电力传动自动控制系统

合集下载

电力传动与自动控制系统

电力传动与自动控制系统
作用
被控对象是整个自动控制系统的目标,通过对其参数的控制 ,实现系统的稳定运行和优化控制。
常见类型
温度控制系统、压力控制系统、流量控制系统等。
05 电力传动与自动控制系统 的集成
系统集成的方法与技术
模块化设计
将系统划分为多个独立的功能模块,便于系 统的扩展和维护。
集成平台
构建统一的集成平台,整合各种资源,实现 信息的共享和协同工作。
电力电子变换器的分类
根据工作原理和应用领域,电力电子变换器可分为AC-DC、DCAC、DC-DC等类型。
控制系统的基本原理
控制系统的组成
控制系统由控制器、受控对象、执行器和传感器等组成。
控制系统的基本原理
通过传感器检测受控对象的输出,并将检测到的信号传输给控制器进行处理,控制器根据 处理结果输出控制信号,控制执行器对受控对象进行调节,实现受控对象的稳定和优化。
智能家居
在智能家居领域,自动控制系统 用于控制家电设备、照明、温度
等,实现智能化管理和节能。
自动控制系统的发展趋势
智能化
随着人工智能技术的发展,自动控制 系统将更加智能化,能够自适应地处 理复杂环境和任务。
网络化
随着物联网技术的发展,自动控制系 统将更加网络化,实现远程监控和数 据共享。
模块化Leabharlann 为了便于维护和升级,自动控制系统 将采用模块化设计,提高系统的可扩 展性和可维护性。
控制系统的性能指标
控制系统的性能指标包括稳定性、快速性、准确性和鲁棒性等。
03 自动控制系统概述
定义与特点
定义
自动控制系统是指通过自动调节、控 制、监视等手段,使被控对象自动地 按照预定的规律运行或变化。
特点

电力拖动自动控制系统 教案

电力拖动自动控制系统 教案

电力拖动自动控制系统1. 介绍1.1 任务背景电力拖动自动控制系统是一种能够通过电力传动实现自动控制的技术系统。

该系统通过电动机驱动机械传动装置,实现对机械设备的运动控制和工作过程的自动化。

在工业生产中,电力拖动自动控制系统被广泛应用于各种生产过程中,提高了生产效率、质量和安全性。

1.2 目标本教案旨在介绍电力拖动自动控制系统的原理、应用和发展趋势,帮助学生理解和掌握该技术的基本概念、工作原理和应用场景,并培养学生的动手实践能力和解决问题的能力。

2. 原理2.1 电力拖动原理电力拖动自动控制系统的核心是电动机,通过电动机的转动来驱动机械设备。

电动机将电能转化为机械能,通过机械传动装置将动力传递给工作设备。

电动机的转速和扭矩可以通过控制电机的电压、电流等参数来实现调节。

2.2 控制原理电力拖动自动控制系统通过控制电动机的参数来实现对设备的自动控制。

控制系统可以根据预设的工艺要求和工作条件,自动调节电动机的转速、运行时间等参数。

控制系统通常包括传感器、执行器、控制器和人机界面等组成部分。

3. 应用3.1 工业应用电力拖动自动控制系统在工业领域有广泛的应用,例如生产线上的输送系统、机械加工设备、装配线等。

通过电力拖动自动控制系统,可以实现设备的精确控制,提高生产效率和质量,同时减少人力投入和工作风险。

3.2 交通运输应用电力拖动自动控制系统在交通运输领域也有重要的应用。

例如,电动车、地铁、高铁等交通工具都采用了电力拖动自动控制系统来驱动车辆。

通过该系统,可以实现对车辆的自动运行、刹车和悬挂等控制,提高了交通运输的安全性和舒适性。

4. 发展趋势4.1 智能化随着人工智能和物联网技术的发展,电力拖动自动控制系统也呈现出智能化的趋势。

未来的电力拖动自动控制系统将更加智能化,能够自动学习和优化控制策略,实现更高效、更精准的控制。

4.2 节能环保电力拖动自动控制系统也将朝着节能环保的方向发展。

通过优化控制策略和节能设备的应用,可以减少能源消耗和环境污染,实现可持续发展。

电力拖动自动控制系统(陈伯时)ppt5-交流拖动控制系统

电力拖动自动控制系统(陈伯时)ppt5-交流拖动控制系统
如果换成交流调速系统,把消耗在挡板和阀门上 的能量节省下来,每台风机、水泵平均都可以节 约 20~30% 以上的电能,效果是很可观的。
但风机、水泵的调速范围和对动态快速性的要求 都不高,只需要一般的调速性能。
电力拖运动控自制动控系制统系统
7
许多在工艺上需要调速的生产机械过去多 用直流拖动,鉴于交流电机比直流电机结 构简单、成本低廉、工作可靠、维护方便、 惯量小、效率高,如果改成交流拖动,显 然能够带来不少的效益。
在同步电机的变压变频调速方法中,从频
率控制的方式来看,可分为他控变频调速 和自控变频调速两类。
电力拖运动控自制动控系制统系统
20
自控变频调速 利用转子磁极位置的检测信 号来控制变压变频装置换相,类似于直流电 机中电刷和换向器的作用,因此有时又称作 无换向器电机调速,或无刷直流电机调速。
开关磁阻电机 是一种特殊型式的同步电机, 有其独特的比较简单的调速方法,在小容量 交流电机调速系统中很有发展前途。
n
n0
恒转矩负载特性
A
B
0.5UsN C
UsN
0.7UsN
O
TL
Te
图5-5 高转子电阻电动机(交流力矩电动机)
在不同电压下的机械特性
电力拖运动控自制动控系制统系统
39
5.3 闭环控制的变压调速系统及其 静特性
采用普通异步电机的变电压调速时,调速范 围很窄,采用高转子电阻的力矩电机可以增 大调速范围,但机械特性又变软,因而当负 载变化时静差率很大,开环控制很难解决这 个矛盾。
2%——交流可调速传动
电力拖运动控自制动控系制统系统
3
直流电机的不足
具有电刷和换向器,必须经常检查 维修。
换向火花使其应用环境受到限制。 换向能力限制电机的容量和速度 (极限容量转速约为106 kW r / min )。

电力传动控制系统

电力传动控制系统

第 1 章电力传动掌握系统的根本构造与组成1.依据电力传动掌握系统的根本构造,简述电力传动掌握系统的根本原理和共性问题。

答:电力传动是以电动机作为原动机拖动生产机械运动的一种传动方式,由于电力传输和变换的便利,使电力传动成为现代生产机械的主要动力装置。

电力传动掌握系统的根本构造如图 1-1 所示,一般由电源、变流器、电动机、掌握器、传感器和生产机械〔负载〕组成。

电源掌握指令掌握器变流器电动机负载传感器图1-1电力传动掌握系统的根本构造电力传动掌握系统的根本工作原理是,依据输入的掌握指令〔比方:速度或位置指令〕,与传感器采集的系统检测信号〔速度、位置、电流和电压等〕,经过肯定的处理给出相应的反响掌握信号,掌握器按肯定的掌握算法或策略输出相应的掌握信号,掌握变流器转变输入到电动机的电源电压、频率等,使电动机转变转速或位置,再由电动机驱动生产机械依据相应的掌握要求运动,故又称为运动掌握系统。

虽然电力传动掌握系统种类繁多,但依据图 1-1 所示的系统根本构造,可以归纳出研发或应用电力传动掌握系统所需解决的共性问题:1)电动机的选择。

电力传动系统能否经济牢靠地运行,正确选择驱动生产机械运动的电动机至关重要。

应依据生产工艺和设备对驱动的要求,选择适宜的电动机的种类及额定参数、绝缘等级等,然后通过分析电动机的发热和冷却、工作制、过载力量等进展电动机容量的校验。

2)变流技术争论。

电动机的掌握是通过转变其供电电源来实现的,如直流电动机的正反转掌握需要转变其电枢电压或励磁电压的方向,而调速需要转变电枢电压或励磁电流的大小;沟通电动机的调速需要转变其电源的电压和频率等,因此,变流技术是实现电力传动系统的核心技术之一。

3)系统的状态检测方法。

状态检测是构成系统反响的关键,依据反响掌握原理,需要实时检测电力传动掌握系统的各种状态,如电压、电流、频率、相位、磁链、转矩、转速或位置等。

因此,争论系统状态检测和观测方法是提高其掌握性能的重要课题。

电力拖动自动控制系统--动控制系统(1)-

电力拖动自动控制系统--动控制系统(1)-
43
1.2 晶闸管-电动机系统(V-M系统)的主要问题
on
• ton不变,变 T —脉冲频率调制(PFM); • t 和 T 都可调,改变占空比—混合型。
on
40
• PWM系统的优点
1 主电路线路简单,需用的功率器件少; 2 开关频率高,电流容易连续,谐波少,电机损耗及发热
都较小; 3 低速性能好,稳速精度高,调速范围宽,可达1:10000左
右; 4 若与快速响应的电机配合,则系统频带宽,动态响应快
可调的直流电压。 • 直流斩波器或脉宽调制变换器——用恒定直流电源或不
控整流电源供电,利用电力电子开关器件斩波或进行脉 宽调制,以产生可变的平均电压。
28
1.1.1 旋转变流机组( G-M系统, Ward-Leonard系统)
图1-1旋转变流机组供电的直流调速系统(G-M系统)
29
• G-M系统特性
15
4. 电枢绕组的反电势
E是电枢旋转时,绕组切割主磁通Φ的结果,故和Φ与转速n的乘积
成正比。
式中:Ke—电动势结构系数,Ce —恒磁通电动势结构系数;
n—电动机转速,在此转速下,电动机的电磁转矩
Te正好与负
载转矩Tl相平衡,系统处于稳定运行状态。
16
5. 直流电动机的机械特性方程
1 理想空载转速n0 当Te=0时,n=n0;
34
35
➢ 晶闸管对过电压、过电流和过高的dV/dt与di/dt 都十分敏感,若超过允许 值会在很短的时间内损坏器件。 ➢ 当系统处在深调速状态,即在较低速运行时,晶闸管的导通角很小,使得 系统的功率因数很低,并产生较大的谐波电流,引起电网电压波形畸变,殃 及附近的用电设备。由谐波与无功功率引起电网电压波形畸变,殃及附近的 用电设备,造成“电力公害”。

《电力传动控制系统》课程教学大纲

《电力传动控制系统》课程教学大纲

《电力传动控制系统》教学大纲一、课程地位与课程目标(一)课程地位随着电子、信息等高新技术的发展与进步,传统机电技术获得了改造、创新的可能和手段,电气工程及其自动化专业的学生除了需深刻理解电器、机械的原理和系统外,更需要具备运用电子技术((电力电子技术、微电子技术)、现代控制理论/技术实现传统机电系统高新技术改造的能力,为从事与电气工程专业有关的工作和科学研究打下一定的基础。

《电力传动控制系统》是电气工程及其自动化专业和自动化专业的核心课程,既有完整的理论体系,又有很强的实践性,是一门把理论基础和工具应用到工程实践中去的典范课程。

(二)课程目标1. 能够应用自动控制理论解决运动控制系统的设计问题(1.4)。

2. 能够应用自动控制理论分析运动控制系统的复杂工程问题(2.2)。

3. 具有电力拖动控制系统的工程开发和实验的基本能力(3.3)。

4. 能够基于自动控制理论对运动控制系统设计实验、仿真、分析与解释数据(4.3)。

5. 能够针对运动控制系统进行仿真与辅助设计(5.2)。

二、课程目标达成的途径与方法采用课堂教学的方法。

主要讲解转速开环控制的直流调速系统、转速闭环控制的直流调速系统、转速、电流双闭环控制的直流调速系统、直流调速系统的数字控制、基于稳态模型的异步电动机调速系统、基于动态模型的异步电动机调速系统、绕线转子异步电机双馈调速系统、同步电动机变压变频调速系统的概念、实现方法及具体的应用。

通过实例的讲解,使同学们更好地熟悉或掌握运动控制系统设计的方法和步骤,提高学生对电力传动系统的学习兴趣、培养学生应用理论基础和工具解决实际问题的能力。

课堂教学尽量引入互动环节,使同学们能更好地融入课堂教学,提高教学效果。

实验环节安排在专门的实验课程“电气控制专业实验”。

三、课程目标与相关毕业要求的对应关系2.毕业要求须根据课程所在专业培养方案进行描述。

四、课程主要内容与基本要求五、课程学时安排七、推荐教材与主要参考书(一)推荐教材1.《电力拖动自动控制系统-运动控制系统》(第5版).阮毅.机械工业出版社.2016年.(普通高等教育“十一五”国家级规划教材普通高等教育电气工程与自动化类“十三五”规划教材).(二)主要参考书:1. 《电力拖动自动控制系统》.李华德等.机械工业出版社.2009年2月.2. 《电力电子技术》(第五版).王兆安.机械工业出版社.2009年5月.3. 《电气传动实验指导书》. 中国计量大学.。

电力传动课件chapt资料重点

电力传动课件chapt资料重点

Te > TL →
dn 0 dt
→n↑电动机的启动
过程:Te > TL

dn 0 dt
→n↑→ Ea Cen
↑→
Ia
U
Ea Ra
↓→
→ Te CmIa ↓ →dn/dt↓→… Te = TL
dn 0 dt
对启动的要求:
• 启动转矩要大,启动快。或 平稳慢速启动。
• 启动电流不能超过电源和电动机的允许电流;
R1
UN Ia1
m
c. 计算启动电流比 R1
Ra
a.选定 Ia1 =(1.5~2)IN , Ia2=(1.1~1.2) IN ,
Ia1
Ia2
b.计算最大启动电阻
R1
UN Ia1
c. 计算启动级数m
lg 1 lg R1 m Ra
lg R1
→m Ra
lg
d.计算各级分段串联电阻
举例2.1
转速反向制动 (3) 回馈制动
一、能耗制动
能耗制动时,保持励磁不变,使常开触头断开,常闭触头闭合
→ 电动机的电枢接到能耗制动电阻Rz上。
→ U=0,机械惯性,转速仍保持原来的方向旋转 →n 和 E 为正值,

Ia
U Ea Ra Rz
Ea Ra Rz
→Ia< 0为负 → Te = CmFIa < 0 可见:
若m不是整数,取邻近较大的整数, 然后用此整数 m 值修正 和Ia2。 d. 求各级分段串联电阻。
§2.2 直流他励电动机的制动
制动——机械制动、电气制动 电气制动——电动机的电磁转矩 Te 与转速方向 n 相反
起反抗运动的作用 制动的目的:
(1)使系统迅速减速停车,即“刹车”。 (2)限制位能负载的下降速度。 制动的方法: (1) 能耗制动 (2) 反接制动 —— 电压反接制动

运动控制系统

运动控制系统

一、运动控制系统的定义与分类定义:以机械运动的驱动设备--电动机为被控对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论指导下组成的电力传动自动控制系统。

分类:(1)按被控物理量分:以转速为被控量的系统叫调速系统,以角位移或直线位移为被控量的系统叫随动系统(或伺服系统)。

(2)按驱动电动机的类型分:用直流电动机带动生产机械的为直流传动系统,用交流电动机带动生产机械的为交流传动系统。

(3)按控制器的类型分:用模拟电路构成控制器的系统为模拟控制系统,用数字电路构成控制器的系统为数字控制系统。

二、直流调速方法答:(1)调节电枢供电电压U;(2)减弱励磁磁通 ;(3)改变电枢回路电阻R。

三、常用的可控直流电源答:(1)旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。

(2)静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。

(3)直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压四、三种调速方法的性能与比较答:对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。

改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。

五、V-M系统的特点答:晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。

在控制作用的快速性上,变流机组是秒级,而晶闸管整流器是毫秒级, 这将大大提高系统的动态性能六、V-M系统的问题答:(1)由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。

(2)晶闸管对过电压、过电流和过高的d V/d t与d i/d t 都十分敏感,若超过允许值会在很短的时间内损坏器件。

(3)由谐波与无功功率引起电网电压波形畸变,殃及附近的用电设备,造成“电力公害”。

电气传动自动控制系统第1章

电气传动自动控制系统第1章

电力传动自动控制系统2013-03-30第1章电力传动系统基础1.1 电力传动系统的目的、要求和分类主要讨论电力传动系统的基本概念及其发展概况。

一.电力传动及其基本组成1.传动以原动机带动生产机械运行,完成一定的生产任务。

古代动力的来源是人力、畜力。

后来出现了借助于风力、水力传动的生产机械。

再以后,发明了热机(蒸汽机、内燃机、柴油机),就以高温蒸汽为动力。

直到十九世纪出现了电能,就以电能为动力带动生产机械,从此,人类从繁重的体力劳动中解放出来。

气动、液压传动、电动(电力传动或电气传动)电力传动以电动机作为原动机,带动生产机械运行。

早期的机械能来源于水力、蒸汽。

比如,水车、蒸汽机车等。

电、电机出现以后,由于电能具有变换、传输、分配、使用和控制都非常方便、经济,而且易于大量生产、集中管理和实现自动控制的优点,就由电力传动代替了水力和蒸汽。

在现代工业生产中,大量的生产机械采用电力传动,电力传动极为普遍,约占80%。

如机床、汽车、电车等。

2.电力传动系统的基本组成电力传动系统是电气与机械综合的系统。

由以下四部分组成:1)电动机及其供电电源——把电能转换成机械能2)传动机构——把机械能转化成所需要的运动形式并进行传递与分配3)工作机构——完成生产工艺任务(或称为执行机构)4)电气控制装置——控制系统按照生产工艺的要求来工作,并对系统起保护作用或进行更高层次的自动化控制。

工作机械的运动形式是多种多样的。

车床的主轴做旋转运动,龙门刨床的工作台做直线往复运动,吊车的卷扬机构做上下直线运动,冲剪床的执行机构做简谐运动。

在电力传动系统中,原动机是电动机,一般做旋转运动。

通过传动机构可获得各种不同形式的运动。

以车床为例的电力传动系统如图1-1所示。

图1-1 车床的电力传动系统示意图绘成方框图如图1-2所示。

— 1 —图1-2 电力传动系统方框图随着生产的发展,生产工艺对电力传动系统在准确性、快速性、经济性、先进性等方面提出愈来愈高的要求,因此,需要不断地进行改进和完善电气控制设备,使电力传动自动化得到不断发展。

电力拖动自动控制系统(陈伯时)ppt1-2-3直流拖动控制系统

电力拖动自动控制系统(陈伯时)ppt1-2-3直流拖动控制系统

n
2U 2
cos[sin(
6
)
sin(
6
)ectg
]
Ce (1 ectg )
(1-10)
Id
3 2U2
2R
[cos(
6
) cos(
6
)
Ce n]
2U 2
式中 arctg L ; — 一个电流脉波的导通角。
R
89电电力力拖传动动自控动制控系制统系统
21
(3)电流断续机械特性计算
当阻抗角 值已知时,对于不同的控制 角 ,可用数值解法求出一族电流断续时的
1
LP
VT
T
c1
2
c2
L
b1 a1
b2 M
a2
并联多重联结的12脉波整流电路
89电电力力拖传动动自控动制控系制统系统
17
1.2.4 晶闸管-电动机系统的机械特性
当电流连续时,V-M系统的机械特性方程式为
n
1 Ce
(U d0
Id R)
1 Ce
m ( π Um
sin
π m
cos
Id R)
(1-9)
式中 Ce = KeN —电机在额定磁通下的电动势系数。 式(1-9)等号右边 Ud0 表达式的适用范围如第1.2.1节
R— 主电路等效电阻;
且有 R = Rrec + Ra + RL;
89电电力力拖传动动自控动制控系制统系统
8
对ud0进行积分,即得理想空载整流电 压平均值Ud0 。
用触发脉冲的相位角 控制整流电压的平 均值Ud0是晶闸管整流器的特点。
Ud0与触发脉冲相位角 的关系因整流电
路的形式而异,对于一般的全控整流电路,

电力拖动自动控制知识

电力拖动自动控制知识

电力拖动自动控制知识1. 概述电力拖动自动控制是一种常见的控制方式,用于控制机械设备的运动。

它通过电力传动实现机械设备的自动控制和操作。

本文将介绍电力拖动自动控制的根本原理、应用领域以及关键技术。

2. 根本原理电力拖动自动控制的根本原理是通过电机驱动机械设备的运动。

电机通过电力传动装置〔如齿轮、皮带、链条等〕将机械能传递给被控制的设备,从而实现设备的运动控制。

电力拖动自动控制通常包括电机、传动装置、控制器和传感器等组成局部。

电机是电力拖动自动控制系统的核心组件。

常见的电机包括直流电机、交流电机和步进电机等。

电机的选择应根据被控制设备的特性和要求进行。

2.2 传动装置传动装置用于将电机的旋转运动转换为被控制设备的线性或旋转运动。

常见的传动装置包括齿轮传动、皮带传动和链条传动等。

传动装置的选择应根据被控制设备的运动方式和要求进行。

2.3 控制器控制器是电力拖动自动控制系统的核心控制局部,负责控制电机的运行状态和运动参数。

控制器根据传感器反响的信息,通过算法对电机进行控制。

常见的控制器包括PLC〔可编程逻辑控制器〕、微控制器和计算机等。

传感器用于感知被控制设备的状态和运动参数,并将这些信息反响给控制器。

常见的传感器包括位置传感器、速度传感器和力传感器等。

传感器的选择应根据被控制设备的特性和要求进行。

3. 应用领域电力拖动自动控制广泛应用于工业自动化领域,用于控制各种机械设备的运动。

下面是一些常见的应用领域:3.1 生产线控制电力拖动自动控制在生产线控制中起到重要作用。

它可以实现生产线上设备的自动运行、节约人力资源,并提高生产效率和质量。

3.2 机械加工电力拖动自动控制在机械加工中广泛应用。

它可以实现机床的自动运行和工件的自动加工,提高加工精度和效率。

3.3 交通运输电力拖动自动控制在交通运输中也有应用。

例如,地铁和电车的自动驾驶系统使用了电力拖动自动控制技术,实现列车的自动运行和停靠。

4. 关键技术电力拖动自动控制涉及到多个关键技术,以下是一些常见的关键技术:4.1 电机控制技术电机控制技术是电力拖动自动控制的核心技术之一。

《电力拖动自动控制系统》实验讲义(2)

《电力拖动自动控制系统》实验讲义(2)

实验一晶闸管直流调速系统参数和环节特性的测定一、实验学时:3学时二、实验类型:验证性三、开出要求:必修四、实验目的:1.了解电力电子及电气传动教学实验台的结构及布线情况。

2.熟悉晶闸管直流调速系统的组成及其基本结构。

3.掌握晶闸管直流调速系统参数及反馈环节测定方法。

五、实验原理:晶闸管直流调速系统由晶闸管整流调速装置,平波电抗器,电动机——发电机组等组成。

本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Ug作为触发器的移相控制电压,改变U g的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。

六、实验条件:1.教学实验台主控制屏MCL-32T。

2.MCL—33组件3.MEL—03组件4.电机导轨及测速发电机(或光电编码器)5.直流电动机M036.双踪示波器7.万用表七、实验步骤:(一)安全讲解实验指导人员讲解自动控制系统实验的基本要求,安全操作和注意事项。

介绍实验设备的使用方法。

(二)操作步骤1.电枢回路电阻R的测定电枢回路的总电阻R包括电机的电枢电阻R a,平波电抗器的直流电阻R L和整流装置的内阻R n,即R=R a+R L+R n为测出晶闸管整流装置的电源内阻,可采用伏安比较法来测定电阻,其实验线路如图1-1所示。

将变阻器R D(可采用两只900Ω电阻并联)接入被测系统的主电路,并调节电阻负载至最大。

测试时电动机不加励磁,并使电机堵转。

NMCL-31的给定电位器RP1逆时针调到底,使U ct=0。

调节偏移电压电位器RP2,使Ud=0。

合上主电源,即按下主控制屏绿色“闭合”开关按钮,这时候主控制屏U、V、W端有电压输出,调节U g使整流装置输出电压U d=(30~70) U ed(可为110V),然后调整R D使电枢电流为(80~90)%I ed ,读取电流表A 和电压表V 的数值为I 1,U 1,则此时整流装置的理想空载电压为U do =I 1R+U 1调节R D ,使电流表A 的读数为40% I ed 。

电力传动自动控制系统课后习题_电力拖动部分

电力传动自动控制系统课后习题_电力拖动部分

电力传动自动控制系统练习题(电力拖动部分)哈尔滨工业大学第1章 电力传动系统基础一、选择题1. 电力拖动系统运动方程式中的GD 2反映了( )。

A 旋转体的重量和直径平方的乘积,它没有任何物理意义B 系统机械惯性的一个整体物理量C 系统储能的大小,它不是一个整体物理量D 以上三种都对2. 恒功率负载的特点是( )。

A 负载转矩与转速的乘积为一常数B 负载转矩与转速成反比变化C 恒功率负载特性是一条双曲线D 以上都对3. 反抗性恒转矩负载特性是位于第( )象限的竖直线。

A 1、2B 1、3C 1、4D 2、44. 位能性恒转矩负载特性是位于第( )象限的竖直线。

A 1、2B 1、3C 1、4D 2、4二、填空题1. 电力拖动系统的电磁转矩和负载转矩分别用L em T T 、表示,当( )时系统处于加速运行状态,当( )时系统处于减速运行状态。

2. 选定电动机转速n 的方向为正,若电磁转矩0>em T ,则em T 的方向与n 的方向( ),若负载转矩0>L T ,则L T 的方向与n 的方向( )。

3. 选定电动机转速n 的方向为正,若电磁转矩0<em T ,则em T 的方向与n 的方向( ),若负载转矩0<L T ,则L T 的方向与n 的方向( )。

4. 生产机械的负载性质基本上可归纳为三大类,它们分别是( )、( )和( )。

5. 反抗性恒转矩负载是指负载转矩的大小恒定不变,其方向与转速的方向( ),其负载转矩特性位于第( )象限。

6. 位能性恒转矩负载是指负载转矩的大小恒定不变,其方向与转速的方向( ),其负载转矩特性位于第( )象限。

7. 电动机的运动方程式为:dt dn GD T T L em3752=-,式中,GD 2称为旋转系统的( ),dtdn GD 3752称为系统的( )。

三、简答题1. 简述恒转矩负载特性、恒功率负载特性、泵与风机负载特性的特点。

机电传动控制系统

机电传动控制系统
+ω(n) + TM -ω(n) - TM - TM
+ω(n)
-ω(n) - TM
M
+TL - TL
M
- TL
M
图6
M
+TL
图4
图5
图7
2.1 机电传动系统的组成及动力学基础
2.机电传动系统的动力学基础 根据上述约定,可以从转矩与转速的符号来判定TM与TL的性 质: 若TM与n符号相同,则表示TM的作用方向与n相同, TM为拖动转矩;
n n0f
△nf
0
TL
图15 有静差机械特性
T
2.3 晶管管-电动机直流调速系统
1)有静差调速系统
给定电路 比例放大器 执行器(比例运算) 调节机构
+
Rp1
给定
3~
Ug
△Ui
Id
Uk α
L
电动机
+
Ud
M
Ufn
ASR GP U Rp2
+
TG
+
- 转速传感器 图11 有静差转速负反馈调速系统
(3)过渡过程 T
图12 自动调速系统的动态特性
2.2 调速系统的主要指标
5%
系统1时间过长 系统2振荡次数多 系统3较好
图13 自动调速系统动态性能的比较
2.3 晶管管-电动机直流调速系统
目前,晶闸管-电动机直流调速系统仍在大功率系统
中广泛使用。 常用的晶闸管-电动机直流调速系统有: 1、单闭环直流调速系统 2、双闭环直流调速系统 3、可逆系统
2.机电传动系统的动力学基础
TL
+ω(n) +T M
M

电气传动控制系统

电气传动控制系统

电气传动控制系统引言电气传动控制系统是现代工业自动化中的重要组成部分。

它通过使用电力和电子技术,将电能转化为机械能,并通过传动装置将机械能传递给相应的执行器,从而实现对设备或机器的精准控制。

本文将介绍电气传动控制系统的基本原理、工作方式以及在工业领域的应用。

1. 电气传动控制系统的基本原理电气传动控制系统的基本原理是将电能转化为机械能,并将机械能传递给执行器,从而实现对设备或机器的控制。

它主要由以下几个组成部分构成:1.1 电源系统电源系统是电气传动控制系统的核心部分,它提供了所需的电能。

电源系统通常包括电源输入单元、电源变换器、电源控制器等。

1.2 传动系统传动系统用于将电能转化为机械能,并将机械能传递给执行器。

传动系统通常包括电动机、减速器、联轴器、传动带或链条等。

1.3 控制系统控制系统用于控制电气传动系统的运行状态和工作方式。

控制系统通常采用计算机或PLC控制器,并通过编程来实现对传动系统的控制。

2. 电气传动控制系统的工作方式电气传动控制系统的工作方式可以分为以下几个步骤:电气传动控制系统首先通过传感器或其他输入设备接收输入信号,例如温度、压力、位置等。

这些输入信号可以用来检测设备或机器的状态。

2.2 处理输入信号接收到输入信号后,电气传动控制系统会对输入信号进行处理,通常包括滤波、放大、调理等操作。

2.3 控制输出信号经过处理的输入信号将被送到控制器中,控制器通过编程来控制传动系统的运行状态和工作方式。

控制器会根据输入信号和设定参数计算出对应的输出信号。

控制器计算出的输出信号将被送到执行器,执行器通过接收控制信号来实现相应的动作或运动。

例如,电动机将根据输出信号的控制来启动、停止、正转或反转等。

2.5 监测和反馈电气传动控制系统在运行过程中会不断地监测设备或机器的状态,并通过传感器反馈实际状态信息给控制器。

控制器可以根据反馈信息进行调整,以实现对设备或机器的精确控制。

3. 电气传动控制系统的应用电气传动控制系统在工业领域有广泛的应用,以下是几个常见的应用领域:在机床中,电气传动控制系统可以用于控制机床的各种运动,例如主轴转速、进给速度、刀具换向等。

电力拖动自动控制系统介绍

电力拖动自动控制系统介绍

电力拖动自动控制系统介绍电力拖动自动控制系统是一种基于电力传动原理的自动控制系统,广泛应用于机械设备的驱动和控制中。

该系统通过电动机将电能转化为机械能来驱动机械设备,利用传感器感知环境信号并通过自动控制器对电机进行控制,实现对机械设备的自动化控制。

电力拖动自动控制系统主要由电动机、传感器、自动控制器和驱动装置组成。

电动机是系统的动力源,通过电能转换为机械能来驱动机械设备。

传感器用于感知机械设备的状态和环境参数,如位置、速度、力等。

自动控制器负责接收传感器的信号并根据预设的控制策略对电动机进行控制,实现对机械设备的自动化控制。

驱动装置用于将控制信号转化为电机驱动信号,控制电机的启停、转速和转向。

首先,系统的控制精度高。

由于电力传动具有快速响应、高精度和可调性的特点,可以实现对机械设备的精确控制。

其次,系统的抗干扰能力强。

电力传动系统能够通过电机的转矩调节来适应外部负载的变化,从而保持机械设备的稳定运行。

再次,系统的可靠性高。

电力拖动系统中的关键部件如电动机和传感器都经过严格的测试和筛选,能够在长时间运行过程中保持稳定和可靠的性能。

此外,电力拖动自动控制系统还具有节能和环保的优势。

通过合理的控制策略和调节机制,可以减少系统的能耗,并减少对环境的影响。

电力拖动自动控制系统广泛应用于各个领域,如工业制造、交通运输、石油化工等。

以工业制造为例,电力拖动系统可以用于汽车生产线、机械加工设备、输送线等机械设备的驱动和控制。

通过自动控制,可以提高生产效率和产品质量,减少人力投入和人为错误,实现机械设备的自动化生产。

总之,电力拖动自动控制系统是一种利用电力传动原理实现对机械设备自动化控制的系统。

它具有控制精度高、抗干扰能力强、可靠性高、节能环保等优势。

在工业制造、交通运输、石油化工等领域得到广泛应用,为提高生产效率和产品质量发挥了重要作用。

电气传动控制系统

电气传动控制系统

内容摘要随着自动化技术的飞速开展,电气传动控制系统也日新月异,电气传动控制系统的概念从出现以来,电气传动控制系统又有了新的开展。

电气传动控制系统是近年来引起人们很大兴趣的一个领域:它的研究目标是用机器,通常为传动控制系统、电脑等,尽可能地代替人的体力活动,并且争取在这些方面最终改善并超出人的能力;其研究领域及应用范围十分广泛、例如,自动控制、人工智能、PLC控制系统、智能机器人等等。

电气传动控制系统的研究是通过他的原理及其应用而为人类社会的进步作出奉献。

关键词:传动控制,自动控制,PLC控制,智能控制,信息化,电气传动,数字控制。

目录内容摘要 (2)前言 (4)1 电气传动控制系统的研究与应用 (6)1.1 电气传动自动控制系统优化设计方法研究概述 (6)1.2 信息化时代的电气传动技术 (8)1.3 交流传动在我国的应用和展望 (12)2 电气传动控制与PLC控制系统的应用 (14)2.1 利用PLC控制的自动配料系统 (14)2.3 PLC控制系统与智能化中央空调 (19)3 电气传动控制系统在具体实际生活的应用 (23) (23)3.1 起重机电气传动的设计 (24)电梯传动控制系统 (27)4 电气传动控制系统的结论 (32)5 参考文献 (33)前言电气传动控制系统通常由电动机、控制装置和信息装置3局部组成。

电气传动关系到合理地使用电动机以节约电能和控制机械的运转状态(位置、速度、加速度等),实现电能-机械能的转换,到达优质、高产、低耗的目的。

电气传动分成不调速和调速两大类,调速又分交流调速和直流调速两种方式。

不调速电动机直接由电网供电,但随着电力电子技术的开展这类原本不调速的机械越来越多地改用调速传动以节约电能(节约15%~20%或更多),改善产品质量,提高产量。

在我国60%的发电量是通过电动机消耗掉的,因此调速传动是一个重要行业,一直得到国家重视,目前已有一定规模。

近年来交流调速中最活泼、开展最快的就是变频调速技术。

电力拖动自动控制系统

电力拖动自动控制系统

电力拖动自动控制系统1. 系统简介电力拖动自动控制系统是一种基于电力传动和自动控制的系统,用于驱动和控制各种机械设备的运动。

该系统通过电动机将电能转化为机械能,实现对设备的拖动和控制。

电力拖动自动控制系统广泛应用于工业生产、交通运输、能源领域等各个行业。

2. 系统架构电力拖动自动控制系统主要由以下几个部分组成:2.1 电动机电力拖动自动控制系统的核心部件是电动机。

电动机负责将电能转化为机械能,驱动机械设备的运动。

根据实际需求,电动机可以采用不同的类型,如直流电动机、交流电动机等。

2.2 控制器控制器是电力拖动自动控制系统的核心部分,用于监测和控制电动机的运行。

控制器接收来自传感器的反馈信号,根据预设的控制算法和逻辑,控制电动机的启动、停止、速度调节等操作。

2.3 传感器传感器用于获取与机械设备运动相关的物理量信息,如速度、位置、温度等。

传感器通过将物理量转化为电信号,传递给控制器进行处理和决策。

2.4 电源系统电源系统为电力拖动自动控制系统提供稳定可靠的电能供应。

电源系统可以采用市电供电、蓄电池供电或者发电机供电等多种方式,以满足不同场景的需求。

2.5 人机界面人机界面是用户与电力拖动自动控制系统进行交互的窗口。

通过人机界面,用户可以设置运行参数、监测系统状态、获取报警信息等。

人机界面通常采用触摸屏、按钮、指示灯等形式,具备直观、便捷的操作方式。

3. 工作原理电力拖动自动控制系统的工作原理如下:1.用户通过人机界面设置运行参数,如设备运行速度、运行时间等。

2.人机界面将参数传递给控制器。

3.控制器根据参数和实时反馈信号来控制电动机的启动、停止和调速。

4.传感器将机械设备运动相关的物理量信息转换为电信号,传递给控制器。

5.控制器根据传感器的反馈信号进行实时监测和控制,调整电动机的运行状态。

6.电动机将电能转化为机械能,驱动机械设备的运动。

7.控制器不断与人机界面进行信息交互,向用户显示设备状态、报警信息等。

《电力拖动自动控制系统》学习心得范文(三篇)

《电力拖动自动控制系统》学习心得范文(三篇)

《电力拖动自动控制系统》学习心得范文电力拖动自动控制系统是电力系统中的一种重要设备,其功能是将电能转换为机械能,实现自动控制。

本文是我在学习电力拖动自动控制系统课程中的心得体会,分为四个部分进行介绍:课程内容综述、理论学习、实际操作和学习收获。

一、课程内容综述电力拖动自动控制系统是电气工程领域的重要课程之一,主要包括电力拖动系统的工作原理、系统组成、控制方式及其在实际工程中的应用等方面内容。

通过学习该课程,可以使我们更加深入地了解电力拖动自动控制系统,为未来的工作实践打下坚实的基础。

二、理论学习在课程学习的一开始,我首先对电力拖动自动控制系统的基本概念进行了学习。

通过教材的介绍和老师的讲解,我了解到电力拖动自动控制系统是由拖动负载、传动装置、控制系统和供电系统组成的一种集中控制装置。

拖动负载是指通过电动机运动完成的各类机械设备,传动装置是将电能转化为机械能的部件,控制系统是负责对整个系统进行监控和调节的部分,供电系统是保证系统正常运行的基础。

接着,我学习了电力拖动自动控制系统的工作原理。

电力拖动自动控制系统的工作原理是将电能通过电动机转化为机械能,实现对拖动负载的控制。

在工作过程中,电动机的工作状态受控制系统的指令信号调节,从而实现对拖动负载的启停、速度调节和方向控制等功能。

除了理论知识的学习,我还进行了大量的实验和实践操作。

通过实验,我进一步掌握了电力拖动自动控制系统的工作原理和操作方法。

例如,我学会了如何调整电动机的启停时间、如何控制电动机的转速和如何实现正反转控制等。

通过实际操作,我对课程中学到的理论知识有了更深入的了解。

三、实际操作在课程学习的过程中,我还进行了一些与实际工程相关的实践操作。

例如,我参与了一个电力拖动自动控制系统的实际工程项目,负责对系统进行安装和调试。

在项目中,我需要根据现场实际情况,对电动机、传动装置和控制系统进行合理的布局和安装。

在调试过程中,我需要根据客户的要求,对系统进行相应的配置和调整,以保证系统的正常运行。

电力拖动与自动化控制

电力拖动与自动化控制

电力拖动与自动化控制摘要:在当前企业生产过程中,电力拖动系统发挥着重要作用。

电力电气拖动系统主要由电动机、自动控制等装置组成。

电力拖动又称为电机传动系统,以电动机为运行基础,配合控制装置、传动装置等,有效推动了企业现代化生产进程。

现阶段随着自动化控制技术的发展,电力拖动有了新的应用方向,也对电力拖动系统性能提出更高要求。

关键词:电力拖动;自动化控制;安全保护1 电力拖动系统与自动化的工作路径随着计算机控制系统的发展,电力拖动系统的自动化控制可以依托计算机编程程序来实现其中的主要功能,包括电力拖动的模块化、编程以及逻辑处理等,依托仪器驱动程序,只需要简单的操作就能将便捷程序与电力拖动系统相对接。

同时为了能够完善系统运用路径,在自动化控制中还可以根据企业的生产要求编制不同的自动化控制方案,保障生产目标的实现。

并且为强化自动化控制效果,相关人员也可以探索PLC自动化控制技术应用的新路径,达到增强系统功能的目的。

因此在电力拖动系统的自动化控制中,需要结合电力拖动设备的相关参数、数量等作出综合评价,其中需要考虑的内容如下。

(1)在电动机功率的设定上,为实现自动化控制功能,应选择标准匹配的电动机,并分析电动机在运行期间可能出现的异常情况,包括升温过快、过载能力不足等,这是强化电力拖动系统运行能力的关键。

(2)从现有技术发展情况来看,电力拖动自动化控制系统的电机主要可以分为两种形式,分别为交流电动机与直流电动机两种形式,一般企业出于成本等方面的考虑,可以选择价格低廉的交流异步电动机。

若企业对生产的要求较为特殊,则可以选择具有更理想调速性能的直流电动机等,有助于提高电力拖动装置的性能。

2 电力拖动系统自动控制的设计原理首先,在电力拖动控制系统工作环节中,有关操作主体能够及时获取电动机不同类型信息,并及时加以校验反馈,包括电流反馈等。

需要注意的是,在这部分系统之中,为了更加可靠的完成机械自动化的控制任务,就必须引入电气设备这类核心硬件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•R •Tms
•1/Ce •E
•n
i


PPT文档演模板
电力传动自动控制系统
起动过程分析 •n
• •I
•I I
•II I
按转速调节器
ASR不饱和、饱和、
退饱和分成三个阶 •O
•t
段:
•I
•Idm
d
I.电流上升阶段
II.恒流升速阶段 •O •t
III.转速调节阶段
1
•t •t •t
2
3
4
•t
PPT文档演模板
电力传动自动控制系统
(2)高阶系统的降阶近似处理
设三阶系统
a,b,c都是正数,且bc a,即系统是稳定的。
降阶处理:忽略高次项,得近似的一阶系统
近似条件 :
PPT文档演模板
PPT文档演模板
电力传动自动控制系统
稳态跟随性能指标
在阶跃输入下的 I 型系统稳态时是无差的; 但在斜坡输入下则有恒值稳态误差,且与
K 值成反比; 在加速度输入下稳态误差为 。
因此,I型系统不能用于具有加速度输入 的随动系统。
PPT文档演模板
电力传动自动控制系统
(2)动态跟随性能指标
参数关系KT
PPT文档演模板
电力传动自动控制系统
三、调节器的工程设计方法
(1)概念清楚、易懂; (2)计算公式简明、好记; (3)不仅给出参数计算的公式,而且指明
调整参数的方向; (4)能考虑饱和非线性控制的情况,同样
给出简单的计算公式; (5)适用于各种可以简化成典型系统的反
馈控制系统。
PPT文档演模板
电力传动自动控制系统
电力传动自动控制系统
各变量的稳态工作点和稳态参数计算
•稳态工作中,两个调节器都不饱和
PPT文档演模板
电力传动自动控制系统
PI调节器的特点
比例调节器的输出量总是正比于其输 入量。
PI调节器未饱和时,其输出量的稳态 值是输入的积分,直到输入为零,才停 止积分。这时,输出量与输入无关,而 是由它后面环节的需要决定的。
•输出
•输入
•典型系 统
•输出
PPT文档演模板
电力传动自动控制系统
典型I型系统

T — 系统的惯性时间常数;

K — 系统的开环增益。
•选择参数,保证

,使系统足
够稳定。
PPT文档演模板
电力传动自动控制系统
典型Ⅱ型系统
PPT文档演模板
•或
保证系统足够稳定
电力传动自动控制系统
控制系统的动态性能指标
•U*n
•U*i
•+
•-
•AS R
•AC
•- R
•Un
•U
i
•±∆IdL
•Ks •Ud0
•1/ •Id
•Tss+1
•- • RTl s+1
•R
•E
•n
•1/C
• Tms
e

PPT文档演模板
电力传动自动控制系统
2. 抗电网电压扰动
•U*n
•U*i
•+
•-
•AS R
•AC
•- R
•Un
•U
i
•±∆Ud
典型 I 型系统在跟随性能上可以做到超调 小,但抗扰性能稍差,
典型Ⅱ型系统的超调量相对较大,抗扰性 能却比较好。
PPT文档演模板
电力传动自动控制系统
典型I型系统跟随性能指标与参数的关系
(1)稳态跟随性能指标:不同输入信号 作用下的稳态误差
阶跃输入 斜坡输入 加速度输入 输入信号
稳态误差
0
v0 / K
PPT文档演模板
电力传动自动控制系统
反馈系数计算
•转速反馈系 数
•电流反馈系 数
PPT文档演模板
电力传动自动控制系统
二、数学模型和动态性能分析
•-
•U*n
•+ •-
•Un
•WASR(s)
•U*i
•-
•U
•WACR(s)
•Uc

•Ks Tss+1
•-
•Ud0
•1/ •TRl s+1
•Id IdL
•+
• 理想的快速起动过程
PPT文档演模板
电力传动自动控制系统
希望能实现的控制
n 在起动过程的主要阶段,只有 电流负反馈,没有转速负反馈。 n 达到稳态后,只要转速负反馈, 不让电流负反馈发挥主要作用。
PPT文档演模板
电力传动自动控制系统
转速、电流双闭环直流调速系统
•T
A
•U*n •+ •-
•Ui ••i 内环
输入信号 阶跃输入 斜坡输入 加速度输入
稳态误差
0
0
PPT文档演模板
电力传动自动控制系统
n 在阶跃和斜坡输入下,II型系统稳 态时均无差;
n 加速度输入下稳态误差与开环增益 K成反比。
PPT文档演模板
电力传动自动控制系统
(2)动态跟随性能指标
•按Mrmin准则确定参数关系时
h
3
4
5
6
7
8
9 10
(2)对负载变化起抗扰作用。
(3)输出限幅值决定电机允许的最大电流 。
PPT文档演模板
电力传动自动控制系统
2. 电流调节器的作用
• (1)作为内环的调节器,在外环转速的 调节过程中,它的作用是使电流紧紧跟随 外环调节器的输出量变化。 • (2)对电网电压波动起及时抗扰作用。 • (3)在转速动态过程中,保证获得电机 允许的最大电流,从而加快动态过程。 • (4)当电机过载甚至堵转时,限制电枢 电流的最大值,起快速的自动保护作用。
阻尼比 超调量
上升时间 tr 峰值时间 tp
相角稳定裕度 截止频率c
0.25 0.39
0.5
0.69
1.0
0.8 0.707
0.6
0 % 1.5% 4.3 % 9.5 %
6.6T 4.7T 3.3T
8.3T 6.2T
76.3° 69.9° 65.5°
0.243/T 0.367/T 0.455/T
4.7T 59.2 ° 0.596/T
PPT文档演模板
电力传动自动控制系统
突加扰动的动态过程和抗扰性能指标
•±5%(或±2%)•Cb
•O
•tm
•tv
PPT文档演模板
电力传动自动控制系统
抗扰性能指标
n Cmax — 动态降落
n
tv — 恢复时间
PPT文档演模板
电力传动自动控制系统
•典型I型系统和典型Ⅱ型系统的比较
I型和Ⅱ型系统在稳态误差上的区别。
PPT文档演模板
电力传动自动控制系统
校正成典型I型系统的几种调节器选择
控制 对象
•T1 T2
调节 器
参数 配合
PPT文档演模板
•T1、T2 T3
电力传动自动控制系统
传递函数近似处理
(1)高频段小惯性环节的近似处理
PPT文档演模板
•小惯性环节可以合并
电力传动自动控制系统
•近似条件
PPT文档演模板
阶跃扰动作用下的输出变化量
阶跃扰动: •输出变化量:


PPT文档演模板
电力传动自动控制系统
典型I型系统动态抗扰性能指标与 参数的关系(KT=0.5,Cb=FK2/2)
55.5% 33.2% 18.5% 12.9%
tm / T
PPT文档演模板
tv / T
2.8 14.7
3.4 21.7
3.8
4.0
•U •-
•ASR
*
i •+
•ACR •Uc •UPE
•+
•Ud
•Id
•Un
•n
•-
•外 环
•+
••MM
••n
••TTG G
PPT文档演模板
电力传动自动控制系统
•当ASR饱和时,相当于电流单闭环系统, 实现“只有电流负反馈,没有转速负反馈”
•Id

•R
•Ui •-
•ACR •Uc •UPE •Ud0 •+ •-IdR
电力传动自动控制系统
双闭环直流调速系统起动过程的特点
(1)饱和非线性控制 (2)转速超调 (3)准时间最优控制(有限制条件的
最短时间控制)
PPT文档演模板
电力传动自动控制系统
动态抗扰性能分析
调速系统的动态抗扰性能, 主要是抗负载扰动和抗电网 电压扰动的性能
PPT文档演模板
电力传动自动控制系统
1. 抗负载扰动
PPT文档演模板

•双闭环直流调速系统的稳态结构框图
•—转速反馈系数 —电流反馈系数
电力传动自动控制系统
调节器输出限幅的作用
转速调节器ASR的输出限幅电压U*im决定
电流给定电压的最大值;
电流调节器ACR的输出限幅电压Ucm限制 了电力电子变换器的最大输出电压Udm。
PPT文档演模板
电力传动自动控制系统
•-IdL
•Ks •Ud0
•1/ •Id
•Tss+1
•- • RTl s+1
•R
•E
•n
•1/C
• Tms
e

PPT文档演模板
电力传动自动控制系统
转速和电流两个调节器的作用
1. 转速调节器的作用 • (1)转速调节器是调速系统的主导调节器,
• 它使转速 n 很快地跟随给定电压变化,稳态
相关文档
最新文档