线性代数论文——矩阵中不可用的规律与结论

合集下载

线性代数的应用论文

线性代数的应用论文

论文:线性代数的应用与心得体会班级:姓名:学号:指导老师:完成时间:2014年10月20日目录摘要 (2)关键词 (2)一、线性代数被广泛运用的原因 (2)二、线性代数在实际中的应用 (2)1. 用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体 (2)2. 希尔密码 (2)3.在人们平常日常生活的应用——减肥配方的实现 (3)4、在城市人们出行的应用——交通流的分析 (4)5、马尔可夫链 (5)6、在人口迁移的应用人口迁徙模型 (5)三、心得与体会 (7)摘要我们对线性代数的了解大概是,线性代数理论有着悠久的历史和丰富的内容,还有其主要知识:矩阵、方程组和向量;我们也应该了解其在众多的科学技术领域和实际生活中的应用都十分广泛;下面就是看一些具体实例应用,和一些心得体会;关键词线性代数;实际生活;应用实例;心得体会;;一、线性代数被广泛运用的原因为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢原因之一,大自然的许多现象恰好是线性变化的,研究的是单个变量之间的关系;例如我们高中学过的物理学科中,物理可以分为机械运动、电运动、还有量子力学的运动;而比较重要的机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,其实这又恰恰符合基本的线性微分方程;再如电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组;原因之二,之后随着科学的发展,我们不仅要研究单个之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而且由于计算机的发展,了的问题又可以计算出来,所以,线性代数因这方面的成为了解决这些问题的有力工具而被广泛应用;原因之三,在数学中线性代数与几何和代数有着不可分割的联系;线性代数所体现的观念与代数方法之间的联系,从具体概念变为出来的,对于强化人们的,增强科学性是非常有用的;二、线性代数在实际中的应用1.用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体2.希尔密码希尔密码Hill Password是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明;每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果模26;注意用作加密的矩阵即密匙在\mathbb_^n必须是可逆的,否则就不可能译码;只有矩阵的行列式和26互质,才是可逆的;例题、设明文为HPFRPAHTNECL,密钥矩阵为:3.在人们平常日常生活的应用——减肥配方的实现大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮食也没有规律,为了身体的健康就需要注意日常饮食中的营养;大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养它们的质量以适当的单位计量;设三种食物每100克中蛋白质、碳水化合物和脂肪的含量如下表,表中还给出了80年代美国流行的剑桥大学医学院的简捷营养处方;现在的问题是:如果用这三种食物作为每天 营养 每100g 食物所含营养g减肥所要求的每日营养量脱脂牛奶 大豆面粉 乳清 蛋白质 36 51 13 33 碳水化合物 52 34 74 45 脂肪73123个单位100g,表中的三个营养成分列向量为:12136511352,34,74,07 1.1a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则它们的组合所具有的营养为11223312336511352347407 1.1x a x a x a x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦使这个合成的营养与剑桥配方的要求相等,就可以得到以下的矩阵方程:123365113335234744507 1.13x x Ax b x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦用MA TLAB 解这个问题非常方便,列出程序ag763如下: A=36,51,13;52,34,74;0,7, b=33;45;3 x=A\b程序执行的结果为:0.2772 0.3919 0.2332x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦即脱脂牛奶的用量为,大豆面粉的用量为,乳清的用量为,就能保证所需的综合营养量;4、在城市人们出行的应用——交通流的分析某城市有两组单行道,构成了一个包含四个节点A,B,C,D 的十字路口如图所示;在交通繁忙时段的汽车从外部进出此十字路口的流量每小时的车流数标于图上;现要求计算每两个节点之间路段上的交通流量x 1,x 2,x 3,x 4;解:在每个节点上,进入和离开的车数应该相等,这就决定了四个流通的方程: 节点A: x 1+450=x 2+610 节点B: x 2+520=x 3+480 节点C: x 3+390=x 4+600 节点D: x 4+640=x 2+310将这组方程进行整理,写成矩阵形式:12233414= 160 = - 40 - = 210= -330x x x x x x x x ---其系数增广矩阵为:11 160 11 - 40 [,]1121011 -330A b -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦ 用消元法求其行阶梯形式,或者直接调用U0=rrefA,b,可以得出其精简行阶梯形式为1 0 0 -1330 0 1 0 -1 170 U0= 0 0 1 -1 210 0 0 0 00⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦注意这个系数矩阵所代表的意义,它的左边四列从左至右依次为变量x 1,x 2,x 3,x 4的系数,第五列则是在等式右边的常数项;把第四列移到等式右边,可以按行列写恢复为方程,其结果为:x 1=x 4+330, x 2=x 4+170, x 3=x 4+210图3 单行线交通流图0=0由于最后一行变为全零,这个精简行阶梯形式只有三行有效,也就是说四个方程中有一个是相依的,实际上只有三个有效方程;方程数比未知数的数目少,即没有给出足够的信息来唯一地确定x1,x2,x3,和x4;其原因也不难从物理上想象,题目给出的只是进入和离开这个十字路区的流量,如果有些车沿着这四方的单行道绕圈,那是不会影响总的输入输出流量的,但可以全面增加四条路上的流量;所以x4被称为自由变量,实际上它的取值也不能完全自由,因为规定了这些路段都是单行道,x1,x2,x3,和x4;都不能取负值;所以要准确了解这里的交通流情况,还应该在x1,x2,x3,和x4中,再检测一个变量;5、马尔可夫链马尔可夫链Markov Chain,描述了一种状态序列,其每个状态值取决于前面有限个状态;马尔可夫链是具有马尔可夫性质的随机变量的一个数列;这些变量的范围,即它们所有可能取值的集合,被称为“状态空间”,而的值则是在时间n的状态;如果对于过去状态的条件概率分布仅是的一个函数,则这里x为过程中的某个状态;上面这个恒等式可以被看作是马尔可夫性质;例题、6、在人口迁移的应用人口迁徙模型设在一个大城市中的总人口是固定的;人口的分布则因居民在市区和郊区之间迁徙而变化;每年有6%的市区居民搬到郊区去住,而有2%的郊区居民搬到市区;假如开始时有30%的居民住在市区,70%的居民住在郊区,问十年后市区和郊区的居民人口比例是多少30年、50年后又如何这个问题可以用矩阵乘法来描述;把人口变量用市区和郊区两个分量表示,即,ck k sk x x x ⎡⎤=⎢⎥⎣⎦其中x c 为市区人口所占比例,x s 为郊区人口所占比例,k 表示年份的次序;在k=0的初始状态:0000.30.7c s x x x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦;一年以后,市区人口为x c1= x c0+,郊区人口x s1= + x s0,用矩阵乘法来描述,可写成:11010.940.020.3 0.29600.060.980.7 0.7040c s x x Ax x ⎡⎤⎡⎤⎡⎤⎡⎤==⋅==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 此关系可以从初始时间到k 年,扩展为2120k k k k x Ax A x A x --====,用下列MATLAB 程序进行计算:A=,;, x0=; x1=Ax0, x10=A^10x0 x30=A^30x0 x50=A^50x0程序运行的结果为:1103050 0.2960 0.2717 0.2541 0.2508,,,, 0.7040 0.7283 0.7459 0.7492x x x x ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦无限增加时间k,市区和郊区人口之比将趋向一组常数 ;为了弄清为什么这个过程趋向于一个稳态值,我们改变一下坐标系统;在这个坐标系统中可以更清楚地看到乘以矩阵A 的效果;选u 1为稳态向量,T 的任意一个倍数,令u 1=1,3T 和u 2=-1,1T ;可以看到,用A 乘以这两个向量的结果不过是改变向量的长度,不影响其相角方向:110.940.02110.060.9833Au u ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦220.940.0210.920.920.060.9810.92Au u --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦初始向量x0可以写成这两个基向量u1和u2的线性组合;0120.30110.250.050.250.050.7031x u u -⎡⎤⎡⎤⎡⎤==⋅-⋅=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦因此0120.250.05(0.82)k k k x A x u u ==-式中的第二项会随着k 的增大趋向于零;如果只取小数点后两位,则只要k>27,这第二项就可以忽略不计而得到01270.250.250.75k kk x A x u >⎡⎤===⎢⎥⎣⎦适当选择基向量可以使矩阵乘法结果等价于一个简单的实数乘子,避免相角项出现,使得问题简单化;这也是方阵求特征值的基本思想;这个应用问题实际上是所谓马尔可夫过程的一个类型;所得到的向量序列x1,x2,...,x k称为马尔可夫链;马尔可夫过程的特点是k时刻的系统状态x k完全可由其前一个时刻的状态x k-1所决定,与k-1时刻之前的系统状态无关;三、心得与体会没上线性代数的时候,心中还有点忐忑,怕自己学不好;但是当真的学时,用心听老师讲的每节课,还是感觉很轻松的;然后每章结束后的习题,自己认真完成,不会的再翻翻以前学过的知识点和笔记,自己就会豁然开朗,而且死死地记住题型,考试的时候不会紧张而且游刃有余;可以总结一下,线性代数主要研究三种对象:矩阵、方程组和向量;这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法;因此,熟练地从一种理论的叙述转移到另一种中去,是学习线性代数时应养成的一种重要习惯和素质;如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性;由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易;线性代数作为数学的一门,体现了数学的思想;数学上的方法是相通的;比如,考虑特殊情况这种思路;线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况;高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路;通过思想方法上的联系和内容上的关系,线性代数中的内容以及线性代数与高等数学甚至其它学科可以联系起来;只要建立了这种联系,线代就不会像原来那样琐碎了;在线性代数的学习中,注重知识点的衔接与转换,努力提高综合分析能力;线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对再问做得好不好只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了;现在我们可以在线完成过程考核,在电脑上登录,然后有不同的题型,说是考核其实也是一种练手和复习,加强知识的巩固;每一题解答过后都会有详解,可以看到自己到底错在哪,哪里学的不好;我觉得这是一种很好的学习工具,我们一定要好好利用,来学习线性代数;了解每种题型很关键,当然都离开不了矩阵、方程组和向量,掌握它们是关键;线性代数有很多在现实生活中的应用,我们要会运用线性代数来解决现实生活中的一些事或麻烦;我们的生活中到处都存在着数学,所以用心它的魅力吧;。

矩阵理论论文

矩阵理论论文

矩阵分解在信号和图像处理方面的应用矩阵理论是一门发展完善、理论严谨、方法独特的理论基础课程,它对培养学生的逻辑能力、推理能力具有重要作用,但它又能广泛应用于各个领域。

矩阵理论主要内容包括线性空间、线性变换、范数理论;矩阵分析;矩阵分解;广义逆矩阵;特征值的估计以及广义特征值等。

用矩阵的理论和方法来处理现代工程技术中的各种问题已经越来越普遍。

下面简单介绍一下矩阵的奇异值分解在信号和图像处理方面的简单应用。

此方法近年来在数据降维和压缩,滤波器设网络节点估计、小波变换结果的后续处理等很多领域都获得了重要的应用。

在滤波器设计方面,VOZALIS等将SVD 用于协同滤波,他们的研究结果表明,SVD提高了协同滤波过程中预测的质量和精度。

而在消噪方面,LEHTOLA等利用SVD和数学形态学相结合,对心电信号(Electrocardiogram,ECG)进行处理,消除了噪声的影响,提高了心电图诊断的准确性。

同时奇异值分解已用于从孕妇皮肤测量信号中提取胎儿心电信号。

在另一些研究中SVD则被利用来实现特征提取和弱信号分离,如LIU等利用SVD从背景噪声强烈的振动信号中提取周期性冲击信息。

SVD在神经网络中也获得了应用,如TEOH等利用SVD实现了对隐层空间中模式的线性独立性分析,进而决定了隐层神经元节点的数目。

SVD的正交化特性在对小波和小波包变换结果的后续处理中也得到了有效的应用,如XIE等利用SVD对小波包分解后的肌电信号进行正交化处理,以获得代表肢体运动模式的最优特征,进而对肌电信号进行分类,用于对假肢的控制。

小波多分辨分析的本质就是把信号在一系列不同层次的空间上进行分解,获得相应的近似和细节信号,从而以不同的层次显示信号的各种概貌和细节特征[9],这种多分辨思想使得小波分析在很多领域获得了极为广泛的应用。

基于这种多分辨分析思想的思考,赵学智在SVD中提出了一种矩阵二分递推构造方法,根据该方法得到的SVD分解结果将分属于不同层次的空间,而且下一层次空间的基矢量是利用上一层次的近似基矢量而获得的,实现了利用SVD以不同的层次来展现信号的概貌和细部特征。

矩阵对策定理

矩阵对策定理

a
j
ij
y j * v*
a
i
ij i
x *
(4)
或 E(i,y*) v* E ( x*, j ) 又由 E ( x*, y*) E (i, y*)xi * v * xi * v * E ( x*, y*) E ( x*, j ) y j * v * y j * v *
E (i, y*) E ( x*, y*) E ( x*, j ) 其中,E (i, y) a y E( x, j ) aij xi ij j
j i
Hale Waihona Puke (3)证明:设(x*,y*)是G的解,则由引理2可知
E ( x, y*) E ( x*, y*) E ( x*, y)
E ( x, y*) E (i, y*)xi E ( x*, y*) xi E ( x*, y*)
定理2 对任一矩阵对策G={S1,S2; A},一定存在混合策略意义下的解。 证明:由引理3,只要证明存在x*S1*,y*S2*,使得(3)式成立。为此, 考虑如下线性规划问题:
min v max w aij y j v i 1,2,...,m aij xi w j 1,2,...,n i j ( P) 和( D ) xi 1 y j 1 i j xi 0, i 1,2,...,m y j 0, j 1,2,...,n
j i j
ai* j* m ax aij* m in m ax aij
i j i
则由
i
m ax m in aij m in m ax aij ai* j*
i j j i j

线性代数论文(矩阵在自己专业中的应用及举例).

线性代数论文(矩阵在自己专业中的应用及举例).

矩阵在自己专业中的应用及举例摘要:I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。

II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等内容。

III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。

关键词:矩阵可逆矩阵图形学图形变换正文:第一部分引言在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的内容,而这些内容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。

因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。

在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。

在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。

在后面的文章中,我通过查询一些相关的资料,对其中一些内容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。

在线性代数中,矩阵也占据着一定的重要地位,与行列式、方程、向量、二次型等内容有着密切的联系,在解决一些问题的思想上是相同的。

尤其他们在作为处理一些实际问题的工具上的时候。

图形变换是计算机图形学领域内的主要内容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。

这些变换有着不同的作用,却又紧密联系在一起。

第二部分 研究问题及成果1. 矩阵的概念定义:由n m ⨯个数排列成的m 行n 列的矩阵数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ann an an n a a a n a a a 212222111211 称为一个n m ⨯矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。

矩阵数学论文3000字_矩阵数学毕业论文范文模板

矩阵数学论文3000字_矩阵数学毕业论文范文模板

矩阵数学论文3000字_矩阵数学毕业论文范文模板矩阵数学论文3000字(一):Pre5G获GSMA双料大奖揭秘:竟是多维矩阵的数学创新论文最受评委认可的是Pre5G的高技术含量,它是通过高超、复杂的数学方法实现的,绝非技术的简单包装。

如果每一年巴塞罗那MWC展会都会树立几个风向标的话,那么“创新加速5G”无疑是本届MWC大会当仁不让的主题。

本届展会的第二天,中国的5G创新再次掀起了MWC的高潮,中兴通讯凭借Pre5GMassiveMIMO荣获全球移动大奖“最佳移动技术突破”(BestMobileTechnologyBreakthrough)以及CTO选择奖(OutstandingoverallMobileTechnology-TheCTO’sChoice2016),一时间被全球广泛关注。

由GSM协会主办的MWC是全球最具影响力的移动通信领域的盛会,全球移动大奖则是目前被业界认可的最高荣誉,被誉为“通信业的奥斯卡奖”。

而CTO选择奖的重量级在于,获奖技术是从6个移动专项获奖中再次选出最佳的一个“奖中奖”,该奖项的评委是由来自全球16家运营商的首席技术官组成的,他们非常看重入选内容的独到创新点,以及是否可以真正改善客户体验、降低成本,真正通过创新提升运营商商业价值。

而且,中兴通讯今年作为惟一的中国企业获此殊荣。

事实上,这也是5G领域第一次获得行业最高奖项并获得CTO的一致认可,两大奖项不仅奠定了中兴通讯在无线宽带领域的领军者形象,更意味着从3G的试探、4G的积极,到5G的超前,中国技术的不断创新已经获得全球认可。

颠覆式创新的核心GSMA大奖评委会给出的获奖点评是“Pre5GMassiveMIMO技术是移动宽带演进上的颠覆性创新”。

从技术上看,Pre5G最主要的技术MassiveMIMO通过128天线阵元,支持多达12到16流的动态beamforming,在不改变空口、不增加频点、不改变终端的前提下,快速实现了频谱效率倍增,三维立体覆盖能力超强,且Pre5G兼容4G终端,使得现网引入Pre5G更加从容。

线性代数论文《矩阵在实际中的应用》

线性代数论文《矩阵在实际中的应用》

######学院矩阵的实际应用课程题目:线性代数专业班级:成员组成:联系方式:2012年11月1 日矩阵的实际应用摘要:从数学的发展来看,它来源于生活实际,在科技日新月异的今天,数学越来越多地被应用于我们的生活,可以说数学与生活实际息息相关。

我们在学习数学知识的同时,不能忘记把数学知识应用于生活。

在学习线性代数的过程中,我们发现代数在生活实践中有着不可或缺的位置。

在本文中,我们对代数中的矩阵在成本计算、人口流动、加密解密、计算机图形变换等方面的应用进行了探究。

关键词:线性代数矩阵实际应用Abstract: From the development of mathematics, we can see that it comes from our life. With the development of science and technology, the math is more and more being used in our lives, it can be said that mathematics and real life are closely related. While learning math knowledge we can not forget to apply mathematical knowledge to our life. In the process of learning linear algebra, we found that algebra has an indispensable position in life practice. In this article, we explore the application of the matrix in the costing, population mobility, encryption and decryption, computer graphics transform.Keywords: linear algebra matrix practical application正文:1、引言数学作为一门相当重要的学科,在人类发展历史中一直扮演着必不可少的角色,它凝聚了每一代聪明智慧的人们的结晶。

矩阵分析小论文

矩阵分析小论文

浅谈正交矩阵与酉矩阵矩阵是数学中重要的基本概念,是高等代数的重要研究对象之一,也是数学与其它领域研究与应用的一个重要工具.矩阵是线性代数中的核心内容 ,而正交矩阵是一种较常用的矩阵 ,正交矩阵在矩阵论中占有重要地位,有着广泛的应用.对其本身的研究来说是富有创造性的领域.正交矩阵不仅在线性代数中,而且在理工各学科领域的数学方法中,如优化理论、计算方法、信息分析中都有着举足轻重的位置。

对矩阵性质的概括、改进和推广,以及对正交矩阵在数值分析中、矩阵分解中和对方程求解、数理统计中的应用的研究,对矩阵的理论研究有重要意义。

本文列举了正交矩阵与酉矩阵的一些常见的性质与定理,并对其应用进行了一些列举。

首先认识什么是正交矩阵,什么是酉矩阵。

酉矩阵的定义:n 阶复方阵U 的n 个列向量是U 空间的一个标准正交基,则U 是酉矩阵(Unitary Matrix)。

即若n 阶复矩阵A 满足条件:E A A AA H H ==(E 为单位矩阵,H A 表示“矩阵A 的共轭转置矩阵,即TH A A =”),则此时矩阵A 称为酉矩阵。

此时,容易验证,当矩阵A 、B 为酉矩阵时,则有如下的结论成立:(1)H A A =-1也为酉矩阵(2)1det =A(3)n n T U A ⨯∈,即T A 为酉矩阵(4)AB,BA 也均为酉矩阵正交矩阵的定义:正交矩阵是实数特殊化的酉矩阵。

如果实数矩阵A 满足E A A AA T T ==(E 为单位矩阵,T A 表示“矩阵A 的转置矩阵”),则n 阶实矩阵 A 称为正交矩阵。

此时,容易验证,当A 、B 为正交矩阵时,则有如下结论成立:(1)n n T E A A ⨯-∈=1,即1-A 、T A 均为正交矩阵(2)1det ±=A(3)AB,BA 也均为正交矩阵正交变换的定义:设A 是欧氏空间V 的一个线性变换,若A 保持向量的内积不变,即对于任意的α,β∈V 都有(A α,A β) = (α,β),则称A 为V 的正交变换。

矩阵在解线性方程组中的应用毕业论文

矩阵在解线性方程组中的应用毕业论文

毕业论文(设计)题目: 矩阵在解线性方程组中的应用教学院: 理学院专业班级: 数学与应用数学(1)班完成时间:2014年04月25日毕节学院教务处制毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

矩阵分析论文

矩阵分析论文

矩阵多项式一、矩阵多项式的定义和性质 1.定义设nn n n a x a x a x a x f ++Λ++=--1110)(是X 的n 次多项式,A 是方阵,E 是与A 同阶的单位阵,则称E a A a A a A a A f n n n 01110)(++Λ++=--为由多项式nn n n a x a x a x a x f ++Λ++=--1110)(形成的矩阵A 的多项式。

记作)(A f 。

2.性质设 p (z)是复数域上的多项式,即:若λ为矩阵A 的特征值,则)(λp 为 )(A p 的特征值。

3.化零多项式设p (z )是复数域上的多项式,A 是n 阶矩阵,如果 p(A)=0,则称p (z )是矩阵A 的化零多项式 4.Hamilton-Cayley 定理设A 是n 阶矩阵,f (A )是A 的特征多项式,则 f(A)=0该定理表明任何方阵的特征多项式是该矩阵的化零多项式 5.最小多项式设A 是n 阶矩阵,称A 的首项系数为1,次数最小的化零多项式为A 的最小多项式。

例:主对角元为λ0的n 阶Jordan 块J 的最小多项式为P(λ) = (λ-λ0)n 主对角元为λ0的n 阶Jordan 形J=diag (J 1, J 2, …, J s )的最小多项式为 P(λ) = (λ-λ0) k其中k 是J 的Jordan 块Ji 的最大阶数。

6.最小多项式的性质(1)矩阵A 的任意化零多项式能被A 的最小多项式整除。

(2)相似矩阵有相同的最小多项式。

(3)矩阵A 的特征多项式与最小多项式有相同的根。

证明:(1)设()()λλψp ,分别是矩阵A 的最小多项式和化零多项式,由最小多项式的定义可知()[]()[]λλψp 00∂≤∂利用多项式的带余除法知,存在多项式()()λλr q ,使得T A p T B p AT T B )()(,)1(11--==则若则若),,,,()2(21s A A A diag A =))(,),(),(()(21s A p A p A p diag A p =xp x A p x Ax )()(,)3(λλ==则若()()()()λλλψλr q p += ()[]()[]λψλ00∂<∂r 由于()()0,0==A p A ψ,则()0=A r ;又()λψ是矩阵A 的最小多项式,而()[]()[]λψλ00∂<∂r ,因此()0=λr ,即()()λλψp矩阵A 的任意化零多项式能被A 的最小多项式整除。

数学线性代数之矩阵学习总结

数学线性代数之矩阵学习总结

数学线性代数之矩阵学习总结《数学线性代数之矩阵学习总结》这是优秀的教师总结文章,希望可以对您的学习工作中带来帮助!1、数学线性代数之矩阵学习总结提到考研数学,很多同学都能想到高数和概率。

其实线性代数也是数学一,数学二和数学三中的考查重点,而且往往是难点。

以下是小编整理的数学线性代数之矩阵学习总结,欢迎阅读!同学们在学习线代的时候觉得有难度。

我认为有两个方面的原因:1.大家在学习了高数后,难免在学习线代时后劲不足;2.线代知识体系错综复杂,联系比较多,大家往往搞不清联系。

下面,跨考教育数学教研室的向喆老师跟大家说说一些难理解和常考的概念。

今天所说的是线性代数中的矩阵学习问题,大家分三个步骤来学习。

首先,构建矩阵知识框架。

矩阵这一章在线性代数中处于核心地位。

它是前后联系的纽带。

具体来说,矩阵包括定义,性质,常见矩阵运算,常见矩阵类型,矩阵秩,分块矩阵等问题。

可以说,内容多,联系多,各个知识点的理解就至关重要了。

然后,把握知识原理。

在有前面的知识做铺垫后,大家就要开始学习矩阵了。

首先是矩阵定义,它是一个数表。

这个与行列式有明显的区别。

然后看运算,常见的运算是求逆,转置,伴随,幂等运算。

要注意它们的综合性。

还有一个重点就是常见矩阵类型。

大家特别要注意实对称矩阵,正交矩阵,正定矩阵以及秩为1的矩阵。

最后就是矩阵秩。

这是一个核心和重点。

可以毫不夸张的说,矩阵的秩是整个线性代数的核心。

那么同学们就要清楚,秩的定义,有关秩的很多结论。

针对结论,我给的建议是大家最好能知道他们是怎么来的'。

最好是自己动手算一遍。

我还补充说一点就是分块矩阵。

要注意矩阵分块的原则,分块矩阵的初等变换与简单矩阵初等变换的区别和联系。

最后,多做习题练习。

在前面有了知识体系和掌握了知识原理后,剩下的就是多做题对知识进行理解了。

有句古话:光说不练假把式。

所以对知识的熟练掌握还是要通过做题来实现。

同时,我也反对题海战术,做题不是盲目的做题,不是只做不练。

线性代数与矩阵常用定理

线性代数与矩阵常用定理

线性代数与矩阵常用定理定理1.1 一个排列中的任意两个数对换后,排列的奇偶性改变定理1.2 行列式等于它的任意一行(列)的各元素与其代数余子式的乘积之和定理1.3 行列式任一行(列)的元素与另一行(列)对应元素的代数余子式乘积之和等于0定理1.4 如果线性方程组的系数行列式D不等于0,则方程组有解,且解唯一定理2.1 设A , B 是两个n介方阵,k是一个数,则(1) |kA|=k^n|A| (2)|AB|=|A||B|定理2.2 设A是数域F上的方阵(n介),则A可逆的充要条件|A|不为0定理2.3 矩阵初等变换后,其秩不变R(A | B)≤R(A)+R(B) R(A+B)≤R(A)+R(B)R(AB) ≤min(R(A);R(B))A为m*n矩阵,B为n*p矩阵,则R(AB)≥R(A)+R(B)-n定理5.1 非齐次线性方程组有解的充要条件是它的系数矩阵的秩和增广矩阵的秩相等定理5.2 齐次线性方程组的解的集合N(A)是向量空间,并且N(A)的维数是n-R(A)推论5.1 设A是m*n矩阵,X=(x1.x2.x3…..xn)T 则(1)AX=0有唯一解(只有零解)等价于R(A)等于未知数个数等价于A为列满秩(2)AX=0有无穷多解(有非零解)等价于R(A)小于未知数的个数n(3) AX=0的基础解析所含向量个数为n-R(A)定理5.3 设A是方程组的系数矩阵,(m*n),B是增广矩阵,n是未知数个数则(1)方程组有唯一解等价于R(A)=R(B)=n(2)方程组有无穷多解等价于R(A)=R(B)<n(3)当R(A)不等于R(B)时,方程组无解定理6.0 矩阵的迹等于特征值之和,行列式等于特征值之积定理6.1 矩阵不同特征值所对应的特征向量之间线性无关定理6.2 若A与B相似,则它们的特征多项式相同,特征值相同定理6.3 A(n介方阵)可以对角化的充要条件是A有n个线性无关的特征向量推论6.2 如果n介方阵A的n个特征值互不相等,则A与对角矩阵相似实对称矩阵的特征值与特征向量(1)实对称矩阵的特征值都是实数(2)实对称矩阵的对应不同特征值的实特征向量必正交定理1.1 一个排列中的任意两个数对换后,排列的奇偶性改变定理1.2 行列式等于它的任意一行(列)的各元素与其代数余子式的乘积之和定理1.3 行列式任一行(列)的元素与另一行(列)对应元素的代数余子式乘积之和等于0定理1.4 如果线性方程组的系数行列式D不等于0,则方程组有解,且解唯一定理2.1 设A , B 是两个n介方阵,k是一个数,则(1) |kA|=k^n|A| (2)|AB|=|A||B|定理2.2 设A是数域F上的方阵(n介),则A可逆的充要条件|A|不为0定理2.3 矩阵初等变换后,其秩不变R(A | B)≤R(A)+R(B) R(A+B)≤R(A)+R(B)R(AB) ≤min(R(A);R(B))A为m*n矩阵,B为n*p矩阵,则R(AB)≥R(A)+R(B)-n定理5.1 非齐次线性方程组有解的充要条件是它的系数矩阵的秩和增广矩阵的秩相等定理5.2 齐次线性方程组的解的集合N(A)是向量空间,并且N(A)的维数是n-R(A)推论5.1 设A是m*n矩阵,X=(x1.x2.x3…..xn)T 则(1)AX=0有唯一解(只有零解)等价于R(A)等于未知数个数等价于A为列满秩(2)AX=0有无穷多解(有非零解)等价于R(A)小于未知数的个数n(3) AX=0的基础解析所含向量个数为n-R(A)定理5.3 设A是方程组的系数矩阵,(m*n),B是增广矩阵,n是未知数个数则(1)方程组有唯一解等价于R(A)=R(B)=n(2)方程组有无穷多解等价于R(A)=R(B)<n(3)当R(A)不等于R(B)时,方程组无解定理6.0 矩阵的迹等于特征值之和,行列式等于特征值之积定理6.1 矩阵不同特征值所对应的特征向量之间线性无关定理6.2 若A与B相似,则它们的特征多项式相同,特征值相同定理6.3 A(n介方阵)可以对角化的充要条件是A有n个线性无关的特征向量推论6.2 如果n介方阵A的n个特征值互不相等,则A与对角矩阵相似实对称矩阵的特征值与特征向量(1)实对称矩阵的特征值都是实数(2)实对称矩阵的对应不同特征值的实特征向量必正交。

线性代数中矩阵的应用论文

线性代数中矩阵的应用论文

线性代数中矩阵的应用论文线性代数中矩阵的应用论文线性代数中矩阵的应用论文【1】摘要:伴随着社会经济的快速发展,信息技术的进步,数学应用领域也得到了扩展,已从传统物理领域扩展至非物理领域,于当前现代化管理、高科技的发展以及生产力水平的提升中有着非常重要的作用。

下面笔者就线性代数中矩阵的应用进行研究,借助于关于矩阵应用的典型案例来分析,以加深人们对矩阵应用领域的认识。

关键词:代数应用线性矩阵线性代数作为数学分支之一,是一门重要的学科。

在线性代数的研究中,对矩阵所实施的研究最多,矩阵为一个数表,该数表能变换,形成为新数表,简而言之就是若抽象出某一种变化规律,可借助于代数理论知识来对所研究的这一数表实施变换,以此获得所需结论。

近年来,随着社会经济发展速度的加快,科学技术水平的提高,线形代数中矩阵的应用领域也变得更为广泛,本文就线性代数中矩阵的应用进行详细地阐述。

1 矩阵在量纲化分析法中的应用大部分物理量均有量纲,其主要分为两种,即基本量纲与导出量纲,其中基本量纲有社会长度L、时间T以及质量M,其他量均为导出量。

基于量纲一致这一原则,等号两端的各变量能构建一个相应的线性方程组,经矩阵变换来解决各量之间所存关系。

比如勾股定理证明,假设某RT△斜边长是c,两直角边长各为a和b,在此如果选△面积s,斜边c,两锐角a和β为需研究变量,则必定有以下关系,即,该公式中所存量纲有四个,其中有三个为基本量纲,则必然有一个量为无量纲,把上述量纲列成为矩阵,所获矩阵图形如,其中每一列表示一个变量量纲数据。

基于该矩阵,所获解线性方程为,综合上述方程可得解,即x11为2,x21为0,x31为0,因此,可得关系式,该公式中λ表示唯一需明确的无量纲量,从该公式可知RT△面积和斜边c平方之间成比例。

在此,于该三角形斜边做一高,把其划分为两个形似三角形,其面积各为s1与s2,此时,原RT△的边长a和b则是两个相似小三角形的斜边。

通过上述内容可知所获原理和结论相似,则有s1=λa2与s2=λb2,因s1+s2=s,对此,基于此,可证明勾股定理,即为。

线性代数须熟记的结论

线性代数须熟记的结论
02
线性变换的矩阵表示具有一些重要性质,如相似变换的性质 性变换的矩阵表示,可以方便地计算线性变换在不同 基下的表示。
线性变换的核与象
线性变换的核是指被映射到零向量的所有向量构成的子空间,即满足$T(mathbf{x}) = mathbf{0}$的 向量$mathbf{x}$构成的子空间。
基底的性质
一个向量空间中,基底是由 不共线的向量组成的,且这 些向量能线性表示该空间中
的任意向量。
基底的判定
一个向量组是某向量空间的 基底当且仅当该向量组线性 无关。
矩阵的秩与行列式
矩阵的秩的定义
矩阵的秩是其行(或列)向量组的秩, 即该行(或列)向量组中线性无关向 量的个数。
矩阵的秩的性质
矩阵的秩是其行(或列)向量组的秩, 且矩阵的秩等于其行秩和列秩。
线性变换的象是指被映射到某个向量$mathbf{b}$的所有向量构成的子空间,即满足$T(mathbf{x}) = mathbf{b}$的向量$mathbf{x}$构成的子空间。
核与象是线性变换的重要概念,它们在解决线性代数问题中具有广泛应用,如解线性方程组、求矩阵的 逆等。
05 二次型与矩阵的平方根
特征向量
对于给定的矩阵A和特征值λ,如果存 在一个非零向量x,使得Ax=λx成立, 则称x为矩阵A对应于λ的特征向量。
特征多项式与特征值的性质
特征多项式
对于给定的矩阵A,存在一个多项式f(λ),使得f(λ)=|λE-A|,其中E为单位矩阵,f(λ)称为矩阵A的特征多项式。
特征值的性质
特征值是特征多项式的根,即f(λ)=0的解。特征值具有复数、重数和代数重数等性质。
二次型的定义与标准型
二次型是实数域上的二次齐次多项式 函数,可以表示为$f(x) = Ax^2 + 2Bxy + Cy^2$的形式。

矩阵秩论文

矩阵秩论文

矩阵的秩的一些结论的证明摘要矩阵是高等代数中主要的一个研究对象,它贯穿着整个高等代数的内容,而矩阵的秩作为矩阵最主要的特征,研究它的结论和性质就变得尤其重要.本文主要从矩阵的秩的结论和矩阵的秩的应用两方面介绍了矩阵的秩,并对矩阵的秩的大量性质进行了研究、证明及应用.其中包括矩阵的秩的求解和矩阵的秩的一些不等式,而且还涉及到了矩阵的秩在求解方程组和向量相关问题上的应用.关键词:矩阵的秩;矩阵的秩的定义;矩阵的秩的结论;矩阵的秩的应用The Conclusion of the Matrix rank’s proofAbstractMatrix is an object in the Advanced Algebra to be studied, which runs through the whole content of the Advanced Algebra, however, the rank of matrix as its main characteristics. The conclusions and the nature’s study become such an important part. The paper is divided into two parts to introduce the matrix, which are the conclusions and the application of the rank. At the same time, the nature of the rank has been studied, proved and used in the paper. Among the applications, including the solution to the rank and some inequality, the paper also includes the application of rank about solving the equations and questions of the vector correlation.Keywords: the rank of the matrix; the definition of the rank; the conclusion of the rank; the applications of the rank.目录引言............................................................................................................................................... - 1 -1.矩阵的秩的两种定义 ............................................................................................................ - 2 -2.引理....................................................................................................................................... - 2 -3.矩阵的秩的一些结论及其证明 ............................................................................................. - 4 -命题1 (4)命题2 (5)命题3 (6)命题4 (6)命题5 (7)命题6 (8)命题7 (9)命题8 (9)命题9 (10)命题10(F ROBENIUS不等式) (10)命题11 (11)命题12 (11)命题13 (12)命题14 (13)3.15命题15 (13)命题16 (14)命题17 (15)3.18命题18 (16)4.矩阵的秩的一些结论的应用............................................................................................... - 17 -总结............................................................................................................................................. - 21 -致谢............................................................................................................................................. - 22 -参考文献 ..................................................................................................................................... - 23 -引言矩阵的秩是高等数学中一个极其重要并广泛应用的概念,是高等代数的一个重要研究对象.因此,矩阵的秩的结论作为高等代数的一个重要工具已经渗透到各章节内容之中,它把高等代数的内容紧紧联系在一起,矩阵的秩作为矩阵的一个重要的本质属性则贯穿矩阵理论的始终.所以对于矩阵的秩的研究不仅能够帮助我们更好的学习矩阵,而且他是我们学习好高等代数各章节的有力保障.矩阵A中的最大阶不为零的子式的阶数就称为矩阵A的矩阵的秩,记为)rank或矩阵的秩)(A.从定义上看, 一个矩阵的秩, 就是一(A个数.事实上,若将矩阵A的每一行看成一个向量,每一列看成一个向量,则行向量组和列向量组中极大无关组中向量的个数是相等的,数量上等与矩阵的秩.若)n)n(mrank≤=,(A)(n(mmrank≤A=,则称A为行满秩的矩阵;若)则称A为列满秩矩阵.n阶方阵的秩等于n时称A为满秩矩阵或可逆矩阵.1. 矩阵的秩的两种定义矩阵的秩是反映矩阵固有特性的一个重要概念,秩是矩阵的一个非常重要的数值特征,是由F.G.Frobenius(1877)提出的.定义1设A 是任意矩阵.若O =A 则说A 的秩为0;若O ≠A 则A 的非零子式的最高阶数就称为A 的秩,记为秩A .定义2设在矩阵A 中有一个不等于O 的r 阶子式D ,则所有1+r 阶子式(如果存在的话)全等于O ,那么D 称为矩阵A 的最高阶非零子式,数r 称为矩阵A 的秩,记作)(A r .并规定零矩阵的秩等于0.2. 引理2.1引理1 A 、B 分别为n m ⨯和s t ⨯矩阵,则)()()(B r A r B A r +=⎥⎦⎤⎢⎣⎡O O 恒成立.[]1证明:设存在可逆矩阵1P ,2P ,1Q ,2Q 使得⎥⎦⎤⎢⎣⎡OO =⎥⎦⎤⎢⎣⎡O O ⎥⎦⎤⎢⎣⎡O O ⎥⎦⎤⎢⎣⎡P O O P s r D D Q Q B A 2121, 其中r D 、s D 分别是由r 个和s 个线性无关的单位向量组成,且[]TrD O 与[]Ts D O是线性无关的向量组,所以s r B r A r D D r s r +=+=⎥⎦⎤⎢⎣⎡OO )()()(,因此得出)()()(B r A r B A r +=⎥⎦⎤⎢⎣⎡O O .引理1中通过分块矩阵构建了秩与两个模块矩阵秩的和相等的矩阵,可以直观方便的通过分块矩阵运算来实现某些性质的证明,有效的简化了证明路径,为以下命题的证明即提供了一种方法,又提供了相应的结论.A 、B 分别为n m ⨯和s t ⨯矩阵,则)()()(B r A r BC A r +≥⎥⎦⎤⎢⎣⎡O 成立. 证明:由引理1得)()()(B r A r B A r +=⎥⎦⎤⎢⎣⎡O O , 因为)()(A r C A r ≥⎥⎦⎤⎢⎣⎡, 所以)()()(B r A r B C A r +≥⎥⎦⎤⎢⎣⎡O .且当)()(A r C A r =⎥⎦⎤⎢⎣⎡时,)()()(B r A r B C A r +=⎥⎦⎤⎢⎣⎡O . 如上证明对引理1做了补充和扩展,对于便于分块的矩阵的秩的确定提供了方法.存在n 阶矩阵A ,T i x x x x ),(21 =为0=Ax 解向量的极大无关组,则n x r A r =+)()(.证明:对方程组,00021212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ n nn n n n n x x x a a a a a a a a a化简得()(),000000001001212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⨯-⨯n r n r n x x x k k k k k k得出(),r A r =方程组解为()()()⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=--⨯-⨯--⨯100010001))((2111211r n r n r n r n r n x x x x x x x ,所以r n x r -=)(,即n x r A r =+)()(.该引理将矩阵秩的性质与方程组解维数联系起来,对于判断方程组解的维数或者通过方程组的解了解相乘矩阵的秩的问题提供了方法.注:引理部分为基础性命题,对以下证明过程起辅助作用,是为了便于以下命题的证明.以上证明过的引理下面的命题均可直接引用.以上命题对矩阵秩的范围,以及矩阵秩与极大线性无关组的关系进行了证明与阐述.3. 矩阵的秩的一些结论及其证明设A 是n 阶方阵,则0≠A 当且仅当n A r =)(.[]2证明:令)()(n r r A r <=,则A 与⎥⎦⎤⎢⎣⎡O O O I r 等价,即存在可逆矩阵P 、Q 使得⎥⎦⎤⎢⎣⎡O O O I =P rAQ , 取其行列式得0=⎥⎦⎤⎢⎣⎡O O O I =P =P r AQ Q A . 所以,当且仅当n A r =)(时,0≠A .该命题是互逆命题,即条件结论可互换,也就是说满秩与行列式非零是等价的,可根据有效条件判断行列式是否等于零或者是否满秩矩阵.矩阵的乘积的秩不超过各因子的秩.即:设A 是n m ⨯矩阵,B 是s n ⨯矩阵,则{})(),(m in )(B r A r B r ≤A .证明:设非零矩阵n m ij a A ⨯=)(,s n ij b B ⨯=)(.AB 可表示为A 的列向量的线性组合,即:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅=ns n n s s n b b b b b b b b b AB 21222211121121),,(ααα, 所以)()(A r AB r ≤.AB 可表示为B 的行向量的线性组合,即:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n ns n n s s a a a a a a a a a AB βββ 21212222111211,所以)()(B r AB r ≤.可得{})(),(m in )(B r A r B r ≤A .此证明将矩阵分为多个列向量或行向量来处理的,向量组AB 是列向量组A 通过矩阵B 的映射,同时也可说向量组AB 是行向量组B 通过矩阵A 的映射.上述证明说明了映射向量组不能增大基向量组的秩.若可逆矩阵P ,Q 使B PAQ =,则)()(B r A r =.证明:初等行变换与初等列变换不改变矩阵的秩, PAQ 即对矩阵A 进行列变换和行变换,所以)()()(B r A r PAQ r ==.该命题体现了初等变换的性质,以及相似矩阵的特别,对于较为复杂的矩阵的秩的求解起到简化作用,可以通过求解相似或等价矩阵的秩来实现.若2≥n ,则A 的伴随矩阵*A 的秩与A 的秩有如下关系:⎪⎩⎪⎨⎧-≤-===2)(01)(1n )()(*n A r n A r A r n A r 当当当. 证明:当2)(-≤n A r ,O =*A ,所以0)(*=A r ;当1)(-=n A r , 即⎪⎩⎪⎨⎧O ≠O=====-⨯-⨯⨯⨯-⨯⨯)1()1()2(2111n n n n j n j n A A A A A A , 其中,n j ,2,1=.1-≠n j所以1)(*=A r ;当n A r =)(,因为I ⨯=⨯A A A *,所以AA A 1*-=,因为1-A 为满秩矩阵,所以n A r =)(*.伴随矩阵是一特殊矩阵,可用以求解逆矩阵,伴随矩阵的秩与对应矩阵关系如上命题所示,可用以相互求解和验证秩的大小.两矩阵和的秩不超过两矩阵秩的和.即:设 A 、B 均为n m ⨯矩阵,则)()()(B r A r B A r +≤+.[3]证明:由分块矩阵的初等变换①2112⎥⎦⎤⎢⎣⎡+O −−→−⎥⎦⎤⎢⎣⎡O −−→−⎥⎦⎤⎢⎣⎡O O ++B B A AB A A B A bc bc br br ,则)()()(⎥⎦⎤⎢⎣⎡O O =⎥⎦⎤⎢⎣⎡+O ≤⎥⎦⎤⎢⎣⎡O +O O B A r B B A A r B A r , 由引理1得)()()(B r A r B Ar +=⎥⎦⎤⎢⎣⎡OO , 所以)()()(B r A r B A r +≤+.此证明过程用到了分块矩阵,分块矩阵使未知矩阵和方便分块的矩阵的变换变得简单,过程清晰,便于理解.分块矩阵初等变换的规则如下注解所示.上述过程证明了两矩阵和的秩小于两矩阵秩的和,可用于判断和矩阵的范围.注① ⎥⎦⎤⎢⎣⎡O −−→−⎥⎦⎤⎢⎣⎡O O +B A A B A br br 12表示将矩阵⎥⎦⎤⎢⎣⎡O O B A的第一行加到第二行上. ⎥⎦⎤⎢⎣⎡+O −−→−⎥⎦⎤⎢⎣⎡O +B B A AB A A bc bc 21表示将矩阵⎥⎦⎤⎢⎣⎡O B A A 的第二列加到第一列上.设A ,B 均为n m ⨯矩阵,则)()()()()(B r A r B A r B r A r +≤±≤-.证明: 由命题5得)()()(B r A r B A r +≤+,即).()()()()(B r A r B r A r B A r +=-+≤-则由分块矩阵的初等变换⎥⎦⎤⎢⎣⎡−−→−⎥⎦⎤⎢⎣⎡O ±−−→−⎥⎦⎤⎢⎣⎡O O ±+B B B AB B BA B B A bc bc br br 2121, 可得)()()(A r B B B A r B BA r ≥⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡OO ± , 由引理1得),()()(B r B A r B BA r +±=⎥⎦⎤⎢⎣⎡OO ±所以).()()(B r B A r A r +±≤即).()()(B A r B r A r ±≤-因此得出结论).()()()()(B r A r B A r B r A r +≤±≤-上述证明同样运用了分块矩阵初等变换.并进一步求解了和矩阵、差矩阵的秩的范围.设A 为n m ⨯,B 为s n ⨯的矩阵,则.)()()(n B r A r AB r -+≥证明:由分块矩阵的初等变换,①2121⎥⎦⎤⎢⎣⎡I -O −−−→−⎥⎦⎤⎢⎣⎡I O −−−→−⎥⎦⎤⎢⎣⎡I O O ⋅-⋅+n bc B bc n br A br n B A A AB AB得),()()(⎥⎦⎤⎢⎣⎡O O ≥⎥⎦⎤⎢⎣⎡I -O =⎥⎦⎤⎢⎣⎡I O O B A r B A r AB r n n 得),()()(B r A r n AB r +≥+即.)()()(n B r A r AB r -+≥通过分块矩阵的初等变换很方便的求出两矩阵积的秩大于等于两矩阵秩的和减去维数.设A 为n m ⨯,B 为s n ⨯的矩阵,满足O =AB ,则n B r A r ≤+)()(.[4]证明:存在极大无关解向量组T n x x x x ),,,(21 =,使得0=Ax ,由引理3得()n m x r A r ,m in )()(=+,因为O =AB ,所以B 为A 的解向量组T s ),,,(21βββ ,是A 极大无关向量组的线性组合,那么)()(x r B r ≤,得证n B r A r ≤+)()(.该命题用到引理3的结论,是通过构建方程组来确定矩阵的秩的特性,对于该命题还可以通过构矩阵的秩为两矩阵的秩和的分块矩阵来证明,实现较为复杂.设A 是n m ⨯阶矩阵,r A r =)(,从矩阵A 中任取s 行组成矩阵B ,则n s r B r -+≥)(.证明:设t B r =)(,把矩阵B 的t 个无关向量扩充到A 的一个极大无关向量组需要扩展t r -个向量,因为A ,B 不一定为满秩矩阵,所以s n m t r -≤-),min(,即n s r B r -+≥)(.3.10命题10(Frobenius 不等式)设A ,B ,C 分别为l m ⨯,s l ⨯,n s ⨯矩阵,证明)()()()(B r BC r AB r ABC r -+≥.证明: 构造如下矩阵,并进行运算得,,⎥⎦⎤⎢⎣⎡O =⎥⎦⎤⎢⎣⎡I -O I ⎥⎦⎤⎢⎣⎡O BC B AB C B ABC AB 可知)()(⎥⎦⎤⎢⎣⎡O ≥⎥⎦⎤⎢⎣⎡O BC B AB r B ABC AB r . 由引理2得),()()(B r ABC r B ABC AB r +=⎥⎦⎤⎢⎣⎡O ),()()(BC r AB r BC B AB r +=⎥⎦⎤⎢⎣⎡O 所以)()()()(BC r AB r B r ABC r +≥+.即).()()()(B r BC r AB r ABC r -+≥命题11 设k A A A ,,,21 均为n m ⨯矩阵,且1)()()(21====k A r A r A r 则k A A A r k ≤+++)(21 .证明:由命题5得.),()()(),()()(),()(),(21432132121k r r r r r r r r r k k k k =A A +A ≤A A +A +A +A ≤A A +A +A ≤A A +A设A 、B 均为n 阶方阵.则)()()(B r A r B A AB r +≤++.证明:构造如下矩阵并进行运算得:,⎥⎦⎤⎢⎣⎡O +O ++=⎥⎦⎤⎢⎣⎡O I O I +⎥⎦⎤⎢⎣⎡O A AB B A AB B A B A可知)()()()(B r A r A B A r A AB B A AB r +=⎥⎦⎤⎢⎣⎡O ≤⎥⎦⎤⎢⎣⎡O +O ++, 其中),()(B A AB r AAB B A AB r ++≥⎥⎦⎤⎢⎣⎡O +O ++ 所以)()()(B r A r B A AB r +≤++.设A 、C 均为n m ⨯矩阵, B 、D 均为s n ⨯矩阵,则)()()(D B r C A r CD AB r -+-≤-.证明:构造分块矩阵,并进行如下运算,⎥⎦⎤⎢⎣⎡-O --=⎥⎦⎤⎢⎣⎡I O I ⋅⎥⎦⎤⎢⎣⎡-O O -⋅⎥⎦⎤⎢⎣⎡I O I D B CD AB C A B D B C A C s n n m其中⎥⎦⎤⎢⎣⎡I O I n mC、⎥⎦⎤⎢⎣⎡I O I s n B 为可逆矩阵,所以 ),()()()(D B r C A r D B CD AB CA r DB CA r -+-=⎥⎦⎤⎢⎣⎡-O--=⎥⎦⎤⎢⎣⎡-O O -所以).()()()(D B r C A r D B CD AB CA r CD AB r -+-=⎥⎦⎤⎢⎣⎡-O--≤-即)()()(D B r C A r CD AB r -+-≤-.设A 是n 阶方阵,m ,k 为非负整数,则)()()1()(22A ⋅-A ⋅+≥+r m r m A r m .[8]证明:用数学归纳法,当0=m 时显然成立. 由命题10(Frobenius 不等式)).()()()(B r BC r AB r ABC r -+≥得:),()(2)()()()()(23A r A r A r A A r A A r A A A r A r -=-⋅+⋅≥⋅⋅=所以当1=m 时不等式成立. 假设当k m =时不等式成立,即:),()()1()(22A r k A k A r k ⋅-⋅+≥+于是)()1()()2()()()()()1()()()()()(222113A r k A r k A r A r A r k A r k A r A A r A A r A A A r A r k k k ⋅+-⋅+=-+⋅-⋅+≥-⋅+⋅≥⋅⋅=+++,所以当1+=k m 时不等式成立. 故).()()1()(22A r m A r m A r m ⋅-⋅+≥+3.15 命题15 设A 是n 阶方阵,且)()(2A r A r =则对任意自然数k ,有)()(A r A r k =.证明:构造分块矩阵⎥⎦⎤⎢⎣⎡OO 22A A由Frobenius 公式得),()()()()()()(33322222A r A r A A r A A A r A AA r A r A r +=⎥⎦⎤⎢⎣⎡O -O =⎥⎦⎤⎢⎣⎡O -=⎥⎦⎤⎢⎣⎡O ≤+ 由)()(2A r A r =,得),()()()()(2223A r A r A r A r A r =-+≥由定理2得),()()(223A r A A r A r ≤⋅=所以),()(23A r A r =以此类推).()()()(432k A r A r A r A r ==所以得)()(A r A r k =.设A 是非异阵,⎥⎦⎤⎢⎣⎡D C B A是n m ⨯阵,则 ).()()(1B CA D r A r D C B A r --+=⎥⎦⎤⎢⎣⎡[5] 证明:,11⎥⎦⎤⎢⎣⎡-O=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡I -O I ---B CA D BAD CB ACA r m r而A 是个非异阵,所以)()()()(11B CA D r A r B CA D BA r D CB Ar ---+=⎥⎦⎤⎢⎣⎡-O =⎥⎦⎤⎢⎣⎡. 即).()()(1B CA D r A r D C B A r --+=⎥⎦⎤⎢⎣⎡ 7命题17 设A 是n 阶方阵,且I =2A ,试证.))(())((n A r A r k m =I -+I +其中m 、k 为自然数.[6]证明:因为)(22)()(2I +=I ++=I +⨯I +A A A A A ,所以)()(2I +=I +A r A r .由命题15得)()(I +=I +A r A r m .同理)()(I -=I -A r A r k .0)()(22=I -=I -⨯I +A A A ,由命题8得n A r A r ≤I -+I +)()(.又n A A r A r A r =-I ++I ≥-I ++I )()()(.所以n A r A r =I -+I +)()(,即n A r A r k m =I -+I +))(())((.3.18 命题18 设A 是n 阶方阵,且A A =2,试证n A r A r k m =I -+))(()(,其中m 、k 为自然数.证明:因为A A =2,所以)()(2A r A r =,那么)()(A r A r m =. 因为A A A A A -I =I +-=I -⨯I -2)()(2,所以)())((2I -=I -A r A r .所以)())((I -=I -A r A r k .因为O =-=I -⨯A A A A 2)(,由命题8得n A r A r ≤I -+)()(.又因n r A A r A r A r =I =+-I ≥-I +)()()()(.所以n A r A r =I -+)()(,即n A r A r k m =I -+))(()(.注:以上证明中命题5、6、7、10、12、13、15、16都是采用了分块矩阵,其中包括分块矩阵的和、积以及分块矩阵的初等行列变换,不仅降低了处理矩阵相关问题的难度,还缩减了证明过程,使其过程简明概要,可读性强.分块矩阵对于处理多个矩阵之间的不等式,多个矩阵秩的范围的界定和秩的大小的比较有一定的优越性.命题11、14、15、17、18中都对矩阵的N 次幂进行了秩的运算或比较,用到了归纳、递推、叠代等运算方法,了解到高幂次矩阵的秩的大小或范围,对于处理高幂次矩阵问题,认识高幂次矩阵的性质都十分有用.4. 矩阵的秩的一些结论的应用4.1 例1已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=6116100010A ,求矩阵的秩. 解:存在可逆矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=P 941321111, 使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=P P -3000200011A , 由命题3可知3)()(1=P P =-A r A r .4.2 例 2 存在矩阵A 、B 分别为n 阶方阵且n B r <)(,试证明0=Ax 的解向量是0=BAx 的解向量的一个子阵.证明:设α为0=A x 的解向量,必然存在0=αBA .由命题2{},)(),(m in )(B r A r B r ≤A得),()(A r BA r ≤则其解向量的秩),()(A r n BA r n -≥-所以0=Ax 的解向量是0=BAx 的解向量的一个子阵.4.3 例3 已知矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4041050545450001A ,求其伴随矩阵*A 的秩. 解:对A 进行初等变换,求其秩.,00000500054000010041050005400001004105050545000140410505454500012143124⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----r r r c c c c显见3)(=A r .由命题4可知1)(*=A r .4.4 例 4 已知A 是56⨯矩阵, B 为55⨯方矩,4)(=A r ,4)(=B r ,试证明方程组0=ABx 根的个数小于等于3.解:由命题7得,3)()()(=-+≥n B r A r AB r又由命题8,)()(n B r A r ≤+得6)()(≤+x r AB r ,所以3)(=x r ,则命题成立.4.5 例5 已知n 阶方阵A ,证明)(2)2(2A r A A r ≤+. 解:由命题12得),()()(B r A r B A AB r +≤++当A =B 时可写成)()()(A r A r A A AA r +≤++,即)()()(2A r A r A A A r +≤++,因此得).(2)2(2A r A A r ≤+4.6 例6 已知n 阶方阵A 和B ,秩为r B r A r =+)()(,求矩阵⎥⎦⎤⎢⎣⎡I ++n AB B A B A 的秩. 解:由分块矩阵的初等变换,2212⎥⎦⎤⎢⎣⎡I ++O +−−→−⎥⎦⎤⎢⎣⎡I O +−−→−⎥⎦⎤⎢⎣⎡I ++++-n r r n c c n BA AB BA ABBA AB AB B A B A 由命题12的结论)()()(B r A r B A AB r +≤++,再由引理2的结论得)()()(n n r B A r BA AB BA r I ++=⎥⎦⎤⎢⎣⎡I ++O +, 因为n r r B A r n +=I ++)()(,所以n r ABB A BA r n +=⎥⎦⎤⎢⎣⎡I ++)(.4.7 例7 存在矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0106011010530202A ,求)(100A r . 解:计算得3)(=A r .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=104018103116352095420124010601101053020201060110105302022A .得3)(2=A r ,所以)()(2A r A r =.由命题15的结论)()(A r A r k =,所以3)(100=A r .证明过程用到了命题15的结论,对于幂次为100的矩阵秩的求解,可以迅速的实现.4.8 例8 求⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=M 1785441610512112012311012的秩.解:由命题16的结论)()()(1B CA D r A r D CB Ar --+=⎥⎦⎤⎢⎣⎡可得)2011102312541011178416512()2312()(1⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎦⎤⎢⎣⎡=M -r r r )201421128201(2)(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+=M r r 再次应用命题16[][][])201282014112()1(2)(1⋅⋅⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-++=M -r r r 5212)(=++=M r .证明过程通过两次用到命题16的结论实现了对维数较高矩阵秩的求解,简化了运算,且大大减少了计算量.小结矩阵的秩的内容是非常丰富的,其应用是十分广泛的,证明矩阵秩的有关性质,除了利用分块矩阵以外,在上面还用到了行(列)向量组的极大线性无关组来证,以及矩阵的初等变换来证明,还可以联系到齐次线性方程组的基础解系来证.本文引用到矩阵秩的基本性质及部分定理,对矩阵秩的多条性质进行了证明,并做了相关的应用.其中涉及到了矩阵秩的求解、判断、向量组的相关性、方程组解的情况分析以及秩的不等式、等式等多方面性质.其结论和证明过程可以应用到所涉及的各个领域,包括电子行业,信息处理行业和控制工程域等多个行业.对矩阵秩的多方面的了解对于处理矩阵相关的问题是很有帮助的,例如方程组解的个数问题,模式识别中事物特征的相关性问题等.上述的命题的涉及面广,结论应用性强,所应用的方法较为新颖,希望能对数学及其它领域的发展有所帮助.相信在解决理论研究和解决实际问题上有一定的作用及意义.致谢参考文献[1]杜现昆原永久牛凤文.高等代数[M].北京:高等教育出版社,2006.65-67[2]同济大学数学系编.工程数学.线形代数[M].北京:高等教育出版社,2007.62-65[3]北京大学数学系.高等代数[M].北京:高等教育出版社,1988.87-90[4]张禾瑞.郝炳新.高等代数[M]. 北京:人民教育出版社,1979.76-77[5]张远达.线性代数原理[M]. 上海:上海教育出版社,1982.98[6]北京大学数学系.高等代数[M].北京:高等教育出版社,2003.67[7]赵树媛.线性代数学习与考试指导[M].北京:中国人民大学出版社,1998.56[8]丘维声.高等代数[M].北京:高等教育出版社,2003.87-88[9] 樊恽钱吉林等.代数学辞典[M].武汉:华中师范大学出版社,1994.76[10李书超,蒋君,向世斌等.一类矩阵秩的等式及其推广[J].武汉科技大学学报自然科学版 ,2004 ,27 1 :96-98[11]王松桂,贾忠贞.矩阵不等式[M].合肥:安徽教育出版社,1994.89-90[12]鲍文娣,李维国.关于任意三矩阵秩的一点注记[J].苏州科技学院学报:自然科学版,2005,22(2):39-43。

矩阵论定义定理总结

矩阵论定义定理总结

矩阵论1.行列式的相关知识:1.1定义:由2n 个数ij a (,1,2,...,)i j n =组成的一个n 阶行列式为1212121112121222(...)12 (12)(1)...n j j jnnn n j j j n j j j n n nna a a a a a D a a a a a a τ==-∑即所有取自不同行不同列的n 个元素的乘积1212...j j j n n a a a 的代数和,其中每一项的符合由排列12...n j j j 的奇偶性决定。

n 阶行列式的展开原理:定义1.1.2在n 阶行列式D 中,任选k 行和 k 列(k n ≤),将其交叉点上的2k 个元素按原来位置排成一个k 阶行列式M ,称为D 的一个k 阶子式。

在D 中划去M 所在之k 行k 列后余下的2()n k -个元素按照原来位置排成的n-k 阶行列式M ',称为M 的余子式。

定义1.1.3设D 的k 阶子式M 在D 中所在行列指标分别是12,,...,k i i i和12,,...,k j j j ,则称1212()()(1)k k i i i j j j A M ++++++'=-•为M 的代数余子式,其中M '为M 的余子式。

定理1.1.1(拉普拉斯定理)设在行列式D 中任意取定k 行(11)k n ≤≤-,则由这k 行元素所组成的一切k 阶子式与其对应的代数余子式的乘积之和等于和列式D 。

定理1.1.4(克莱姆法则):若线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (1.1.7)的系数行列式1112121222120n n n n nna a a a a a D a a a =≠则方程组(1.1.7)有唯一解,且/(1,2,)i i x D D i n ==,其中i D 是将D 中第i 列换成(1.1.7)式右端的常数项12,,,n b b b 所得的行列式,即1,11,111112,12,22122,1,1i i n i i n i n i n i nn nnna a ab a a a a b a D a a a b a -+-+-+=(1,2,,)i n =该定理通常称为克莱姆法则。

矩阵相关结论的一些证明

矩阵相关结论的一些证明

矩阵相关结论的一些证明摘要:有关矩阵的秩的等式或不等式的证明,常常和向量组的秩,线性方程的解等相联系,推证有一定难度,也有一定的技巧,熟记关于矩阵的秩的一些结论,对有关问题的论证会有很大帮助。

1. 证明:r(A ﹢B)≤r(A)﹢r(B)证 设A =(α1,α2,…,αn ), B =()βββn ,...,,21 则 A +B =(α1+β1,α2+β2,…,αn +βn )不妨设A 列向量的极大线性无关组为α1,α2,…,αr . (1≤r ≤n);B 列向量的极大线性无关组为β1,β2,…βs . (1≤s ≤n). 则k i i 1=αα1+α22k i +…+αr ir k ; βi =β11l i +β22l i +…+βs is l ;则 αi +βi = k i 1α1+α22k i +…+αr ir k +β11l i +β22l i +…+βs is l ; 即A +B 的列向量可由α1,α2,…,αr ,β1,β2,…βs 线性表出,故)()()(B +A =+≤B +A r r s r r .2. 若AB =O ,则)()(B r A r +n ≤.证 记 ),...,,(21βββnB =,由AB =O ,知B 的每一列都是O =AX 解,即O =A βi,i=1,2,…,n 又因O =AX 的基础解系所含向量个数为)(A r n -, 换言之, O =AX 的所有解所构成的向量组的秩为)(A r n -.故≤)(B r )(A r n -, 即)()(B r A r +n ≤.3. 若E A =2, 证明)(E A r ++)(E A r -=n.证 E A =2,E A 22= ,E A 22-=)(E A -)(E A +O =, 由结论2知r )(E A -+r )(E A +n ≤;)()(2A E A E E ++-= 再由结论1知r )(E A -+r )(E A +n E r =≥)2(,综上所述, )(E A r ++)(E A r -=n.4。

矩阵研究毕业论文

矩阵研究毕业论文

0 引言为了利用矩阵研究线性变换, 希望能找到线性空间的基使线性变换在该基下的矩阵具有最简单的形式, 因此我们引进了特征值与特征向量. 特征值与特征向量在线性变换中起着举足轻重的作用, 充分利用特征值与特征向量的命题与性质对我们解题带来极大的帮助, 能使复杂的问题变的简单, 化简为易, 化繁为简. 本文就矩阵的特征值与特征向量在一些解题中的应用作了初步的探讨.1. 关于矩阵的特征值与特征向量的一般理论我们知道, 在有限维线性空间中, 取了一组基之后, 线性变换就可以用矩阵来表示. 为了利用矩阵来研究线性变换, 对于每个给定的线性变换, 我们希望能找到一组基使得它的矩阵具有最简单的形式. 从现在开始, 我们主要的来讨论, 在适当的选择基之后, 一个线性变换的矩阵可以化成什么样的简单形式. 为了这个目的, 先介绍特征值和特征向量的概念, 它们对于线性变换的研究具有基本的重要性.定义 1.1 设A 是数域P 上的一个n 阶方阵,若存在一个数P λ∈以及一个非零n 维列向量n x P ∈,使得Ax x λ=则称λ是矩阵A 的一个特征值,向量x 称为矩阵A 关于特征值λ的特征向量. 定义1.2 设A 是数域P 上一n 级矩阵, λ是一个文字. 矩阵A E -λ的行列式nnn n n n a a a a a a a a a A E ---------=-λλλλ212222111211,称为A 的特征多项式, 这是数域P 上的一个次多项式.设T 是n 维线性空间V 上的一个线性变换,求解T 的特征值与特征向量的方法可以分成一下三几步:1) 在线性空间V 中取一组基12,,,nξξξ, 写出/A 在这组基下的矩阵A ;2) 求出A 的特征多项式E Aλ-在数域P 中全部的根, 它们也就是线性变换/A 的全部特征值;3) 对于A 的每个特征值,j λ求其次线性方程组()0jI A X λ-=的一组基础解系:12,,,.t ηηη于是A 的属于jλ的全部特征值组成的集合是}{1122,0,1,2,,t t i i k k k k K k i t ηηη+++∈≠=例1 设V 是数域K 上3维线性空间,T 是V 上的一个线性变换,它在在V 的一个基1α,2α,3α下的矩阵A 是222214241A -⎛⎫ ⎪=-- ⎪⎪-⎝⎭,求A 的全部特征值与特征向量. 解: 因为特征多项式为2222214(3)(6)241I A λλλλλλ--⎛⎫ ⎪-=+-=-+ ⎪⎪+⎝⎭所以A 的全部特征值3(二重),-6.对于特征值3,解齐次线性方程组(3)0I A X -=,12312312322024402440x x x x x x x x x +-=⎧⎪+-=⎨⎪++=⎩得到一个基础解系:210-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, 201⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦因此,A 的属于3的两个线性无关的特征向量就是1122ζαα=-+,2132ζαα=+ 而A 的属于3的全部特征向量就是 .{}11221212,,,0k k k k K k k ζζ+∈且不全为对于特征值-6代入, 求出(6)0I A X --=的一个基础解系:122⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦.因此, A 的属于特征值-6的一个线性无关的特征向量就是312322ζααα=+-,而A 的属于特征值-6的全部特征向量是{}3,0k k K k ζ∈≠且.例2 设T 是复数域上n 维线性空间V 上的一个线性变换()1n >,它在V 的一个基12,,,nααα下的矩阵A 是1012210000010000001n n A ααααα--⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪-----⎝⎭,求T 的特征值和特征向量. 解 :1012201221100001000100001000010000100001n n n n I A λλλλααααλαλαλαλαλαλα-------=-+--=--+令01221000100001000001001n n n D λαλαλαλαλα----=--+下面用数学归纳法求解()2n D n ≥当2n =时,22101.1D λαλαλαλα==++-+假设对于上述形式的1n -阶行列式,有012-132000100001000001001n n n D λαλαλαλαλα----=--+n-1n-2n-210=+++λαλαλα,对于n 阶行列式,把它第1行展开,得12102112111210121210000100010010(1)001000100101()(1)(1).n n n n n n n n n n n n D xλαλαλλαλαλαλλλλαλαλααλαλαλαλα+----+----=---+----+-=+++++--=++++根据数学归纳法原理,此命题对一切自然数2n ≥都成立. 故121210.n n n I A λλαλαλαλα---=++++即为T 的特征多项式.设12,,n λλλ 是I A λ-的全部复根. 对于1i n ≤≤,有111122201111,n n n n i i i i i i i ii i i n i A λλλλλλλλλλααλαλ-----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭ 因此12'(1,,,,)n i i i λλλ-(1i n ≤≤)是A 的属于特征值i λ的一个特征向量. 由于()()11,2,,110,2,3,,n i n I A n λ--⎛⎫-=-≠⎪⎝⎭而i I A λ-=,因此()1i rank I A n λ-=-. 从而齐次线性方程组()0i I A X λ-=的解空间的维数为(1)1n n --=. 于是A 的属于特征值i λ的所有特征向量组成的集合是{}21'(1,,,,)|,0.n i i i k k C k λλλ-∈≠从而T 的属于特征值i λ的全部特征向量是{}21'123()|,0.n i i i k k C k αλαλαλ-++++∈≠(1i n ≤≤)例2 在空间[]nP x (n>1)中(P 为实数域), 求微分运算D'()()f x f x ∂= 的 特征多项式,并证明:D 在任何一组基下的矩阵不可能是对角矩阵. 证:在[]nP x 中取一组基()211,,,,2!1!n x x x n --微分运算D 在此基下的矩阵为.0000100001000010⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=DD 的特征多项式是.01000010001n D E λλλλλ=---=-从而D 的特征多项式为nλ. 因此D 的特征值为210n λλλ====.又D 的对应特征值0的奇次线性方程组()0A X -=的系数矩阵的秩为n-1,从而基础解系只含一个向量.它小于[]nP x 的维数n(n>1),故D 不可能同任何对角矩阵相似.所以微分运算D 在任何基下的矩阵都不可能是对角形. 2矩阵特征值与特征向量的五个应用2.1特征值与特征向量判断线性变换可对角化的应用定义2.1.1如果V 中存在一个基,使得线性变换A 在这个基下的的矩阵是对角矩阵,那么A 可对角化.由于线性变换A 在V 的不同基下的矩阵是相似的,因此线性变换A 可对角化当且仅当A 在V 的基下的矩阵A 可对角.定理2.1.1域F 上n 维线性空间V 上线性变换A 可对角化当且仅当A 有n 个线性无关的特征向量12,,,nξξξ,此时A 在基12,,,nξξξ下的矩阵A 为1000,00n λλ⎛⎫ ⎪⎪ ⎪⎝⎭其中i λ是i ξ所属的特征值(即i i i A ξλξ=),1,2,,.i n = 矩阵A 称为线性变换A 的标准形,除了主对角线上元素的排列次序外,A 的标准形是有A 唯一决定的.推论2.1.1 域F 上n 维线性空间V 上线性变换A 可对角化当且仅当V 中存在由A的特征向量组成的一个基.定义2.1.2设A 是域F 上线性空间V 上的一个线性变换,0λ是A 的一个特征值,令 {}00|,defV A V λααλαα==∈ .易验证V λ 是V 的一个子空间,称0V λ是A 的属于特征值0λ的特征子空间. 0V λ中全部非零向量就是A 的属于特征值0λ的全部特征向量. 由于()00000().V A I A Ker I A λααλαλααλ∈⇔=⇔-=⇔∈-因此 00().V Ker I A λλ=-即线性变换A 的属于特征值0λ的特征子空间等于线性变换0I A λ- 的核.设V 是域F 上n 维线性空间,V 上线性变换A 在V 的一个基12,,,nααα下的矩阵为A,λ是A 的一个特征值. 设σ是V 到nF 的一个同构映射,它把V 中向量对应于它在基12,,,nααα下的坐标,则()0V λσ等于n 元齐次线性方程组()00I A X λ-=的解空间,即矩阵A 的属于特征值0λ的特征子空间. 于是()()00dim V n rank I A λλ=-- .定理2.1.2设A 是域F 上n 维线性空间V 上的一个线性变换,则A 可对角化⇔A 有n 个线性无关的特征向量⇔V 中存在由A 的特征向量组成的一个基⇔A 的属于不同特征值的特征子空间的维数之和等于n 12,s V V V V λλλ⇔=⊕⊕⊕其中12,,,sλλλ 是A 的所有不同的特征值.例 3 设T 是复数域上n 维线性空间V 上的一个线性变换()1n >,它在V 的一个基12,,,nααα下的矩阵A 是1012210000010000001n n A ααααα--⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪-----⎝⎭,称它是Frobennis 矩阵. 求T 的特征多项式和属于特征值i λ的全部特征向量(1,2,3,,)i n =;T 是否可对角化?令122221211112111n n n n n n P λλλλλλλλλ---⎛⎫⎪ ⎪ ⎪= ⎪⎪ ⎪⎝⎭情形112,,n λλλ两两不等. 此时0.p ≠从而P 的列向量组线性无关. 于是A 有n 个线性无关的特征向量,因此A 可对角化.此时{}112,,n p AP diag λλλ-=从而T 可对角化.情形 212,,n λλλ中有相等的. 此时0.p = 从而P 线性相关. 这时A 没有n 个线性无关的特征向量,因此A 不可对角化, 从而T 不可对角化.例4 设T 是数域K 上n 维线性空间V 上的对合变换(即T 满足2T I =),(1)证明T 有特征值,且它的特征值是1或-1.(2)判断T 是否可对角化;若可以对角化,请写出它的标准形. 解:设T 在V 的一个基12,,,nααα下的矩阵是A ,由2T I =,可得2A I =. 即A 是数域K 上的对合矩阵,设0λ是对合矩阵A 的一个特征值,则有0,α≠使0.A αλα=从而2200.A A αλαλα== 由于2A I =,因此20αλα=,即20(1)0.λα-=由于0,α≠因此2010.λ-= 即01.λ=± 当A I =时,1是A 的特征值,-1不是;当A I =-时,-1是A 的特征值,1不是; 当A I ≠±时,0.I A ±≠由于()()rank I A rank I A n -++=因此 ()().rank I A n rank I A n -=-+< 从而0.I A -=从而1是A 的一个特征值.同理可证,-1是A 的一个特征值.(1)从而,T 有特征值,且它的特征值是1或-1.(2)设().rank I A r +=由于()()rank I A rank I A n -++=,因此().rank I A n r -=- 属于特征值1的特征子空间1W 的维数为1dim ()();W n rank I A n n r r =--=--=属于特征值-1的特征子空间1W -的维数为1dim ()();W n rank I A n rank I A n r -=---=-+=-由于11dim dim (),W W r n r n -+=+-=因此A 可对角化.A 的相似标准形为{},.r n r diag I I --从而T 可对角化,且它的相似标准形为0,0rn r I I -⎛⎫ ⎪-⎝⎭其中().r rank I A =+2.2 特征值与特征向量在确定可对角化矩阵的应用当矩阵A 可对角化时,可根据A 的特征值和特征向量来确定它的元素.例 5 设3阶方阵A 的特征值1231,0,1,λλλ===-对应的特征向量分别是1231222,2,1.211ξξξ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭求A .分析:此题给了3阶矩阵A 的3个不相同的特征值及其对应的特征向量,那么矩阵A 可对角化,显然可用A 的特征值和特征向量来确定它的元素.解:由i ξ是方阵A 对应于特征值i λ 的特征向量,于是i i i A ξλξ=()1,2,3.i =令()123122221212P ξξξ-⎛⎫⎪==-- ⎪⎪⎝⎭,则112212219212P -⎛⎫ ⎪=- ⎪⎪--⎝⎭, ,PA PD =其中100000,001D ⎛⎫ ⎪= ⎪ ⎪-⎝⎭ 由上式可得:11021012,3220A PDP --⎛⎫ ⎪== ⎪⎪⎝⎭ 即为所求.2.3特征值与特征向量在n 阶矩阵的高次幂的求解中的应用当n 阶矩阵A 可对角化时,即矩阵A 可与对角阵相似时,可应用矩阵的特征值与特征向量计算其高次幂()k A k N *∈,且比较简单.当n 阶矩阵A 满足下面的四个条件之一时,即可对角化,即1.A PDP -=n 阶矩阵A 有n 个线性无关的特征向量. n 阶矩阵A 有n 个互不相等的特征值.n 阶矩阵A 的每个特征值的几何重数等于其代数重数. A 为是对称矩阵. 对于(){}11212,,,,,,,,n n A PDP P D diag ξξξλλλ-===其中12,,,nλλλ是A 的n 个互不相等的特征值,i ξ是A 的属于特征值i λ的特征向量()1,2,,.i n =例6 已知矩阵122212221A ⎛⎫ ⎪= ⎪⎪⎝⎭,求k A (其中k N *∈). 分析:矩阵的高次幂的求解一般是有技巧的,这里因为矩阵A 为实对称矩阵,故可对角化. 可按上面讨论的方法求之.解 因为,T A A =所以矩阵A 为实对称矩阵,故A 可对角化为D .()()212221251221I A λλλλλλ----=---=-+---故A 的特征值为1231,5,λλλ==-=当1λ=-时,解齐次线性方程()0,I A X --=求出一个基础解系:12111,001ηη--⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭ 当5λ=时,可求()50A X λ-=的一个基础解系:311,1η⎛⎫ ⎪= ⎪ ⎪⎝⎭ 令111101,011P --⎛⎫ ⎪= ⎪ ⎪⎝⎭()1001,1,5010005D diag -⎛⎫ ⎪=--=- ⎪⎪⎝⎭ 则()11,1,5P AP D diag -==--则1A PDP -=于是()()()()()()()()1111111111111()()1001112111101010121301100511121515151152153k kkkkk k k k k k k k k k k A PP APP PP APP PP APP P P AP P AP PAP P -------------==⎛⎫----⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=--- ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭-+-+-+=-+-+-()()()()111151515215k kk k k k k k---⎛⎫⎪ ⎪+ ⎪ ⎪-+-+-+⎝⎭2.4 特征值与特征向量在求一些特殊数列通项公式的应用由一些特殊数列的递推公式,构造关系矩阵A ,并列出递推关系,当关系矩阵A 可对角化时,可利用A 的特征值与特征向量求解这些数列的通项公式.例7 斐波那契(Fibonacci )数列是0,1,1,2,3,5,8,13,它满足下列递推公式:21,n n n ααα++=+ 0,1,2,n=以及初始条件010, 1.αα== 求Fibonacci 数列的通项公式,并且求1lim.nn n αα→∞+解 由2111,,n n n n n ααααα++++=+⎧⎨=⎩ 可得21111.,10n n n n αααα+++⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令11,10A ⎛⎫= ⎪⎝⎭ 1,0,1,2,n n n D n αα+⎛⎫== ⎪⎝⎭上式可写成1,n n D AD +=又由1001,0D αα⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 所以0,.n n D A D n N *=∈于是求Fibonacci 数列的通项公式就只要去计算nA .可利用A 的相似标准形来求简化nA 的计算.211111122I A λλλλλλλ⎛⎫⎛---==--=-- ⎪ ⎪-⎝⎭⎝⎭于是A的特征值为12λλ==从而A 可对角化.对于特征值1λ,解奇次线性方程组()10,I A X λ-=求出一个基础解系:11,1λη⎛⎫= ⎪⎝⎭对于特征值2λ,可求出()20I A X λ-=的一个基础解系:22,1λη⎛⎫= ⎪⎝⎭ 令12,11P λλ⎛⎫= ⎪⎝⎭ 则1120,0P AP λλ-⎛⎫= ⎪⎝⎭从而12121121211212112010011101.1nn nn n n n n A P P λλλλλλλλλλλλλλ-++-⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪-⎝⎭⎝⎭⎭⎝-⎛⎫⎛⎫=⎪ ⎪-⎝⎭⎭由于110n n n A αα+⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭因此))2121211110.n nn n n n nλαλλλλλ-⎛⎫⎛⎫==- ⎪⎪-⎝⎭⎝⎭⎡⎤⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦即为Fibonacci 数列的通项公式. 于是211211112212111lim lim lim112nn nnnn nn n nnλλαλλαλλλλλλλ++→∞→∞→∞+⎛⎫- ⎪-⎝⎭==-⎛⎫- ⎪⎝⎭==例8已知()11,1,2i ii i ib cc b c--=⎧⎪⎨=+⎪⎩其中2,3,.i =设11,b c已知,求,.n nb c解由题可得1101,2,3,1122i ii ib bic c--⎛⎫⎛⎫⎛⎫⎪==⎪ ⎪⎪⎝⎭⎝⎭⎝⎭令01,1122B⎛⎫⎪=⎪⎝⎭则111,n nnb bBc c-⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭下面求1n B-.()111.11222I Bλλλλλ-⎛⎫-==-+⎪--⎝⎭因此B的全部特征值是11,.2-从而B可对角化.对于特征值1,解奇次线性方程组()0,I B X-=得到它的一个基础解系:11,1ξ⎛⎫= ⎪⎝⎭对于特征值1,2-解齐次线性方程组10,2I B X ⎛⎫--= ⎪⎝⎭得到它的一个基础解系:22.1ξ-⎛⎫= ⎪⎝⎭ 令12,11P -⎛⎫= ⎪⎝⎭ 则110.102P BP -⎛⎫⎪= ⎪-⎝⎭ 从而1111122111010210121211111130211122213111222n n n n n n n n B P P ---------⎛⎫⎪= ⎪-⎝⎭⎛⎫-⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪⎛⎫--⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫--+- ⎪ ⎪⎪⎝⎭⎝⎭ ⎪= ⎪⎛⎫⎛⎫ ⎪--+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此22111111111112,3232111112.3232n n n n n n b b c c b c ----⎧⎡⎤⎡⎤⎛⎫⎛⎫=--++-⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎪⎣⎦⎣⎦⎨⎡⎤⎡⎤⎪⎛⎫⎛⎫=--++-⎢⎥⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎩2.5特征值与特征向量行列式计算中的应用用矩阵的特征值和特征向量计算三对角形的方法如下:设00000000000n a b c a b c a D a b ca =按第一行展开,得:12,n n n D aD cbD --=- 3,4,n =上式可写成21,n n n D aD cbD ++=- n N +∈由于2111,,n n n n n D aD cbD D D ++++=-⎧⎨=⎩ 令2111,,,10n n n n n n D D a cb d d A n N D D +++++-⎛⎫⎛⎫⎛⎫===∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此111,n nn n d Ad d A d +-==()2,3,n =其中2211D a cb d D a ⎛⎫-⎛⎫== ⎪⎪⎝⎭⎝⎭ 这样求nD 的问题就转化为nd 的问题,因而转化为求1,n A -即存在可逆矩阵P 使得 1P AP D -=(对角形),就可以算出1.n A -由201a cbI A a cb λλλλλ--==-+=-得A 的特征值12λλ==1) 若24a cb ≠① 若240,a cb -<则A 有两个不相等的复特征值12,,λλ在复数域上对应于12,λλ的特征向量分别为12,.ξξ取()12,P ξξ=则P 可逆 于是就有11111200n n n AP P λλ----⎛⎫=⎪⎝⎭所以111n n n n D d A d D+-⎛⎫== ⎪⎝⎭从而可求出nD .如果A 限制在实数域上,A 有复特征值,这时A 不可对角化.② 若240,a cb ->则A 有两个不同的特征值,则A 可对角化,按在复数域上的情况可求出nD2) 若24,a cb =这时A 有重根.若A 有两个线性无关的特征向量,则A 可对角化;若A 只有一个特征向量,这时可利用相似变换,把A 化若当标准形1100λλ⎛⎫ ⎪⎝⎭,可以算出1n A -,即可求出n D .例9 计算n 阶行列式:950004950004900.9500049n D =解:按第一行展开,得:12920,n n n D D D --=-()3,4,n =上式可写成21920,n n n D D D ++=-()n N +∈ 由2111920,,n n n n n D D D D D ++++=-⎧⎨=⎩ 令2111920,,,10n n n n n n D D d d A n N D D +++++-⎛⎫⎛⎫⎛⎫===∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得111,n nn n d Ad d A d +-==()2,3,n =其中211619D d D ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 由于()()2920920451I A λλλλλλλ--==-+=---因此A 的特征值是124, 5.λλ==对于特征值14,λ=解其次线性方程组()40,I A X -=求出一个基础解系:14,1η⎛⎫= ⎪⎝⎭对于特征值25,λ=解其次线性方程组()50,I A X -=求出一个基础解系:25,1η⎛⎫= ⎪⎝⎭令45,11P ⎛⎫= ⎪⎝⎭ 则140,05P AP -⎛⎫= ⎪⎝⎭ 从而14005A P P-⎛⎫= ⎪⎝⎭111111111400545154011140554 5.4 4.554 5.4 4.5n n n n n n n n n n n n A P P---------⎛⎫= ⎪⎝⎭-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎛⎫--= ⎪--⎝⎭由于11619n n n D A D +-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭因此()11111161545.44.5549n n n n n n n D ----++⎛⎫=--=- ⎪⎝⎭例10 计算n 阶行列式:2120000121200012120000000210022n D ------=.解:将nD 按第一列展开得:1231232(2)22,n n n n n n n D D D D D D D ------=--+=+- ()4,5,6,n =上式可写成32122,n n n n D D D D +++=+-()n N *∈ 根据321221122,,,n n n n n n n n D D D D D D D D +++++++=+-⎧⎪=⎨⎪=⎩ 令323121*********,,100,5,0102n n n n n n n n D D D D D A D D D D ααα++++++-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 可得1,n n A αα+=11,n n A αα-=由于()()()2121011201I A λλλλλλλ---=-=-+-- 因此A 的特征值是1231,1, 2.λλλ==-= 对于特征值11,λ= 解其次线性方程组()0,I A X -=得到一个基础解系;111,1η⎛⎫ ⎪= ⎪ ⎪⎝⎭ 同理,分别可求231, 2.λλ=-=的一个特征向量23141,2,11ηη⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 令114112,111P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭ 则1100010002P AP -⎛⎫ ⎪=- ⎪ ⎪⎝⎭ 于是1100010002A P P -⎛⎫ ⎪=- ⎪ ⎪⎝⎭从而()()()()11111111111000100021001143361112010132611100220211233611121326202112n n n n n n n n n n n A P P -------+--⎛⎫ ⎪=- ⎪ ⎪⎝⎭⎛⎫-⎛⎫⎛⎫ ⎪ ⎪ ⎪=--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭⎝⎭⎛⎫--⎛⎫ ⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪- ⎪⎝⎭-⎝⎭于是()()()1121111123361011121325,62022112n n n n n n n n n D D D -+++--⎛⎫--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪=-- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪- ⎪⎝⎭⎝⎭⎝⎭-⎝⎭从而()()()()()121013123 3.16 2.12562112263n n n nn n n n D -+⎛⎫ ⎪=-+-++-+-- ⎪ ⎪⎝⎭-=-++3.小结本文利用特征值与特征向量的一些命题和性质来探讨特征值与特征向量在一些解题计算中的应用,充分应用命题和性质给我们的解题带来很大的方便.参考文献[1] 大学数学系几何与代数教研室前代数小组.高等代数(第三版)[M].北京:高等教育出版社,2003.[2] 同济大学应用数学系. 工程数学- 线性代数(第4版) [M] . 北京:高等教育出版社,2003.[3] 奚传志. 矩阵的特征值与特征向量在行列式计算中的应用枣庄师专学报,1992年2期[4] 李淑花. 关于一类线性代数习题的快速解法[J]. 高等数学研究.[5] 谢国瑞. 线性代数及应用[M]. 北京:高等教育出版社,1999.[6] 戴华. 矩阵特征值反问题的若干进展[J]. 南京航空航天大学学报,1995.[7] 钱吉林.高等代数题解精粹[M].北京:中央民族大学出版社.[8]邵丽丽.矩阵的特征值和特征向量的研究.菏泽学院.计算机与信息工程系.山东菏泽(274015)[9] 朱凤娟.特征值与特征向量逆问题的研究[J].滨州学院学报2007.6 .[10] [英]S.巴比特. 科技工作者用矩阵方法[M] .北京:化学工业出版社.1984.126-137.[11]丘维声,高等代数(第二版)下册.北京:高等教育出版社[12] tephen H.Friedbeng等.Linear Algebra(4th Edition) [M].Prentice Hall/Pearson,1998.[13] Verler.W.J.Vectors Structures and Solutions of linear Matrix Equation, linear Algebra Appl;1975.[14]丘维声,高等代数(第二版)上册.北京:高等教育出版社[15] 熊全淹,线性代数[M].北京;高等教育出版社,1987.4.[16]丘维声,高等代数学习指导(下册).北京:清华大学出版社,2009[17]杨子胥,高等代数习题解(下册).济南:科学技术出版社,2009[18]丘维声,高等代数学习指导(上册).北京:清华大学出版社,2009致谢本学位论文是在我的指导老师张宝环老师的亲切关怀与细心指导下完成的.由于经验的匮乏,难免有许多考虑不周到的地方,从论文的选题、资料的搜集到论文的撰写编排整个过程中,张老师始终都给予了悉心的指导和不懈的支持,并为我指点迷津,帮助我开拓思路,精心点拨,热忱鼓励.张老师的一丝不苟的作风,严谨求实的态度,踏踏实实的精神,不仅授我以文,而且教我做人,给我以终生受益无穷之道.感谢老师们对我的教育培养.他们细心指导我的学习与研究.在此,我要向诸位老师深深地鞠上一躬.同时我要感谢同组的同学们,是我们相互的鼓励和支持才使得做论文的过程充满着快乐和感动.在此,我对所有帮助我的老师和同学们表达我衷心的感谢!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关键词:矩阵;运算规律;结论;不成立
英文题目
Abstract: Matrix algebra as an important tool in its history can be traced back to BC appears, however, to truly become an independent matrix concept was to study history began in the 1850s. Today, more and more rapid development of matrix theory, to the 19th century, matrix theory system has been basically formed. To the 20th century, matrix theory has been further developed. Currently, it has developed into physics, cybernetics, robotics, biology, economics and other disciplines have a lot of branches of mathematics applications.There are a lot of computing matrix operation rules and conclusions cannot be established. It may be misused in applying the usual rules of arithmetic calculations. This article lists the operation of such laws and conclusions which cannot be established in order to refer.
AB 是有意义的,而 BA 是无意义的 ii.倘使AB, BA都有意义,二者也未必相等. 1 1 1 −1 ,B = 2 2 −1 1 −1 −1 AB = O,BA = 1 1 1 1 a b 例 2:取 A = ,B = , 0 1 0 a a a+b 则 AB=BA= (a,b 为任意常数) 0 a 例 1:A = iii.根据矩阵乘积的基本要求,如果 A 的列数不等于 B 的行数,此时讲 AB 没有任何意 义。一般来说正是由于这个原因,,在实数中的某些运算不再适应,如(������ + ������)2 ≠ ������2 + 2������������ + ������2 , ������������
2.2 矩阵的乘法 运算规则 设 A=(aij )
m×s
,B=(bij )
s×n
,则 A 与 B 的乘积 C=AB 是这样一个矩阵:
m×n
(1) 行数与(左矩阵)A 相同,列数与(右矩阵)B 相同,即 C=(cij ) 取乘积之和. 运算性质 (1) 结合律(AB)C=A(BC) . (2) 分配律A(B ± C) = AB ± AC(左分配律) ; B ± C A = BA ± CA(右分配律) . (3) ⑴矩阵乘法不满足交换律 .
矩阵的计算有很多的应用,比如可以用来求矩阵的秩,是线性代数的基础。熟练掌 握矩阵的计算,在面对较复杂的矩阵时才能从容处理。矩阵的加法,矩阵的乘法,矩阵 的幂,矩阵的转置,矩阵的逆,矩阵的行列式,相关的计算都是矩阵的基本运算。 认真关注矩阵的运算规律的结论能让计算过程更加熟练,结果更加准确,但是同时 也要注意不适用的规律方法和结论,避免解题时进入误区。本文总结了部分会误用的规 律结论。 这门课程给我们的是一个工具的作用, 在学习的过程中要结合实际问题尤其是自己的 专业方向来想问题,把矩阵的思想和算法用到对专业问题的解决中,才是学习的目的。 参考文献 [1]王天泽.。线性代数[M].北京,科学出版社,2013-8. [2]李乃华,赵芬霞,赵俊英,李景焕[M]北京,高等教育出版社,2012-8 [3]张凯院,徐仲,陆全[M]西北工业大学出版社,2001-3
与通常的规律相反 2.7 方阵的行列式 运算性质 (1)|AT | = |A| (行列式的性质) (2) AB = A B (3) 设 A 为 n 阶方阵, ( 是常数,A 的阶数为 n) 的行列式 与 A 的行列式 之间的关系不是 ,而是
A = 3 结束语
a c
a b 2a 2b ,2A = c d 2c 2d b 2a 2b 2 a b ,而|2A|= =2 d 2c 2d c d A=
矩阵。矩阵的运算是数值分析领域的重要问题。掌握矩阵的运算及它们的运算规律是学 习矩阵知识的一个重要环节。 矩阵的计算中有许多规律和结论可利用, 但不是所有的运算规律都可以在矩阵的计 算汇总运用。以下诸条关于不可用规律与结论的总结提供一个参照,在矩阵的计算中便 于减少运算错误。 . 2.1 矩阵的加法与减法: 运算性质 :满足交换律和结合律 交换律 结合律
2.6 矩阵的转置 运算性质 (1)(AT )
T=A T
(2) (A + B) = AT + B T (3) (AB) = B T AT (4)
T T

是常数.
������
ቤተ መጻሕፍቲ ባይዱ
������ ������ T (AB) = B T AT ,(A������ ������������ … . ������������ ) = ������������ ������ ������������−������ … . ������������ A������等号左右矩阵的顺序是相反的,
1 −2 … . (1 − 1 2)=5n −1 A 1
设 g(x)是 x 的 m 次多项式,f(A)g(A)=g(A)f(A) 。但是,当 A,B 不可交换 时,f(A)g(B)≠g(B)f(A) 2.5 有零因子的情况 如: A≠0, B≠0 但可能有 AB=0. AB=A, 不能得出 B=E(单位矩阵)
A=B=B+A;
(A+B)+C=A+(B+C) .
只有同型矩阵才能相加(减) ,且其和(差)仍保持同型 例:
a b
与 c d e 不能相加或相减 2 3 −1 − 2 − 3 1 + −1 2 + + = 4 5 6 −4 − 5 − 6 4 + −4 5 + 10 5 3 −5 1 − = −1 5 9 4 2 −2 3 + −3 −5 6 + −6 2 −7 =O
Key words: Matrix; operation rules; conclusions; not established
正文: 1 引言 矩阵理论是高等代数的主要内容之一。 矩阵理论和方法对于图论的研究起了很重要 的推动作用,同时也是数学及许多科学领域中的重要工具,它有着广泛的应用。矩阵是 高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于 电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到
������
= ������������ ������������ 需 A,B 可交换
因此,矩阵乘法不满足交换律。 ⑵矩阵的乘法不满足消去律 如果AB = AC,并且A ≠ O,不能推出B = C 例:A = 1 2 1 −1 ,B = ,C = O, 1 2 −1 1 AB = O,AC = O,但是 B ≠ C 2.3 矩阵的幂 ⑴对于m × n矩阵 A,当m ≠ n时,Ak 是没有任何意义的 ⑵(������������)������ = ������������ B k ,A、B 可交换时成立 ⑶矩阵 A 为 n 阶方阵,A 的 k 次幂Ak ,k 为正整数 1 −1 2 例:A= −2 2 −4 ,求An 1 1 −1 2 1 注意到A = −2 (1 -1 2)因此An = −2 1 − 1 2 1 1 2.4 矩阵的多项式
华北水利水电大学
矩阵中不能成立的运算规律及结论
课程名称: 专业班级: 成员组成: 联系方式:
2015 年 1 月 8 日
摘要:矩阵作为一种重要的代数工具,其出现的历史可以追溯至公元前,然而矩阵真正 成为一个独立的概念并被加以研究的历史开始于 19 世纪 50 年代。如今,矩阵理论的发 展越来越迅速,到 19 世纪末,矩阵理论体系已基本形成。到 20 世纪,矩阵理论得到了 进一步的发展。目前,它己经发展成为在物理、控制论、机器人学、生物学、经济学等 学科有大量应用的数学分支。矩阵的计算中有很多不能成立的运算规律和结论,在运用 通常的运算规律计算时可能会误用。本文列举出此类不能成立的运算规律和结论,方便 运算时参照,以减少误用规律结论的情况出现。

(2) C 的第 i 行,第 j 列的元素Cij 由 A 的第 i 行元素与 B 的第 j 列元素对应相乘,再
i.只有当第一个矩阵A的列数等于第二个矩阵B的行数时,矩阵A与B的乘积AB才有意义。 否则A与 B 是不能相乘的。一般来讲即便AB有意义,BA也未必有意义。 4 1 0 1 0 3 −1 −1 1 3 例:对于A = ,B = 2 1 0 2 2 0 1 1 3 4
相关文档
最新文档