交通流三要素之间的关系-文档资料

合集下载

第七章交通流三参数之间的关系

第七章交通流三参数之间的关系

参考文献
1、任福田,刘小明,荣建等.交通工程学. 北京:人民交通 出版社,2003.7
2、刘建军.交通工程学基础. 北京:人民交通出版社, 1995.7
第七章 交通流量、速度和密度之间来自关系授课内容:1、三参数之间的关系
2、速度—密度之间的关系
3、交通流量—密度之间的关系
4、交通流量—速度之间的关系
授课要求:
掌握交通流中交通流量、速度和密度各参数之间
的关系,会分析和应用三参数之间的关系。
第一节 三参数之间的关系
一、交通流的三个参数关系
描述交通流的三个参数是交通量、速度和交通密 度,它们之间的关系可以用下式表示:
Q VK
式中:Q——交通量(辆/h);
V——速度(km/h);
K——交通密度(辆/km)。
二、交通量、速度和交通密度的关系曲线 由交通量、速度和交通密度三者关系图(图 7-1 ) 可见:
图7—1交通量、速度和交通密度的关系
(1)Qm是速度-流量图上的峰值,表示最大流量。
(2)Vm是流量取最大值(Q=Qm)时的速度,称为 临界速度。
例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h)
阻塞密度值:kj=1000/hd=1000/8.05=124辆 /km,如假定ht=1.5s,由于 ht=3600/Q
因此,最大通行能力Qm=3600/1.5=2400辆/h。 此时的速度Vm=Qm/Km=2400/62=38.7km/ h。

交通流三个参数K Q V之间关系概要

交通流三个参数K Q V之间关系概要

V=60-3/4*70=7.5(km/h)
Q= KV=7.5*70=525(veh/h)
Qm=1/4 KjVf=1/4*60*80=1200(veh/h)
例7-3假定车辆平均长度为6.lm,在阻塞密度时,单车 道车辆间的平均距离为1.95m,因此车头间距h= 8.05m,试说明流量与密度的关系。 解:因为hd=1000/k
第二节 速度和密度之间的关系
1934年,格林希尔兹(Greenshields)提出了 速度一密度线性模型。
K v v( ) f 1Kj
式中:Vf-一畅行速度; Kj——阻塞密度。
这一模型较为直观、实用(图7-2),且与实 测数据拟合良好。
当 K = 0 时, V 值可达理论最高速度,即畅行速度 Vf 。实际上, AE 线不与纵坐标轴相交,而是趋于该 轴因为在道路上至少有一辆车V以速度Vf行驶。这时, Vf只受道路条件限制。该图也可以表示流量,根据直 线关系,直线上任意点的纵横坐标与原点O所围成的 面积表示交通量,如运行点 C ,速度为 Vm ,密度为 Km,其交通量为 Qm=VmKm,即图上的矩形面积。
过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
综合以上三个参数的关系可知:当道路上交通密 度小时,车辆可自由行驶,平均车速高,交通流量不 大;随着交通密度增大,交通流量也增加,但车速下 降;当交通密度增加到最佳密度时,交通流量达到最 大值,即交通流量达到了道路的通行能力,车辆的行 驶形成了车队跟随现象,车速低且均衡;当交通密度 继续增大,即超过了最佳密度,交通流量下降,车速 明显下降,直到车速接近于零,道路出现阻塞,交通 密度达到最大值,即阻塞密度,交通流量等于零。

交通流三个参数KQV之间关系解读

交通流三个参数KQV之间关系解读

图7-3所示。
图7-3交通量和密度的关系
当交通密度为零时,流量为零,故曲线通过坐标 原点。当交通密度增加,流量增大,直至达到道路的 通行能力,即曲线C点的交通量达到最大值,对应的 交通密度为最佳密度Km;从C点起,交通密度增加, 速度下降,交通量 减少,直到阻塞密度Kj,速度等 于零,流量等于零;由坐标原点向曲线上任一点画矢 径。这些矢径的斜率,表示矢端的平均速度。通过A 点的矢径与曲线相切,其斜率为畅行速度Vf;对于密 度比Km小的点,表示不拥挤情况,而密度比Km大 的点,表示拥挤情况。
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K,
求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80)
Vf=60 km/h K=N/L=28/0.4=70(veh/km) V=60-3/4*70=7.5(km/h) Q= KV=7.5*70=525(veh/h) Qm=1/4 KjVf=1/4*60*80=1200(veh/h)
线同样是一条抛物线(图7-4)
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
对于式(7-6)若另dQ/dK=0,则可求出对应于 Qm的Km值:
km
1 2
k
j
从而

交通流量速度密度三者之间的关系.

交通流量速度密度三者之间的关系.
交通流量、速度、密度三者之间的关系
交通流量、速度、密度三者之间的关系
交通流量、速度、密度是描述交通流基本特 征的三个主要参数,它们之间相互联系、相 互制约。
主要内容:
一、概述 二、流量、速度、密度三者之间的关系
一、概述
1.交通流近似看作是由交通体组成的一种粒子流体, 同其他流体一样,可以用交通流量、速度和密度三 个基本参数来描述。
谢谢!


二、流量、速度、密度三者关系
dQ 0 dV
2V 1 0 Vf
1 V V f Vm Qm 2
1 Vm V f 2 K 1 K m j 2
1 Qm V f K j 4
二、流量、速度、密度三者关系
当车流密度小于最佳车流密度时,车流处于 自由行驶状态,平均车速高。交通量没有达 到最大值,密度增大,交通量也增大;当车 流密度接近或等于最佳车流密度时,车流出 现车队跟驰现象,车速受到限制。各种车辆 接近某一车速等速行驶,交通量将要达到最 大值;当车流密度大于最佳车流密度时,车 流处于拥挤状态,由于车流密度逐渐增大, 车速和交通量同时降低,交通发生阻塞,甚
一、概述
2.密度:
密度K:单位长度车道上某一瞬间所存在的车 辆数,表示道路空间上的车辆密集程度,即
N K L
式中:N——某瞬间在长度为L的路段上行驶的 车辆数,单位:辆 L——路段长度,单位:km
二、流量、速度、密度三者关系
1. V—K 关系(Greenshields模型(线性模型) ):

假设线性关系:V = a – bK(1)
Q K V

式中:Q——流量,辆/h K——密度,辆/公里 V——区间平均速度,km/h

交通工程-交通流三参数之间的关系06

交通工程-交通流三参数之间的关系06


V=60-3/4*70=7.5(km/h)

Q= KV=7.5*70=525(veh/h)
❖ Qm=1/4 KjVf=1/4*60*80=1200(veh /h)
❖ 4、假定车辆平均长度为6.lm,在阻塞密度时,
单车道车辆间的平均距离5m,试说明流量与密度的关系。
❖试计算该道路的最大流量。 ❖解:对照车速-密度的对数模型,可得: ❖Vm=40km/h;则Vf=80km/h; ❖Kj=82辆/km; ❖则Qm=1/4Vf*Kj=1640辆/h。
3、交通量三参数之间关系的应用
拥挤收费——交通需求管理策略
流量-密度关系曲线
交通量三参数之间关系的应用
拥挤收费
通过对驶入城市中心区的车辆征收额外的 通行费达到调节中心区交通流的目的,从 而使城市中心区的交通流运行在最佳状态。
❖ 1998年8月,新加坡政府将ERP扩充到整个中心 商业区、高速公路和交通拥挤的区域。新加坡拥 挤收费的目的非常单一,就是为了控制交通拥挤 现象,同时辅以高达130%的小汽车牌照税进一 步限制小汽车的保有,削弱了拥挤收费政策的负 面影响,增强了拥挤收费实施的效果。
❖ 技术手段
❖ 早期的ALS和RPS均采取出入收费区域出示纸质凭证 的方式运行。
实施效果: 收费区域交 通量减少了 22%;
交通事故降 低5~10%;
公交利用率 大幅提高, 增减了16条 公交线路和 200多辆公交 车。
3、交通量三参数之间关系的应用
拥挤收费需解 决的关键问题
拥挤区域、拥挤收费时段、拥挤收费 费率、收费方式等。
新加 坡电 子拥 挤收 费区 域入 口图
❖ 新加坡交通拥挤收费典型成功案例
❖ 收费水平和收益分析 ❖ 新加坡的电子收费系统(ERP)是一种单次分级

7交通流量、速度和密度之间的关系

7交通流量、速度和密度之间的关系

=
N L
V = KV
第二节 速度- 密度的关系
现象:当道路上的车辆增多、车流密度增大时,驾驶员被迫降 低车速。当车流密度由大变小时,车速又会增加。
探求速度和密度之间的关系
车流密度适中 直线关系模型 车流密度很大 对数关系模型 车流密度很小 指数模型
广义速度-密度模型
特征变量
划分交通是否拥挤的重要特征值
数学模型
Q = KV = KV f ( 1 K K
j
)=Vf(K -
K K
2
)
j
Q Qm 斜率最大 车速最高
K增大, Q增大
K=Km Q=Qm K增大, Q减小
Km = Vm = 1 2 1 2 1 4 K
j
Vf VfK
K=0, Q=0
不拥挤 Km
拥挤 K=Kj Q=0 Kj K
Qm =
j
第四节 速度-交通流量的关系
即K=Kj,b=Vf/Kj,
直线关系模型
V = a - bK = V f Vf K
j
K =Vf(1-
K K
j
)
V = a - bK = V f -
Vf K
j
K =Vf(1-
K K
j
)
V
Vf
K=0,V=Vf
K=Kj,V=0
?状态
Vm=38.7
交通量最大 Qm=KmVm=2400
Km=62
?状态
Kj
K
第七章 交通流量、速度和密度之间的关系
第一节 三参数之间的关系
假设交通流为自由流,在长度为 L 的路段上 有连续前进的 N 辆车,其速度为V,则:
L路段上的车流密度为: K =

第六章 流量速度密度三者关系

第六章 流量速度密度三者关系

(vf)2* 0 12.0 5 4 9 40 .6 9* 3 2 7.0 6 3 1 .1
kj
2* 0 13.6 9 5 3 41 .6 92 3 2
1* 7.0 6 (3 1 .1* 717 * 4.6 9 3 2 6.4 27
20
20
❖ 即: vf 6.4 2(7 km /h)
vf kj
一、概述 二、流量、速度、密度三者之间的关系
3
一、概述
1. 交通流——交通体组成的粒子流。如同其它流 体一样,也可以用流量、速度、密度三个参数来 描述。
Q KV
❖ 式中:Q——流量,辆/h K——密度,辆/公里 V——区间平均速度,km/h
4
一、概述
❖ 三维空间曲线投影到二维 空间:
Qm
(1) Qm是u—q图上的峰值,表示
15
二、流量、速度、密度三者关系
❖ 例6.1 在某公路一个观测断面上,用电子秒 表观测车头时距,求出每5min之内平均车头 时距,同时用雷达计速仪观测各车辆车速, 求出每5min之内的平均车速,其结果见表63,试分析该路的交通量、车速、密度三者关 系。
16
二、流量、速度、密度三者关系
❖ 车头时距:相邻两车的车头通过道路某一断
第六章 交通流量、速度、密度 三者之间的关系
1
第六章 交通流量、速度、密度三者 之间的关系
本章要求: ❖ 交通流可以看成是一种流体,可以用流量、
速度、密度三个参数来表述。要求掌握三 者之间的相互关系,明确最佳流量、最佳 速度和最佳密度的真正含义及作为划分交 通是否拥挤的重要特征值。
2
第六章 交通流量、速度、密度三者 之间的关系
n
n
xi2 xiyi 0

交通流三参数之间的关系

交通流三参数之间的关系
三个参数之间的关系式为 Q ? Vs K
适合于所有稳定的交通流
最大流量 Qm 临界速度 (critical density )vm 临界密度 (critical density )Km 阻塞密度 (jam density )Kj 自由流速度 (free-flow speed)Vf
22、、交停通车流三场参布数局之间原的则关系
交通流三参数之间的关系
2 、交通停流车三场参数布之局间原的则关系
(1) 连续流和间断流 (2) 流量-速度-密度之间的关系 (Q-V-K 关系) (3) 速度-密度之间的关系 (V-K 关系) (4) 流量-密度之间的关系 (Q-K 关系) (5) 流量-速度之间的关系 (Q-V 关系)
22、、交停通车流三场参布数局之间原的则关系
?试用格林希尔茨线性模型求该路段在密度为 30辆 /Km 时的路段平均交通量。该道路的最大交通量 为多少?对应的速度和密度值是多少?
200
400
600
800
q (pcu /h /lane )
速度—密度线性关系模型与实测结果对比
2、停车场布局原则
(3) 速(1度) -密度之间的关系 (b) Grenberg (对数)模型
V
?
Vm
ln
Kj K
适用于交通流密度很大时
2、停车场布局原则
(3) 速(1度) -密度之间的关系 (c) Underwood (指数)模型
) /h
50
m
v(k 40
30
20 0
南京市:龙蟠南路路段
)
ne
/la
2min Underwood 2min Greenberg
(pcu/h
5min Underwood

交通流三参数之间的关系

交通流三参数之间的关系

600
800
速度—密度线性关系模型与实测结果对比
2、停车场布局原则
(3) 速度-密度之间的关系 (1) (b) Grenberg(对数)模型
V Vm ln
Kj K
适用于交通流密度很大时
2、停车场布局原则
(3) 速度-密度之间的关系 (1) (c) Underwood(指数)模型
V Vf e
800 600 400 200 0 0
南京市:龙蟠南路路段
q (pcu /h /lane )
v (km /h )
2min 2min 5min 5min 15min 10 20 k (pcu /km /lane )
Underwood Greenberg Underwood Greenberg Underwood 30

K Km
适用于交通流密度很小时
2、停车场布局原则 交通流三参数之间的关系
(4) 流量-密度之间的关系 (1)
Q K V
K V V f (1 ) Kj
K2 Q V f (K ) Kj
2、停车场布局原则 2、交通流三参数之间的关系
(4) 流量-密度之间的关系 (1)
70 60 50 40 30 20 0 200 400 q (pcu /h /lane ) 600 800 2min 2min 5min 5min 15min Underwood Greenberg Underwood Greenberg Underwood
3、交通量三参数之间关系的应用
实施效果: 收费区域交 通量降低了 18%; 平均延误降 低了30%; 车速提高了 17km/h;
公交利用率 提高38%。
伦敦拥挤收费区域示意图(2003年以来)

简述交通流三个基本参数的概念及相互关系

简述交通流三个基本参数的概念及相互关系

简述交通流三个基本参数的概念及相互关系交通流三个基本参数是交通流量、交通流速度和交通流密度。

1.交通流量:表示交通流在单位时间内通过道路指定断面的车辆数量,单位是辆/小时或辆/日。

2.交通流速度:表示交通流流动的快慢,单位是米/秒或公里/小时。

3.交通流密度:表示交通流的疏密程度,即道路单位长度上含有车辆的数量,单位是辆/公里。

这三个参数之间的关系是:交通流量为交通流速度和交通流密度的乘积。

道路上车辆很少时,驾驶员可选择较高速度,这时交通流速度较大,但因交通流密度小,所以交通流量也比较小。

随着路上的车辆增多,交通流密度增大,车辆的行驶速度虽受到前后车辆的约束而有所下降,流速降低,但交通流量还是增加,直到某一种条件下,流速和密度的乘积达到最大值,即交通流量为最大时为止。

这时的流速称为最佳速度,密度称为最佳密度。

交通流三要素之间的关系 ppt课件

交通流三要素之间的关系  ppt课件
交通流三要素 之间的关系
教学内容及目标
一、交通流三要素基本关系 二、速度-密度关系模型 三、流量-密度关系模型 四、流量-速度关系模型
ppt课件
掌 握
理 解
2
交通流三要素
请思考:三要素从不同的角度描述了交通流的特性, 那么他们之间是否存在着某些关系,如果存在,这些 关系能否更深入、更综合的描述交通情况?
-
K Kj
)n
n是大于零的实数,当n=1时,为线性关系 式
ppt课件
15
三、流量- 密度关系模型
Q KV
V
Vf(1
-
K Kj
)
Q
Vf
(K
-
K K
2 j
)
Vf Kj
(K
Kj 2
)2
K
jV f 4
Q Qm
K增大, Q增大
斜率最大 车速最高
K=Km Q=Qm
K=0,Q =0
不拥挤
拥挤
Km
K增大, Q减小
注意:不同的模型适用范围不同!
车流密度适中:希尔治的线性模型;
车辆密度很小:安德伍德的指数模型;
V
车流密度很大:格林伯的对数模型;
Vf
安德伍德模型
的适用范围
A(K1,V1)
B(0.5Kj,0. 5Vf)
格林伯模型 的适用范围
C(K2,V2)
Kj K
ppt课件
14
4、广义模型(派普斯模型)
V
Vf(1
K=Kj Q=0
K Kj
1 Km = 2 K j
1 Vm = 2 V f
1 Qm = 4 V f K j
ppt课件
16

交通流三个参数K-Q-V之间关系

交通流三个参数K-Q-V之间关系
3.在道路上有一拥挤车流,车流跟随行驶无法超车,其V—K关系符合对数模型V=40ln82/K。 试计算该道路的最大流量。 4.高速公路上的交通流其V一K关系为V=a—bK,其中a,b为常数,要求实际交通流量不大于最大流量的0.8倍,求高速公路车流控制应保持的密度范围? 5.已知某公路上畅行速度Vf=60km/h,阻塞密度Kj=86辆/km,速度—密度关系为线性关系。试问: (l)该路段上期望得到的最大流量是多少? (2)此时所对应的车速是多少?
例7-3假定车辆平均长度为6.lm,在阻塞密度时,单车道车辆间的平均距离为1.95m,因此车头间距h=8.05m,试说明流量与密度的关系。 解:因为hd=1000/k 阻塞密度值:kj=1000/hd=1000/8.05=124辆/km,如假定ht=1.5s,由于 ht=3600/Q 因此,最大通行能力Qm=3600/1.5=2400辆/h。此时的速度Vm=Qm/Km=2400/62=38.7km/h。
例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h) (2)此时所对应的车速是: Vm=Vf/2=1/2*80=40 km/h
当交通密度为零时,畅行交通流的车速就可能达到最高车速,如图中曲线的最高点A,就是畅行速度Vf,而流量等于零。当交通密度等于阻塞密度时,速度等于零,流量也等于零,因此,曲线通过坐标原点。 过C点作一条平行于流量坐标轴的线,将曲线分成两部分,这条线以上的部分,为不拥挤部分,速度随流量的增加而降低,直至达到通行能力的流量Qm为止,速度为Vm;这条线以下部分为拥挤部分,流量和速度都下降。

交通流三参数之间的关系ppt课件

交通流三参数之间的关系ppt课件

8 0 0 6 0 0 4 0 0 2 0 0 0 0
q (pcu /h /lane )
v (km /h )
2 m i nU n d e r w o o d 2 m i nG r e e n b e r g 5 m i nU n d e r w o o d 5 m i nG r e e n b e r g 1 5 m i nU n d e r w o o d 1 0 2 0 k( p c u / k m / l a n e) 3 0
拥挤收费类型
城市中心区、城市快速路、高速公路
3、交通量三参数之间关系的应用
实施效果: 收费区域交 通量降低了 18%; 平均延误降 低了30%; 车速提高了 17km/h;
南京市:龙蟠南路路段
7 0 6 0 5 0 4 0 3 0 2 0 0 2 0 0 4 0 0 q( p c u/ h/ l a n e ) 6 0 0 8 0 0 2 m i nU n d e r w o o d 2 m i nG r e e n b e r g 5 m i nU n d e r w o o d 5 m i nG r e e n b e r g 1 5 m i nU n d e r w o o d
(3) 速度 (1) -密度之间的关系 (a)格林希尔治(Green Shields)模型(线性模型)(1933年)
K V V f (1 ) Kj
模型适用于交通流密度适中时, 当密度很大或很小时偏差大。 该模型形式简单,一直被广泛采 用。
2、停车场布局原则 交通流三参数之间的关系
(3) 速度 (1) -密度之间的关系 (a)格林希尔治(Green Shields)模型(线性模型)(1933年)
400 q (pcu /h /lane )

交通流三参数关系的研究

交通流三参数关系的研究

交通流三参数关系的研究交通流三参数关系指的是交通流量、速度和密度之间的关系。

这三个参数是交通运输领域中非常重要的指标,对于交通安全和交通效率的提高有着巨大的影响。

然而,这三个参数之间的关系并不是简单的线性关系,而是复杂的非线性关系。

因此,深入研究交通流三参数关系的规律具有重要的理论价值和实际应用价值。

交通流量是指单位时间内通过某一道路或路段的车辆数量。

它是交通流的基本参数,是交通流研究的起点和基础。

交通流量的变化会直接影响到道路交通的运行状况和交通拥堵程度。

当交通流量超过道路的承载能力时,容易发生交通拥堵和交通事故。

交通速度是指车辆在道路上行驶的速度。

它是反映交通效率和交通条件的重要指标,也是影响交通流量和交通密度的主要因素。

交通速度的变化会直接影响到车辆通过道路的时间和路程,因此是评价交通服务质量的重要标准之一。

交通密度是指单位时间内经过某一点的车辆密度,即每个时间段内车辆所占道路长度的比值。

它是反映交通状况和交通拥堵程度的重要参数。

当交通密度太大时,会导致车流滞后、速度下降和交通事故增多。

交通流三参数关系的研究是将交通流量、速度和密度等交通参数进行相关分析,揭示它们之间的内在联系和相互影响规律。

在实际应用中,通过建立交通流三参数关系模型,可以为路口、路段、城市交通系统等进行交通控制和交通管理提供科学依据。

目前,国内外学者已经提出了许多基于交通流三参数关系的模型,如Green-Shields 模型、DAG模型、信号交叉口通行模型等。

这些模型都是基于交通流三参数之间的非线性关系建立的,同时融合了交通流量、速度和密度的信息,能够比较准确地描述交通流的实际状况和交通拥堵程度。

在未来的研究中,需要进一步探索交通流三参数关系的规律,提高交通流三参数模型的精度和实用性,同时应用新技术和新方法,发掘交通流三参数关系的潜在规律和应用价值,为城市交通的可持续发展和智能化发展提供有力支撑。

5交通流三参数之间的关系解析

5交通流三参数之间的关系解析

南京市:龙蟠南路路段
y = -0.013x + 52.349
200
400
600
800
q (pcu /h /lane )
速度—密度线性关系模型与实测结果对比
vs (km /h ) vs (km /h )
2、停车场布局原则
(3) 速(1度) -密度之间的关系 (b) Greenberg(对数)模型
V
Vm
ln
Kj K
适用于交通流密度很大时
2、停车场布局原则
(3) 速(1度) -密度之间的关系 (c) Underwood(指数)模型
K
V Vf e Km
适用于交通流密度很小时
2、2交、通停流车三场参数布之局间原的关则系
(4) 流(1量) -密度之间的关系
Q K V
V
Vf
(1
K Kj
V
Vf
(1
K Kj
)
模型适用于交通流密度适中时, 当密度很大或很小时偏差大。
该模型形式简单,一直被广泛采 用。
当K=0时,V值可达理论最高速度,即畅 行速度Vf。实际上,AE线不与纵坐标轴相 交,而是趋于该轴因为在道路上至少有一 辆车V以速度Vf行驶。这时,Vf只受道路 条件限制。该图也可以表示流量,根据直 线关系,直线上任意点的纵横坐标与原点O 所围成的面积表示交通量,如运行点C,速 度为Vm,密度为Km,其交通量为 Qm =VmKm,即图上的矩形面积。
5min Underwood 5min Greenberg
15min Underwood
10
20
30
k (pcu /km /lane )
流量—密度关系模型与实测结果对比

第七章交通流三参数之间的关系

第七章交通流三参数之间的关系

式 表明速度与流量的关系曲 线同样是一条抛物线(图7-4)
v2 Q K j (v ) vf
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
对于式(7-6)若另dQ/dK=0,则可求出对应于 Qm的Km值:
km
1 kj 2
从而
Qm K m vm
K mv f 4
第四节 速度和流量的关系
由式
K v v f (1 ) Kj
可得:
v K K j (1 ) vf
代人式Q=KV,得
v2 Q K j (v ) vf
例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h)
(2)此时所对应的车速是:
Vm=Vf/2=1/2*80=40 km/h
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K, 求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80) Vf=60 km/h K=N/L=28/0.4=70(veh/km)
(3)在速度、密度图上,车辆减少,密度随着变小, 速度增大。当密度趋于零时,速度可达最大值,这时 车辆可畅行无阻,所以Vf是畅行速度。若车辆增多时; 则密度增大,车速随之减小。当密度达到最大值Kj时, 车流受阻即Q = 0。此时的密度Kj称阻塞密度。

第六章流量速度密度三者关系_2023年学习资料

第六章流量速度密度三者关系_2023年学习资料

一、-概述-2.密度:-1密度K:指道路上车辆密集的程度,即单位-长度上的车辆数(某瞬间。-N-L-式中: 一某瞬间在长度为L的路段上行驶-的车辆数,辆-L一路段长度,km
一-、概述-2.密度:-÷可以用车道表示—某一条车道的密度;-”可以用某行车方向的全部车道表示一行车-方向 度。-÷例:长500m双向4车道,在某一时刻每一车-道上有10辆车,-则车道密度:K道=-20辆/am-1 00-10×2-一个行车方向的密度:-K单向-=40辆/m
3→2-2212y-B2x,+a:=0-i=1-n i=1-n i=l-12x立p2x+2xxy=0-2x -立2y-B--解出:-n∑x-∑x,
Y,=+X-V=Vf-vs k-据表中数据:-n=20-∑y=y=7036-∑x=∑k2=1393165x:=∑k,=46392-∑xy=∑ky=1259004
二、-流量、速度、-密度三者关系-曲线在速度等于零和最大值之-间,曲线凸向最大流量形成闭-合环线:-过C点 平行线(平行Q轴):-上部为不拥挤部分,Q↑,V直到-Q=Qm,V=Vm为止;下部分为-拥挤部分:Q,V直 Q=0,-V=0为止;-懂〔销h-<K>Km,V<Vm-÷不拥挤部分:Q≤2m,K≤Km,V≥V
二、流量、速度、-密度三者关系-当K=0,Q=0曲线通过坐标原点。-d№=0-K-7K-K.-从C点起,K 加,Q减少,直到-K=K时,V=0Q=0。-由坐标原点向曲线上任一点画矢径。-这些矢径的斜率表示矢端的平均 -度。-。K≤K的点,表示不拥挤情况;-KK-的点,表示拥挤情况。
二、流量、速度、密度三者关系-3.V一Q的关系-冬已知:-v0--冬导出:-kk,0-出-则:-0w发w的
流量、速度、密度三者关系-例6.1在某公路一个观测断面上,用电子秒-表观测车头时距,求出每5min之内平均 头-时距,同时用雷达计速仪观测各车辆车速,-求出每5min之内的平均车速,其结果见表6--3,试分析该路的 通量、车速、密度三者关-系。

交通流三要素之间的关系-文档资料

交通流三要素之间的关系-文档资料
➢ 交通流量(Q):单位时间内
度通量过车道辆路对断面交或通车设道备的的车需辆数求;
➢ 车流密度(K):单位路段长 度上存在的车辆数;
反映车辆能获取的服务质量
➢ 车辆速度(V):单位时间内 车辆移动的距离;
3
一、交通流三要素基本关系
1、三要素基本关系式推导
假设交通流为自由流,在长度为 L 的路段 上有连续前进的 N 辆车,其速度为V,则:
L路段上的车流密度为: K = N L
A
N辆车通过A断面所用的时间为: t = L V
N辆车通过A断面的交通流量为:Q = N
t
整理:
NNN
Q= t
=
L
=
V=KV L
V
4
2、三要素基本关系分析(1)
➢Q-V-K基本关系式: Q=KV
Q:平均流量(辆/h); V:空间平均车速(km/h); K:平均密度(辆/km)。
Q、V、K均是平均值;
这个关系式是一个流体力 学公式,式中的三个参数 中只有两个独立变量;
5
2、三要素基本关系分析(2) Q=KV的图像是怎么样的?
其图像不 是普通的 二维直线, 也不是三 维的双曲 马鞍面, 而是一条 空间曲线。
y kx
QzxKyV
6
2、三要素基本关系分析(3)
反映交通流特性的几个 重要特征量:
A(K1,V1)
B(0.5Kj,0. 5Vf)
格林伯模型 的适用范围
C(K2,V2)
Kj K 14
4、广义模型(派普斯模型)
V
Vf(1 -
K )n Kj
n是大于零的实数,当n=1时,为线性关系 式
➢ 是一组V-K模型通用的线族。 ➢ n=1是其中一个特例。

第六章 流量速度密度三者关系

第六章 流量速度密度三者关系

❖ 可以用车道表示——某一条车道的密度;
❖ 可以用某行车方向的全部车道表示——行车 方向密度。
❖ 例:长500m双向4车道,在某一时刻每一车
道上有10辆车,
则车道密度:K道
10 500
20辆/k m
1000
一个行车方向的密度:
K单向15002040辆/k m 7 1000
一、概述
2.密度:
(2)车道占用率——在某路段内,车辆占用车道长度 总和与该路段长度之比。由于不能用仪器直接测量 密度,所以在高速公路监测时,用车道占用率来度 量交通密度。
15
二、流量、速度、密度三者关系
❖ 例6.1 在某公路一个观测断面上,用电子秒 表观测车头时距,求出每5min之内平均车头 时距,同时用雷达计速仪观测各车辆车速, 求出每5min之内的平均车速,其结果见表63,试分析该路的交通量、车速、密度三者关 系。
16
二、流量、速度、密度三者关系
❖ 车头时距:相邻两车的车头通过道路某一断
(vf)2* 0 12.0 5 4 9 40 .6 9* 3 2 7.0 6 3 1 .1
kj
2* 0 13.6 9 5 3 41 .6 92 3 2
1* 7.0 6 (3 1 .1* 717 * 4.6 9 3 2 6.4 27
20
20
❖ 即: vf 6.4 2(7 km /h)
vf kj
❖ 拥挤部分: Q Q m ,K K m ,VV m ❖ 不拥挤部分:Q Q m ,K K m ,VV 1m 3
二、流量、速度、密度三者关系
dQ 0 dV
1 2V 0 Vf
1 V2Vf VmQm
V
m
1V 2
f
K
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V K=0,V=Vf;
K=Kj,V=0;
Vf
A(K1,V1) K1<0.5Km,
V1>0.5Vf;
Vm
交通量最大 Qm=KmVm
B(0.5Kj,0.5VK1>0.5Km,
f)
V1<0.5Vf;
C(K2,V2)
Km
Kj K
11
2、对数V-K关系模型(格林伯模型)
V
V
模型缺点:当K 0时,速度趋向于无穷大,需修正。 ➢ 故该模型适用于交通密度较大时。
➢ V-K关系:
✓ 线性模型: V=a-bK =Vf -V Kfj K=Vf(1-K Kj )
✓ 对数模型:V
Vm
ln(K j K
)
✓ 指数模型:V
-K
Vfe Km
➢ Q-✓K关广系义:模Q型:VfV(K=V-fKK(j21)- KKj)nVKfj(kK2j)2Kj4Vf
➢ Q-V关系: QKj(v-vvf2)VKfj(VV2 f)2Kj4 Vf
交通流三要素 之间的关系
教学内容及目标
掌 握
理 解
2
交通流三要素
请思考:三要素从不同的角度描述了交通流的特性, 那么他们之间是否存在着某些关系,如果存在,这些 关系能否更深入、更综合的描述交通情况?
➢ 交通流量(Q):单位时间内
度通量过车道辆路对断面交或通车设道备的的车需辆数求;
➢ 车流密度(K):单位路段长 度上存在的车辆数;
18
其图像不 是普通的 二维直线, 也不是三 维的双曲 马鞍面, 而是一条 空间曲线。
y kx
QzxKyV
6
2、三要素基本关系分析(3)
反映交通流特性的几个 重要特征量:
➢ 最大交通流量(Qm); ➢ 临界密度(Km); ➢ 临界速度(Vm); ➢ 畅行速度(Vf); ➢ 阻塞密度(Kj);
7
二、速度- 密度关系模型
现象:当道路上的车辆增多、车流密度增大时, 驾驶员被迫降低车速。当车流密度由大变小时, 车速又会增加。
探求速度和密度之间的关系
车流密度适中 直线关系模型
车流密度很大 对数关系模型
车流密度很小 指数关系模型
广义速度-密度模型
8
1、线性V-K模型(格林.希尔治模型)
交通密度适中时观察所得数据。
9
1、线性V-K模型(格林.希尔治模型)
Q KV
V
Vf(1
-
K Kj
)
QVf(K-K K2 j)V Kfj(KK 2j)2K4 jVf
Q Qm
K增大, Q增大
斜率最大 车速最高
K=Km Q=Qm
K=0,Q =0
不拥挤
拥挤
Km
K增大, Q减小
K=Kj Q=0
K Kj
1 Km = 2 K j
1 Vm = 2V f
1
Qm
=
V 4
fK
j
16
四、流量- 速度关系模型
Q KV
K
V Kj (1- Vf
)
QKj (VVf )2KjVf Vf 2 4
Q=0,V V
=Vf
Vf
K增大, Q增大, V减小
Vm
K=Kj Q=0 V=0
不拥挤 拥挤
Q=Qm V=Vm
K增大, Q减小, V减小
Q Qm
1 Km = 2 K j
1 Vm = 2V f
1
Qm
=
V 4
fK
j
17
总结
➢ Q-V-K基本关系:Q=VK;
❖ 假定 V=a-bK
当K=0时,V可达到理论最高速度(Vf),
即K=0,V=Vf,
a=Vf
当K达到最大值(Kj)时,车速为0, b=Vf/K
即K=Kj,V=0,
j
线性关系模型: Va-bKVf -VKfjKVf(1-KKj)

K
K
j
(1-
V Vf
)
10
1、线性V-K模型(格林.希尔治模型) V=a-bK =Vf -V Kfj K=Vf(1-K Kj )
Vf
安德伍德模型
的适用范围
A(K1,V1)
B(0.5Kj,0. 5Vf)
格林伯模型 的适用范围
C(K2,V2)
Kj K 14
4、广义模型(派普斯模型)
V
Vf(1 -
K )n Kj
n是大于零的实数,当n=1时,为线性关系 式
➢ 是一组V-K模型通用的线族。 ➢ n=1是其中一个特例。
15
三、流量- 密度关系模型
12
3、指数V-K关系模型(安德伍德模型)
V
-K
V Vfe Km
K
➢ 模型缺点:当K Kj时,V≠0,需修正。 ➢ 故该模型适用于交通密度较小时。
13
3、指数V-K关系模型(安德伍德模型)
注意:不同的模型适用范围不同!
车流密度适中:希尔治的线性模型;
车辆密度很小:安德伍德的指数模型;
V
车流密度很大:格林伯的对数模型;
t
整理:
NNN
Q= t
=
L
=
V=KV L
V
4
2、三要素基本关系分析(1)
➢Q-V-K基本关系式: Q=KV
Q:平均流量(辆/h); V:空间平均车速(km/h); K:平均密度(辆/km)。
Q、V、K均是平均值;
这个关系式是一个流体力 学公式,式中的三个参数 中只有两个独立变量;
5
2、三要素基本关系分析(2) Q=KV的图像是怎么样的?
反映车辆能获取的服务质量
➢ 车辆速度(V):单位时间内 车辆移动的距离;
3
一、交通流三要素基本关系
1、三要素基本关系式推导
假设交通流为自由流,在长度为 L 的路段 上有连续前进的 N 辆车,其速度为V,则:
L路段上的车流密度为: K = N L
A
N辆车通过A断面所用的时间为: t = L V
N辆车通过A断面的交通流量为:Q = N
相关文档
最新文档