而得出结论. 解:||sin sin 2sin ,2||sin AB C C A CB A=∴==为非零常数, 根据阿波罗尼斯圆可得:点B 的轨迹是圆.以线段AC 中点为原点,AC 所在直线为x 轴建立直角坐标系则(2,0),(2,0)A C -,设(,)B x y ,∵2AB CB ==223320120x y x +-+=,整理得22210833x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭ 因此,当ABC ∆面积最大时,BC 边上的高为圆的半径83. 本题考查了阿波罗尼斯圆的应用、正弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.11.{2}{}{1,2,3}2,4,6A B ⋂=⋂={}212.17由两角差的正切公式可得,321tan 1327ABC -∠==+⨯,故答案为17.。

山东省2020年高考数学模拟考试题与答案

山东省2020年高考数学模拟考试题与答案

山东省2020年高考数学模拟考试试题及答案按珈密级苇项管理*启用前2020年普通高等学校招生全国统一考试(模拟卷)数学asw 项:1. 答卷前,考生务必将口己的姓名、考生号等填遞在答题卡和试卷指定位匿匕工回答选择题时,选岀每小题答案屁用铅抠把答题R上对应题冃的答案折号涂熾如磁动,用橡皮掠干净后,再选涂苴他答案标号*回答非选择题时,将答案写在答题卡上。

另在本试卷上无效,生考试结束存*将本试卷和答題卡…井交回。

—、单项选择题:本趣共$小舐每小題§分・共豹分。

在每小题给出的四个选琐中,只有一项是符合髒目要求的“1, 迎集合/訂(工』)ix+?=2}, 则*n七A. {(ij)}氐{(一签4)} C HM)J-2f4)}6 02. 已知◎牛bi⑷b左R)是上二的共扳复数・则a^b =1 +1A- -1 B.-丄C- ;D・ 12 23* Bt向fi4-(.1,1)t A = c»(2,!)> 且(■-几血)丄―则丄“A. 3 氐2 G -2-34. 幵式中『抽系数足xA.-210B. -12QC. 120D. 2105+已知三按锥$_仙C中,ZSAB = ZABC= y * 5^-4• SC = 1J\3. XB = 2,5C = 6, 则三棱锥S 亠ABC的体积是A. 4B. 6 G 4巧D+ M6. 己知点丄为曲纯y二工+毀工:>0)上前动点,月为圆2F +/=!上的动点’则皿鋼X的最小值是九3 B•斗G迈 D. 4^27, 设命題戸所有正方形都是平行叫边母*则「卩为d所宿疋方形罰不長平行四边形B-有的平行四边底不是正方舷C”有的iE方形不是平行四边形 D.不是正方形的四边彫不是平行四边形数学试题第1页:(共5贡)数学试題第2页(共5页〉数学试題第2页(共5页〉8. 若>1 且 MC F ・则4. log 」、1隅疋、teg 評 C. log f c> lo£fl 5> lo 空 a二、多項远择题*本题共4」卜駆•毎小题5^-共20分・存毎小额给岀的选项中、右 多项精合倾目蓉求,全部选对的得5分,部分选对的得3分,有选措的得0分“ 9. 下国为茱地桜2006年〜2018年地方財政预算内收入、城乡居民储齧年未余额折线2财政预篇内收入*城乡居民储蓄年朮余额肉呈増怅趋势 R.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C. 赃政预畀内收入年平均增长虽局于城乡居民储蔷年末余额年平均增机帚 D, 城乡居艮储蓄年末余鈿与财政预算内收入的差報逐年增大w.已知艰曲线<?过点Q 品且渐近钱为丿=±¥厂则下列结论正确的是A, C 的方程为■- / -I B ・0的离心翠为J5 C ・曲线经过C 的一于焦点 D.直线"逅厂1“与C 有两个公共点11正方陣」肌也GO 的梭长为1・E , F 、(?分别为5C, CC 「1?鸟的中点•则扎直线与直线曲垂直 B.直^Afi 与平面*防平行C 平面/EF 截正方体所得的載画面积为? D.点C?与点石到平而*EF 曲聊离相諄B- log"〉k 唱』a lug/ D, log/A 】0£ 占 > log/城乡尿民储雷叶朿 ♦余额C 百亿元】 亠地方财政预算内 收入f 百亿元)根据该折线I ]可Sb 该地区2006年-2018年\2.函数/(巧的定义域为K, fi7(^ + 1) f(x^2)都为奇函数,则A. 奇函数氐/V)为周期雷数C /(x + 3)为奇函数 D. /(I +4)X J®^I数三填空駆本题共4小题、每小题3分,共20分。

2020年浙江省高考数学模拟试卷及答案

2020年浙江省高考数学模拟试卷及答案

2020年浙江省高考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x|x 2﹣4x ≤0},则A ∩B =()A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]2.(4分)设i 为虚数单位,复数??=2+3??,则z 的共轭复数是()A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i3.(4分)设变量x ,y 满足约束条件{+??≥1,2??-??≤2,-??+1≥0,则z =(x ﹣3)2+y 2的最小值为()A .2B .4√55C .4D .1654.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要5.(4分)函数f (x )=x 2+e |x|的图象只可能是()A .B .C .D .6.(4分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1的动点,则下列说法中错误的是()A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成角为4C .≥√2D .CD 1与PQ 不可能垂直7.(4分)已知0<??<23,随机变量ξ的分布列如图:则当a增大时,ξ的期望E(ξ)变化情况是()ξ﹣101P13a bA.E(ξ)增大B.E(ξ)减小C.E(ξ)先增后减D.E(ξ)先减后增8.(4分)已知函数??(??)={2+4??+2,??≤02??,??>0,且方程f(x)=a有三个不同的实数根x1,x2,x3,则x1+x2+x3的取值范围为()A.(-154,0]B.(-154,2]C.[﹣4,+∞)D.[﹣4,2)9.(4分)如图,在三棱台ABC﹣A1B1C1中,M是棱A1C1上的点,记直线AM与直线BC所成的角为α,直线AM与平面ABC所成的角为β,二面角M﹣AC﹣B的平面角为γ.则()A.α≥β,β≤γB.α≤β,β≤γC.α≥β,β≥γD.α≤β,β≥γ10.(4分)设数列{a n}满足a n+1=a n2+2a n﹣2(n∈N*),若存在常数λ,使得a n≤λ恒成立,则λ的最小值是()A.﹣3B.﹣2C.﹣1D.1二.填空题(共7小题,满分36分)11.(6分)过点P(1,1)作直线l与双曲线??2-22=??交于A,B两点,若点P恰为线段AB的中点,则实数λ的取值范围是.12.(6分)一个几何体的三视图如图所示,则该几何体的体积为.13.(6分)已知(1﹣x)6=a0+a1x+a2x2+…+a6x6,则a2=,a0﹣a1+a2﹣a3+a4﹣a5+a6=.14.(6分)在△ABC中,a=1,cosC=34,△ABC的面积为√74,则c=.15.(4分)在平面直角坐标系xOy中,已知椭圆22+??2??2=1(a>b>0)的上、下顶点分别为B2,B1,若一个半径为√2b,过点B1,B2的圆M与椭圆的一个交点为P(异于顶点B1,B2),且|k1-k2|=89,则椭圆的离心率为.16.(4分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BCD=60°,CB=CD=2√3.若点M为边BC上的动点,则→→的最小值为.17.(4分)设f(x)是定义在(0,+∞)上的可导函数,且满足f(x)+xf'(x)>0,则不等式f(x+1)>(x﹣1)f(x2﹣1)的解集为三.解答题(共5小题,满分74分)18.(14分)在△ABC中,角A,B,C所对的边分别是a,b,c,且b﹣c=1,cosA=13,△ABC的面积为2√2.(Ⅰ)求a及sinC的值;(Ⅱ)求cos(2A-6)的值.19.(15分)如图,三棱锥D﹣ABC中,AD=CD,AB=BC=4√2,AB⊥BC.(1)求证:AC⊥BD;(2)若二面角D﹣AC﹣B的大小为150°且BD=4√7时,求直线BM与面ABC所成角的正弦值.20.(15分)在等差数列{a n}和正项等比数列{b n}中,a1=1,b1=2,且b1,a2,b2成等差数列,数列{b n}的前n项和为Sn,且S3=14.(1)求数列{a n},{b n}的通项公式;(2)令??=????,(﹣1)n d n=nc n+n,求数列{d n}的前项和为T n.21.(15分)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为√2,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A y B为常数;(3)是否存在t,使得y A y B=1且y P?y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.22.(15分)设函数f(x)=e x cosx,g(x)=e2x﹣2ax.(1)当??∈[0,]时,求f(x)的值域;3恒成立(f'(x)是f(x)的导函数),求实数a的取值范围.(2)当x∈[0,+∞)时,不等式??(??)≥′(??)2??2020年浙江省高考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知A ={x ∈N *|x ≤3},B ={x|x 2﹣4x ≤0},则A ∩B =()A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]【解答】解:由题意得:A ={x ∈N *|x ≤3}={1,2,3},B ={x|x 2﹣4x ≤0}={x|0≤x ≤4},∴所以A ∩B ={1,2,3},故选:A .2.(4分)设i 为虚数单位,复数??=2+3??,则z 的共轭复数是()A .3﹣2iB .3+2iC .﹣3﹣2iD .﹣3+2i【解答】解:∵??=2+3??=(2+3??)(-??)-??2=3-2??,∴??=3+2??.故选:B .3.(4分)设变量x ,y 满足约束条件{+??≥1,2??-??≤2,-??+1≥0,则z =(x ﹣3)2+y 2的最小值为()A .2B .4√55C .4D .165【解答】解:画出变量x ,y 满足约束条件{+??≥1,2??-??≤2,-??+1≥0,的可行域,可发现z =(x ﹣3)2+y 2的最小值是(3,0)到2x ﹣y ﹣2=0距离的平方.取得最小值:(6-2√4+1)2=165.故选:D .4.(4分)已知α为任意角,则“cos2α=13”是“sin α=√33”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要【解答】解:若cos2α=13,则cos2α=1﹣2sin 2α,sin α=±√33,则cos2α=13”是“sin α=√33”的不充分条件;若sin α=√33,则cos2α=1﹣2sin 2α,cos2α=13,则cos2α=13”是“sin α=√33”的必要条件;综上所述:“cos2α=13”是“sin α=√33”的必要不充分条件.故选:B .5.(4分)函数f(x)=x2+e|x|的图象只可能是()A.B.C.D.【解答】解:因为对于任意的x∈R,f(x)=x2+e|x|>0恒成立,所以排除A,B,由于f(0)=02+e|0|=1,则排除D,故选:C.6.(4分)如图,在正方体ABCD﹣A1B1C1D1中,P为线段AD的中点,Q为线段B1C1的动点,则下列说法中错误的是()A.线段PQ与平面CDD1C1可能平行B.当Q为线段B1C1的中点时,线段PQ与DD1所成角为4C.≥√2D.CD1与PQ不可能垂直【解答】解:在正方体ABCD﹣A1B1C1D1中,P为线段AD的中点,Q为线段B1C1的动点,在A中,当Q为线段B1C1中点时,线段PQ与平面CDD1C1平行,故A正确;在C中,当Q为线段B1C1的中点时,PQ∥DC1,∴线段PQ与DD1所成角为∠C1DD1=4,故B正确;在C中,PQ≥√2AB,当且仅当Q为线段B1C1的中点时取等号,故C正确;在D中,当Q为线段B1C1的中点时,PQ∥DC1,CD1与PQ垂直,故D错误.故选:D.7.(4分)已知0<??<23,随机变量ξ的分布列如图:则当a增大时,ξ的期望E(ξ)变化情况是()ξ﹣101P13a b A.E(ξ)增大B.E(ξ)减小C.E(ξ)先增后减D.E(ξ)先减后增【解答】解:依题可知{()=-13+??+??=23,∴??(??)=-13+23-??,∴当a 增大时,ξ的期望E (ξ)减小.故选:B .8.(4分)已知函数??(??)={2+4??+2,??≤02??,??>0,且方程f (x )=a 有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3的取值范围为()A .(-154,0]B .(-154,2]C .[﹣4,+∞)D .[﹣4,2)【解答】解:作出函数f (x )的图象,方程f (x )=a 有三个不同的实数根即等价于函数y =f (x )的图象与直线y =a 有三个交点A ,B ,C ,故有﹣2<a ≤2,不妨设x 1<x 2<x 3,因为点A ,B 关于直线x =﹣2对称,所以x 1+x 2=﹣4,﹣2<log 2x 3≤2,即14<x 3≤4,故-154<x 1+x 2+x 3≤0.故选:A .9.(4分)如图,在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.则()A .α≥β,β≤γB .α≤β,β≤γC .α≥β,β≥γD .α≤β,β≥γ【解答】解:∵在三棱台ABC ﹣A 1B 1C 1中,M 是棱A 1C 1上的点,记直线AM 与直线BC 所成的角为α,直线AM 与平面ABC 所成的角为β,二面角M ﹣AC ﹣B 的平面角为γ.∴根据最小角定理得α≥β,根据最大角定理得β≤γ.故选:A .10.(4分)设数列{a n }满足a n+1=a n 2+2a n ﹣2(n ∈N *),若存在常数λ,使得a n ≤λ恒成立,则λ的最小值是()A .﹣3B .﹣2C .﹣1D .1【解答】解:??+1-????=????2+????-2=(????+2)(????-1),若a n <﹣2,则a n+1>a n ,则该数列单调递增,所以无限趋于﹣2.若a n =﹣2,则a n+1=a n ,则该数列为常数列,即a n =2.所以,综上所述,λ≥﹣2.∴λ的最小值是﹣2.故选:B.二.填空题(共7小题,满分36分)11.(6分)过点P(1,1)作直线l与双曲线??2-22=??交于A,B两点,若点P恰为线段AB的中点,则实数λ的取值范围是(﹣∞,0)∪(0,12).【解答】解:设A(x1,y1),B(x2,y2),代入双曲线可得:{12-122=??22-222=??,两式相减可得:1-??2??1-??2=2(??1+??2)??1+??2,而由题意可得,x1+x2=2×1=2,y1+y2=2×1=2,所以直线AB的斜率k=1-??21-??2=2×22=2,所以直线AB的方程为:y﹣1=2(x﹣1),即y=2x﹣1,代入双曲线的方程可得:2x2﹣4x+1+2λ=0,因为直线与双曲线由两个交点,所以△>0,且λ≠0,即△=16﹣4×2×(1+2λ)>0,解得:??<12,所以实数λ的取值范围是(﹣∞,0)∪(0,12),故答案为:(﹣∞,0)∪(0,12).12.(6分)一个几何体的三视图如图所示,则该几何体的体积为9.【解答】解:根据几何体的三视图转换为几何体为:下底面为直角梯形,高为3的四棱锥体,如图所示:所以:V=13×12(2+4)×3×3=9,故答案为:913.(6分)已知(1﹣x)6=a0+a1x+a2x2+…+a6x6,则a2=15,a0﹣a1+a2﹣a3+a4﹣a5+a6=64.【解答】解:由(1﹣x)6的通项为??+1=??6(-??)??可得,令r=2,即x2项的系数a2为??62=15,即a2=15,由(1﹣x)6=a0+a1x+a2x2+…+a6x6,取x=﹣1,得a0﹣a1+a2﹣a3+a4﹣a5+a6=[1﹣(﹣1)]6=64,故答案为:15,64.14.(6分)在△ABC中,a=1,cosC=34,△ABC的面积为√74,则c=√2.【解答】解:∵a=1,cosC=34,△ABC的面积为√74,∴sinC=√1-2??=√74,可得√74=12absinC=√78ab,解得ab=2,∴b=2,∴由余弦定理可得c=√??2+??2-2=√12+22-2×1×2×34=√2.故答案为:√2.15.(4分)在平面直角坐标系xOy中,已知椭圆22+??2??2=1(a>b>0)的上、下顶点分别为B2,B1,若一个半径为√2b,过点B1,B2的圆M与椭圆的一个交点为P(异于顶点B1,B2),且|k1-k2|=89,则椭圆的离心率为2√23.【解答】解:设P(x0,y0),B1(0,﹣b),B2(0,+b),由|k1-k2|=89,|0-??-??0+????0|=89,∴|x0|=94b,由题意得圆M的圆心在x轴上,设圆心(t,0),由题意知:t2+b2=2b2∴t2=b2,∴MP2=2b2=(x0﹣t)2+y02,∴y02=716??2,P在椭圆上,所以81??216??2+716=1,∴a2=9b2=9(a2﹣c2),∴e2=89,所以离心率为2√23,故答案为:2√23.16.(4分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BCD=60°,CB=CD=2√3.若点M为边BC上的动点,则→→的最小值为214.【解答】解:如图所示:以B为原点,以BA所在的直线为x轴,以BC所在的直线为y轴,过点D做DP⊥x轴,过点D做DQ⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,==2√3,∴B(0,0),A(2,0),C(0,2√3),D(3,√3),设M(0,a),则→=(﹣2,a),→=(﹣3,a-√3),故→→=6+a(a-√3)=(??-√32)2+214≥214,故答案为:214.17.(4分)设f(x)是定义在(0,+∞)上的可导函数,且满足f(x)+xf'(x)>0,则不等式f(x+1)>(x﹣1)f(x2﹣1)的解集为(1,2)【解答】解:令g(x)=xf(x),x∈(0,+∞).g′(x)=f(x)+xf'(x)>0,∴函数g(x)在x∈(0,+∞)上单调递增.不等式f(x+1)>(x﹣1)f(x2﹣1)即不等式(x+1)f(x+1)>(x2﹣1)f(x2﹣1),x+1>0.∴x+1>x2﹣1>0,解得:1<x<2.∴不等式f(x+1)>(x﹣1)f(x2﹣1)的解集为(1,2).故答案为:(1,2).三.解答题(共5小题,满分74分)18.(14分)在△ABC中,角A,B,C所对的边分别是a,b,c,且b﹣c=1,cosA=13,△ABC的面积为2√2.(Ⅰ)求a及sinC的值;(Ⅱ)求cos(2A-6)的值.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对的边分别是a,b,c,且b﹣c=1,cosA=13,∴sinA=√1-2=2√23,∵△ABC的面积为12bc?sinA=22√23=√23bc=2√2,∴bc=6,∴b=3,c=2,∴a=√??2+??2-2=√9+4-2?3?2?13=3.再根据正弦定理可得=??,即32√23=2,∴sinC=4√29.(Ⅱ)∴sin2A=2sinAcosA=4√29,cos2A=2cos2A﹣1=-79,故cos(2A-6)=cos2Acos6+sin2Asin??6=-79√32+4√29?12=4√2-7√318.19.(15分)如图,三棱锥D﹣ABC中,AD=CD,AB=BC=4√2,AB⊥BC.(1)求证:AC⊥BD;(2)若二面角D﹣AC﹣B的大小为150°且BD=4√7时,求直线BM与面ABC所成角的正弦值.【解答】解:(1)证明:取AC中点O,连结BO,DO,∵AD=CD,AB=BC,∴AC⊥BO,AC⊥DO,∵BO∩DO=O,∴AC⊥平面BOD,又BD?平面BOD,∴AC⊥BD.(2)解:由(1)知∠BOD是二面角D﹣AC﹣B的平面角,∴∠BOD=150°,∵AC⊥平面BOD,∴平面BOD⊥平面ABC,在平面BOD内作Oz⊥OB,则Oz⊥平面ABC,以O为原点,OB为x轴,OC为y轴,OD为z轴,建立空间直角坐标系,由题意得OB=4,在△BOD中由余弦定理得OD=4√3,∴A(0,﹣4,0),B(4,0,0),C(0,4,0),D(﹣6,0,2√3),∴M(﹣3,2,√3),→=(﹣7,2,√3),平面ABC 的法向量??→=(0,0,1),设直线BM 与面ABC 所成角为θ,则直线BM 与面ABC 所成角的正弦值为:sin θ=|??→→||??→|?|→|=√3√56=√4228.20.(15分)在等差数列{a n }和正项等比数列{b n }中,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,数列{b n }的前n 项和为Sn ,且S 3=14.(1)求数列{a n },{b n }的通项公式;(2)令??=????,(﹣1)nd n =nc n +n ,求数列{d n }的前项和为T n .【解答】解:(1)等差数列{a n }的公差设为d ,正项等比数列{b n }的公比设为q ,q >0,a 1=1,b 1=2,且b 1,a 2,b 2成等差数列,可得2a 2=b 1+b 2,即2(1+d )=2+2q ,即d =q ,数列{b n }的前n 项和为S n ,且S 3=14,可得2+2q+2q 2=14,解得q =2,d =2,则a n =2n ﹣1,b n =2n ;(2)??=?????=2n +1﹣1,(﹣1)n d n =nc n +n =n?2n+1,则d n =2n?(﹣2)n ,前项和为T n =2?(﹣2)+4?4+6?(﹣8)+…+2n?(﹣2)n ,﹣2T n =2?4+4?(﹣8)+6?16+…+2n?(﹣2)n+1,相减可得3T n =﹣4+2(4+(﹣8)+…+(﹣2)n )﹣2n?(﹣2)n+1=﹣4+2?4(1-(-2)-1)1-(-2)-2n?(﹣2)n+1,化简可得T n =-49-6??+29(﹣2)n+1.21.(15分)已知抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.(1)若点M 纵坐标为√2,求M 与焦点的距离;(2)若t =﹣1,P (1,1),Q (1,﹣1),求证:y A y B 为常数;(3)是否存在t ,使得y A y B =1且y P ?y Q 为常数?若存在,求出t 的所有可能值,若不存在,请说明理由.【解答】解:(1)解:∵抛物线y 2=x 上的动点M (x 0,y 0),过M 分别作两条直线交抛物线于P 、Q 两点,交直线x =t 于A 、B 两点.点M 纵坐标为√2,∴点M 的横坐标x M =(√2)2=2,∵y 2=x ,∴p=12,∴M 与焦点的距离为MF =??+2=2+14=94.(2)证明:设M (??02,??0),直线PM :y ﹣1=0-102-1(x ﹣1),当x =﹣1时,??=0-10+1,直线QM :y+1=??0+102-1(x ﹣1),x =﹣1时,y B =-??0-1??0-1,∴y A y B =﹣1,∴y A y B 为常数﹣1.(3)解:设M (??02,??0),A (t ,y A ),直线MA :y ﹣y 0=0-????02-??(x ﹣y 02),联立y 2=x ,得??2-02-??0-??????+??02-????0-??????0-??02=0,∴y 0+y p =??02-????0-????,即y P =??0????-????0-????,同理得y Q =0????-10-????,∵y A ?y B =1,∴y P y Q =??02-0(????+????)+??202-??0(????+????)+1,要使y P y Q 为常数,即t =1,此时y P y Q 为常数1,∴存在t =1,使得y A ?y B =1且y P ?y Q 为常数1.22.(15分)设函数f (x )=e x cosx ,g (x )=e 2x﹣2ax .(1)当??∈[0,3]时,求f (x )的值域;(2)当x ∈[0,+∞)时,不等式??(??)≥′(??)2??恒成立(f'(x )是f (x )的导函数),求实数a 的取值范围.【解答】解:(1)由题可得f '(x )=e x cosx ﹣e x sinx =e x (cosx ﹣sinx ).令f'(x )=e x (cosx ﹣sin x )=0,得??=4∈[0,??3].当??∈(0,4)时,f'(x )>0,当??∈(??4,??3)时,f'(x )<0,所以??(??)=??(4)=√22??4,??(??)={??(0),??(??3)}.因为??(3)=??32>??332=??2>1=??(0),所以f (x )min =1,所以f (x )的值域为[1,√224].(2)由??(??)≥′(??)2??得??2??-2≥-,即-+??2??-2≥0.设(??)=-+??2??-2,则?′(??)=2????+2??2??-2??.设φ(x )=h'(x ),则??′(??)=4??3??-2√2(??+4).当x ∈[0,+∞)时,4e 3x ≥4,2√2(??+4≤2√2),所以φ'(x )>0.所以φ(x )即h'(x )在[0,+∞)上单调递增,则h'(x )≥h'(0)=4﹣2a .若a ≤2,则h'(x )≥h'(0)=4﹣2a ≥0,所以h (x )在[0,+∞)上单调递增.所以h (xa >2)≥h (0)=0恒成立,符合题意.若,则h'(0)=4﹣2a <0,必存在正实数x 0,满足:当x ∈(0,x 0)时,h'(x )<0,h (x )单调递减,此时h (x )<h (0)=0,不符合题意综上所述,a 的取值范围是(﹣∞,2].。

2020年全国普通高等学校招生统一考试(江苏卷)模拟预测卷数学试题(解析版)

2020年全国普通高等学校招生统一考试(江苏卷)模拟预测卷数学试题(解析版)

2020年全国普通高等学校招生统一考试(江苏卷)模拟预测卷数学试题一、填空题1.已知集合{}1A x x =>,{}1,2,3B =,则A B =______.【答案】{}2,3【分析】根据集合交集的定义和运算,即可求解. 【详解】由题意,集合{}1A x x =>,{}1,2,3B =, 根据集合交集的定义和运算,可得{}2,3A B ⋂=. 故答案为:{}2,3.【点睛】本题主要考查了集合交集的定义及运算,其中熟记集合交集的定义是解答的关键,属于容易题.2.已知复数2z i =+(其中i 为虚数单位),若(),za bi ab R i=+∈,则ab 的值为______. 【答案】-2【分析】根据已知求出,a b ,即得解. 【详解】由题得2z ai b i =-=+, 所以2,1b a -==, 所以1a =,2b =-, 所以2ab =-. 故答案为:-2【点睛】本题主要考查复数的运算和复数相等的概念,意在考查学生对这些知识的理解掌握水平.3.已知一组数据是4,a ,7,5,8的平均数为6,则该组数据的标准差是______.【分析】首先根据平均数公式计算得到a ,再根据标准差公式计算结果. 【详解】由平均数公式475865a ++++=得6a =,所以()()()()2222146076568625s ⎡⎤=-++-+-+-=⎣⎦. 故答案为:2【点睛】本题考查样本平均数和标准差,属于基础题型.4.在平面直角坐标系xOy 中,若双曲线1C :()2210x y m m-=>的一条准线与抛物线2C :22x y =的准线重合,则正数m 的值是___.【答案】3【分析】由已知可得双曲线的准线方程及其抛物线的准线方程,即可得出正数m . 【详解】抛物线2C :22x y =的准线方程为12y,双曲线1C :221x y m-=的一条准线方程为1y m =-+,根据题意得121m =+,解得3m =. 故答案为:3【点睛】本题考查了双曲线与抛物线的标准方程及其准线方程,属于基础题. 5.运行如图的程序框图,则输出的结果是______.【答案】13【分析】根据流程图的循环结构,计算输出结果. 【详解】根据流程图可知当1i =时进入循环,12a =,当2i =时,进入循环,1121312a ==+,当3i =时退出循环,输出13a =.故答案为:13.【点睛】本题考查循环结构,重点考查理性流程图,属于基础题型.6.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中国古代流传下来的两幅神秘图案,蕴含了深奥的宇宙星象之理,被誉为“宇宙魔方”,是中华文化阴阳术数之源.河图的排列结构如图所示,一与六共宗居下,二与七为朋居上,三与八同道居左,四与九为友居右,五与十相守居中,其中白圈为阳数,黑点为阴数,若从阳数和阴数中各取一数,则其差的绝对值为5的概率为______.【答案】15【分析】根据阳数为1,3,5,7,9;阴数为2,4,6,8,10,利用古典概型的概率求法求解.【详解】∵阳数为1,3,5,7,9;阴数为2,4,6,8,10, ∴从阳数和阴数中各取一数的所有组合共有5×5=25个, 满足差的绝对值为5的有(1,6),(3,8),(5,10),(7,2),(9,4)共5个, 则其差的绝对值为5的概率为51255P == 故答案为:15【点睛】本题主要考查古典概型的概率求法,还考查了分析求解问题的能力,属于基础题.7.已知{}n a 为等差数列,n S 为其前n 项和,若2552a a +=,则15S 的值是______. 【答案】75【分析】由已知条件可解得85a =,再利用等差数列的性质即可求出.【详解】设等差数列的公差为d ,由2552a a +=,得()11524a d a d ++=+,即175a d +=,所以85a =, 则()1511581515752S a a a =+==. 故答案为:75.【点睛】本题考查等差数列性质的应用,属于基础题.8.圆柱形容器的内壁底半径是10cm ,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了53cm ,则这个铁球的表面积为______2cm . 【答案】100π【分析】容器的水面下降部分的容积即为球的体积,由此计算出球的半径,再根据球的表面积公式即可求解.【详解】设实心铁球的半径为R ,则32451033R ππ=⨯⨯,得5R =, 故这个铁球的表面积为224100S R cm ππ==. 故填:100π.【点睛】本小题是立体几何的应用题,涉及圆柱的体积和球的表面积、体积的计算,考查考生理解、解决实际问题的能力. 9.若直线1y kx =+与曲线y =k 的值为______.【答案】14【分析】先求函数的导数,则0|x x k y ='==,写出切线方程与结合条件可得1,k =⎨⎪=⎪⎩,从而得出答案.【详解】y ''==,设切点为()00,x y,0y =则切线的斜率为0|x x k y ='==曲线y =()00,x y处的切线方程为y x =所以1,k =⎨⎪=⎪⎩解得14k =.故答案为:14【点睛】本题考查根据切线方程求参数的值,属于基础题. 104cos 122sin12=︒-︒______. 【答案】4-【分析】根据三角函数的基本关系式和两角和差的正弦函数公式,进行化简、运算,即可求解.【详解】原式()sin122sin 1260sin122sin 48cos12412cos 24sin122cos 24sin12cos12cos 24sin 24sin 482︒︒-︒︒︒-︒︒=====-︒︒︒︒︒︒︒︒.故答案为:4-【点睛】本题主要考查了三角函数的基本关系式,以及两角和与差的正弦公式的化简、求值,其中解答中熟记三角恒等变换的公式,准确运算是解答的关键,着重考查运算与求解能力.11.已知向量,a b ,满足3b =,a b a ⋅=,则a b -的最小值为______.【答案】【分析】利用222()2a b a b a b a b -=-=+-⋅化为数量积的运算,再代入已知条件可求得最小值.【详解】()222229218a ba b a b a a a -=+-⋅=+-=-+≥,当且仅当1a =时,等号成立,故a b -的最小值为故答案为:【点睛】本题考查求向量的模,解题关键是把向量的模转化向量数量积,然后结合函数知识得最小值.12.在平面直角坐标系xOy 中,已知A ,B 为圆C :()()2224-+-=x m y 上两个动点,且AB =若直线:2l y x =-上存在点P ,使得OC PA PB =+,则实数m 的取值范围为______.【答案】11⎡--+⎣【分析】根据题意求出AB 的中点Q 的轨迹,由2OC PA PB PQ =+=,设()00,P x y ,()11,Q x y ,进而求出点P 在以1,12D m ⎛⎫ ⎪⎝⎭为圆心,1为半径的圆D 上,根据点P 在直线l :2y x =-上,利用直线与圆的位置关系即可求解. 【详解】由题意知圆C 的圆心(),2C m ,半径2r .取AB 的中点Q ,连结CQ ,则CQ AB ⊥.所以1CQ ===, 所以点Q 在圆()()2221x m y -+-=上. 因为2OC PA PB PQ =+=,设()00,P x y ,()11,Q x y ,则()1010,PQ x x y y =--,(),2OC m =,所以()()10102,22,m x x y y ⎧=-⎪⎨=-⎪⎩则1010,21,m x x y y ⎧=+⎪⎨⎪=+⎩因为()11,Q x y 在圆()()2221x m y -+-=上, 所以()2200112m x m y ⎛⎫+-+-= ⎪⎝⎭, 即()2200112m x y ⎛⎫-+-= ⎪⎝⎭,所以点P 在以1,12D m ⎛⎫ ⎪⎝⎭为圆心,1为半径的圆D 上, 又点P 在直线l :2y x =-上,所以直线l 与圆D 有公共点,1≤,解得11m -≤-.故答案为:11⎡--⎣【点睛】本题考查了直线与圆的位置关系、轨迹问题,考查了基本知识以及知识的灵活应用,属于中档题.13.已知函数()31111,1,3442111,0,362x x x f x x x ⎧-+<≤⎪⎪=⎨⎪-+≤≤⎪⎩()()2x g x e ax a R =+-∈,若存在[]12,0,1x x ∈,使得()()12f x g x =成立,则实数a 的取值范围是______.【答案】[)2,e -+∞【分析】先利用导数求出()f x 的值域,设为集合A ,设()g x 的值域为B ,则本题等价于BA ≠∅,再求出()g x 的导数,讨论a 的范围结合()g x 的单调性和最值即可求出a 的范围.【详解】当102x ≤≤时,()f x 单调递减,()106f x ≤≤;当112x <≤时,()2104f x x '=-≥成立,()f x 单调递增,()1163f x <≤,所以()f x 的值域为10,3A ⎡⎤=⎢⎥⎣⎦. 设()g x 的值域为B ,因为存在1x ,[]20,1x ∈使得()()12f x g x =成立,所以B A ≠∅.()2x g x e ax =+-,()x g x e a '=+.①1a ≥-,任意[]0,1x ∈,()0g x '≥成立,()g x 在[]0,1单调递增, 所以()()min 01g x g ==-,()()max 12g x g e a ==+-,[]1,2B e a =-+-. 因为BA ≠∅,所以20e a +-≥,2a e ≥-;②a e ≤-,任意[]0,1x ∈,()0g x '≤成立,()g x 在[]0,1单调递减, 所以()()min 12g x g e a ==+-,()()max 01g x g ==-,[]2,1B e a =+--, 则B A ⋂=∅,不合题意; ③1e a -<<-,令()0x g x e a '=+=,()ln x a =-,()g x 在()()0,ln a -递减,()()ln ,1a -递增,所以()()()()min ln 2ln g x g a a a a =-=--+-,()()(){}max max 0,1g x g g =. 又()010g =-<,()120g e a =+-<,则B A ⋂=∅,不合题意. 综上所述,2a e ≥-.【点睛】本题考查利用导数解决能成立问题,属于较难题. 14.已知在锐角三角形ABC 中,AH BC ⊥于点H ,且()229449BA CA AH CA BA -=⋅-,若2BC =,则sin sin sin B CA的取值范围是______.【答案】5⎛⎫+∞ ⎪ ⎪⎝⎭【分析】由向量数量积的概念化简可得23BH CH =,BC 边上的高为h ,由tan ,tan B C 表示tan C ,结合三角形为锐角三角形,得h 的范围,由三角形面积公式和正弦定理结合可得2sin sin R B C h =,进而得出sin sin sin 2B C hA =,即可结果.【详解】由()229449BA CA AH CA BA -=⋅-,得229944BA AH BA CA CA AH +⋅=+⋅,所以94BA BH CA CH ⋅=⋅,即2294BH CH =,23BH CH =. 设BC 边上的高为h ,由2BC =,45BH =,6=5CH , 则5tan 4h B =,5tan 6hC =, 所以()2555046tan tan 0552524146h hh A B C h h h +=-+=-=>--⋅,所以h >因为ABC 的面积11sin 22S bc A ah ==,所以2sin sin R B C h =,所以sin sin sin 2B C h A =>.故答案为:⎫+∞⎪⎪⎝⎭.二、解答题15.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且3B π=.(1)若b =2a =,求c 的值; (2)若cos A ,求cos C 的值. 【答案】(1)4c =;(2)626-.【分析】(1)根据题中所给的条件,两边一角,利用余弦定理建立等量关系式,求得c 的值;(2)根据题中所给的条件13cos A =,利用同角三角函数关系式求得23sin A =,利用诱导公式和余弦和角公式求得结果. 【详解】(1)在ABC 中,3B π=,23b =,2a =,由余弦定理得2222cos b c a ac B =+-, 得21242c c =+-,即2280c c --=, 解之得4c =或2c =-(舍去). (2)由13cos 013A =>,得02A π<<, 所以221323sin 1cos 113A A ⎛⎫=-=-= ⎪ ⎪⎝⎭. 又因为3B π=,所以()()cos cos cos C A B A B π=--=-+cos cos sin sin A B A B =-+ 1312336132-=-⨯+⨯=. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理解三角形,诱导公式和余弦和角公式,属于简单题目.16.已知直三棱柱111ABC A B C -,E ,F 分别是BC ,1AA 的中点,1CB CC =,AC BC ⊥.求证:(1)//EF 平面11BA C ; (2)1EF B C ⊥.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)设11,B C BC 交于O 点,连接1A O ,OE ,在1BB C △中,证得1//EF A O ,结合线面平行的判定定理,即可证得//EF 平面11BA C ;(2)由直三棱柱111ABC A B C -,所以1CC ⊥平面ABC ,得到1CC AC ⊥,再由AC ⊥平面11BCC B ,得到1AC B C ⊥,证得111AC B C ⊥,进而的得到1B C ⊥平面11BA C ,即可证得1EF B C ⊥.【详解】(1)设1B C ,1BC 交于O 点,连接1A O ,OE , 在1BB C △中,点O ,E 分别是1B C ,BC 中点, 所以1//OE B B 且112OE B B =, 因为直三棱柱111ABC A B C -,所以11//B B AA ,11B B AA =,又因为F 是1AA 中点,所以1OE FA =,1//OE FA ,所以1//EF A O ,因为1AO ⊂平面11BA C ,EF ⊄平面11BA C ,所以//EF 平面11BA C . (2)因为直三棱柱111ABC A B C -,所以侧面11BCC B 是矩形, 又因为1BC CC =,所以四边形1BCC B 是正方形,所以11B C BC ⊥, 因为直三棱柱111ABC A B C -,所以1CC ⊥平面ABC , 因为AC ⊂平面ABC ,所以1CC AC ⊥, 又因为BC AC ⊥,1BCCC C =,1CC ,BC ⊂平面11BCC B ,所以AC ⊥平面11BCC B ,因为1B C ⊂平面11BCC B ,所以1AC B C ⊥,因为直三棱柱111ABC A B C -,所以11//AC A C ,所以111AC B C ⊥, 因为1111BC AC C ⋂=,1BC ,11A C ⊂平面11BAC ,所以1B C ⊥平面11BA C , 因为1AO ⊂平面11BA C ,所以11A O B C ⊥, 因为1//EF A O ,所以1EF B C ⊥.【点睛】本题主要考查了直线与平面平行的判定,以及直线与平面垂直的性质的应用,其中解答中熟记空间几何体的结构特征,以及熟练应用线面位置关系的判定定理和性质定理是解答的关键,着重考查推理与论证能力,属于中档试题.17.如图,已知边长为2的正方形材料ABCD ,截去如图所示的阴影部分后,可焊接成一个正四棱锥的封闭容器.设FCB θ∠=.(1)用θ表示此容器的体积;(2)当此容器的体积最大时,求tan θ的值. 【答案】(1))2221tan tan V θθ=-,0,4πθ⎛⎫∈ ⎪⎝⎭;(2)1tan 5θ=. 【分析】(1)取BC 的中点M ,连接FM ,连接AC 交GF 于N ,根据题意可求出正方形EFGH 的边长,进而求出底面积和高,即可求出体积; (2)令tan t θ=求出()V t 的导数,利用导数判断其单调性,从而可求出其最大值,即得解.【详解】(1)取BC 的中点M ,连接FM ,连接AC 交GF 于N ,如图.由题意知FM BC ⊥,在直角三角形CFM 中,1cos CF θ=. 在直角三角形CFN 中,sin 4NF CF πθ⎛⎫=- ⎪⎝⎭, 所以22NF θ=-,所以22GF θ=. 因为cos 4CN CF πθ⎛⎫=- ⎪⎝⎭,所以22tan CN θ=+. 从而)222GFEH S θ=,正四棱锥高2222CO CN NO CN NF =-=-222222tan tan 2tan 2222θθθ⎛⎫⎛⎫=+--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以正四棱锥的体积)211222tan 33GFEHV S CO θθ=⋅=⋅)2221tan tan θθ=-0,4πθ⎛⎫∈ ⎪⎝⎭.(2)令tan t θ=()0,1t ∈,则()))2253221233V t t t t t t =-=-+, ())()()4222222256151133V t t t t t '=-+=--. 令()0V t '=,得5t =. t50,5⎛⎫ ⎪⎝⎭555,15⎛⎫ ⎪ ⎪⎝⎭()V t '+-()V t↗ 极大值↘所以()V t 在50,⎛⎫⎪⎝⎭单调递增,在5,1⎛⎫ ⎪ ⎪⎝⎭单调递减, 所以()V t 在5t =时取到最大值,此时1tan 5θ=.【点睛】本题考查棱锥体积的求法,考查利用导数求最值,属于中档题.18.如图,点F 为椭圆C :()222210x y a b a b +=>>的左焦点,点A ,B 分别为椭圆C的右顶点和上顶点,点62,P ⎛⎫- ⎪ ⎪⎝⎭在椭圆C 上,且满足//OP AB .(1)求椭圆C 的方程; (2)过定点(),0T m ()2m <且与x 轴不重合的直线l 交椭圆C 于M ,N 两点,直线4x =分别交直线AM ,AN 于点D ,E ,求证:以DE 为直径的圆经过x 轴上的两定点(用m 表示).【答案】(1)22143x y +=;(2)证明见解析. 【分析】(1)由62,2P ⎛ ⎝⎭在椭圆上,可得222312a b +=,由//OP AB ,可得3ba=-,从而解出,a b 的值,得到答案. (2)设()11,M x y ,()22,N x y ,()00,Q x y 是以DE 为直径的圆上的任意一点,设出直线AM 的方程,得到点D 的纵坐标,同理得到点E 的纵坐标,由条件可得0DQ EQ ⋅=,得到()()()2120124422y y x x x -=---,设直线l 的方程为x ty m =+,与椭圆C 的方程22143x y +=联立,将韦达定理代入上述式子,可得答案.【详解】解:(1)由P ⎛ ⎝⎭在椭圆C :()222210x y a b a b +=>>上得222312a b +=①, 如图,由A 为C 的右顶点,B 为C 的上顶点可知(),0A a ,()0,B b , 因OPAB ,所以OP AB k k =,则b a=-②.联立①②得方程组22231,2,2a bb a ⎧+=⎪⎪⎨⎪-=-⎪⎩解得2,a b =⎧⎪⎨=⎪⎩故所求椭圆C 的方程为22143x y +=.(2)设()11,M x y ,()22,N x y ,又()2,0A , 所以直线AM 的方程为()1122y y x x =--,令4x =,得1122D yy x =-, 所以1124,2y D x ⎛⎫⎪-⎝⎭.同理2224,2y E x ⎛⎫ ⎪-⎝⎭. 设()00,Q x y 是以DE 为直径的圆上的任意一点,则0DQ EQ ⋅=,所以()21200012224022y y x y y x x ⎛⎫⎛⎫-+--= ⎪⎪--⎝⎭⎝⎭,令00y =,得()()()2120124422y y x x x -=---.设直线l 的方程为x ty m =+,与椭圆C 的方程22143x y+=联立,消去x 得()2223463120ty tmy m +++-=,所以122634tm y y t +=-+,212231234m y y t -=+, 所以()()()()12122222x x ty m ty m --=+-+-()()()()22212122422234m t y y t m y y m t -=+-++-=+.所以()()()()()()222212022122312432412334422242234m m y y m t x x x m m m t -+-+-=-=-==-----+, 因为22m -<<,所以04x =所以以DE 为直径的圆经过x 轴上两定点,其坐标分别为4⎛⎫⎪ ⎪⎝⎭和4⎛⎫⎪ ⎪⎝⎭. 【点睛】本题考查求椭圆的方程,考查直线与椭圆的位置关系,考查圆过定点问题,属于难题.19.若数列{}n c 满足:存在实数t ,使得()2212112m n m n c c c t m n --+-+=+-对任意m 、*n N ∈都成立,则称数列{}n c 为“t 倍等阶差数列”.已知数列{}n a 为“t 倍等阶差数列”.(1)若10a =,212a =-,31a =,求实数t 的值; (2)在(1)的条件下,设()*2121n n n b a a n N +-=-∈.①求数列{}n b 的通项公式;②设数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,是否存在正整数p 、q ,且1p q <<,使得1S 、p S 、q S 成等比数列?若存在,求出p 、q 的值,若不存在,请说明理由.【答案】(1)2t =;(2)①87n b n =-;②存在2p =,36q =.【分析】(1)由题中定义可得出关于实数t 的等式,由此可解得实数t 的值; (2)①根据题中定义可推导出数列{}n b 为等差数列,确定该数列的首项和公差,由此可求得数列{}n b 的通项公式;②利用裂项相消法可求得n S ,由题意可得出2161988p p q+=+>,可得出关于正整数p的不等式,解出p 的取值范围,可求得正整数p 的值,进而可求得q 的值,由此可得出结论.【详解】(1)由数列{}n a 为“t 倍等阶差数列”, 令2m =,1n =,得()2312221a a a t +=+-,所以11022t ⎛⎫+=⨯-+ ⎪⎝⎭,解得2t =;(2)①以2n +代替m ,得23212128n nn a a a .则()()()21212112118n n n n a a a a +-+++-⎡⎤---=⎣⎦,即18n nb b +-=. 所以数列{}n b 是以8为公差的等差数列.又1311b a a =-=,所以()18187n b n n =+-=-.②因为()()111111878188781n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以111111111189917878188181n n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 则119S =,81p p S p =+,81q q S q =+. 假设1S 、p S 、q S 成等比数列,则2181981p qp q ⎛⎫=⋅⎪++⎝⎭, 因为216189988p q p q q ++==+>,所以281610p p --<, p <<又因为p 为大于1的整数,所以2p =,36q =, 所以存在2p =,36q =,使得1S 、p S 、q S 成等比数列.【点睛】本题考查数列的新定义,考查了等差数列的通项公式的求解、裂项相消法与数列的存在性问题的求解,考查计算能力,属于难题. 20.已知函数()()ln 0af x x x x=+>. (1)求函数()f x 的单调区间;(2)若函数()f x 在定义域内有两个零点,求a 的取值范围;(3)若对任意()0,x ∈+∞,不等式()()()2ln 112xm x x e x x x e++-≥-恒成立,求m的取值范围.【答案】(1)答案不唯一,见解析;(2)10,a e ⎛⎫∈ ⎪⎝⎭;(3)[)1,m ∈+∞. 【分析】(1)求导得()()20x af x x x -'=>,按0a ≤,0a >分类讨论得结果; (2)由题意得ln a x x -=在()0,∞+上有2个交点,令()ln h x x x =,则()'1ln h x x =+,得函数()h x 的单调性,最小值和最大值极限,即可得a 的取值范围;(3)由题意得()()1ln 12xm x e x e x ⎛⎫++-≥- ⎪⎝⎭,令()()1ln 21x F x m x x e e x ⎛⎫=++-+- ⎪⎝⎭,求导得()()21x m F x x e x ⎛⎫'=-+ ⎪⎝⎭,按0m ≥,0m <分类讨论得结果.【详解】(1)()()20x af x x x -'=>. 当0a ≤时,0x,得()0f x '>,所以()f x 在()0,∞+上单调增;当0a >时,令()0f x '>得x a >,所以()f x 在(),a +∞上单调增,令()0f x '<得0x a <<,所以()f x 在()0,a 上单调减.综上,当0a ≤时,()f x 的增区间为()0,∞+,无减区间; 当0a >时,()f x 的增区间为(),a +∞,减区间为()0,a . (2)令()ln 0af x x x=+=,得ln a x x -=,令()ln h x x x =,则()'1ln h x x =+, 0x,得()'0h x =的根为1=x e ,()h x ∴在10,e ⎛⎫ ⎪⎝⎭递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,11h e e ⎛⎫∴=- ⎪⎝⎭,()0,0x h x →→,且(),x h x →+∞→+∞,要使函数()f x 有2个零点,则10a e -<-<,即10,a e ⎛⎫∈ ⎪⎝⎭;(3)0x,由()()()2ln 112xm x x e x x x e ++-≥-可得()()1ln 12x m x e x e x ⎛⎫++-≥- ⎪⎝⎭.令()()1ln 21xF x m x x e e x ⎛⎫=++-+- ⎪⎝⎭,()()()()22111x x m x m F x x e x e x x -⎛⎫'=+-=-+ ⎪⎝⎭. 当0m ≥时,20xme x+>,令()0F x '>得1x >,所以()f x 在()1,+∞上单调增; 令()0F x '<得01x <<,所以()f x 在()0,1上单调减.所以()()min 110F x F m ==-≥,得m 1≥.当0m <时,因为()()141774ln 414ln 41444F m e e m e ⎛⎫=--+-<--+- ⎪⎝⎭,即()1114ln 4044F m e ⎛⎫⎛⎫<---<⎪ ⎪⎝⎭⎝⎭,所以()0F x ≥在()0,x ∈+∞上不恒成立,则0m <舍去.综上可知,[)1,m ∈+∞.【点睛】本题主要考查了利用求导求原函数的单调性问题,同时也考查了参变分离求函数单调性与最值,进而求得参数的取值范围等,属于中档题.21.已知矩阵1002A ⎡⎤=⎢⎥⎣⎦,1201B ⎡⎤=⎢⎥⎣⎦,若直线l 依次经过变换A T ,B T 后得到直线l ':220x y +-=,求直线l 的方程.【答案】510x y +-=.【分析】本题可先设出直线l 上的任意一点(),P x y ,再设出这点经过变换T A ,T B 后得到的对应点(),P x y '''.然后根据变换对应的矩阵找到两个点的坐标的关系表达式,再根据点(),P x y '''在直线l '上,将两个点的坐标的关系表达式代入直线l '的方程即可得到直线l 的方程.【详解】解:设点(),P x y 是l 上的任意一点,其依次经过变换A T ,B T 后得到点(),P x y '''.则12100102x x y y '⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦,得42x x y y y '+⎡⎤⎡⎤=⎢⎥⎢⎥'⎣⎦⎣⎦,即4,2.x x y y y ''=+⎧⎨=⎩又点P '在直线l '上,所以220x y ''+-=,故()24220x y y ++-=,即510x y +-=, 所以直线的方程为:510x y +-=【点睛】本题主要考查一条直线经过一定的变换得到对应的直线,已知其中一条直线方程求另一条直线方程,本题可通过设对应点和变换对应的矩阵找到两个点的坐标的关系表达式来求出.本题属基础题.22.已知直线l的参数方程为1222x t y m ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),点P (1,2)在直线l 上.(1)求m 的值;(2)以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C :ρ=4与直线l 交于两点A ,B 两点,求|PA |·|PB |的值. 【答案】(1)2m =;(2)11.【分析】(1)根据点P (1,2)在直线l 上,将点的坐标代入直线的参数方程求解. (2)将曲线的极坐标方程转化为直角坐标方程,然后与直线的参数方程联立,再结合韦达定理利用参数的几何意义求解. 【详解】(1)因为()1,2P ,在直线l 上,所以112,22,t m ⎧=+⎪⎪⎨⎪=⎪⎩,解得2m =+.(2)因为曲线C :ρ=4,所以曲线C 的直角坐标方程为2216x y +=,将直线l的参数方程1122x t y ⎧=+⎪⎪⎨⎪=+⎪⎩代入C的方程得(21110t t ++-=,设A ,B 所对应的参数分别为1t ,2t ,则1211t t =-, 故1211PA PB t t ==⋅.【点睛】本题主要考查极坐标方程与直角坐标方程的转化直线与圆的位置关系以及参数的几何意义的应用,还考查了运算求解的能力,属于中档题.23.设,,a b c 都是正数,求证:222()()()4()+++++≥++b c c a a b a b c a b c.【答案】见解析【分析】利用柯西不等式证明即可; 【详解】证明:因为a ,b ,c 都是正数,所以()()()()222b c c a a b a b c a b c ⎡⎤+++++++⎢⎥⎢⎥⎣⎦222222⎡⎤⎡⎤=++++⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦2⎡⎤≥++⎢⎥⎣⎦()()()2b c c a a b =+++++⎡⎤⎣⎦ ()24a b c =++,所以()()()()2224b c c a a b a b c abc+++++≥++.【点睛】本题考查柯西不等式的应用,属于基础题.24.某商场准备在今年的“五一假”期间对顾客举行抽奖活动,举办方设置了,A B 两种抽奖方案,方案A 的中奖率为23,中奖可以获得2分;方案B 的中奖率为()0001P P <<,中奖可以获得3分;未中奖则不得分,每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,并凭分数兑换奖品,(1)若顾客甲选择方案A 抽奖,顾客乙选择方案B 抽奖,记他们的累计得分为X ,若3≤X 的概率为79,求0P (2)若顾客甲、顾客乙两人都选择方案A 或都选择方案B 进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大? 【答案】(1)013P =(2)当0409P <<时,他们都选择A 方案进行抽奖时,累计得分的均值较大;当0419P <<时,他们都选择B 方案进行抽奖时,累计得分的均值较大;当049P =时,他们都选择A 方案或都选择B 方案进行抽奖时,累计得分的均值相等 【分析】(1)首先求解出对立事件“5X =”的概率,再根据对立事件概率公式求得结果;(2)利用二项分布均值公式求解出()1E X 和()2E X ,根据均值的性质求得两人全选A 方案或B 方案的均值,比较两个均值的大小,得到0P 不同取值的情况下应选取的方案.【详解】(1)由已知得,甲中奖的概率为23,乙中奖的概率为0P ,且两人中奖与否互不影响记“这2人的累计得分3≤X ”的事件为C ,则事件C 的对立事件为“5X =” ()0253P X P ==()()02715139P C P X P ∴=-==-= 013P ∴= (2)设甲、乙都选择A 方案抽奖的中奖次数为1X ,都选择B 方案抽奖的中奖次数为2X 则这两人选择A 方案抽奖累计得分的均值为()12E X ,选择B 方案抽奖累计得分的均值为()23E X 由已知可得:122,3X B ⎛⎫ ⎪⎝⎭,()202,X B P()124233E X ∴=⨯=,()202E X P = ()()118223E X E X ∴==,()()220336E X E X P == 若()()1223E X E X >,则0863P > 0409P ∴<< 若()()1223E X E X <,则0863P < 0419P ∴<< 若()()1223E X E X =,则0863P = 049P ∴= 综上所述:当0409P <<时,他们都选择A 方案进行抽奖时,累计得分的均值较大 当0419P <<时,他们都选择B 方案进行抽奖时,累计得分的均值较大 当049P =时,他们都选择A 方案或都选择B 方案进行抽奖时,累计得分的均值相等 【点睛】本题考查对立事件概率的求解、二项分布均值求解及均值性质的应用问题,利用均值来解决实际问题,属于常规题型.25.已知2020220200122020(1)....x a a x a x a x -=++++(1)求122020...a a a +++的值;(2)求01220201111...a a a a ++++的值.【答案】(1)1-;(2)20211011. 【分析】(1)根据已知条件,令0x =,求得0a ,令1x =,即可求得122020...a a a +++的值;(2)由二项式定理可得()20201k k k a C=-,求得1k n C ,由120202021202112021112022k k k C C C +⎛⎫=+ ⎪⎝⎭,进而求得202001k ka =∑,即可求得答案. 【详解】(1)()20202202001220201x a a x a x a x -=+++⋅⋅⋅+——①.在①中,令0x =,得01a =.在①中,令1x =,得01220200a a a a +++⋅⋅⋅+=,∴1220201a a a ++⋅⋅⋅+=-.(2)2020220200122020(1)....x a a x a x a x -=++++由二项式定理可得()20201k k k a C =-,0k =,1,2,⋅⋅⋅,2020.()()()()()()()!!!!2!!11111!21!21!k n k n k k n k n k n k k n k n n C n n n n n --+-+++-++==⋅=⋅++++ ()()()()()111!1!1!!111121!1!2k k n n k n k k n k n n n n n n C C +++⎡⎤+-+-⎛⎫++=+=+⎢⎥ ⎪++++⎢⎥⎝⎭⎣⎦, ∴202020202000002020202011(1)(1)kk k k k k k k a C C ===-==-∑∑∑ ()20200122020202020202020202011111C C C C =-+-⋅⋅⋅+-.120202021202112021112022k k k C C C +⎛⎫=+ ⎪⎝⎭, ∴20202020011220202021020212021202120212021202112021111111(1)2022k k a C C C C C C =⎡⎤⎛⎫⎛⎫⎛⎫=+-+++-+⎢⎥ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑ 0202120212021202111202120221011C C ⎛⎫=+= ⎪⎝⎭. 【点睛】本题解题关键是掌握组合数计算方法和根据二项式定理求各项系数和步骤,考查了分析能力和计算能力,属于难题.。

2020高考数学模拟试卷含解答

2020高考数学模拟试卷含解答

2020高考虽然延迟,但是练习一定要跟上,加油,孩子们!一、选择题(本题每小题5分,共60分)1、若P={2|,y y x x R =∈},Q={}2(,)|,x y y x x R =∈,则必有 A 、P ⋂Q=Φ B 、P ⊂Q C 、P=Q D 、P ⊃Q2、函数y =的定义域是 A 、(,3)(3,)-∞+∞U B 、(2,)+∞ C 、(3,)+∞ D 、(2,3)(3,)+∞U3、(2)(8)(0)x x y x x++=<的值域是 A 、[18,+∞) B 、(-∞,2]C 、[ 2,18]D 、(-∞,2]U [18,+∞)4、不等式 10x x->成立的一个必要不充分条件是 A 、10x -<<或x>1 B 、x<-1或0<x<1C 、x>1D 、x>-15、若的图象与则函数其中x x b x g a x f b a b a ==≠≠=+)()(),1,1(0lg lgA 、关于直线y=x 对称B 、关于x 轴对称C 、关于y 轴对称D 、关于原点对称6、函数f(x)是定义域为R 的偶函数,又f(x)=f(x-2),如果f(x)在[-1,0]上是减函数,那么f(x)在[2,3]上是A 、增函数B 、减函数C 、先增后减的函数D 、先减后增的函数7、若函数f (x )=x -2p x p +在(1,+∞)上是增函数,则实数p 的取值范围是A 、[-1,+∞)B 、[1,+∞)C、(-∞,-1] D、( -∞,1]8、函数1,(0,)1x x e y x e +=∈+∞-的反函数是 A 、)1,(,11ln -∞∈+-=x x x y B 、)1,(,11ln -∞∈-+=x x x y C 、),1(,11ln +∞∈+-=x x x y D 、),1(,11ln +∞∈-+=x x x y9、函数)(x f =21log (23)x x π--的递增递减区间分别为A 、(1,)+∞与∞(-,1)B 、∞(-,1)与(1,)+∞C 、∞(3,+)与∞(-,-1)D 、∞(-,-1)与∞(3,+)10、设函数)(x f =x |x | + b x + c 给出下列四个命题: ①c = 0时,y =)(x f 是奇函数 ②b =0 , c >0时,方程)(x f =0 只有一个实根 ③y =)(x f 的图象关于(0 , c)对称 ④方程)(x f =0至多两个实根其中正确的命题是A 、①、④B 、①、③C 、①、②、③D 、①、②、④11、利用数学归纳法证明“22111(1,)1n n a a a aa n N a++-++++=≠∈-L ”时,在验证n=1成立时,左边应该是 A 、1 B 、1a+ C 、21a a ++ D 、231a a a +++12、同一天内,甲地下雨的概率是0.15,乙地下雨的概率是0.12,假定在这天两地是否下雨相互之间没有影响,那么甲、乙两地都不下雨的概率是A 、0.102B 、0.132C 、0.748D 、0.982二、填空题(t 本题每小题4分,共16分x )13、如果复数ibi 212+-(其中i 为虚数单位,b 为实数)的实部和虚部是互为相反数,那么b 等于________14、已知函数,2))((.0,cos 2,0,)(02=⎩⎨⎧<<≤=x f f x x x x x f 若π则x 0= 15、若对于任意a ∈[-1,1], 函数f (x ) = x 2+ (a -4)x + 4-2a 的值恒大于零, 则x 的取值范围是 .16、如果函数f (x )的定义域为R ,对于)1(,6)()()(,,--+=+∈f n f m f n m f R n m 且恒有是不大于5的正整数,当x >-1时,f (x )>0. 那么具有这种性质的函数f (x )= .(注:填上你认为正确的一个函数即可)三、解答题(本大题共6小题,共74分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020高考虽然延迟,但是练习一定要跟上,加油,孩子们!第Ⅰ卷(选择题 , 共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 直线x + 3y -7= 0和kx -y -2 = 0与x 轴、y 轴的正半轴所围成的四边形有外接圆 , 则k 为( )(A ) -3 ( B ) 6 ( C ) -6 ( D ) 3(2)已知tan(3π-α) = 21,tan(3π-β) = 31,则tan (α-β)等于( )(A )71 (B )-71(C )65 (D )-65 (3)设i 、j 是不共线的单位向量,若a = 5i +3j ,b = 3i -5j , 则a ⊥b 是i ⊥j 的 ( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既非充分又非必要条件(4)已知平面α与平面β相交,直线m ⊥α , 则 ( )(A )β内必存在直线与m 平行,且存在直线与m 垂直(B )β内不一定存在直线与m 平行,也不一定存在直线与m 垂直 (C )β内不一定存在直线与m 平行,但必存在直线与m 垂直 (D )β内必存在直线与m 平行,但不一定存在直线与m 垂直(5)设函数f(x) = 3ax+1-2a ,在区间(-1,1)上存在0x ,使f(x 0) = 0 ,则实数a 的取值范围是 ( )(A )-1<a <51 (B )a >51 (C )a >51或a <-1 (D )a <(6)复数Z 满足22=-i z ,则 iz 2+的取值范围是( )(A )⎥⎦⎤⎢⎣⎡2521, (B )⎥⎦⎤⎢⎣⎡2723, (C )⎥⎦⎤⎢⎣⎡2211, (D )⎥⎦⎤⎢⎣⎡2212, (7) 椭圆122=+by a x (a> b >0) 有内接正n 边形 ,则n 的可能值是( )(A ) 4 (B ) 3,4 (C ) 3,4,5 (D ) 3,4,6(8)设一个正多面体的面数为F ,顶点数为V ,若F + V = 8,且它的各条棱长都等于4,则这一多面体的外接球的球面面积是 ( )(A )12π (B )24π (C )16π (D )28π(9)数列{a n }中,a 1 = 1 , 且a n+1 = a n +n a +41,则a 99等于 ( )(A )2004 (B )2005 (C )2400 (D )2500(10)曲线C 与函数 y = 2x -3 的图象关于直线 l : y = x 对称 ,则曲线 C 与l的一个交点的横坐标属于区间( )(A )(-2,-1) (B )(2,3) (C )(1,2) (D )(-1,0)(11)用四种不同颜色给一正方体的六个表面涂色,相邻两面涂不同颜色,则共有涂色方法有 ( )(A )24种 (B )72种 (C )96种 (D )48(12)在曲线y = x 3 + x – 2的切线中,与直线4x –y = 1平行的切线方程是 ( )(A )4x –y = 0 (B )4x –y – 4 = 0 (C )2x –y – 2 = 0 (D )4x –y – 4 = 0 或 4x –y = 0第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,将答案填写在题中的横线上(13)设集合A={5,log 2(a+3)},集合B={a ,b},若A ∩B={2},则A ∪B = ________________. (14)若不等式1-x ax<1的解集为{x|x <1或x >2=,则实数a 的值为________________.(15)曲线31y x x =++在点(1,3)处的切线方程是(16) 双曲线116922=-y x 的两个焦点为21,F F , P 是此双曲线上一点,若PF 1⊥PF 2 , 则点P 到x 轴的距离为_______________.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤(17)(本小题满分12分)是否存在常数c ,使得不等式2222x y x y c x y x y x y x y+≤≤+++++对任意正数y x ,恒成立 , 试证明你的结论。

(18)(本小题满分12分)在ABC ∆中,A 、B 、C 分别为三个内角,a 、b 、c 分别为其对边,ABC ∆外接圆半径为22,已知22()()B b a C A sin sin sin 22-=-;(Ⅰ)求角C ;(Ⅱ)求ABC ∆面积S 的最大值 . (19)(本小题满分12分)已知正项数列{a n }和{b n }中,a 1 = a ,(0<a <1=,b 1=1-a,当n ≥2且n ∈*N 时,a n = a n-1b n , b n =2111---n n a b , (Ⅰ)证明:对任意n ∈*N ,都有a n + b n = 1 (Ⅱ)求数列 {a n } 的通项公式(Ⅲ)设C n = a 2n ·b n+1 , S n 为数列 {C n } 的前n 项和,求∞→n lim S n 的值(20)(本小题满分12分)如图,已知四棱锥P-ABCD 中,面ABCD 为正方形,PA ⊥面ABCD ,且PA = AB = a ,点M 是PC 的中点,(Ⅰ)求异面直线BP 与MD 所成角的大小; (Ⅱ)求二面角M-DA-C 的大小.(21)(本小题满分12分)已知直线l :65280x y --=与椭圆C :22221(0x y a b a b+=>>,且b 为整数)交于M 、N 两点,B 为椭圆C 短轴的上端点,若ΔMBN 的重心恰为椭圆焦点F .(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆C 的左焦点为F ’,问在椭圆C 上是否存在一点P ,使得∠F ’PF = 60° ,证明你的结论.(Ⅲ)是否存在斜率不为零的直线l ,使椭圆C 与直线l 相交于不同的两点R 、S ,且 |BR| = |BS|,如果存在,求直线l 在y 轴上截距的取值范围;如果不存在,请说明理由. (22)(本小题满分14分) 设x 1、x 2是函数f(x) = 3a x 3+2b x 2-a 2x (a >0) 的两个极值点,且|x 1|+|x 2| = 2(Ⅰ)证明:0<a ≤1 ; (Ⅱ)证明:b ≤934 ; (Ⅲ)若函数h(x) = f ′(x)-2a(x-x 1),证明:当x 1<x <2且x 1<0时,|h(x)|≤4a . 参考答案1、D2、B3、C4、C5、C6、B7、B8、B9、D 10、B 11、C 12、D13、{1,2,5} 14、21 15、4x - y – 1 = 0 16、516 . 17 证明:当x y=时,可由已知不等式得出2.3c =4分下面分两方面给出证明. 先证3222≤+++y x y y x x ,因为x 、y 为正数 ,所以3222≤+++y x y y x x 3(2)3(2)2(2)(2)x x y y x y x y x y ⇔+++≤++222,xy x y ⇔≤+这是显然成立的. 8分再证2,223x y x y x y +≥++ 因为x 、y 为正数,所以 3222≥+++y x y y x x 3(2)3(2)2(2)(2)x x y y x y x y x y ⇔+++≤++222,x y xy ⇔+≥这是显然成立的.综上可知,存在常数2,3c =使对任何正数,y x 、 题中的不等式恒成立. 12分18 解:(Ⅰ)因为ABC ∆外接圆半径为22,由已知等式和正弦定理得:()b b a c a -=-22,可化为222c ab b a =-+,结合余弦定理得:C ab ab cos 2=,所以21cos =C ,又π<<C 0,因此3π=C .6分(Ⅱ)由3π=C 得32π=+B A ,所以()B A abC ab S sin sin 224343sin 212=== = ()()[]()B A B A B A B A -+=--+-=cos 323cos cos 3sin sin 32. 因此当3π==B A 时,233323max =+=S . 12分19 解:(Ⅰ)用数学归纳法证明①当n =1时,a 1 + b 1 = a + (1-a) = 1 , 命题成立;②假设当n = k (k ∈*N )时命题成立,即a k + b k = 1 , 则当n = k+1时, a k+1+b k+1 = a k ·b k+1+b k+1 = b k+1(1+a k ) = 21)1(k k k a a b -+ = k k a b -1 = kkb b = 1 ∴ 当n = k+1时,命题也成立; 综合①②知a n +b n =1对n ∈*N 恒成立4分(Ⅱ)∵ a n+1 = a n ·b n+1 = a n ·21n n a b - = 21)1(n n n a a a -- =nna a +1, ∴11+n a =nn a a +1 =n a 1+1 即11+n a -n a 1= 1 (*)∴ 数列{n a 1}是公差为1的等差数列,其首项是11a =a 1∴ n a 1 = a1+ (n-1)×1,从而a n=an a)1(1-+8分(Ⅲ)∵ C n = 12+n n b a = a n (a n b n+1 ) = a n ·a n+1 ,, ( *) 式变形为a n ·a n+1 = a n - a n+1 , ∴ C n = a n - a n+1∴ S n = C 1 + C 2 + … + C n = ( a 1 - a 2 ) + ( a 2 - a 3 ) + … + ( a n - a n+1 ) = a 1 - a n+1 = a - naa+1 , ∴∞→n limS n=∞→n lim(a-naa +1) = a12分20解法一:以AB 为x 轴 ,AD 为y 轴 ,AP 为z 轴,建立空间直角坐标系 ,由已知得: A (0,0,0), B (a , 0 , 0), C( a , a , 0 ) , D( 0 , a , 0 ) , P( 0 , 0 , a ) , 则PC 的中点M 的坐标为(2a ,2a, 2a),于是有: 4分(Ⅰ)设直线PB 与DM 所成的角为θ , ∵BP =(-a , 0 , a ), DM = (2a , -2a , 2a ) ∴PB ·DA = 0 ,∴直线PB 与DM 所成的角为90° , 8分(Ⅱ) ∵AP =(0,0,a )= (a , 0 , 0) , AD= (0 , a , 0) ,∴PB ·DA = 0 ,AP ·AD = 0 , ∴ BP 与AP 的夹角为所求的二面角 ,10分设BP 与AP 的夹角为φ,则cos φ = BPAP =22,故二面角M-DA-C 的大小为45o . 12分解法二:(Ⅰ)取BC 的中点N ,连接MN 、ND ,则∠NMD 就是异面直线BP 与MD 所成的角(或其补角),由PA ⊥面ABCD 且PA = AB = a , ∴PB = PD = AC = -2a , PC =3a , 又M 是PC 的中点 , ∴ MN =22a , MD = 23a , ND =22CD NC = 25a , 因此 NM 2 + MD 2 = ND 2 , ∴ ∠MND = 90° .即异面直线BP与MD所成的角为90°6分(Ⅱ)取AC 的中点O ,连接MO ,则OM ∥AP ∵AP ⊥面ABCD , ∴OM ⊥面ABCD过O 作OR ⊥AD 交AD 于R ,连MR ,则∠MRO 就是二面角M-DA-C 的平面角,∴OM =21AP =21a , OR = 21CD = 21a,∴∠MRO = 45°,即二面角M-DA-C 的大小为45° 12分21解:(Ⅰ)设M 、N 两点的坐标分别为11(,)x y 、22(,)x y ,依题意有12123(x x c c y y b +==+=-,由于M 、N 为直线与椭圆的交点,∴12126()5()560x x y y +-+-=,即18c +5b = 56 ① 又222221212220,52x x y y bc a a b--+=∴= ②由①、②求得:4,2a b c ===,∴椭圆C 的方程为2212016x y +=. 4分(Ⅱ) 由(1)知F ’与F 的坐标分别为(-2,0) 、(2,0) ,设P 是椭圆C 上任意一点,且|'|,||PF m PF n ==,若'60F PF ∠=︒,利用余弦定理及椭圆的定义可得m 、n 为方程26403x -+=的两实根,而此方程无实根 , 所以满足条件的P 点不存在. 8分(Ⅲ)假设满足条件的直线l 存在,设直线l 的方程为y kx m =+,把y kx m=+代入椭圆方程并整理得:222(45)105800k x kmx m +++-=,则Δ>0,∴222016m k <+①设00(,)P x y 为RS 的中点,则0002254,,5454km mx y kx m k k =-=+=++ ∴2204165BP k m k km -+=,又||||,BR BS RS BP =∴⊥∴1BP k k=-,即22016m k =--,②由①、②得10m -<<,又2160,1620m k m --=>∴<-,矛盾,故满足条件的直线l 不存在.12分22 解:(Ⅰ) f ′(x) = ax 2- bx - a 2 , ∵ x 1 , x 2 是f(x)的两个极值点,∴x 1、x 2是方程f ′(x) = 0的两个实数根∵a >0,x 1·x 2 = -a <0 , x 1 + x 2 = -ab ,∴ | x 1 | + | x 2 | = | x 1-x 2 |=a ab 422+ ,∵| x 1 | + | x 2 | = 2 , ∴ 22ab + 4a = 4 , 即b 2 = 4a 2-4a 3 ,由b 2≥0 得4a 2-4a 3≥0 , ∴0<a ≤1 4分(Ⅱ)令 g(a) = 4a 2-4a 3 , 则g ′(a) = 8a-12a 2 = 4a ( 2-3a ) 由g ′(a)>0⇒ 0<a <32 , g ′(a)<0⇒32<a ≤1故g(a)在区间(0,32)上是增函数,在区间(32,1)上是减函数, ∴g(a)m ax= g(32) =2716 ,∴ | b |≤934 8分(Ⅲ)∵x 1、x 2是方程f ′(x) = 0的两根,∴ f ′(x) = a(x-x 1)(x-x 2) ,∴ h(x) = a(x-x 1)(x-x 2)-2a(x-x 1)= a ( x-x 1 )( x-x 2-2 ),∴| h(x) | = a | x-x 1| | x-x 2-2 |≤a(2221--+-x x x x )2∵x >x 1 , ∴ | x-x 1 | = x-x 1 ,又 x 1<0 , x 1x 2<0 , ∴ x 2>0 ,∴ x 2 + 2>2 ,∵ x <2 , 故x-x 2 -2<0 ,∴| x-x 1 | + | x-x 2-2 | = x-x 1 + x 2 + 2-x = x 2 - x 1 + 2 = | x 1 | + | x 2 | + 2 = 4 ,∴| h(x) |≤4a . 14分。

相关文档
最新文档