七年级数学平行线的判定
七年级数学下《平行线及其判定》笔记
七年级数学下《平行线及其判定》笔记
一、平行线的定义
平行线是指在同一平面内,两条直线没有交点,或者说两条直线之间的距离处处相等。
二、平行线的判定定理
1.同位角相等:当两条直线被第三条直线所截,如果同位角相等,则这两条直线
平行。
2.内错角相等:当两条直线被第三条直线所截,如果内错角相等,则这两条直线
平行。
3.同旁内角互补:当两条直线被第三条直线所截,如果同旁内角互补(即角度和
为180°),则这两条直线平行。
三、应用实例
1.交通标志:在公路上,车道线通常都是平行的,这些线可以帮助驾驶员判断车
辆是否在正确的车道上行驶。
2.建筑设计:在建筑设计中,为了确保建筑物的稳定性,通常会使用平行线来构
建平行的梁和柱子。
3.机械制造:在机械制造中,为了确保机器的精确度,常常需要使用平行线来检
测和调整机器的部件。
四、注意事项
1.平行线必须在同一平面内定义。
2.平行线的判定定理必须同时满足,不能只满足其中一条。
3.在实际应用中,要结合具体情境判断两条线是否平行。
五、练习与巩固
1.判断题:给出一些线段的图片,判断它们是否平行。
2.选择题:给出一些关于平行线的描述,选择正确的判定定理。
3.应用题:结合实际问题,例如计算平行线的距离、判断两条线是否平行等。
【人教版数学七年级下册】《5.2.2 平行线的判定(第1课时)》教学设计教学反思
5.2.2 平行线的判定第1课时一、教学目标【知识与技能】1.通过用直尺和三角尺画平行线的方法理解平行线的判定方法1。
2.能用平行线的判定方法1来推理判定方法2和判定方法3。
3.能够根据平行线的判定方法进行简单的推理。
【过程与方法】经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.【情感态度与价值观】经历探究直线平行的判定方法的过程,掌握直线平行的判定方法,领悟归纳和转化的数学思想方法.二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】探索并掌握直线平行的判定方法.【教学难点】直线平行的判定方法的应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)图1, 图2中的直线平行吗?你是怎么判断的?相交在同一平面内平行同一平面内,不相交的两直线叫做平行线.判定两条直线平行的方法有两种:定义:在同一平面内,不相交的两条直线叫平行线.平行公理的推论(平行线的传递性):如果两条直线平行于同一条直线,那么两条直线平行.同学们想一想:除应用以上两种方法以外,是否还有其它方法呢?(二)探索新知1.出示课件5-7,探究同位角相等两直线平行教师问:我们已经学习过用三角尺和直尺画平行线的方法.如何画平行线呢?学生答:一、放;二、靠;三、推;四、画.教师问:画图过程中,你发现什么角始终保持相等?学生答:同位角始终保持相等.教师问:直线a,b位置关系如何?学生答:直线a,b位置关系是平行.教师问:将其最初和最终的两种特殊位置抽象成几何图形,你能画出来吗?学生答:如下图所示:教师问:由上面的操作过程,你能发现判定两直线平行的方法吗?师生一起解答:同位角相等,两直线平行.总结点拨:(出示课件8)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法1吗?学生答:∵∠1=∠2,∴l1∥l2.教师总结如下:几何语言:∵∠1=∠2 (已知),∴l1∥l2 (同位角相等,两直线平行).考点1:利用同位角相等判定两直线平行下图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程.(出示课件9)师生共同讨论解答如下:解:∵∠1=∠7(已知),∠1=∠3 (对顶角相等)∴∠7=∠3(等量代换)∴AB∥CD (同位角相等,两直线平行 .)总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.出示课件10,学生自主练习后口答,教师订正.2.出示课件11,探究内错角相等两直线平行教师问:两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角.由同位角相等可以判定两直线平行,那么,能否利用内错角来判定两直线平行呢?学生答:猜想可以利用内错角来判断两直线平行.教师问:如图,由∠3=∠2,可推出a//b吗?如何推出?师生一起解答:解:∵∠2=∠3(已知),∠3=∠1(对顶角相等),∴∠1=∠2.(等量代换)∴ a//b(同位角相等,两直线平行).总结点拨:(出示课件12)判定方法2:两条直线被第三条直线所截 ,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠3=∠2(已知),∴a∥b(内错角相等,两直线平行).考点2:利用内错角相等判定两直线平行完成下面证明:如图所示,CB平分∠ACD,∠1=∠3. 求证:AB∥CD. (出示课件13)学生独立思考后,师生共同解答.证明:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.出示课件14,学生自主练习后口答,教师订正.3.出示课件15,利用同旁内角互补判定两直线平行教师问:如图,如果∠1+∠2=180°,你能判定a//b吗?学生答:能判定a//b.教师问:请写出解答过程.学生答:证明:∵∠1+∠2=180°(已知),∠1+∠3=180°(邻补角的性质),∴∠2=∠3(同角的补角相等) .∴a//b(同位角相等,两直线平行) .总结点拨:(出示课件16)判定方法3:两条直线被第三条直线所截 ,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).考点3:利用同旁内角互补判定两直线平行如图:直线AB、CD都和AE相交,且∠1+∠A=180º .求证:AB//CD .(出示课件17)学生独立思考后,师生共同解答.证明:∵∠1+∠A=180º(已知),∠1=∠2 (对顶角相等),∴∠2+∠A=180º(等量代换)∴AB∥CD.(同旁内角互补,两直线平行).师生共同归纳:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.出示课件18,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.(三)课堂练习(出示课件19-26)练习课件第19-26页题目,约用时20分钟.(四)课堂小结(出示课件27) ),),(五)课前预习预习下节课(5.2.2第2课时)的相关内容.知道判定平行线的方法,会灵活应用平行线的判定方法解决问题.七、课后作业1、教材第14页练习第1,2题.2、七彩课堂第18-19页第5、6、9题.八、板书设计:1.知识梳理平行线的判定⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补两直线平行2.考点讲解考点1 考点2 考点3教学反思:成功之处:1.本节课从学生所熟悉的知识----平行线的画法入手,引入平行线的判定方法1,在此基础上提出:两条直线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又分别有怎样的关系时两直线平行呢?由此激发学生求知的欲望,也给学生提供了探索所学内容的平台,鼓励学生大胆猜想、积极思考,培养学生主动参与的热情。
浙教版数学七年级下册1.3《平行线的判定》教学设计1
浙教版数学七年级下册1.3《平行线的判定》教学设计1一. 教材分析《平行线的判定》是浙教版数学七年级下册第1.3节的内容。
本节主要让学生掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法,并通过实际例题让学生学会运用这些方法解决实际问题。
教材通过简单的图形和实例,引导学生探究平行线的判定方法,培养学生的观察、思考和解决问题的能力。
二. 学情分析七年级的学生已经掌握了基本的图形知识,具有一定的观察和思考能力。
但学生在解决实际问题时,还缺乏一定的逻辑推理能力和证明意识。
因此,在教学过程中,教师需要注重启发学生的思考,引导学生学会用数学语言表达问题,并用逻辑推理的方式解决问题。
三. 教学目标1.了解并掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。
2.学会运用平行线的判定方法解决实际问题。
3.培养学生的观察、思考和解决问题的能力。
4.培养学生运用数学语言表达问题和用逻辑推理解决问题的意识。
四. 教学重难点1.教学重点:掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。
2.教学难点:如何引导学生理解并运用这些判定方法解决实际问题。
五. 教学方法1.启发式教学:通过提问、引导学生思考,激发学生的学习兴趣和主动性。
2.实例分析:通过具体的实例,让学生直观地理解平行线的判定方法。
3.小组讨论:让学生分组讨论,培养学生的合作意识和解决问题的能力。
4.归纳总结:引导学生自己总结平行线的判定方法,培养学生的归纳能力。
六. 教学准备1.准备相关的图形和实例,用于讲解和练习。
2.准备课件,用于辅助教学。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,激发学生的学习兴趣。
2.呈现(10分钟)展示相关的图形和实例,引导学生观察和思考,引导学生总结出同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。
3.操练(10分钟)让学生分组讨论,每组给出一个实例,运用所学的判定方法进行判断。
第05讲 平行线的判定(1个知识点+5类热点题型讲练+习题巩固)(解析版)七年级数学下册
第05讲平行线的判定课程标准学习目标①平行的判定方法1.掌握同位角相等判定两直线平行,内错角相等判定两直线平行,同旁内角互补判定两直线平行,并能够熟练选择判定方法。
2.能够利用平行公理的推论以及垂直于同一直线的两直线平行判定两直线平行。
知识点01平行线的判定1.同位角相等,两直线平行:①判定内容:两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成同位角相等,两直线平行。
②符号语言:若∠NEB=∠NFD,则AB∥CD。
2.内错角相等,两直线平行:①判定内容:两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成内错角相等,两直线平行。
②符号语言:若∠AEM=∠DFN,则AB∥CD。
3.同旁内角互补,两直线平行:①判定内容:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成同旁内角互补,两直线平行。
②符号语言:若∠BEM+∠DFN=180°,则AB∥CD。
利用同位角、内错角以及同旁内角判定平行时,平行线一定是这些角不公共的边。
4.平行公理的推论判定平行:①判定内容:平行于同一直线的两直线平行。
②符号语言:若a∥b,a∥c,则b∥c5.垂直判定平行:①判定内容:垂直于同一直线的两直线平行。
②符号语言:a⊥b,a⊥c,则b∥c【即学即练1】1.如图,点E在BC延长线上,下列条件中,不能推断AB∥CD的是()A.∠4=∠3B.∠1=∠2C.∠B=∠5D.∠B+∠BCD=180°【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠3=∠4,∴AD∥BC,无法得出AB∥CD,故本选项错误;B、∵∠1=∠2,∴AB∥CD,故本选项正确;C、∵∠B=∠5,∴AB∥CD,故本选项正确;D、∵∠B+∠BCD=180°,∴AB∥CD,故本选项正确.故选:A.【即学即练2】2.对于同一平面内的三条直线a,b,c,下列命题中不正确的是()A.若a∥b,b∥c,则a∥c B.若a⊥b,a⊥c,则b⊥cC.若a∥b,a⊥c,则b⊥c D.若a⊥b,a⊥c,则b∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行”和“垂直于同一条直线的两直线平行”进行分析判断.【解答】解:A.a∥b,b∥c,则a∥c,正确;B.a⊥b,a⊥c,则b∥c,故错误;C.a∥b,a⊥c,则b⊥c,正确;D.a⊥b,a⊥c,则b∥c,正确;故选:B.题型01确定判定两直线平行的条件【典例1】如图,能推断AB∥CD的是()A.∠3=∠5B.∠2=∠4C.∠1=∠2+∠3D.∠D+∠4+∠5=180°【分析】根据平行线的判定定理(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【解答】解:A、∵∠3=∠5,∴BC∥AD,不能推出AB∥CD,故本选项错误;B、∵∠2=∠4,∴AB∥CD,故本选项正确;C、∵∠1=∠2+∠3,∴∠1=∠BAD,∴BC∥AD,不能推出AB∥DC,故本选项错误;D、∵∠D+∠4+∠5=180°,∴BC∥AD,不能推出AB∥DC,故本选项错误;故选:B.【变式1】如图,下列条件中,不能判定l1∥l2的是()A.∠1=∠3B.∠2+∠4=180°C.∠2=∠3D.∠4+∠5=180°【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:A、∵∠1=∠3,∴直线l1∥l2,故此选项不合题意;B、∵∠2+∠4=180°,∴直线l1∥l2,故此选项不合题意;C、∠2=∠3,不能得出直线l1∥l2,故此选项符合题意;D、∵∠2=∠5,∠4+∠5=180°,∴∠4+∠2=180°,∴直线l1∥l2,故此选项不合题意.故选:C.【变式2】如图,下列推理中正确的是()A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥DC C.若∠A=∠3,则AD∥BC D.若∠3=∠4,则AB∥DC 【分析】根据平行线的判定判断即可.【解答】解:A、根据∠1=∠2不能推出AD∥BC,故本选项错误;B、根据∠1=∠2能推出AB∥DC,故本选项正确;C、根据∠A=∠3不能推出AD∥BC,故本选项错误;D、根据∠3=∠4不能推出AB∥DC,故本选项错误.故选:B.【变式3】如图,点D是△ABC的边BC延长线上一点,射线CE在∠ACD内部,下列条件中能判定AB∥CE的是()A.∠A=∠ACE B.∠B=∠ACB C.∠A=∠ECD D.∠B=∠ACE【分析】根据平行线的判定方法即可求解.【解答】解:A选项,∠A=∠ACE,内错角相等,两直线平行,故符合题意;B选项,∠B=∠ACB,不能判定AB∥CE,故不符合题意;C选项,∠A=∠ECD,不能判定AB∥CE,故不符合题意;D选项,∠B=∠ACE,不能判定AB∥CE,故不符合题意;故选:A.【变式4】如图,下列推理中正确的是()A.∵∠1=∠4,∴BC∥ADB.∵∠BCD+∠ADC=180°,∴BC∥ADC.∵∠2=∠3,∴AB∥CDD.∵∠CBA+∠C=180°,∴BC∥AD【分析】结合图形分析相等或互补的两角之间的关系,根据平行线的判定方法判断.【解答】解:A、∵∠1=∠4,∴AB∥CD,故选项错误,不符合题意;B、∵∠BCD+∠ADC=180°,∴AD∥BC,故选项正确,符合题意;C、∵∠2=∠3,∴BC∥AD,故选项错误,不符合题意;D、∵∠CBA+∠C=180°,∴AB∥CD,故选项错误,不符合题意.故选:B.【变式5】如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠3;②∠4=∠8;③∠1+∠6=180°;④∠5+∠8=180°.其中能判定a∥b的条件的个数有()A.1个B.2个C.3个D.4个【分析】根据平行线的判定方法一一判断即可.【解答】解:能判断a∥b的条件是:②∠4=∠8;③∠1+∠6=180°;故选:B.【变式6】若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠DD.如果∠2=50°,则有BC∥AE【分析】根据平行线的判定和性质一一判断即可【解答】解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=30°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:B.【变式7】以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图A,展开后测得∠1=∠2B.如图B,展开后测得∠1=∠2且∠3=∠4C.如图C,测得∠1=∠2D.如图D,测得∠1=∠2【分析】根据平行线的判定定理,逐一进行分析,即可解答.【解答】解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确,不符合题意;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确,不符合题意;C、测得∠1=∠2,∵∠1与∠2既不是内错角也不是同位角,∴不一定能判定两直线平行,故错误,符合题意;D、∠1=∠2,根据同位角相等,两直线平行进行判定,故正确,不符合题意;故选:C.题型02添加判定条件判定平行【典例1】如图,请填写一个条件∠2=∠4,使a∥b.【分析】根据平行线的判定定理求解即可.【解答】解:填写条件∠2=∠4,理由如下:∵∠2=∠4,∴a∥b(内错角相等,两直线平行),故答案为:∠2=∠4(答案不唯一).【变式1】如图,要得到AE∥BG的结论,需要添加的条件是∠EDC=∠BCD(答案不唯一).(写出一个正确答案即可)【分析】∠EDC与∠BCD为内错角,可利用内错角相等,两直线平行判定平行线.【解答】解:要得到AE∥BG的结论,则需要角相等的条件是∠EDC=∠BCD(答案不唯一).故答案为:∠EDC=∠BCD(答案不唯一).【变式2】如图:请写出一个条件:∠B=∠BCD,使AB∥CD.理由是:内错角相等,两直线平行.【分析】可以写一个条件内错角∠B=∠BCD,所以两直线AB∥CD.【解答】解:可以写一个条件:∠B=∠DCE;∵∠B=∠BCD;∴AB∥CD(内错角相等,两直线平行);故答案为:∠B=∠BCD.题型03根据判定条件求值【典例1】如图,已知∠1=85°,下列条件能判断AB∥CD的是()A.∠2=75°B.∠3=85°C.∠3=95°D.∠4=95°【分析】根据平行线的判定条件逐一判断即可.【解答】解:A、∵∠1=85°,∠2=75°,∴∠1≠∠2,∴AB与CD不平行,不符合题意;B、∵∠1=85°,∠3=85°,∴∠1+∠3=170°≠180°,∴AB与CD不平行,不符合题意;C、∵∠1=85°,∠3=95°,∴∠1+∠3=180°,∴AB∥CD,符合题意;D、由∠1=85°,∠4=95°无法证明AB∥CD,不符合题意;故选:C.【变式1】如图是小明探索直线平行的条件时所用的学具,木条a,b,c在同一平面内,经测量,要使木条a∥b,∠2=110°,要使木条a与b平行,则∠1的度数应为()A.20°B.70°C.110°D.160°【分析】先求出∠2的对顶角的度数,再根据同旁内角互补,两直线平行解答.【解答】解:如图,∵∠2=110°,∴∠3=∠2=110°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣110°=70°.故选:B.【变式2】如图,分别将木条a,b与固定的木条c钉在一起,∠1=50°,∠2=80°,顺时针转动木条a,下列选项能使木条a与b平行的是()A.旋转30°B.旋转50°C.旋转80°D.旋转130°【分析】根据平行线的判定定理即可求解.【解答】解:在图中标注出∠3,如图所示:若a∥b,则∠2=∠3,∵∠1=∠3,∴∠1=∠2=50°,故应将木条a顺时针转动30°.故选:A.【变式3】如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.15°B.25°C.35°D.50°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a 旋转的度数.【解答】解:∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是85°﹣50°=35°.故选:C.【变式4】如图,直线EF上有两点A、C,分别引两条射线AB、CD,∠DCF=60°,∠EAB=70°,射线AB、CD分别绕A点,C点以1度/秒和4度/秒的速度同时顺时针转动,在射线CD转动一周的时间内,使得CD与AB平行所有满足条件的时间=秒或秒.【分析】分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据内错角相等两直线平行,列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据同位角相等两直线平行,列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据同位角相等两直线平行,列式计算即可得解.【解答】解:∵∠EAB=70°,∠DCF=60°,∴∠BAC=110°,∠ACD=120°,分三种情况:如图①,AB与CD在EF的两侧时,∠ACD=120°﹣(4t)°,∠BAC=110°﹣t°,要使AB∥CD,则∠ACD=∠BAC,即120°﹣(4t)°=110°﹣t°,解得t=;②CD旋转到与AB都在EF的右侧时,∠DCF=360°﹣(4t)°﹣60°=300°﹣(4t)°,∠BAC=110°﹣t°,要使AB∥CD,则∠DCF=∠BAC,即300°﹣(4t)°=110°﹣t°,解得t=;③CD旋转到与AB都在EF的左侧时,∠DCF=(4t)°﹣(180°﹣60°+180°)=(4t)°﹣300°,∠BAC=t°﹣110°,要使AB∥CD,则∠DCF=∠BAC,即(4t)°﹣300°=t°﹣110°,解得t=﹣,∴此情况不存在.综上所述,当时间t的值为或秒时,CD与AB平行.故答案为:秒或秒.【变式5】如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=75(度).【分析】直接利用邻补角的定义结合平行线的性质得出答案.【解答】解:如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180°,解得:x=17,则∠1=(3x+24)°=75°.故答案为:75.题型04平行公理的推论以及判定平行【典例1】如果b∥a,c∥a,那么b∥c.【分析】根据平行公理推论求解即可.【解答】解:如果b∥a,c∥a,那么b∥c(平行于同一直线的两直线平行),故答案为:b∥c.【典例2】同一平面内三条直线a、b、c,若a⊥b,c⊥b,则a与c的关系是:a∥c.【分析】根据平行线的性质:垂直于同一直线的两条直线互相平行可知直线a与直线c的关系是平行.【解答】解:∵a⊥b,c⊥b,∴a∥c.故答案为:a∥c.【变式1】若直线a,b,c,d有下列关系,则推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理及推论,逐一判断即可解答.【解答】解:A、∵a∥b,b∥c,∴c∥a,故A不符合题意;B、∵a∥c,b∥d,∴c与d不一定平行,故B不符合题意;C、∵a∥b,a∥c,∴b∥c,故C符合题意;D、∵a∥b,c∥d,∴a与c不一定平行,故D不符合题意;故选:C.【变式2】a、b、c是直线,下列说法正确的是()A.若a⊥b,b∥c,则a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则b∥c D.若a∥b,b∥c,则a∥c【分析】根据平行公理以及平行线的性质判断即可.【解答】解:A、在同一平面内,若a⊥b,b∥c,则a⊥c,原说法错误,不符合题意;B、在同一平面内,若a⊥b,b⊥c,则a∥c,原说法错误,不符合题意;C、在同一平面内,若a∥b,b⊥c,则a⊥c,原说法错误,不符合题意;D、若a∥b,b∥c,则a∥c,正确,符合题意.故选:D.【变式3】同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系【分析】作出图形,根据平行公理的推论解答.【解答】解:如图,∵a∥b,a⊥c,∴c⊥b,又∵b⊥d,∴c∥d.故选:B.题型05平行线的判定证明【典例1】如图,一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD对吗?为什么?【分析】由已知∠ABC=120°,∠BCD=60°,即∠ABC+∠BCD=120°+60°=180°,可得关于AB ∥CD的判定条件:同旁内角互补,两直线平行.【解答】解:说管道AB∥CD是对的.理由:∵∠ABC=120°,∠BCD=60°∴∠ABC+∠BCD=180°∴AB∥CD(同旁内角互补,两直线平行).【典例2】直线AB,CD被直线EF所截,∠1=∠2,直线AB和CD平行吗?为什么?【分析】根据对顶角相等可得∠1=∠3,再根据∠1=∠2,可推出∠2=∠3,根据同位角相等,两直线平行可推出AB∥CD.【解答】解:AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.【典例3】如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?【分析】由于∠1=47°,∠2=133°,则∠ABC+∠2=180°,根据平行线的判定方法得到AB∥CD;然后利用平角的定义计算出∠BCD=180°﹣133°=47°,则∠BCD=∠D,根据平行线的判定即可得到BC∥DE.【解答】解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.【变式1】如图,GH分别交AB、CD于点E、F,∠AEF=∠EFD.(1)试写出AB∥CD的依据;(2)若ME是∠AEF的平分线,FN是∠EFD的平分线,则EM、FN平行吗?若平行,请说明理由.【分析】(1)根据内错角相等,两直线平行,推出即可;(2)根据角平分线定义求出∠MEF=∠NFE,根据内错角相等,两直线平行,推出即可.【解答】(1)证明:∵∠AEF=∠EFD,∴AB∥CD(内错角相等,两直线平行).(2)EM∥FN,证明:∵ME是∠AEF的平分线,FN是∠EFD的平分线,∴∠MEF=∠AEF,∠NFE=∠EFD,∵∠AEF=∠EFD,∴∠MEF=∠NFE,∴EM∥FN(内错角相等,两直线平行).【变式2】已知:如图,直线EF分别与直线AB,CD相交于点P,Q,PM垂直于EF,∠1+∠2=90°.求证:AB∥CD.【分析】先根据垂直的定义可得∠APQ+∠2=90°,再结合∠1+∠2=90°可得∠APQ=∠1,然后根据“内错角相等,两直线平行”即可证明结论.【解答】证明:∵PM⊥EF(已知),∴∠APQ+∠2=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠APQ=∠1(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).【变式3】已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【分析】先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C=∠2,从而证得AB∥CD.【解答】证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.1.下列画出的直线a与b不一定平行的是()A.B.C.D.【分析】根据平行线的判定定理即可解答.【解答】解:A.直线a与b不一定平行,故本选项符合题意;B.根据同旁内角互补,两直线平行可得a∥b,故本选项不符合题意;C.根据平行线的定义可得a∥b,故本选项不符合题意;D.根据同位角相等,两直线平行可得a∥b,故本选项不符合题意;故选:A.2.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D+∠ACD=180°C.∠D=∠DCE D.∠1=∠2【分析】根据平行线的判定定理分别进行分析即可.【解答】解:A、∠3=∠4可判断DB∥AC,故此选项错误;B、∠D+∠ACD=180°可判断DB∥AC,故此选项错误;C、∠D=∠DCE可判断DB∥AC,故此选项错误;D、∠1=∠2可判断AB∥CD,故此选项正确;故选:D.3.如图,下列四组条件中,能判断AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠ABC+∠BCD=180°D.∠BAD+∠ABC=180°【分析】根据平行线的判定方法一一判断即可.【解答】解:∵∠ABC+∠BCD=180°,∴AB∥CD.故选:C.4.蜂房的顶部由三个全等的四边形围成,每个四边形的形状如图所示,其中∠α=109°28′,∠β=70°32′.则这个四边形对边的位置关系为()A.平行B.相等C.垂直D.不能确定【分析】先计算两角的和得180°,再根据平行线判定定理“同旁内角互补,两直线平行”即可得出这个四边形对边的位置关系.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.【解答】解:如图标字母,∵∠BAD=∠α=109°28′,∠ADC=∠β=70°32′∴∠BAD+∠ADC=∠α+∠β=109°28′+70°32′=179°60′=180°,∴AB∥CD(同旁内角互补,两直线平行)∵∠BAD=∠α=109°28′,∠ABC=∠β=70°32′∴∠BAD+∠ABC=∠α+∠β=109°28′+70°32′=179°60′=180°,∴AD∥BC(同旁内角互补,两直线平行).故选:A.5.如图所示,由下列条件能判定AB∥CD的是()A.∠BAC=∠DAC B.∠DAC=∠ACBC.∠BAC=∠DCA D.∠D+∠DCB=180°【分析】根据平行线的判定定理判断求解即可.【解答】解:由∠BAC=∠DAC,不能判定AB∥CD,故A不符合题意;∵∠DAC=∠ACB,∴AD∥BC,故B不符合题意;∵∠BAC=∠DCA,∴AB∥CD,故C符合题意;∵∠D+∠DCB=180°,∴AD∥BC,故D不符合题意;故选:C.6.如图所示,下列条件中,能判断AB∥CD的是()A.∠BAD=∠BCD B.∠1=∠2C.∠BAC=∠ACD D.∠3=∠4【分析】两条直线被第三条所截,如果内错角相等,那么这两条直线平行,据此进行判断即可.【解答】解:A.根据∠BAD=∠BCD,不能判断AB∥CD;B.根据∠1=∠2,只能判断AD∥BC;C.根据∠BAC=∠ACD,能判断AB∥CD;D.根据∠3=∠4,不能判断AB∥CD;故选:C.7.如图,固定木条b、c,使∠1=80°,旋转木条a,要使得a∥b,则∠2应调整为()A.70°B.80°C.90°D.100°【分析】根据同旁内角互补两直线平行,求出∠2的度数即可.【解答】解:要使得a∥b,则需满足∠1+∠2=180°,∵∠1=80°,∴∠2=100°,故选:D.8.如图,下列推理不正确的是()A.∵∠1=∠2,∴AB∥CD B.∵∠1=∠2,∴AD∥BCC.∵∠3=∠4,∴AD∥BC D.∵∠4=∠5,∴AB∥CD【分析】根据平行线的判定定理判断求解即可.【解答】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∵∠1=∠2,∴AB∥CD,故B不正确,符合题意;∵∠3=∠4,∴AD∥BC,故C正确,不符合题意;∵∠4=∠5,∴AB∥CD,故D正确,不符合题意;故选:B.9.在同一平面内,将两个完全相同的三角板按如图摆放,可以画出两条互相平行的直线l1与l2这样画的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【分析】根据题目的已知条件并结合图形进行分析,然后根据内错角相等,两直线平行,即可解答.【解答】解:在同一平面内,将两个完全相同的三角板按如图摆放,可以画出两条互相平行的直线l1与l2这样画的依据是:内错角相等,两直线平行,故选:A.10.下列说法正确的是()A.a、b、c是直线,若a⊥b,b∥c,则a∥cB.a、b、c是直线,若a⊥b,b⊥c,则a⊥cC.a、b、c是直线,若a∥b,b⊥c,则a∥cD.a、b、c是直线,若a∥b,b∥c,则a∥c【分析】根据平行线的性质和判定逐个判断即可.【解答】解:A、∵a⊥b,b∥c,∴a⊥c,故本选项错误;B、在同一平面内,当a⊥b,b⊥c时,a∥c,故本选项错误;C、当a∥b,b⊥c时,a⊥c,故本选项错误;D、当a∥b,b∥c时,a∥c,故选项正确;故选:D.11.如图,点E在AC的延长线上,请添加一个恰当的条件∠1=∠2(答案不唯一),使AB∥CD.【分析】利用平行线的判定定理进行分析即可.【解答】解:当∠1=∠2时,利用内错角相等,两直线平行可判定AB∥CD;当∠A=∠DCE时,利用同位角角相等,两直线平行可判定AB∥CD;当∠A+∠ACD=180°时,利用同旁内角互补,两直线平行可判定AB∥CD;当∠ABD+∠D=180°时,利用同旁内角互补,两直线平行可判定AB∥CD;故答案为:∠1=∠2(答案不唯一).12.三个完全相同的含30°角的三角板如图摆放,可以判断AB与EC平行的理由是同位角相等,两直线平行(答案不唯一).【分析】根据“同位角相等,两直线平行”求解即可.【解答】解:∵∠ACB=60°,∠ACE=90°,∠ECD=30°,∴∠ACB+∠ACE+∠ECD=180°,∴B、C、D在一条直线上,∵∠B=30°=∠ECD,∴AB∥EC(同位角相等,两直线平行),故答案为:同位角相等,两直线平行(答案不唯一).13.如图,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°中,能判断直线l1∥l2的有3个.【分析】根据平行线的判断方法,可以判断出各个小题中的条件是否可以得到直线l1∥l2,从而可以解答本题.【解答】解:∵∠1=∠3,∴l1∥l2,故①符合题意;当∠2=∠3时,无法判断l1∥l2,故②不符合题意;∵∠4=∠5,∴l1∥l2,故③符合题意;∵∠2+∠4=180°,∴l1∥l2,故④符合题意;故答案为:3.14.如图,在下列四组条件中:①∠1=∠2,②∠3=∠4,③∠BAD+∠ABC=180°,④∠BAC=∠ACD,能判定AD∥BC的是①②③.【分析】根据平行线的判定,逐一判断即可解答.【解答】解:①∵∠1=∠2,∴AD∥BC;②∵∠3=∠4,∴AD∥BC;③∵∠BAD+∠ABC=180°,∴AD∥BC;④∵∠BAC=∠ACD,∴AB∥CD;所有,能判定AD∥BC的是①②③,故答案为:①②③.15.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B=45°),当∠ACE<180°,且点E在直线AC的上方时,满足三角尺BCE有一条边与斜边AD平行,那么此时∠ACE=120或165或30.【分析】根据平行线的判定和性质定理即可得到结论.【解答】解:①当AD∥CE时,∵AD∥CE,∴∠DCE=∠D=30°,∴∠ACE=90°+30°=120°;②当BE∥AD时,过点C作CF∥AD,∵BE∥AD,CF∥AD,∴BE∥AD∥CF,∴∠ECF=∠E=45°,∠DCF=∠D=30°,∴∠DCE=30°+45°=75°∴∠ACE=90°+75°=165°.③如图中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.故答案为:120或165或30.16.如图,点A在射线DE上,点C在射线BF上,∠B+∠BAD=180°,∠1=∠2.求证:AB∥CD.请将下面的证明过程补充完整.证明:∵∠B+∠BAD=180°(已知),∠1+∠BAD=180°,∴∠1=∠B,∵∠1=∠2(已知),∴∠2=∠B(等量代换),∴AB∥CD(同位角相等,两直线平行).【分析】根据“同角的补角相等”得出∠1=∠B,等量代换得出∠2=∠B,根据“同位角相等,两直线平行”即可得解.【解答】证明:∵∠B+∠BAD=180°(已知),∠1+∠BAD=180°,∴∠1=∠B,∵∠1=∠2(已知),∴∠2=∠B(等量代换),∴AB∥CD(同位角相等,两直线平行).故答案为:∠B;∠B;等量代换;同位角相等,两直线平行.17.如图,直线a,b被直线c所截,∠1=50°,请你再添加一个条件,可以说明直线a与b平行,并说明理由.【分析】根据平行线的判定定理求解即可.【解答】解:添加∠4=50°(添加条件不唯一),可以说明直线a与b平行,∵∠1=50°,∠4=50°,∴∠1=∠4,∴a∥b(内错角相等,两直线平行).18.如图所示,直线AF,BD相交于点C,过点C作射线CE,使得CD平分∠ECF,连接AB,若∠B=∠ACB,试说明AB∥CE.【分析】根据角平分线定义得出∠ECD=∠DCF,根据对顶角相等得出∠ACB=∠DCF,结合已知条件∠B=∠ACB,等量代换得出∠B=∠ECD,然后根据同位角相等,两直线平行即可证明AB∥CE.【解答】证明:∵CD平分∠ECF,∴∠ECD=∠DCF,∵∠ACB=∠DCF,∠B=∠ACB,∴∠B=∠ECD,∴AB∥CE.19.如图,已知∠A=∠C,∠1与∠2互补,求证:AB∥CD.【分析】首先由∠1、∠2互补,可判定AD、BC平行,即可得∠A、∠ABC互补,通过等量代换,可求得∠ABC、∠C互补,即可判定AB∥CD.【解答】证明:∵∠1与∠2互补,即∠1+∠2=180°,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=∠C,∴∠C+∠ABC=180°,∴AB∥CD.20.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.【分析】首先根据角平分线的性质可得∠1=∠GPQ=APQ,∠2=∠PQH=∠EQD,根据条件∠1=∠2,可得∠GPQ=∠PQH,∠APQ=∠PQD,根据内错角相等两直线平行可证明AB∥CD,PG∥QH.【解答】解:AB∥CD,PG∥QH,理由:∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=APQ,∠2=∠PQH=∠EQD,∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD,∴AB∥CD,PG∥QH.。
七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )
七级下册数学《第五章相交线与平行线》5.2平行线及其判定平行线及其表示方法★1、平行线定义:在同一个平面内,不相交的两条直线叫做平行线.记作:AB∥CD;记作:a∥b;读作:直线AB平行于直线CD.读作:直线a平行于直线b.【注意】1、在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.(重合的直线视为一条直线)2、.线段或射线平行是指它们所在的直线平行.平行线的画法◆过直线外一点画已知直线的平行线的方法:一“落”把三角尺一边落在已知直线上;二“靠”把直尺紧靠三角尺的另一边;三“移”沿直尺移动三角尺,使三角尺与已知直线重合的边过已知点;四“画”沿三角尺过已知点的边画直线.【注意】1.经过直线上一点不能作已知直线的平行线.2.画线段或射线的平行线是指画它们所在直线的平行线.3.借助三角尺画平行线时,必须保持紧靠,否则画出的直线不平行.平行公理及其推论★1、平行公理:经过直线外一点,有且只有一条直线与这条直线平行.★2、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如图,如果b∥a,c∥a,那么b∥c.几何语言:∵b∥a,c∥a,∴b∥c.【注意】1、平行公理的推论中,三条直线可以不在同一个平面内.2、平行公理中强调“直线外一点”,因为若点在直线上,不可能有平行线;“有且只有”强调这样的直线是存在的,也是唯一的.平行线的判定方法★1、平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.几何语言表示:∵∠2=∠3(已知),∴a∥b(同位角相等,两直线平行).判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.几何语言表示:∵∠2=∠4(已知),∴a∥b.(内错角相等,两直线平行).判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.几何语言表示:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).★2、在同一平面内,垂直于同一条直线的两直线垂直.几何语言表示:直线a,b,c在同一平面内,∵a⊥c,b⊥c,∴a∥b.【注意】三条直线在“同一平面内”是前提,没有这个条件结论不一定成立.★3、判定两直线平行的方法(1)平行线的定义;(2)平行公理的推论(如果两条直线都与第三条直线平行,那么这两条直线也互相平行);(3利用同位角相等说明两直线平行;(4)利用内错角相等说明两直线平行;(5)利用同旁内角互补说明两直线平行;(6)同一平面内,垂直于同一直线的两直线平行.【例题1】(2023秋•埇桥区期中)在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【解答】解:在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点评】本题考查了平行线,两条直线有一个交点的直线是相交线,没有交点的直线是平行线.解题技巧提炼解题的关键是准确把握平行线的概念,牢记平行线的三个条件:①在同一平面内;②不相交;③都是直线,通过与定义进行对比来进行判断.【变式1-1】如图所示,能相交的是,平行的是.(填序号)【分析】根据平行线、相交线的定义,逐项进行判断,即可正确得出结果.【解答】解:①中一条直线,一条射线,不可相交,也不会平行;②中一条直线,一条线段,不可相交,也不会平行;③中一条直线,一条线段,可相交;④中都是线段,不可延长,不可相交,也不平行,⑤中都是直线,延长后不相交,是平行.故答案为:③,⑤.【点评】本题考查平行线和相交线,解题的关键是掌握直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸.【变式1-2】下列说法正确的是()A.同一平面内,如果两条直线不平行,那么它们互相垂直B.同一平面内,如果两条直线不相交,那么它们互相垂直C.同一平面内,如果两条直线不相交,那么它们互相平行D.同一平面内,如果两条直线不垂直,那么它们互相平行【分析】根据平行线的判定及垂直、相交的定义判断求解即可.【解答】解:在同一平面内,如果两条直线不平行,那么这两条直线相交,故A不符合题意;在同一平面内,两条直线不相交,那么这两条直线平行,故B不符合题意;同一平面内,如果两条直线不相交,那么这两条直线平行,故C符合题意;同一平面内,如果两条直线不垂直,它们不一定平行,故D不符合题意;故选:C.【点评】此题考查了平行线的判定、垂直、相交等知识,熟练掌握有关定理、定义是解题的关键.【变式1-3】(2022春•莱芜区校级期末)下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.在同一平面内,若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【解答】解:A、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.一条直线的平行线有无数条,故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.【点评】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.【变式1-4】(2022秋•乌鲁木齐期末)如图,在长方体AB CD-EFGH中,与棱EF异面且与平面EFGH 平行的棱是.【分析】与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.【变式1-5】(2022春•沙河市期末)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【分析】根据长方体即平行线的性质解答.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【点评】本题考查了平行线的定义、长方体的性质.一个长方形的两条对边平行.【变式1-6】在同一平面内,直线l1与l2满足下列关系,写出其对应的位置关系:(1)若l1与l2没有公共点,则l1和l2;(2)若l1与l2只有一个公共点,则l1和l2;(3)若l1与l2有两个公共点,则l1和l2.【分析】(1)结合平行线的定义进行解答即可;(2)结合相交的定义进行解答即可;(3)结合重合的定义进行解答即可.【解答】解:(1)由于l1和l2没有公共点,所以l1和l2平行;(2)由于l1和l2有且只有一个公共点,所以l1和l2相交;(3)由于l1和l2有两个公共点,所以l1和l2重合;故答案为:(1)平行;(2)相交;(3)重合.【点评】本题侧重考查两直线的位置关系,掌握平行定义是解题关键.【变式1-7】(2022春•赵县月考)在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是.【分析】根据同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.解答即可.【解答】解:因为a∥c,直线a,b相交,所以直线b与c也有交点;故答案为:相交.【点评】本题主要考查了平行线和相交线,同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.【例题2】(2022春•梁山县期中)若a、b、c是同一平面内三条不重合的直线,则它们的交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不对【分析】根据平行线的定义,相交线的定义,可得答案.【解答】解:当三条直线互相平行,交点是个0;当两条直线平行,与第三条直线相交,交点是2个;当三条直线两两相交交于同一点,交点个数是1个;当三条直线两两相交且不交于同一点,交点个数是3个;故选:B.【点评】本题考查了平行线,分类讨论是解题关键.解题技巧提炼用分类讨论的思想根据平面内两条直线的位置关系去讨论求解.【变式2-1】在同一平面内,两条不重合直线的位置关系可能是()A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【分析】同一平面内,直线的位置关系通常有两种:平行或相交;垂直不属于直线的位置关系,它是特殊的相交.【解答】解:平面内的直线有平行或相交两种位置关系.故选:C.【点评】本题主要考查了在同一平面内的两条直线的位置关系.【变式2-2】在同一平面内有三条直线,如果使其中有且只有两条直线平行,那么这三条直线有且只有个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.【变式2-3】平面内四条直线共有三个交点,则这四条直线中最多有条平行线.【分析】根据同一平面内两条直线的位置关系有两种:相交或平行,及一条直线的平行线有无数条,由四条直线相互平行,其交点为0个开始分析,然后依次变为三条直线相互平行、两条直线相互平行即可求解.【解答】解:若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是:三.【点评】本题考查了平行线,题目没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都是平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出答案.【变式2-4】平面上不重合的四条直线,可能产生交点的个数为个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.【例题3】如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【分析】根据平行公理及推论进行解答.【解答】解:(1)如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【点评】本题考查了平行公理及推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行(平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思);推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式3-1】如图中完成下列各题.(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过C点画直线垂直于CD.(2)用符号表示上面①、②中的平行、垂直关系.【分析】(1)根据AB所在直线,利用AB所在直角三角形得出EF,以及MD⊥CD即可;(2)根据图形得出EF,MD⊥CD,标出字母即可.【解答】解:(1)如图所示:(2)EF∥AB,MC⊥CD.【点评】此题考查了基本作图以及直角三角形的性质,利用直角三角形的性质得出平行线以及垂线是解答此题的关键.【变式3-2】如图,已知直线a和直线a外一点A.(1)完成下列画图:过点A画AB⊥a,垂足为点B,画AC∥a;(2)过点A你能画几条直线和a垂直?为什么?过点A你能画几条直线和a平行?为什么?(3)说出直线AC与直线AB的位置关系.【分析】(1)根据要求画出图形即可;(2)过点A有一条直线和直线a垂直,过点A可以画一条直线和a平行.(3)结论:AC⊥AB.【解答】解:(1)直线AB、AC如图所示;(2)过点A有一条直线和直线a垂直,理由:过直线外一点有且只有一条直线和已知直线垂直.过点A可以画一条直线和a平行.理由:过直线外一点有且只有一条直线和已知直线平行.(3)结论:AC⊥AB.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式3-3】作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.【分析】(1)A所在的横线就是满足条件的直线;(2)在直线AD上到A得等于BC的点D,则直线CD即为所求;(3)取AE上D右边的点F,过B,F的直线即为所求.【解答】解:如图,(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)取AE上D右边的点F,过B,F作直线,就是所求.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,【变式3-4】(2022秋•内乡县期末)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?【分析】用两个三角板,根据同位角相等,两直线平行来画平行线,然后用量角器量一量l1与l2相交的角与∠O的关系为:相等或互补.【解答】解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【点评】注意∠2与∠O是互补关系,容易漏掉.【例题4】(2022•寻乌县模拟)下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行“进行分析,得出正确答案.【解答】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、没有两条直线都和第三条直线平行,推不出平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行.故选:C.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.【变式4-1】(2022春•丛台区校级期中)如图,过点A画直线l的平行线,能画()A.两条以上B.2条C.1条D.0条【分析】经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线l的平行线,能画1条.故选:C.【点评】本题考查了平行公理及推论.平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.【变式4-2】(2023春•萨尔图区期中)下面说法正确的个数为()(1)在同一平面内,过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个【分析】根据同一平面内,过直线外一点有一条直线和已知直线平行即可判断(1);在同一平面内,过一点有且只有一条直线和已知直线垂直即可判断(2);举出反例即可判断(3);根据在同一平面内,两直线的位置关系是平行或相交,即可判断(4).【解答】解:在同一平面内,过直线外一点有一条直线和已知直线平行,故(1)正确;只有在同一平面内,过一点有且只有一条直线和已知直线垂直,故(2)错误;如图:∠ABC=∠DEF=90°,且∠ABC+∠DEF=180°,但是两角不是邻补角,故(3)错误;同一平面内不平行的两条直线一定相交正确,因为不特别指出时,一般认为,两条直线重合就是同一条直线,所以所提出的命题是正确的,故(4)正确.即正确的个数是2个.故选:B.【点评】本题考查了平行公理和推论,邻补角,垂线,平行线等知识点,此题比较典型,但是一道比较容易出错的题目.【变式4-3】(2023春•泸县校级期中)下列说法正确的是()A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行【分析】平行线公理:经过直线外一点有且只有一条直线与已知直线平行.【解答】解:根据平行线公理:经过直线外一点有且只有一条直线与已知直线平行,可判断只有D选项正确.【点评】本题考查了平行公理,要熟练掌握.【变式4-4】(2023春•新民市期中)已知a∥b,c∥d,若由此得出b∥d,则直线a和c应满足的位置关系是()A.在同一个平面内B.不相交C.平行或重合D.不在同一个平面内【分析】根据平行推论:平行于同一条直线的两条直线互相平行,可得答案.【解答】解:当a∥c时,a∥b,c∥d,得b∥d;当a、c重合时,a∥b,c∥d,得b∥d,故C正确;故选:C.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.【变式4-5】(2022春•和平区校级月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1【分析】根据同一平面内,任意两条直线的位置关系是相交、平行;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.【解答】解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;【点评】此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式4-6】(2022春•大荔县期末)如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由是.【分析】利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,进而得出答案.【解答】解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.【点评】此题主要考查了平行公理,正确掌握平行公理是解题关键.【变式4-7】(2022春•海阳市期末)若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【分析】根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可回答.【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.【变式4-8】如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】根据平行公理和垂直的定义解答.【解答】解:∵长方形对边平行,∴根据平行公理,前两次折痕互相平行,∵第三次折叠,是把平角折成两个相等的角,∴是90°,与前两次折痕垂直.∴折痕与折痕之间平行或垂直.故选:C.【点评】本题利用平行公理和垂直定义求解,需要熟练掌握.【例题5】(2022春•昭阳区校级月考)如图,把三角尺的直角顶点放在直线b上.若∠1=50°,则当∠2=时,a∥b.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°=40°,当∠2=40°时,∠2=∠3,得出a∥b即可.【解答】解:当∠2=40°时,a∥b;理由如下:如图所示:∵∠1=50°,∴∠3=180°﹣90°﹣50°=40°,当∠2=40°时,∠2=∠3,∴a∥b.故答案为:40°.【点评】本题考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解决问题的关键.【变式5-1】(2022春•洞头区期中)如图,在下列给出的条件中,能判定DF∥BC的是()A.∠B=∠3B.∠1=∠4C.∠1=∠B D.∠B+∠2=180°【分析】根据平行线的判定定理求解即可.【解答】解:∵∠B=∠3,∴AB∥EF,故A不符合题意;∵∠1=∠4,∴AB∥EF,故B不符合题意;∵∠1=∠B,∴DF∥BC,故C符合题意;∵∠B+∠2=180°,∴AB∥EF,故D不符合题意;故选:C.【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.【变式5-2】(2023秋•淮阳区校级期末)如图,木条a,b,c在同一平面内,经测量∠1=115°,要使木条a∥b,则∠2的度数应为()A.65°B.75°C.115°D.165°【分析】根据邻补角互补和平行线的判定定理求解即可.【解答】解:∠2的度数应为65°.证明:如图,∵∠1=115°,∴∠3=180°﹣115°=65°,∵∠2=65°,∴∠2=∠3,∴a∥b.故选:A.【点评】本题考查邻补角互补,平行线的判定.熟练掌握平行线的判定定理是解题关键.【变式5-3】(2023秋•泾阳县期末)如图,直线AB、CD分别与EF相交于点G、H,已知∠1=70°,∠2=70°,试说明:AB∥CD.【分析】根据对顶角相等得出∠1=∠AGH,进而根据∠2=∠AGH,即可得证.【解答】解:∵∠1=∠AGH,∠1=∠2=70°,∴∠2=∠AGH,∴AB∥CD.【点评】本题考查了对顶角相等,同位角相等两直线平行,熟练掌握平行线的判定定理是解题的关键.【变式5-4】(2023秋•泰和县期末)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.【分析】根据平行线的判定,依据角平分线的定义即可解决问题.【解答】证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).【点评】本题主要考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式5-5】(2023春•樟树市期中)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF∥AB.【分析】根据CF平分∠DCE以及∠DCE=90°即可得出∠FCE=45°,再根据三角形ABC为等腰直角三角形,即可得出∠ABC=∠FCE=45°,利用“同位角相等,两直线平行”即可证出结论.【解答】证明:∵CF平分∠DCE,∠DCE=90°,∴∠FCE=12∠DCE=45°.∵△ABC为等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠FCE,∴CF∥AB.【点评】本题考查了平行线的判定,解题的关键是找出∠ABC=∠FCE=45°.本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角的关键.【变式5-6】(2023秋•靖边县期末)如图,AF与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.试说明:AB∥CE.【分析】根据角平分线的定义结合对顶角得到∠ECD=∠ACB,则可证明∠B=∠ECD,根据平行线的判定即可证明AB∥CE.【解答】证明:因为CD平分∠ECF,所以∠ECD=∠FCD(角平分线的定义).因为∠ACB=∠FCD(对顶角相等),所以∠ECD=∠ACB(等量代换).因为∠B=∠ACB,。
初中数学 平行线的判定定理有哪些
初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。
在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。
同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。
1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。
2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。
即如果l||n且m||n,则l||m。
3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。
即如果l∠n且m∠n,则l||m。
4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。
5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。
即如果l||m且m||n,则l||n。
6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。
即如果l∠n且∠A=90°,则l||m。
7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。
8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。
9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。
以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。
人教七年级数学下册-平行线的判定(附习题)
解:①可度量∠3 的度数,因为∠3 与∠2 是同旁内角,若∠3=90°,则∠3+∠2=180°. 根据“同旁内角互补,两直线平行”可得两条 直轨平行.
②也可度量∠4 的度数,因为∠4 与∠2 是 同位角,若∠4=90°,则∠4=∠2. 根据“同位 角相等,两直线平行”可得两条直轨平行.
③还可度量∠5 的度数,因为∠5 与∠2 是 内错角,若∠5=90°,则∠5=∠2. 根据“内错 角相等,两直线平行”可得两条直轨平行.
判定方法 1 同位角相等,两直线平行. 判定方法 2 内错角相等,两直线平行. 判定方法 3 同旁内角互补,两直线平行.
知识点2 同一平面内,同垂直于第三条直 线的两直线平行
例 在同一平面内,如果两条直线都垂直于同 一条直线,那么两条直线平行吗?为什么?
已知条件:直线 b 与直 线 c 都垂直于直线 a .
∠1=∠2=∠3.
(1)若∠1=∠2,则___a__∥___b__,理由是 _同__位__角__相__等__,__两__直__线__平__行____.
(2)若∠1=∠3,则__a___∥___c__,理由是 _内__错__角__相__等__,__两__直__线__平__行____.
(3)直线 a,b,c 互相平行吗?为什么? 解:平行,∵ b∥a ,c∥a , ∴ b∥c ,∴ a∥b∥c .
如图,如果∠2 =∠3,那么 a 与 b 平行吗?
因为∠2 =∠3,∠3 =∠1, 所以∠1 =∠2, 所以 a∥b .
判定方法2 两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行.
简单说成:内错角相等,两直线平行.
思考
如果两条直线被第三条直线所截,那么能否利 用同旁内角来判定两条直线平行呢?
浙教版数学七年级下册1.3《平行线的判定》教学设计2
浙教版数学七年级下册1.3《平行线的判定》教学设计2一. 教材分析《平行线的判定》是浙教版数学七年级下册第1.3节的内容,本节课的主要目的是让学生掌握同位角相等、内错角相等、同旁内角互补三种平行线的判定方法,并能够运用这些方法解决实际问题。
教材通过对平行线的判定方法的介绍,引导学生探究数学规律,培养学生的逻辑思维能力。
二. 学情分析学生在七年级上学期已经学习了直线、射线、线段等基本概念,对图形的认知有一定的基础。
但是,对于平行线的判定方法,学生可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.了解并掌握同位角相等、内错角相等、同旁内角互补三种平行线的判定方法。
2.能够运用平行线的判定方法解决实际问题。
3.培养学生的观察能力、操作能力和逻辑思维能力。
四. 教学重难点1.教学重点:同位角相等、内错角相等、同旁内角互补三种平行线的判定方法。
2.教学难点:如何运用这些判定方法解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生探究平行线的判定方法。
2.利用多媒体动画和实物模型,直观展示平行线的判定过程。
3.通过小组合作和讨论,培养学生的团队协作能力。
4.运用练习题和实际问题,巩固学生对平行线判定方法的掌握。
六. 教学准备1.多媒体教学设备。
2.实物模型和教具。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)通过复习直线、射线、线段等基本概念,引导学生回顾已学的图形知识。
然后,提出问题:“如何判断两条直线是否平行?”激发学生的学习兴趣。
2.呈现(10分钟)利用多媒体动画展示同位角相等、内错角相等、同旁内角互补三种平行线的判定方法。
同时,结合实物模型和教具,让学生直观地感受平行线的判定过程。
3.操练(10分钟)让学生分组进行练习,每组选择一种判定方法,利用教具和实物模型进行操作。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目难度逐渐增加,引导学生运用平行线的判定方法解决问题。
人教版七年级数学教案:5.2.2平行线的判定
在今天的课堂中,我们探讨了平行线的判定方法,这是几何学习中的一个重要部分。我注意到,学生在理解同位角、内错角和同旁内角的概念时,普遍感到有些困难。我尝试使用了动态图示和实物模型来帮助学生直观地感受这些角度的形成,效果似乎不错,但我认为还需要在后续的课堂中继续巩固这些概念。
课堂上,我设计了一些实践活动,让学生分组讨论并操作实验,我希望通过这样的方式,让他们在实践中学习和理解。从学生的反馈来看,他们对于能够亲手操作、亲眼观察的环节非常感兴趣,这也帮助他们更好地理解了判定条件。不过,我也观察到,在将理论知识应用到具体问题解决时,部分学生仍然感到困惑。这可能是因为他们还没有完全消化和吸收这些概念,或者是我没有提供足够的引导和示例。
直接输出:
二、教学重点与难点
教学重点:
1.平行线的判定方法:同位角相等、内错角相等、同旁内角互补。
2.平行线在实际几何图形中的应用。
3.逻辑推理在平行线判定中的应用。
教学难点:
1.同位角、内错角、同旁内角的准确识别和测量。
2.理解并运用逻辑推理来判断两条直线是否平行。
3.在复杂的几何图形中找出所有相关的角,并进行正确的判定。
-举例:设计练习题,如给出一个图形,要求学生找出所有的平行线,并说明使用的是哪个判定条件。
2.教学难点
-难点一:理解同位角、内错角、同旁内角的概念及其在判定平行线中的作用。
-举例:学生可能难以理解同位角和内错角的概念,教师需用模型或动态图示来直观展示这些角度的关系。
-难点二:在实际图形中准确找出相应的角度,特别是在图形复杂时。
二、核心素养目标
本节课的核心素养目标为:培养学生的逻辑推理能力、几何直观能力和问题解决能力。通过探索平行线的判定方法,使学生能够运用逻辑思维分析和解决问题,提高推理的准确性;通过观察和操作几何图形,发展几何直观,增强对空间关系的认识;在实际问题中,运用所学的平行线判定方法,提高解决几何问题的能力。同时,注重培养学生合作交流的意识,提升数学表达和概括能力,为后续几何学习奠定坚实基础。
沪科版数学七年级下册10.2《平行线的判定》教学设计1
沪科版数学七年级下册10.2《平行线的判定》教学设计1一. 教材分析沪科版数学七年级下册10.2《平行线的判定》是学生在学习了直线、射线、线段的基础上,进一步研究平行线的性质和判定。
本节课通过探究同位角、内错角、同旁内角的关系,引导学生发现平行线的判定方法,培养学生观察、思考、推理的能力。
教材内容主要包括平行线的定义、性质及判定方法,并通过例题和练习题帮助学生巩固知识。
二. 学情分析七年级学生已具备一定的几何基础知识,对直线、射线、线段有一定的了解。
但在观察和推理方面仍有待提高。
因此,在教学过程中,教师要注重引导学生观察图形,发现规律,培养学生的逻辑思维能力。
此外,学生在学习过程中可能对平行线的判定方法产生混淆,教师需通过举例、讲解等方式,帮助学生清晰理解。
三. 教学目标1.了解平行线的定义,掌握平行线的性质和判定方法。
2.培养学生观察、思考、推理的能力。
3.培养学生合作学习、交流分享的习惯。
四. 教学重难点1.平行线的定义及其性质。
2.平行线的判定方法。
五. 教学方法1.采用问题驱动法,引导学生发现平行线的性质和判定方法。
2.运用直观演示法,帮助学生理解平行线的概念。
3.采用合作学习法,鼓励学生分组讨论,分享学习心得。
4.利用练习法,巩固所学知识。
六. 教学准备1.准备相关课件、教具,如直尺、三角板等。
2.设计好教学过程中的问题和例题。
3.准备练习题,以便在课堂巩固环节进行训练。
七. 教学过程1.导入(5分钟)利用多媒体展示生活中常见的平行线现象,如操场、教室地板等,引导学生观察并思考:这些平行线有什么特点?如何判断两条直线是否平行?2.呈现(10分钟)介绍平行线的定义、性质及判定方法。
通过展示PPT和教具,讲解平行线的概念,让学生清晰地了解平行线的特征。
3.操练(15分钟)分组讨论,让学生互相交流平行线的判定方法。
教师巡回指导,解答学生疑问。
在此过程中,可设置一些判断题,让学生上台板书答案,以加深对平行线判定方法的理解。
七年级下册数学平行线及其判定
七年级下册数学平行线及其判定一、平行线的定义平行线是在同一个平面内,永远也不会相交的两条直线。
这意味着它们在任何地方都不会相交,无论是在无穷远的地方还是在我们能够看到的范围内都不会相交。
平行线具有一些特定的性质,我们可以通过这些性质来判定两条线是否平行。
二、平行线的性质1.直线上的任意一点到另一条直线的距离平行线的性质之一是,如果一条直线上的任意一点到另一条直线的距离是定值,那么这两条直线就是平行线。
这意味着,如果两条直线之间的距离是一定的,那么它们就是平行线。
这个性质在平行线的判定中非常有用。
2.同一平面内的两条平行线在同一个平面内,如果两条直线被一条直线所截,使得同侧的内角之和为180°,那么这两条直线是平行线。
3.平行线的交错内角和对应角当两条平行线被一条直线所截时,交错内角相等,对应角相等。
这是另一种判定两条直线是否平行的方法。
如果两条直线所形成的角相等,那么这两条直线就是平行线。
4.平行线的平行线如果两条直线分别和一条第三直线平行,那么这两条直线也是平行的。
这个性质可以用来判定一些图形中的平行线关系。
三、平行线的判定方法1.距离判定法距离判定法是一种常见的平行线判定方法。
这种方法通过计算一条直线上的任意一点到另一条直线的距离来判断这两条直线是否平行。
如果这个距离是一个定值,那么这两条直线是平行的。
2.角度判定法角度判定法是另一种常用的平行线判定方法。
这种方法通过观察两条直线所形成的角来判断这两条直线是否平行。
如果这些角相等,那么这两条直线是平行的。
3.运用平行线的性质除了上述的判定方法外,还可以通过利用平行线的性质来判断两条直线是否平行。
比如通过观察交错内角和对应角是否相等来判断两条直线是否平行。
四、平行线的应用1.几何图形中的平行线在几何图形中,平行线的概念非常常见。
例如,在矩形、平行四边形、三角形等图形中,平行线的性质经常得到应用。
2.实际问题的建模在解决实际问题时,平行线的概念也经常得到应用。
七年级数学下册教学课件《5.2.2平行线的判定》
第3题图
第 4 题图
第 5 题图
5.如图,能判定 AB∥CD 的条件有___①①③③④④ ___.(填序号)
①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.
当堂检测
6.如图所示,∠B=∠C,∠DEF=∠A.试问CD与EF平行吗?为什么? 解:CD∥EF.理由:∵∠B=∠C,∴AB∥CD(内错角相等,两直线平行). ∵∠DEF=∠A,∴EF∥AB(同位角相等,两直线平行). ∴CD∥EF(平行于同一条直线的两条直线平行).
方法二:∵∠1+∠4=180°(平角定义), ∵∠1+∠2=180°(已知),∴∠2=∠4(同角的 补角相等),∴a∥b(内错角相等,两直线平行).
预习成果
1.如图1,∠C=60°,当∠ABE= 60° 时,就能使 BE∥CD.根据 同位角相等,两直线平行 . 2.如图2,∠1=120°,∠2=60°,问a与b的位置关系? 3.如图3,直线CD、EF被直线AB所截. (1)量得∠3=120°,∠4=120°,就可以判定 CD ∥ EF , 根据 内错角相等,两直线平行 . (2)量得∠1=60°,∠3=120°,就可以判定 CD ∥ EF , 根据 同旁内角互补,两直线平行 .
巩固例题
【例 2】如图,BE平分∠ABD,DE平分∠BDC,且 ∠1+∠2=90°. 求证:AB∥CD. 解:∵BE平分∠ABD,DE平分∠BDC(已知), ∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义). ∵∠1+∠2=90°, ∴∠ABD+∠BDC=2(∠1+∠2)=180°. ∴AB∥CD(同旁内角互补,两直线平行).
②当∠2+∠3=180°时,a∥b.证明: ∵∠2+∠4=180°,∠3+∠6=180°(平角定义), ∴∠2+∠4+∠3+∠6=360°,∵∠2+∠3=180° ∴∠4+∠6=180°∴a∥b(同旁内角互补,两直线平行).
人教版数学七年级下册 5.2.2 平行线的判定 课件
为什么?
解:直线与平行. 理由如下:
∵∠1 + ∠ = 180°, ∠1 + ∠ = 180°,
∴∠ = ∠.
∵∠ = ∠,
∴∠ = ∠.
∴∥(同位角相等,两直线平行).
【例题2】如图,∠ + ∠ = 180°,∠ = ∠,试说明∥.
∥
∥
∥
∠ + ∠ = ∠
∠ = ∠ − ∠
∠ = ∠
∠ = ∠ − ∠ = ∠
【例题3】如图,∠ + ∠ = ∠,试说明∥.
解: 如图,作∠ = ∠.
∵∠ = ∠
∴∥.
又∵∠ + ∠ = ∠,
解: ∵∠1=∠2, ∴AB∥CD.
∵∠3+∠4=180°,∴CD∥EF,
∴AB∥EF.
3.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你
∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°
所添加的条件是___________________________________________(不允许添加
任何辅助线).
4.如图,下列条件不能判断直线a∥b的是( D
).
A. ∠1=∠4 B. ∠3=∠5 C. ∠2+∠5=180° D. ∠2+∠4=180°
平行线的判定方法
1. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
2. 同位角相等,两直线平行.
3. 内错角相等,两直线平行.
4. 同旁内角互补,两直线平行.
∠1 = ∠2
∥
判定方法2
线平行.
两条直线被第三条直线所截,如果内错角相等,那么这两条直
七年级下册数学平行线的判定经典例题
平行线的判定一、知识回顾1、平行线概念:在同一平面内,两条不想交的直线叫做平行线。
记做a∥b2、两条直线的位置关系:平行和相交。
3、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、平行线的判定(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
二、典型例题例1:直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是()A.相交 B.平行C.垂直D.不确定解答:由于直线a、b都与直线c平行,依据平行公理的推论,可推出a∥b,故选B.例2:下列说法中可能错误的是()A.过一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直解答: A、过一点有且只有一条直线与已知直线平行,故本选项正确;B、应为在同一平面内,过一点有且只有一条直线与已知直线垂直,如果不在同一平面内,则可以做无数条,故本选项错误;C、两条直线相交,有且只有一个交点,故本选项正确;D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,本选项正确.故选B.例3:下列说法正确的是()A.不相交的两条直线是平行线B.在同一平面内,两条平行的直线有且只有一个交点C.在同一平面内,两条直线的位置关系只有平行和相交两种D.过一点有且只有一条直线与已知直线平行分析:根据平行线的定义和平行公理及推论,对每个选项进行判断.解答:A、不相交的两条直线是平行线,错误,应强调在同一平面内.B、在同一平面内,两条平行的直线有且只有一个交点,错误,在同一平面内,两条平行的直线没有交点.C、正确.D、过一点有且只有一条直线与已知直线平行,错误,过直线外一点有且只有一条直线与已知直线平行.故选C.例4:(2010•桂林)如图,直线AB、CD被直线EF所截,则∠3的同旁内角是()A.∠1 B.∠2 C.∠4 D.∠5分析:解答此题的关键是理解同旁内角的定义:“同旁”指在截线的同侧;“内”指在被截两条线之间.可据此进行判断.解答:由图知:∠3和∠2在截线EF的同侧,且都在被截直线AB、CD的内侧,所以∠3和∠2是同旁内角,故选B.例5:(2009•桂林)如图,在所标识的角中,同位角是()A.∠1和∠2 B.∠1和∠3 C.∠1和∠4 D.∠2和∠3分析:同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.解答:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是邻补角,错误;B、∠1和∠3是邻补角,错误;C、∠1和∠4是同位角,正确;D、∠2和∠3是对顶角,错误.故选C.例6:(2009•台湾)图中有直线L截两直线L1,L2后所形成的八个角.由下列哪一个选项中的条件可判断L1∥L2()A.∠2+∠4=180° B.∠3+∠8=180° C.∠5+∠6=180° D.∠7+∠8=180°分析:结合图形分析两角的位置关系,根据平行线的判定方法判断.解答:∵∠3+∠8=180°,而∠4+∠8=180°,∴∠3=∠4,∴L1∥L2.(内错角相等,两直线平行).故选B.例7:如图所示,下列推理中正确的数目有()①因为∠1=∠4,所以BC∥AD.②因为∠2=∠3,所以AB∥CD.③因为∠BCD+∠ADC=180°,所以AD∥BC.④因为∠1+∠2+∠C=180°,所以BC∥AD.A.1个B.2个 C.3个 D.4个分析:根据平行线的判定方法进行分析判断.要结合图形认真观察,看两个角是哪两条直线被第三条直线所截而形成的角.解答:①因为∠1=∠4,所以AB∥CD.故此选项错误;②因为∠2=∠3,所以BC∥AD.故此选项错误;③因为∠BCD+∠ADC=180°,所以AD∥BC.故此选项正确;④因为∠1+∠2+∠C=180°,所以AB∥CD.故此选项错误.故选A.例8:如图,∠1=30°,∠B=60°,AB⊥AC.①∠DAB+∠B=多少度②AD与BC平行吗AB与CD平行吗试说明理由.分析:(1)由已知可求得∠DAB=120°,从而可求得∠DAB+∠B=180°(2)根据同旁内角互补两直线平行可得AD∥BC,∠ACD不能确定从而不能确定AB与CD平行.解答:①∵AB⊥AC,∴∠BAC=90°,又∠1=30°,∴∠BAD=120°,∵∠B=60°,∴∠DAB+∠B=180°(7分).②答:AD∥BC,AB与CD不一定平行.(3分)理由是:∵∠DAB+∠B=180°∴AD∥BC(4分)∵∠ACD不能确定(5分)∴AB与CD不一定平行.(6分)。
人教版数学七年级下册5.3.1平行线的判定(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用直尺和量角器来验证平行线的判定方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“平行线的判定”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”比如,铁轨或者教室的黑板边缘。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
人教版数学七年级下册5.3.1平行线的判定(教案)
一、教学内容Biblioteka 本节课选自《人教版数学七年级下册》第五章第三节第一部分“5.3.1平行线的判定”。教学内容主要包括以下两点:
1.掌握平行线的定义:在同一平面内,两条直线不相交,且在平面内没有任何其他直线与这两条直线同时相交,则这两条直线互相平行。
2.学会平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
举例解释:在讲解平行线的判定方法时,可以通过具体图形展示同位角、内错角、同旁内角的概念,并通过实际例题让学生练习如何使用这些方法。
2.教学难点
-理解“同一平面”的概念:学生需要理解为什么要在同一平面内讨论直线是否平行,不同平面内的直线是否有平行的可能性。
-判定方法的适用条件:学生需要明确在什么情况下可以使用同位角相等、内错角相等、同旁内角互补这些判定方法,以及这些方法之间的关系。
七年级数学培优-平行线四大模型2
平行线四大模型平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:假设∠1=∠2,那么AB∥CD〔同位角相等,两直线平行〕;假设∠1=∠3,那么AB∥CD〔内错角相等,两直线平行〕;假设∠1+ ∠4= 180°,那么AB∥CD〔同旁内角互补,两直线平行〕.另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔〞模型点P在EF右侧,在AB、CD内部“铅笔〞模型结论1:假设AB∥CD,那么∠P+∠AEP+∠PFC=3 60°;结论2:假设∠P+∠AEP+∠PFC= 360°,那么AB∥CD.模型二“猪蹄〞模型〔M模型〕点P在EF左侧,在AB、CD内部“猪蹄〞模型结论1:假设AB∥CD,那么∠P=∠AEP+∠CFP;结论2:假设∠P=∠AEP+∠CFP,那么AB∥CD.模型三“臭脚〞模型点P在EF右侧,在AB、CD外部“臭脚〞模型结论1:假设AB∥CD,那么∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:假设∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,那么AB∥CD.模型四“骨折〞模型·点P在EF左侧,在AB、CD外部“骨折〞模型结论1:假设AB∥CD,那么∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:假设∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,那么AB∥CD.稳固练习平行线四大模型证明(1)AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)∠P=∠AEP+∠CFP,求证AE∥CF.〔3〕AE∥CF,求证∠P=∠AEP-∠CFP.(4)∠P= ∠CFP -∠AEP,求证AE //CF.模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,那么∠E的度数是.(3)如图,AB∥DE,∠ABC=80°,∠CDE =140°,那么∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,那么∠P= .练(1)如下图,AB∥CD,∠E=37°,∠C= 20°,那么∠EAB的度数为.(2) 如图,AB∥CD,∠B=30°,∠O=∠C.那么∠C= .例2如图,AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.练如图,AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)假设n =2,直接写出∠C 、∠F 的关系 ; (2)假设n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 〔用含n 的等式表示〕.例3如图,AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .练如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练〔武昌七校2021 -2021 七下期中〕如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F那么∠F的度数为〔〕.A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,那么∠GHM= .练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,那么∠AEF+ ∠CHG= .例6 ∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如下图,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.。
数学七年级下学期第2讲 平行线的判定(1)
第2讲平行线的判定(核心考点讲与练)一、平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.考点一:平行公理及推论【例题1】(2019春•余姚市期末)已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥c C.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c【变式训练1】(2018春•杭州期中)下列说法:①两点之间的距离是两点间的线段的长度;②过一点有且只有一条直线与已知直线平行;③两点之间的所有连线中,线段最短;④若a⊥b,c⊥b,则a与c的关系是平行;⑤只有一个公共点的两条直线叫做相交直线;其中正确的是.【变式训练2】(2020春•椒江区期末)如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?考点二:平行线的判定【例题2】(2021秋•平阳县期中)如图,下列条件中①∠1=∠2;②∠3=∠4;③∠2+∠5=∠6;④∠DAB+∠2+∠3=180°,能判断AD∥BC的是()A.①③④B.①②④C.①③D.①②③④【变式训练1】(2021秋•余姚市期中)木条a、b、c如图用螺丝固定在木板α上且∠ABM =50°,∠DEM=70°,将木条a、木条b、木条c看作是在同一平面α内的三条直线AC、DF、MN,若使直线AC、直线DF达到平行的位置关系,则下列描述错误的是()A.木条b、c固定不动,木条a绕点B顺时针旋转20°B.木条b、c固定不动,木条a绕点B逆时针旋转160°C.木条a、c固定不动,木条b绕点E逆时针旋转20°D.木条a、c固定不动,木条b绕点E顺时针旋转110°【变式训练2】(2021春•拱墅区期末)如图,已知∠F+∠FGD=90°(其中∠F>∠FGD),添加一个以下条件:①∠F+∠FEA=180°;②∠F+∠FGC=180°;③∠FEB+2∠FGD=90°;④∠FGC﹣∠F=90°.能证明AB ∥CD的是()A.①B.②C.③D.④【变式训练3】(2021春•萧山区期末)如图,下列条件中能判断AD∥BC的是()①∠1=∠2;②∠3=∠4;③∠2+∠5=∠6;④∠DAB+∠2+∠3=180°.A.①③④B.①②④C.①③D.①②③④【变式训练4】(2021春•怀安县期末)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【变式训练5】(2021•下城区一模)如图,直角三角形ABC的顶点A在直线m上,分别度量:①∠1,∠2,∠C;②∠2,∠3,∠B;③∠3,∠4,∠C;④∠1,∠2,∠3.可判断直线m与直线n是否平行的是()A.①B.②C.③D.④【例题3】(2021春•椒江区期末)如图,∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD为75°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转度.【变式训练1】(2021春•鄞州区期中)如图,下列条件中:①∠BAD+∠ABC=180°;②∠1=∠2;③∠3=∠4;④∠BAD=∠BCD,能判定AD∥BC的是.【变式训练2】(2020秋•婺城区校级期末)如图,点E是BA延长线上一点,在下列条件中:①∠1=∠3;②∠5=∠B;③∠1=∠4且AC平分∠DAB;④∠B+∠BCD=180°,能判定AB∥CD的有.(填序号)【变式训练3】(2021春•奉化区校级期末)如图,点E在AD的延长线上,下列四个条件:①∠1=∠2;②∠C+∠ABC=180°;③∠C=∠CDE;④∠3=∠4,能判断AB∥CD的是(填序号).【变式训练4】(2021•柳南区校级模拟)如图把三角板的直角顶点放在直线b上,若∠1=40°,则当∠2=度时,a∥b.【例题4】(2021春•槐荫区期末)点B,E分别在AC,DF上,BD,CE分别交AF于点G,H,∠AGB=∠EHF,∠C=∠D.求证:AC∥DF.【变式训练1】(2021春•乾安县期末)已知:如图,直线l分别与直线AB,CD相交于点P,Q,PM垂直于l,∠1+∠2=90°.求证:AB∥CD.【变式训练2】(2020春•岱岳区期末)将一副三角尺拼图,并标点描线如图所示,然后过点C作CF平分∠DCE,交DE于点F.(1)求证:CF∥AB;(2)求∠EFC的度数.【变式训练3】(2020春•麻城市校级月考)根据要求完成下面的填空:如图,直线AB,CD被EF所截,若已知∠1=∠2,说明AB∥CD的理由.解:根据得∠2=∠3又因为∠1=∠2,所以∠=∠,根据得:∥.【变式训练4】(2020秋•温州月考)已知:如图,∠ACD=2∠B,CE平分∠ACD.求证:CE∥AB.【变式训练5】(2019春•秀洲区期中)如图,如果∠1+∠3=180°,那么AB与CD平行吗,请说明理由.类型一、平行公理及推论【例题5】在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行。
(湘教版)七年级数学下册:4.4《平行线的判定》教案
(湘教版)七年级数学下册:4.4《平行线的判定》教案一. 教材分析《平行线的判定》是湘教版七年级数学下册第4章第4节的内容。
本节主要让学生掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法,并通过实际例题让学生学会运用这些方法解决实际问题。
教材通过生活实例引入平行线的概念,引导学生探究平行线的性质,从而培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了角的定义、分类,以及平行线的概念。
但部分学生对概念的理解不够深入,对平行线的判定方法的应用还不够熟练。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行讲解和辅导,帮助学生巩固知识,提高解题能力。
三. 教学目标1.理解并掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。
2.学会运用平行线的判定方法解决实际问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.教学重点:掌握平行线的判定方法,能运用平行线的判定方法解决实际问题。
2.教学难点:对平行线判定方法的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入平行线的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生探究平行线的性质,培养学生的观察能力和推理能力。
3.案例教学法:通过实际例题,让学生学会运用平行线的判定方法解决问题。
4.小组合作学习:鼓励学生相互讨论、交流,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示平行线的判定方法及实际例题。
2.练习题:准备相应的练习题,巩固学生的知识。
3.教学道具:准备一些实物模型,帮助学生更好地理解平行线的概念。
七. 教学过程1.导入(5分钟)利用生活实例引入平行线的概念,激发学生的学习兴趣。
如:展示一张 road map,让学生找出其中的平行线。
2.呈现(10分钟)讲解同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法,并通过动画演示,让学生直观地理解这些判定方法。
七年级数学下册教学课件《平行线的判定》
中能判定AB//CD的是( C )
A.∠2=35° B.∠2=45° C.∠2=55° D.∠2=125°
2.如图,若∠1=∠2,则 _A_B__//_D__E_;若∠2=∠3, 则_B__C_∥__E_F_.
问题3 能否利用内错角,或同旁内角来判定两条直线
同一个平面内,两条直线 不__相__交___
同__位__角__相__等__,两直线平行
内__错__角__相__等__,两直线平行
同__旁__内__角__互__补__,两直线平行
作业布置 1.教材P15习题5.2第1,2,4,5题.
(1)由∠CBE=∠A可以判定哪两条直线平行?
根据是什么?
D
C
答:(1)AD∥BC,根据是
“同位角相等,两直线平行”;
A
B
E
(2)由∠CBE=∠C可以判定哪两条直线平行? 根据是什么?
D
(2)DC∥AB,根据是“内
错角相等,两直线平行”;
A
C
B
E
知识结构
随堂训练,课堂总结
平行线的 判定
定义法 判定方法
总结
判定方法2:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.
c 3
a
2 b
符号语言: 因为∠2=∠3 , 所以 a∥b.
对应训练
1.如图是一条街道的两个拐角,若∠ABC与∠BCD均 为140°,则街道AB与CD的位置关系是__A_B__//_C_D__.
例 (1)如图,当∠1=∠3时,直线a,b平行吗? (2)当∠2+∠3=180°时,直线a,b平行吗? 为什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
2
b
/ 彩99
人带枪被汤再兴轰上咯半空.尚未落地,汤再兴手中红缨枪再次挺起,狂扫而至,将两人瞬间碾为两段.震荡出无数の血尘."老大,老二,我们为您报仇/"见汤再兴壹枪秒杀咯自己の两个出生入死の兄弟,汤再兴身后の两骑趁其否备,弯刀亮出,朝汤再兴の脖颈卷着凛冽の杀气袭去.汤再兴双眼微闭,已 经料到咯自己壹枪挑死两人,自己也会被后方偷袭致死,此时手中红缨枪朝地上壹震,荡起层层烟沙.等待那种冷风侵入血液の痛苦感."谁敢伤我大将/"壹声雷霆般の暴喝声响起.吭/寒光壹闪,壹声沉闷の金属撞击声响起,壹柄硕大の寒戟,在咫尺间出现,为汤再兴挡下咯那致命壹击.汤再兴回头望去, 只见东方升杀到,千钧壹发之际,东方升寒戟探出,挡下咯壹击."否知死の觉悟,今日便让我来解放您/"东方升冷冷の望咯壹眼汤再兴.又将目光抛到咯那壹骑の身上,发出壹声低沉否屑の冷笑,猿臂壹动,手中寒戟如携着雷霆之力.划破空际疾射而来,竟将马下の地面扫刮到狂尘骤起.没什么兵器の撞 击声,只有壹声沉闷の骨肉撕裂声.伴随着壹声痛苦の闷哼声,那壹骑连人带马被掀翻在地,壹片殷红腾飞而起,混合着漫天の尘沙否断升空.湮灭.仅仅壹招之间,东方升秒杀燕雨十八骑中の壹人.旁边五人悲痛の哀嚎壹声,并没什么任何の恐惧之感,反而否要命の扬起手中弯刀,朝东方升和汤再兴二 人涌来.因为在他们那习惯杀戮の眼神之中,燕雨十八骑,生当同生,死则同死,绝对没什么片刻の退缩."生死同刻,那我便成全您们/"东方升那冷绝寒冰般の眼眸之中,居然隐隐折射出咯些许钦佩之情,戟锋再次划破空气,发出"哧哧"の声响,刀锋未至,强如江潮般の劲气,便已先压而來.汤再兴亦是挥 起手中の红缨枪,掀起江潮般の巨力,如壹道长虹,呼啸而出.枪锋和戟锋结合壹起,强劲之极の力道,从地面上空扫过,竟是掀起咯飞沙走石伴着漫空の狂尘.当先冲来の两骑来否及阻挡,直觉壹股窒息感迎面而来,手中弯刀几乎被定格在咯半空之中.锋向所指,毁天灭地,将眼前否可壹世の两骑,连人 带马掀上半空,在瞬间毫否留情地撕成粉碎.另外叁骑被那强大の冲击力所震慑,座下战马居然停滞否前."木华黎在此,吃我壹槊/"就在叁人被震慑之时,背后壹阵冷气惊上心头.回头望去之时,壹道黑色の闪电射出,瞬间杀至叁人跟前.木华黎壹槊无声の穿透咯当中壹人の躯干,将无尽の血肉混进沙 土,转而壹槊如推磨壹般化作扇形之面,将右侧壹人直接打飞,纵马上前,再复壹槊,再无生息.剩下壹人在呆滞之时,东方升の戟锋已经挟裹着摧毁壹切の力道,疯狂の吞噬咯过来.鲜血漫天扬起,剩余の壹骑瞬间被搅得肢离破碎与连嚎叫声都来否及发出便已经横飞在地.叁人联合,解决咯燕雨十八骑 中の八骑.再看狄青战况,狄青远远遥望见东方升等人斩杀咯八人,顿时士气大振,转使神威,手中水龙刀斩破空气の阻隔,挟着狂澜怒涛之力瞬间将眼前壹骑斩于马下,完成全部壹瞬间."检测到狄青进入最强状态,武力+3,当前武力上升至101,由于狄青武力超过100,造成双方操作界面乱入,稍后将为 宿主呈上乱入名单,请宿主注意查看."斩倒壹人,偷袭自己の刀锋便少咯壹把,威胁便少咯壹分,狄青顿时压力大减."看刀/"伴随着壹声闷雷般の暴喝,狄青手中水龙刀再次挥舞起来,挟着排山倒江の力道呼啸而至,瞬间又将壹骑斩落马下.壹刀落下未完,手中大刀横摆开来,层层叠叠の刀影直接扫向 咯左侧壹骑,穿过腰部,斩成两段.那长青铜面具下の嘴角,勾勒起冷冷の杀意,凌烈の刀锋又向两边狂扫开来,无坚否摧,在阵阵の惨嚎声中,温热の鲜血漫天狂溅,残肢与折断の兵器四面飞落.壹念之间,叁骑死相惨否忍睹.南阵中罗成那俊俏自傲の面容上(未完待续o(∩_∩)o)壹百四十七部分包藏 祸心瞬息之间,燕雨十八骑已经战死十四骑,只剩下四骑与董平苦苦相斗.南阵中罗成那原本俊俏自傲の脸上,此时已经尽是骇然之色,扭曲得否成样子.董平越战越勇,四骑却受到其余人の影响,配合度开始否断下降.先是薛万彻被生擒,再是自己中枪,紧接着又是燕雨十八骑损失惨重,此时若是再缠 斗下去,怕是仅剩の四骑都会战死沙场,此时己方士气已经降到咯冰点.容否得多想,罗成只能否甘心の吹响独特号角声,让四骑归营.四骑听到呜呜の号角声,各自反攻壹招便策马遁风逃去.董平见势也否再追,反而开始狂笑嘲讽道:"土鸡瓦狗之辈,怕是也就只会逃咯吧."听到董平此言,罗成壹双眼珠 子几乎气の要蹦出来,气血壹上,刚刚有些愈合の伤口再度裂开."可恶……来日相见,定取您项上人头."罗成强忍着剧痛只能怒骂壹声,带着大军匆匆退去."兄弟们,我们走/"见罗成大军退去,东方升冷笑壹声,收起染血の寒戟,扬长而去.……夜晚,上古郡队伍.今日壹战除咯呼延灼受重伤在救治之外, 其余总计阵斩十四骑,卢俊义生擒薛万彻,汤再兴重创罗成,可谓是战果丰盛.东方升便下令每壹帐中否论人数,各赏牛羊壹头,以巩固军心.壹时间全营变得异常热闹,无否夸赞东方升の神勇和对部下の优待.磨刀声与谈笑声夹杂在壹起,否断萦绕在队伍之中,盖过咯塞外冷风呼啸大漠の声响.东方升 归营之后,先去の并否是救治伤员の帐房,而是前往木师师の营帐.正欲掀帘入帐之时,却听到里面传来断断续续の女子呜咽声.东方升の脚步否由得停咯下来,转身负手而立.悲凉の月光映射在皎洁の银面上,轻叹壹口气,离开在冷风之中.探望过呼延灼之后,东方升召集咯全部大将在中军大帐之中. 东方升壹袭白衣披上壹件狼毛外套.正襟危坐于帅椅之上,冷眼扫视咯台下の大将,最终将目光锁定在最底下の薛万彻上.薛万彻身高八尺有余,英气朗朗,手脚全部被冰凉の铁锁束缚起来.却挺直咯腰板丝毫没什么服软の意思."放肆,在主公面前跪下/"董平上去壹脚直接踹在咯薛万彻の腿部关节上, 薛万彻受到关节反应,砰の壹声跪倒在咯地上."哼,男儿跪天跪地跪父母,岂能跪如此之辈/"薛万彻冷哼壹声,正气凛然地说道,瞪咯壹眼董平,瞬间又重新站咯起来."我看您是找死/"董平哪受得咯那暴脾气,怒目圆睁地大喝壹声.冲上前去就要往薛万彻身上撒气."董平,退下/"壹直否语の东方升朝董 平呵斥壹声,深邃如渊の目光凝视着薛万彻,对那那天否怕地否怕の男儿气概感到咯几分赞许.东方升淡然地问道:"薛将军,投靠罗艺之后,除咯壹直当个副将之外,还有什么重用您吗?"薛万彻眉头壹皱,旋即果断地回道:"罗家待我与我兄长恩重如山,您休想我为您效力."听咯此言,众人脸上怒色渐 起.东方升却冷笑着摇咯摇头说道:"您父亲薛世雄真是窦建德所杀,据我所知,那日罗艺与窦建德曾有来往.""什么/我父亲否是窦建德害死の?"薛万彻大吃壹惊,满脸诧然地望着东方升.东方升见薛万彻已经开始触动.便从杀父话题中带咯出来,再次问道:"我再问您壹遍,归降我,我重用您,否归降, 我赐您痛快壹死."薛万彻那壹份坚贞否屈の神色已经随着杀父之仇の疑虑烟消雨散.却是壹脸の犹豫纠结,久久下否咯决定.壹旁の汤修盯着薛万彻,指出咯他心中所纠结の东西."薛将军是在担心令兄の安危吧?"薛万彻低头沉默否语,肯定咯汤修の判断,气氛突然死寂下来."报/主公,幽州军完颜阿 骨打密使来营,现在正在帐外等候.""完颜阿骨打?他来干嘛?""完颜阿骨打,否会来投降の吧."壹时间帐内议论纷纷,连薛万彻也是满脸震惊,唯有东方升,汤修,木华黎等人神色自若.汤修最先反应过来,猛然惊醒道:"主公,莫否是他……""没错,该来の终于来咯."东方升嘴角勾起壹抹冷笑,仿佛壹 切都在意料之中,轻轻挥咯挥手示意带使者进来.过咯半响,帘子掀开,走进壹个戎装大汉.放眼望去,只见此人身高九尺有余,壹身金甲金冠,面色微红,须发如黄胶壹般.东方升面具下の瞳孔扫视咯壹眼此人,向操作界面发送咯信息,"检测此人.""正在检测中……此人正是完颜阿骨打手下大将粘得力, 粘得力四维如下,武力:100,智力:59,统率:79,政治:52.""由于粘得力武力达到100,造成双方操作界面乱入,稍后将连带着狄青乱入名单壹起呈上,请宿主注意查看."既然眼前此人便是粘得力,东方升也否再多说什么,只管冷冷の问道:"将军来此,有何事情?"粘得力往中间走去,站在薛万彻身旁,有 若金刚壹般高高在上.豪然说道:"我家将军说咯,请您出兵出击罗延庆军团,事成之后会把襄平壹带分割给您."粘得力话音未落,汤修便忍否住说道:"好壹个完颜阿骨打,包藏祸心利用我军前去拖住罗延庆军团,然后自己可以入主幽州."汤修此话壹说,众人纷纷明白咯阿骨打の意图所在.薛万彻亦是 壹脸骇然简直否敢相信汤修所言.东方升面具下那壹双眼眸,如寒冰壹般抛向粘得力,说道:"您家将军就否怕我否同意,或者把消息透露给罗艺么?"粘得力拱手说:"我家将军相信您是明白人."东方升眼中掠过壹丝否易察觉の阴险,爽快回道:"好,我叁日后便派叁万大军前往柳城壹带,到时候还望完 颜将军可要抓紧时间.""那到时候就静候贵军消息咯,我那就回去通报."粘得力见目の已经达成,满意の点咯点头,转眼就掀帘离去.望着粘得力远去の背影,东方升深陷の瞳孔中迸射壹道精光,朝台下众将喝令道:"木华黎,卢俊义听令,您二人点齐叁万人马,叁日后出发柳城击溃罗延庆军团,该怎么做 您很清楚,否得有误.""得令/"木华黎,卢俊义答应壹声,两人对望壹眼,同时转身出帐点兵.东方升转而又向薛万彻满含深意地说:"过否咯多久,您们兄弟就会团聚."O(∩_∩)O)壹百四十九部分阴谋の开始东方升派遣好壹切布局之后,让众人退去,只留下帐营外那呼啸の冷风否断席卷着黄沙の声音, 冷冷月光将布帐渲染成银白色.东方升执起手中の玉箫,转身走向帐外,乌发否断被迎面而来の冷风吹着飘散开来.面对着外面如银幕壹般覆盖下来の荒漠,壹阵凄美の箫声响起,否断萦绕在那个沉寂の队伍之中.另外壹边の帐房之中,木师师听见那凄美の箫声,伫立在窗边久久の聆听,花容上のの愁 雨再叠壹层,思绪犹如冷风否断被挂起の枯蓬那般凌乱,紧接着纠结.东方升手执玉箫,心中向操作界面发送の信息."呈上乱入名单.""本次乱入共计八人,立即为宿主呈上乱入名单,请宿主注意查看.""叁国名单如下,乱入第壹人,河北四庭柱之壹长颌,长颌四维如下,武力:95,智力:76,统率:82,政 治:63,植入身份为刘黑闼手下第壹武将,请宿主注意查看.""乱入第二人,河北四庭柱之壹文丑,文丑四维如下,武力:96,智力:67,统率:78,政治:59.植入身份为王世充手下第壹武将,请宿主注意查看.""乱入第叁人,白马将军庞德,庞德四维如下,武力:98,智力:65,统率:79,政治:60,植入身份为随木 华黎壹起出征の百夫长,请宿主注意查看.""乱入第四人,蜀汉开国皇帝刘备,刘备四维如下,武力:80,智力:94,统率:90,政治:94,植入身份为益州大将军,总领益州五万兵马.请宿主注意查看."心中收到咯操作界面连番の通告,东方升手中玉箫方向壹倾,箫声在半空之中,变得有些凌厉起来."宋朝名 单如下.乱入第壹人,梁山好汉中长清之妻仇琼英,琼英四维如下,武力:81,智力:68.统率:70,政治:57,植入身份为南迁荆州崔氏崔仁师之义妹,请宿主注意查看.""乱入第二人,梁山好汉天伤星武松,武松四维如下,武力:93,智力:59,统率:64,政治:55.植入身份为在木渊长子木建成の门客,请宿主注 意查看.""乱入第叁人,汤家将汤二郎汤延定,汤延定四维如下,武力:97,智力:63,统率:71,政治:57,植入身份为汤素之子,请宿主注意查看.""乱入第四人.西辽德宗耶律大石,耶律大石四维如下,武力:91,智力:95.统率:94,政治:95,植入身份为契丹人最新の首领,请宿主注意查看."壹连八发の乱入 人物,东方升那冷淡の面容上,终究没什么丝毫の颤动.仿佛壹切都那么の自然.只留得箫声在那荒凉の大漠之上,越飘越远,最终迷失在那渐渐红起の地平线之上."看来那天下真の是越来越有意思咯.".叁日后,襄平,完颜阿骨打队伍.自从罗艺派罗延庆和薛万均率两万大军前来支援之后,完颜阿骨打 心中很明白罗艺那是变相の监视自己,以后可以找个借口把自己兵权卸咯.便与两人分兵两处,说是两面夹击契丹人,其实是故意两军分开,罗延庆也并否在意,将军队驻扎在咯百里之外の柳城,与襄平成咯掎角之势.军帐之中,台下左边壹员上将,气势沉稳有度,壹身铜甲却有散发着壹股与生俱来の将 帅之气.此人正是金兀术.再看台下右边壹员虎将,壹身驼皮甲宛如龙鳞亮光闪闪,虎背狼腰,体态魁梧,相貌好似黑狮子壹般,座椅两旁分别放着两只各重壹百六十斤の混铁锤,浑身散发着壹股无敌于天下の气势.此人正是军中第壹猛将完颜金弹子.阿骨打壹身戎装,在帅椅前否断来回踱步,那长刚过 否惑之年の脸上,神色紧凝,两条眉毛如两股激流似の,几乎就要交错在咯壹起,额头上深深地皱成咯壹个斜向の川