温度控制系统设计及有关解读
温度控制系统
我们根据实际经验设定了三条模糊规则:
IfTin is S,PWM is small;
IfTin is M,PWM is middle;
IfTin is B,PWM is Big。
为了简化问题,此处,我们不适用模糊化的PWM,即是small=0;middle=50%;Big=100%;这将会使模糊推理时直接产生非模糊的PWM值,无需解模糊化。
y1=q(1,1)+q(1,2)*x2+q(1,3)*x3;
plot3(x3,x2,y1);
hold on
x=m(:,1);
y=m(:,2);
z=m(:,3);
plot3(x,y,z,'o')
grid on
end
2.模糊控制器算法
模糊化
function [ MemberShip ] = fuzzyT( T,TM )
%input Membership is the membership of the delta temperature to S,M and B
%output PWM is the duty of the PWM to motor
%fuzzy rule
%if T=S PWM=0;
%if T=M PWM=50%
所以我们对棒棒控制就行了适当改进,加入了滞环来解决这个问题,但这就带来了另外一个问题:即会出现稳态误差,这个误差与滞环大小有关,于是,出现了一个矛盾:
滞环越小,越容易抖动;滞环越大,稳态误差越大;
这个矛盾可以有结合PID控制器来解决,于是就出现PID+棒棒控制。
B.PID控制
PID控制可以说是一个经济适用性的算法,其应用十分广泛。其基本公式为PWM=P*er+D*der+I*fer;
温度控制系统及控制方案
温度控制系统及控制方案08自动化侯伟08378094【摘要】:本设计采用51单片机与pc机相结合,使用ADC0809对温度进行采样,所得的数据使用中位值平均滤波法进行滤波,然后使用专家模糊PID控制算法对加热炉进行控制,能够进行恒温定点加热,也能够使其温度按工艺所要求的温度曲线变化,在不同时段按要求加热。
【关键字】:PC机51单片机炉温控制专家模糊PID控制滤波一、概述温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。
对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方式也各不相同。
系统用温度传感器将检测到的实际炉温A/D转换,51单片机把所得值与设定值进行比较,使用专家模糊PID算法进行修正,求得对应的控制量控制可控硅驱动器,调节电炉的加热功率,从而实现对炉温的控制。
因此采集的炉温数据精度至关重要。
利用51单片机实现温度智能控制,能自动完成数据采集、处理、缓冲、转换、并进行PID实施控制,包括各参数数值的修正,并把数据传输给PC机进行动态直观显示,同时也可以通过PC机设定参数。
但在控制过程中应该注意,采样周期不能太短,否则使调节过于频繁,不但执行机构不能反应,而且计算机的利用率大为降低。
采样周期太长,也是不合适,因为干扰无法及时消除,使调节品质下降。
随着单片机在各行业控制系统中的普遍采用,其构成的实时控制系统日臻完善,使该温度控制系统的总体性能大大提高,功能更趋完善,并详细介绍了该系统的软、硬件实施手段及系统特点。
二、温度控制系统的硬件组成框图与其详细功能介绍PC机:根据51单片机传输过来的值绘制T-t曲线,同时在调试过程可以给单片机传输参数,而在曲线跟踪过程中也是通过pc机给单片机传输某时刻的设定值。
51机:接收adc采样得到的数值,并进行滤波处理,根据所得到的数值进行专家模糊PID控制,得到相应的PWM值,直接通过控制继电器的通断控制温控箱加热棒和风扇的通断。
温度控制系统要点
温度控制系统要点在现代化的工业生产中,温度控制是至关重要的一部分。
从食品加工到化学反应,从塑料制造到微电子产业,都需要对温度进行精确和可靠的控制。
本文将探讨温度控制系统的要点和关键组成部分。
1、温度传感器温度传感器是温度控制系统的核心组成部分,它能够感知并测量被控对象的温度。
根据不同的应用场景和精度要求,可以选择不同类型的温度传感器,如热电阻、热电偶、红外传感器等。
2、控制器控制器是温度控制系统的中枢,它根据温度传感器的读数来决定如何调整被控对象的温度。
控制器可以是简单的机械式控制器,也可以是更复杂的数字控制器。
数字控制器可以配备PID(比例-积分-微分)算法,以提供更精确的温度控制。
3、执行器执行器是控制系统的末端,它根据控制器的指令来调整被控对象的温度。
执行器可以是加热器、冷却器、风扇等设备。
执行器的选择取决于被控对象的特性和控制要求。
4、被控对象被控对象是温度控制系统需要控制的设备或过程。
在选择执行器和控制器时,需要考虑被控对象的特性和要求。
例如,被控对象可能是塑料成型机、发酵罐、半导体生产线等。
5、反馈系统反馈系统是将控制系统的输出与设定值进行比较的系统。
它向控制器提供信息,使其了解其命令是否已使系统达到所需的温度。
如果需要调整温度,控制器将发送新的指令给执行器。
6、电源和安全设备温度控制系统需要稳定的电源供应以确保其正常工作。
同时,为了确保安全,系统应配备过载保护、短路保护等安全设备。
总结:温度控制系统需要精确和可靠地控制温度,以确保工业过程的稳定性和产品的质量。
在构建或维护温度控制系统时,应考虑温度传感器、控制器、执行器、被控对象、反馈系统和电源及安全设备等关键要素。
通过选择合适的设备并优化系统设计,可以实现对温度的精确控制,从而提高生产效率和质量。
随着科技的不断发展,智能化成为各行各业的主要趋势。
温度控制作为日常生活和工业生产中的重要环节,如何实现智能化以提高效率、节约能源以及提高生产质量,已成为业界的焦点。
多点温度控制系统可行性分析及设计方案
多点温度控制系统可行性分析及设计方案一、可行性分析温度控制系统是一种用于监测和调节温度的系统,广泛应用于各个领域,如工业、医疗、农业等。
以下是对温度控制系统可行性的分析:1.市场需求:随着技术的发展和人们对生活质量的要求提高,对温度控制的需求也在不断增加。
各行各业都有温度控制的需求,因此市场潜力巨大。
2.技术可行性:目前,温度控制系统所需的传感器、控制器和执行器等关键技术已经非常成熟,可以满足各种需求。
同时,温度控制算法的研究也相对成熟,可以提供高精度的温度控制。
3.成本可行性:随着技术的进步,温度控制系统的成本逐渐下降。
同时,多种材料和设备的广泛应用也为温度控制系统提供了更多的选择,降低了成本。
4.政策环境:政府对于环境保护和能源节约的要求越来越高,温度控制系统可以有效地控制能源的消耗和减少对环境的影响,符合国家政策。
二、设计方案基于以上可行性分析,以下是一份300字多点温度控制系统的设计方案:该温度控制系统适用于工业生产中的多点温度监测和调节。
系统的主要组成部分包括传感器、控制器和执行器。
1.传感器:使用高精度的温度传感器,将多个监测点的温度数据实时传输给控制器。
传感器应具有快速响应、高精度和可靠性。
2.控制器:采用先进的控制算法,根据监测到的温度数据进行分析和判断,并通过控制执行器来实现温度的调节。
控制器应具有高速计算能力和稳定性。
3.执行器:根据控制器的指令,控制执行器来调节温度。
执行器可以是电磁阀、加热器、冷却器等,根据具体需求选择合适的执行器。
4.数据记录与报警:系统应具备数据记录功能,将温度数据进行存储和分析,以便进行后续统计和分析。
同时,系统还应具备报警功能,当温度超过设定的范围时,及时发出警报。
5.远程监控与控制:系统应支持远程监控和控制,可以通过网络对温度控制进行实时监测和调节,方便操作人员进行远程管理。
该多点温度控制系统具备可行性,并提供了一个基本的设计方案。
在实际应用中,可以根据具体需求进行调整和改进,以实现更好的温度控制效果。
温度控制系统ppt课件
研究意义 研究背景 研究内容 研究方法 硬件电路 软件设计 小插 曲 结论
➢研究意义
温度是生活及生产中最基本的物理量,它表征的 是物体的冷热程度。自然界中任何物理、化学过程 都紧密的与温度相联系。在很多生产过程中,温度 的测量和控制都直接和安全生产、提高生产效率、 保证产品质量、节约能源等重大技术指标相联系。 因此,温度的测量与控制在国民经济各个领域中均 受到了相当程度的重视。
➢研究背景
近年来,温度的检测在理论上发展比较成熟,但 在实际测量和控制中,如何保证快速实时地对温 度进行采样,确保数据的正确传输,并能对所测 温度场进行较精确的控制,仍然是目前需要解决 的问题 。 从工业控制器的发展过程来看,温度控制技术大 致可分以下几种:定值开关温控法、PID线性温 控法、智能温控法。
➢总结
同时本设计还存在着一些不足,例如:系统的硬件设计 方面有待完善,可以增加各种保护功能和故障检测功能。 还有可以用12864显示温度曲线,或者用电脑和单片机 描出图形,使得PID参数更好的调节。 通过本次毕业设计我感受很深,从中学到了很多东西。 通过本次实践,不但培养了我们独立思考问题的能力, 同时也增强了我的动手能力,为以后步入工作岗位奠定 了基础。
➢小插曲
1.困惑与PID三个参数的调节,本来我是想从纯理 论的方面去思索这个问题的后面与老师交谈了下 才知道PID的参数调节是与实际环境相关的。 2.鬼影,LCD1602出现鬼影。本来我并不知道这 个是鬼影,在网上搜索也就不知道检索什么关键 词。后面请教了公司的一个毕业不久的学长得知 是鬼影,解决方法是在VDD端和地之间串联个 10K的电位器,发现鬼影可调。
➢小插曲
5.矩阵键盘这块焊接的时候倒是发了我不少时间, 以前都是看着的以为自己会。这次我真正的感受到 动手和不动手的区别。矩阵键盘的程序也让我纠结 了点时间。这里有个思维过程。首先我确定了我的 这个电路是有按键按下是高电平的IO口会被拉低, 比如说11110000会变成1011000,让P0口和 00001111继续位或运算在按位取反,就可以得到是 第二列有按键按下,在赋值00001111就可以等到行 就能确定是哪个按键按下。这里要理清硬件电路的 关系才能编程。
(完整版)温度控制系统设计
(完整版)温度控制系统设计温度控制系统的设计包括传感器、信号调理、控制器、执行元件和用户界面等多个部分,这些部分通过相互协调合作来达到稳定的温度控制。
本文将介绍温度控制系统设计的各个部分以及如何进行系统参数的选择和调整。
传感器是温度控制系统的重要组成部分,通常使用热敏电阻、热偶和红外线传感器等。
热敏电阻是一种电阻值随温度变化的材料,通过使用一个电桥来测量电阻值的变化,从而得到温度值。
热偶由两种不同的金属线构成,当温度变化时,热偶两端产生电势差,通过测量电势差值得到温度值。
红外线传感器通过测量物体辐射的红外线功率来得到物体的表面温度。
在选择传感器时,需要根据需要测量的温度范围、精度、响应时间和稳定性等参数进行选择。
信号调理是将传感器信号进行放大和校正的过程,包括滤波、增益、放大、线性化和校正等。
常用的信号调理手段有运算放大器、滤波器和模拟乘法器等。
运算放大器可以将传感器信号放大到合适的电平,同时可以进行信号的滤波、加减运算和比较等。
滤波器可以去除传感器信号中的杂波和干扰数据。
模拟乘法器可用于将两个信号相乘以进行补偿或校正。
在进行信号调理时,需要根据传感器的参数和目标控制参数进行调整。
控制器是温度控制系统的核心部分,其主要功能是根据信号调理后的温度值和设定值之间的差异进行相应的控制,使温度保持在设定范围内。
控制器通常通过对执行元件的控制来实现对温度的调节。
常见的控制算法有比例控制、积分控制和微分控制等。
比例控制是根据偏差的大小来进行控制,当偏差越大时,控制力度也越大;积分控制可以对偏差的累计值进行控制,从而提高控制的准确性;微分控制可以对偏差的变化率进行控制,从而使控制具有更好的响应速度和稳定性。
在选择控制算法时,需要根据系统对响应速度和稳定性的要求进行选择,并进行相关的参数调整。
执行元件是通过电机或气动元件来调节温度控制系统的温度的元件,例如调节阀门、电热器、压缩机和风扇等。
执行元件的选择需要根据需要调节的温度范围、响应速度和精度等参数进行选择,并根据控制算法和控制器参数进行调整。
电阻炉温度控制系统的设计
电阻炉温度控制系统的设计在许多工业生产过程中,电阻炉被广泛应用于各种材料的加热和熔炼。
为了确保产品质量和工艺稳定性,电阻炉温度控制系统应满足以下需求:控制精度高:温度波动范围应在±1℃以内,以确保工艺稳定性和产品的一致性。
响应时间快:系统应能迅速跟踪设定温度,减小加热过程的时间误差,提高生产效率。
安全可靠:系统应具备过载保护、短路保护、过热保护等安全措施,确保设备和人身安全。
可扩展性:系统应便于扩展和升级,以适应不同工艺需求和技术发展。
电阻炉温度控制系统的电路设计是整个系统的核心部分。
加热器功率控制、温度传感器选择和电路保护等关键环节直接关系到系统的性能和稳定性。
以下是电路设计的重点:加热器功率控制:一般采用PID控制器来实现加热器功率的调节。
PID 控制器可以根据温度误差来自动调节加热器的功率,减小温度波动。
温度传感器选择:常用的温度传感器有热电偶和红外测温仪。
选择合适的传感器对提高系统的测量精度至关重要。
电路保护:为防止系统故障对设备和人身造成伤害,电路应设计多种保护措施。
例如,加热器应配备熔断器、过载保护器和短路保护器等。
电阻炉温度控制系统的软件设计是实现整个系统智能化的关键。
软件应包括输入输出端口设置、算法实现等关键模块。
以下是软件设计的要点:输入输出端口设置:软件应设置必要的输入输出端口,以便于用户对系统进行控制和监视。
例如,软件应支持通过界面设置加热器的启动/停止、温度设定值等。
算法实现:系统软件应实现高效的温度控制算法,如PID控制算法,以实现精确的温度控制。
算法应具有自适应性,能够根据环境条件和材料属性等变化进行自我调整,提高控制效果。
在完成电阻炉温度控制系统的设计和调试后,需要对系统进行严格的测试与结果验证,以确保系统的性能和稳定性达到预期要求。
测试应包括以下步骤:测试环境搭建:搭建测试平台,选择合适的电阻炉、温度传感器、控制系统等设备进行联调测试。
空载测试:在无负载的情况下,测试系统的加热速度、稳定性和精度等指标。
温度控制系统(课程设计)
长安大学《单片机原理及接口技术》课程设计(简易温度控制系统)专业:电气工程及其自动化学号: 2804060132姓名:任晴利指导老师:段晨东时间: 2008.12.22~2009.01.03目录目录。
题目。
摘要。
需求分析。
方案比较。
硬件设计。
硬件电路设计。
总体电路设计。
软件设计。
调试及结果分析。
附录1 电路程序。
附录2 电路总图。
题目:简易温度控制系统一.任务设计并制作一个简易的单片机温度自动控制系统(见图一)。
控制对象为自定。
图一 恒温箱控制系统二.要求设计要求如下(1)温度设定范围为40℃~90℃,最小区分度为1℃(2)用十进制数码显示实际温度。
(3)被控对象温度采用发光二极管以光柱形式和数码形式显示。
(4)温度控制的静态误差≤2℃。
扩充功能:控制温度可以在一定范围内设定,并能实现自动调整,以保持设定的温度基本保持不变(测量温度时只要求在现场任意设置一个检测点)。
恒温箱 执行器 可编程 控制器 显示器 变送器 设置键盘 电源 220V AC 温度传感器摘要本系统以A T89S52单片机芯片为核心,组成温度测量和控制系统,采用DS18B20数字温度传感器对温度进行实时采样,并将测量结果用数码管实显示,可以运用键盘按钮对温度进行设定,并且驱动加热器或制冷器将温度调整到设定温度,其功能完善,人机界面良好,可靠性高,AbstractThe system to single-chip AT89S52 chip as the core, the composition of the control of temperature control system of the adoption of digital temperature sensor DS18B20 temperature sampling, real-time display with digital temperature control, you can use the keyboard for temperature regulation, the use of heater and cooler temperature adjustments to improve its functions, a good man-machine interface, high reliability一、需求分析根据题目的具体要求,经过阅读思考,可对题目的具体任务、功能、技术指标等作如下分析。
温度控制系统毕业设计
温度控制系统毕业设计•相关推荐温度控制系统毕业设计摘要在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。
因此,对数字显示温度计的设计有着实际意义和广泛的应用。
本文介绍一种利用单片机实现对温度只能控制及显示方案。
本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。
测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。
高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。
该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。
数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。
关键词:单片机:ds18b20:LED显示:数字温度.AbstractIn our daily life and industrial and agricultural production, the detection and control ofthe temperature, the digital thermometer has practical significance and a wide rangeof applications .This article describes a programmer which use a microcontroller toachieve and display the right temperature by intelligent control .This programmermainly consists by temperature control sensors, MCU, LED display modules circuit.The main aim of this thesis is to design high-precision digital thermometer and thenrealize the object temperature measurement. Temperature measurement systemincludes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit,board with a microcontroller circuit is the key to the whole system. The temperatureprocess of high-precision digital thermometer, from collecting the temperature of theobject by the digital temperature sensor and the temperature transmit ted to themicrocontroller, and ultimately display temperature by the LED. The digitalthermometer requires the high degree is positive 125and the low degree is negative 55,the error is less than 0.5, LED can read the number. This digital thermometer couldreplace the traditional mercurial thermometer, can be used in family or industrial andproduction, it has a great value.Key words: MCU: DS18B20 : LED display: Digital thermometer。
计算机控制技术课程设计-温度控制系统设计
计算机控制技术课程设计-温度控制系统设计引言温度控制是在很多工业和生活应用中至关重要的一项技术。
随着计算机控制技术的发展和普及,利用计算机控制温度已经成为一种常见的方法。
本文将介绍一个基于计算机控制技术的温度控制系统设计。
系统设计系统框架本系统采用分布式控制结构,由三个主要组成部分组成:传感器模块、控制模块和执行模块。
系统框架系统框架传感器模块负责实时采集温度数据,并将数据传送给控制模块。
控制模块根据传感器模块的数据和预设的设定值进行逻辑判断和决策,然后将决策结果发送给执行模块。
执行模块根据控制模块的结果来控制实际的温度执行设备。
硬件设计本系统需要以下硬件组件:•温度传感器:用于实时采集温度数据。
•控制器:用于运行控制模块的程序。
•执行器:用于控制温度执行设备。
软件设计本系统需要以下软件组件:•控制程序:负责接收温度传感器传输的数据,进行逻辑判断和决策,并将结果发送给执行程序。
•执行程序:根据控制程序的结果控制实际的温度执行设备。
•用户界面:提供友好的用户界面,用于设定温度控制的设定值和查看实时的温度数据。
系统流程系统主要分为三个阶段:温度数据采集、控制决策和执行控制。
温度数据采集1.温度传感器开始采集温度数据。
2.传感器将采集到的温度数据发送给控制程序。
控制决策1.控制程序接收到温度数据。
2.控制程序根据预设的设定值和温度数据进行逻辑判断。
3.根据逻辑判断结果,控制程序生成相应的控制方案。
4.控制程序将控制方案发送给执行程序。
执行控制1.执行程序接收到控制方案。
2.执行程序根据控制方案控制实际的温度执行设备。
3.执行程序将执行结果反馈给控制程序。
功能设计温度设定功能用户可以通过用户界面设定温度控制的设定值。
用户界面将设定值发送给控制程序,控制程序将设定值存储在内存中。
实时数据显示功能用户界面可以实时显示温度传感器采集到的温度数据。
温度数据通过控制程序发送给用户界面,并在用户界面显示。
控制逻辑设计控制程序根据采集的温度数据和设定值进行逻辑判断,判断温度是否超过设定值的上限或下限。
【精品】计算机控制技术课程设计温度控制系统设计
课程设计题目温度控制系统设计学院自动化学院专业自动化专业班级姓名指导教师2014年6月24日课程设计任务书题目:温度控制系统设计要求完成的主要任务:被控对象为电炉,采用热阻丝加热,利用大功率可控硅控制器控制热阻丝两端所加的电压大小,来改变流经热阻丝的电流,从而改变电炉炉内的温度。
可控硅控制器输入为0-5伏时对应电炉温度0-300℃,温度传感器测量值对应也为0-5伏,对象的特性为二阶惯性系统,惯性时间常数为T1=20秒,滞后时间常数为τ=10秒。
1)设计温度控制系统的计算机硬件系统,画出框图;2)编写积分分离PID算法程序,从键盘接受K p、T i、T d、T及β的值;3)通过数据分析T i改变时对系统超调量的影响.4)撰写设计说明书。
时间安排:6月9日查阅和准备相关技术资料,完成整体方案设计6月10日—6月12日完成硬件设计6月13日-6月15日编写调试程序6月16日-6月17日撰写课程设计说明书6月18日提交课程设计说明书、图纸、电子文档指导教师签名:年月日系主任(或责任教师)签名:年月日本次课程设计我设计的题目是温度控制系统。
通过专业课程的学习,我将引入计算机,单片机,传感器,以及PID算法来实现电炉温度的自动控制,完成课程设计的任务.计算机的自动控制是机器和仪表的发展趋势,它不仅解放了劳动力,也比以往的人为监控更准确,更及时。
一旦温度发生变化,计算机监控系统可以立即检测到并通过模拟量数字通道传送到计算机。
计算机接收到信号后通过与给定值进行比较后,计算出偏差,再通过PID控制算法给出下一步将要执行的指令。
最后通过模拟量输出通道将指令传送到生产过程,实现机器仪表的智能控制.本次课程设计用到了MATLAB这一软件,通过编写程序,将被控系统离散化。
再通过MATLAB中的simulink 仿真功能,可以看到随着Ki,Kp,Kd改变波形发生的改变,从而可以通过波形直观地看出PID参数对系统动态性能的影响。
温度控制系统的设计书
温度控制系统的设计书1. 设计思想及方案1.1 设计思想本次设计使用温度传感器收集当前密室的温度,然后经过各部分电路处理,与所要控制的电路进行比较。
电路根据比较的结果决定是否对密室空气进行降温,如果需要制冷会自动开启半导体制冷片。
当温度低于所控制的温度后,控制部分要断开制冷电路。
在不制冷的情况下,密室会自动升温,当温度上升到控制温度以下的时候电路就会依照以前的步骤重新来一遍,然后对密室进行降温,然后循环往复执行这样一个周期性的动作,从而达到把温度控制在一定围的目的。
1.2 设计方案的选择1.2.1 可行方案方案一:通过集成运放构成的比例器,把温度传感器获得的信号放大,再将信号传输给功放,带动半导体制冷片工作,从而实现对温度的控制。
功放采用乙类双电源互补对称功率放大电路。
测温部分通过测温度传感器输出端与基准端的电压,在转化为相应的温度值。
其中,基准端的电压有事先调试好。
利用集成运放在非线性工作区(即饱和区)的输出端电压为正负电源电压的特性,构造温度比较器,将温度信号离散成为高电平和低电平,高电平时制冷,低电平时加热,从而实现对温度的控制。
其中功放采用乙类双电源互补对称功率放大电路。
测温部分方案同方案三:用温度传感器将采集到的温度转换成电压信号,通过集成运放构成放大器,将微弱的电压信号放大成所需要的电压信号,再通过电压比较器将温度信号离散成为高电平和低电平,高电平时制冷,低电平时加热,从而实现对温度的控制,并用LED旨示灯指示半导体的工作状态。
1.2.2 方案的讨论与选择三个方案理论上均为可行的,但各有缺点:方案一反应慢,且到了与设定温度相近时,灵敏度非常差;方案二将温度离散成高电平与低电平,通过功放,进行对温度的控制,但半导体制冷器一直处于大功率工作状态,耗能较多,且加热和制冷器始终在工作,造成资源浪费,电路相对来说也很复杂。
方案三可以很好地实现对温度的测量与控制,虽然使用的电子元件较多,电路也相对复杂,但是控制电路更加准确迅速,所以这个方案较好。
温度控制系统
水温自动控制系统水温自动控制系统摘要:本文介绍了以AT89C51单片机为核心的水温自动控制系统。
介绍了AT89C51单片机水温控制的硬件电路的设计及软件的编写、调试整个过程。
介绍了本水温控制系统的组成结构,着重介绍了系统中单片机AT89C51的显示控制电路以及受控升温电路的硬件组成。
本文采用分块的模式,对整个系统的硬件设计进行分析,分别给出了系统的总体框图、温度检测电路、显示单元的电路,并对相应电路进行相关的阐述。
调试结果表明以上提到的功能都可以实现。
关键词:水温控制;单片机;显示控制;远程控制1 引言随着计算机技术、测量仪器和控制技术的高速发展, 现代冶金、石油、化工及电力生产过程中,应用了越来越多的先进测量控制技术、设备和方法.在这些众多的先进测量控制技术中,如何对水温进行控制成为焦点课题之一,为越来越多的科研机构所重视。
温度是极为重要而又普遍的热工参数之一,在环境恶劣或温度较高等场下,为了保证生产过程正常安全的进行,提高产品的质量和数量,以及减轻工人的劳动强度和节约能源,及时准确地得到温度信息并对其进行适时的控制,在许多工业场合中都是重要的环节。
由于本设计是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制电炉加热功率以实现水温控制的全过程,因此,应以单片微型计算机为核心组成一个专用计算机应用系统,以满足检测、控制应用类型的功能要求。
另外,单片机的使用也为实现水温的智能化控制提供了可能,例如实现自动切断电源,语音提示,自动加热,远程控制等。
1.1 温度控制的现状目前市场上经销的温度控制系统大多是采用模拟电路及继电器控制,存在电路繁琐,可调节性差,受温度影响大,响应速度慢,有噪音等缺点,针对这些缺点我们对它进行了再次设计。
实现满足题目要求的水温自动控制系统需要解决以下两个方面的问题:一是高精度的水温测量电路及其数据处理的实现,另一个是控制方法及其控制电路实现的研究。
列管式换热器出口温度控制系统的设计讲解
目录摘要 (1)1换热器过程控制概述、组成及特点 (2)1.1 概述 (2)1.2 换热器的组成 (2)1.3 系统控制过程的特点 (3)1.4 引起换热器出口温度变化的扰动因素 (3)2 换热器出口温度控制系统方案图 (4)2.1 换热器出口温度控制系统流程图 (4)2.2换热器出口温度控制系统方框图 (5)3 换热器过程控制系统分析 (4)3.1 系统介绍 (4)3.2 两极Smith预估补偿器 (6)3.3模糊控制器 (7)4 方案比较 (9)4.1 换热器一般温控系统 (9)4.2 Smith预估器的控制机理 (9)5 控制器的选择 (10)5.1 LDG型系列电磁流量计 (10)5.2 HR-WP-201TR/TC22W智能热电阻/热电偶温度变送器 (10)5.3 LWGB系列涡轮流量变送器 (11)5.4 KVHV电动V型调节球阀 (11)5.5 AI-7048型4路PID 温度控制器 (12)5.6 流量控制器:型号TLS11-LC (13)参考文献 (13)摘要换热器作为一种标准工艺设备已经被广泛应用于动力工程领域和其他过程工业部门。
这个对象的特点是:热流体和冷流体通过对流热传导进行换热,从而使换热器物料出口温度满足工业生产的需求。
本设计采用一带有Smith预估补偿的模糊串级控制器的控制系统,主控变量为换热管出口温度,副变量为冷水流量。
对换热器出口温度偏差、偏差变化率和冷流体的流量值模糊化,使换热器热流体出口温度控制过渡过程平稳,具有较传统PID串级控制算法过渡时间缩短,超调量减少,抗干扰能力强等特点。
列管式换热器出口温度控制系统的设计1换热器过程控制概述、组成及特点1.1 概述换热器作为一种标准工艺设备已经被广泛应用于动力工程领域和其他过程工业部门。
这个对象的特点是:热流体和冷流体通过对流热传导进行换热,从而使换热器物料出口温度满足工业生产的需求。
本设计采用一带有Smith预估补偿的模糊串级控制器的控制系统,主控变量为换热管出口温度,副变量为冷水流量。
计控必做温度控制课程设计
计算机控制技术课程设计温度闭环控制系统1 设计目的1.了解温度调节闭环控制系统软硬件设计。
2.熟练掌握PID控制规律及算法。
2 所用设备PC机一台,TD-PITE实验装臵一套。
3 设计内容温度闭环控制原理如图1所示。
人为数字给定一个温度值,与温度测量电路得到的温度值(反馈量)进行比较,其差值经过PID运算,将得到控制量并产生PWM脉冲,通过驱动电路控制温度单元是否加热,从而构成温度闭环控制系统。
图1 温度控制实验原理图温度控制单元中由7805与一个24Ω的电阻构成回路,回路电流较大使得7805芯片发热。
用热敏电阻测量7805芯片的温度可以进行温度闭环控制实验。
由于7805裸露在外,散热迅速。
实验控制的最佳温度范围为50~70℃。
4 温度传感器温度传感器采用的是 NTC MF58-103 型热敏电阻,具体电路连接如下:R t R 110K 500温度值与对应AD 值的计算方法如下:25℃:Rt =10K V AD =5×500 / (10000+500)=0.238(V) 对应AD 值:0CH 30℃:Rt =5.6K V AD =5×500 / (5600+500)=0.410(V) 对应AD 值:15H 40℃:Rt =3.8K V AD =5×500 / (3800+500)=0.581(V) 对应AD 值:1EH 50℃:Rt =2.7K V AD =5×500 / (2700+500)=0.781(V) 对应AD 值:28H 60℃:Rt =2.1K V AD =5×500 / (2100+500)=0.962(V)对应AD 值:32H100℃:Rt =900 V AD =5×500 / (900 +500)=1.786 (V) 对应AD 值:5AH ……测出的AD 值是程序中数据表的相对偏移,利用这个值就可以找到相应的温度值。
温度控制系统设计总结
温度控制系统设计总结温度控制系统设计总结温度控制系统设计是现代工程中一个非常关键的方面,它对于保持产品质量、降低能源消耗以及提高工作环境的舒适度都起着重要作用。
在本文中,我们将对温度控制系统设计的关键要素进行总结,包括传感器选择、控制器设计、执行器选择以及系统调试。
首先,传感器选择是温度控制系统设计中的第一步。
精确且可靠的温度传感器对于系统的性能至关重要。
在选择传感器时,可以考虑使用热电偶、热敏电阻或红外线传感器等。
同时,传感器的安装位置也需要谨慎选择,以便准确地测量温度,并避免外部干扰。
其次,控制器设计是温度控制系统设计中的关键环节。
控制器可以基于模拟电路、数字电路或者嵌入式系统设计。
在选择控制器时,需要考虑温度范围、精度要求以及控制算法等因素。
控制器还需要能够与其他系统进行通信,如显示器和数据记录设备等。
接下来,选择合适的执行器也是设计中需要考虑的因素之一。
执行器可以是电热器、风扇、空调系统或者冷却液泵等。
在选择执行器时,需要根据实际需求和温度变化速度来确定执行器的能力和反应时间。
最后,进行系统调试是确保温度控制系统正常工作的重要步骤。
调试过程包括温度校准、控制算法参数调整以及系统稳定性测试等。
同时,还需要测试系统的响应速度和控制精度,以确保系统能够在设定的温度范围内稳定运行。
总之,温度控制系统设计需要综合考虑传感器选择、控制器设计、执行器选择以及系统调试等多个因素。
合理选择和设计这些要素,可以确保系统能够稳定、精确地控制温度,提高产品质量和工作环境的舒适度。
通过不断优化和改进设计,温度控制系统的性能将得到进一步提升,为工程项目的成功实施提供有力的支持。
温度监控系统的设计
引言随着“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。
传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。
因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。
由于传感器能将各种物理量、化学量和生物量等信号转变为电信号,使得人们可以利用计算机实现自动测量、信息处理和自动控制,但是它们都不同程度地存在温漂和非线性等影响因素。
传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。
因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信和信息处理结合起来,适应传感器的生产、研制、开发和应用。
另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。
温度传感器是其中重要的一类传感器。
其发展速度之快,以及其应用之广,并且还有很大潜力。
为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。
本文利用单片机结合传感器技术而开发设计了这一温度监控系统。
文中传感器理论单片机实际应用有机结合,详细地讲述了利用热敏电阻作为热敏传感器探测环境温度的过程,以及实现热电转换的原理过程。
本设计应用性比较强,设计系统可以作为生物培养液温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统等等。
课题主要任务是完成环境温度检测,利用单片机实现温度调节并通过计算机实施温度监控。
设计后的系统具有操作方便,控制灵活等优点。
本设计系统包括温度传感器,A/D转换模块,输出控制模块,数据传输模块,温度显示模块和温度调节驱动电路六个部分。
温度控制原理及结构
温度控制原理及结构1反馈控制原理 (1)2 基于反馈理论的温度控制 (2)2.1 控制原理 (2)2.2 炉温控制的物理模型 (3)2.3 温度控制的数学模型 (3)3 热电类比法 (4)3.1 理论基础 (4)3.2 温度控制中的应用 (5)1反馈控制原理在我们周围到处运转着反馈控制系统。
控制系统的研究不会涉及太多新元件或机器的开发,而是通过组合现有硬件组合现有硬件以实现预定目标。
一个控制系统是为了在系统运行区域的特定方面起到控制作用而以某种方式连接起来的一组元件的集合。
控制系统几乎运行在人类活动的方方面面,包括走路、交谈和搬运物体等。
此外,控制系统的存在不需要人的交互作用,如飞机的自动驾驶仪和自动车的循环控制系统。
反馈控制是信号沿前向通道(或称前向通路)和反馈通道进行闭路传递,从而形成一个闭合回路的控制方法。
反馈信号分“正反馈”和“负反馈”两种。
为了和给定信号比较,必须把反馈信号转换成与给定信号具有相同量刚和相同量级的信号。
控制器根据反馈信号和给定信号相比较后得到的偏差值信号,经运算后输出控制作用去消除偏差,使被控量(系统的输出)等于给定值。
闭环控制系统都是负反馈控制系统。
在反馈控制系统中,控制装置对被控对象施加的控制作用,是取自被控量的反馈信息,用来不断修正被控量与输入量之间的偏差,从而实现对被控对象进行控制的任务,这就是反馈控制的原理。
比较器 前向通道反向通道图1 反馈控制系统如图1所示,该系统适用于大多数控制问题而不用参考各种环节的具体物理特性。
对象表示被控的主要元件,并且它的传递函数通常是固定的。
反馈通道是系统的关键部分,表示如何测量来自对象的输出变量值,并反馈与期望值进行比较。
偏差值的大小引起输入量的变化,进而导致了输出量的变化。
2 基于反馈理论的温度控制2.1 控制原理在温度控制系统中,首先需要将被控对象的被控参数即温度转换成一定的信号后再与预先设定的值进行比较,把比较得到的差值信号经过温度控制算法计算得到相应的控制值,将控制量送给控制系统进行相应的控制,反复上述工作,从而达到反馈调节温度的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度控制系统设计目录第一章系统方案论证 (3)1.1 总体方案设计 (3)1.2 温度传感系统 (3)1.3 温度控制系统及系统电源 (4)1.4 单片机处理系统(包括数字部分)及温控箱设计 (4)1.5 PID算法原理 (5)第二章重要电路设计 (7)2.1 温度采集 (7)2.2 温度控制 (7)第三章软件流程 (8)3.1 基本控制 (8)3.2 PID控制 (9)3.3 时间最优的PID控制流程图 (10)第四章系统功能及使用方法 (11)4.1 温度控制系统的功能 (11)4.2 温度控制系统的使用方法 (11)第五章系统测试及结果分析 (11)5.1 硬件测试 (11)5.2 软件调试 (12)第六章进一步讨论 (12)参考文献 (13)致谢......................................................................................................... 错误!未定义书签。
摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。
关键词:温度控制系统PID控制单片机Abstract: This paper introduces a temperature control system that is based on the single-chip microcomputer.The hard ware composition and software design are descried indetail combined with the project Comtrol System of Temperature.Keywords: Control system of temperature PID control Single-chip Microcomputer引言:温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。
本文设计了以单片机为检测控制中心的温度控制系统。
温度控制采用改进的PID数字控制算法,显示采用LED静态显示。
该系统设计结构简单,按要求有以下功能:(1)温度控制范围为20~40°C;(2)有加热和制冷两种功能(3)指标要求:超调量小于2°C;过渡时间小于5min;静差小于0.5℃;温控精度0.2℃(4)实时显示当前温度值,设定温度值,二者差值和控制量的值。
第一章系统方案论证1.1 总体方案设计薄膜铂电阻将温度转换成电压,经温度采集电路放大、滤波后,送A/D转换器采样、量化,量化后的数据送单片机做进一步处理;当前温度数据和设定温度数据经PID算法得到温度控制数据;控制数据经D/A转换器得到控制电压,经功率放大后供半导体致冷器加热或制冷,从而实现温度的闭环控制。
系统大致可以分为:传感、单片机处理、控制及温控箱。
图1-1 系统总体框图1.2温度传感系统换能部分采用了电压电路,这主要考虑了电压信号不容易受干扰、容易与后续电路接口的优势;经过铂电阻特性分析,在要求的温度范围内铂电阻的线性较好,所以不必要增加非线性校正电路;采样电压再经过高精度电压放大电路和隔离电路之后输出;另外,由于高精度的需要,电路对电源要求较高,所以采用稳压电源电路的输出电压,并且需要高精度运放。
因为温度变化并不是很快,所以电路对滤波器的要求并不高,这里采用了一阶滤波即可满足要求。
1.3 温度控制系统及系统电源1.3.1 温度控制系统温度控制系统需要完成的功能为:D/A转换器输出的电压控制信号,经过电压放大,再通过功率单元提高输出功率后,控制半导体制冷器件加热或制冷。
故此子系统可分为电压放大、功率输出两部分。
D/A转换器输出的电压控制信号经过电压放大、功率放大后,给两片半导体制冷器件供电。
另外单片机还输出一个用来控制是加热还是制冷的控制信号。
功率放大电路采用LM33稳压芯片,可承受高输出电流,且V out端输出电压与Vadj端的电压差保持不变的特点,可将控制信号利用运放方向放大后,输入至稳压芯片的Vadj端,输出信号的电压范围和功率放大至合适的大小。
具体设计为D/A输出的控制信号,经上述处理,在V out端利用继电器,由单片机输出的加热制冷控制信号控制继电器的闭合方向,改变半导体器件的电流方向,从而控制加热或制冷。
1.3.2 系统电源本设计需要供电的部分有温度采集部分须有基准电压+5V供电,单片机处理系统的数字电路部分需要+5V的电源,而实验室的5V电源会有纹波,故采用稳压芯片LM317自行设计,电路如图,调节可变电阻,即可得到所需的电压。
其中可变电阻R1是起到分压得作用,避免在LM317上的压降过大,否则LM317发热,会使电压不稳。
U11.4 单片机处理系统及温控箱设计1.4.1单片机系统单片机系统结构如下:①模数部分将传感信号量化为8位二进制数,并将其送入最小系统板;②控制层调用PID算法,计算出控制量,同时提供人机交互;③数模部分将控制量转换为模拟电压,送入温度控制部分。
最小系统板与外部数字电路部分(包括A/D、D/A、外部中断源信号等)的通信参照了微机原理与接口实验中的实验箱电路的连接方法。
调用PID 算法的中断采用的是内部定时器,可以简化外围电路。
1.4.2 温控箱设计我们用实验室提供的材料自己设计制作了温度控制箱体。
控温箱为正方体铝箱,在其中相对的两个内侧表面用导热硅胶粘贴了半导体致冷材料而成。
为提高箱体绝热性能,在除了粘有半导体材料之外的其他内表面,都贴有保温塑料层,为加强密闭性,尽量减少控制箱腔内体积,又要露出全部的半导体制冷片,我们采用的是“工字形”方案,即:将填入铝箱的保温塑料层做成一个无接缝的整体,相对的半导体制冷片的两侧挖空,露出其全部面积,中间留有一个很小的腔体作为温度控制的空间(插入热敏电阻与标准表探头)。
我们采用将箱体放入冷水中的方法解决温控箱的散热问题。
1.5 PID 算法原理1、基本PID 算法()[()(1)]()[()2(1)(2)]p i d P n K e n e n K e n K e n e n e n ∆=--++--+-其中()()o e t V V t =-V o 和V(t)都是八位二进制数,用一个字节存储。
在上述公式中,存在差项,需要用补码来表示负数。
所以必须用最高位作为符号位,V o 和V(t)用8位表示显然是不够的。
处理方法是在V o 和V(t)前面补一个值为零的字节,以两字节来表示,运算的最终结果结果取8位有效位。
基本的PID 算法,需要整定的系数是Kp (比例系数),Ki (积分系数),Kd (微分系数)三个。
这三个参数对系统性能的影响如下:(1) 比例系数 Kp① 对动态性能的影响 比例系数Kp 加大,使系统的动作灵敏,速度加快,Kp 偏大,振荡次数加多,调节时间加长。
当Kp 太大时,系统会趋于不稳定,若Kp 太小,又会使系统的动作缓慢;② 对稳态性能的影响 加大比例系数Kp ,在系统稳定的情况下,可以减小静差,提高控制精度,但是加大Kp 只是减少静差,不能完全消除。
(2) 积分系数 Ki① 对动态性能的影响 积分系数Ki 通常使系统的稳定性下降。
Ki 太大,系统将不稳定;Ki 偏大,振荡次数较多;Ki 太小,对系统性能的影响减少;而当Ki 合适时,过渡特性比较理想;② 对稳态性能的影响 积分系数能消除系统的静差,提高控制系统的控制精度。
但是若Ki 太小时,积分作用太弱,以致不能减小静差。
(3) 微分系数 Kd微分控制可以改善动态特性,如超调量减少,调节时间缩短,允许加大比例控制,使静差减小,提高控制精度。
但当Kd 偏大或偏小时,超调量较大,调节时间较长,只有合适的时候,才可以得到比较满意的过渡过程。
对系数实行“先比例,后积分,再微分”的整定步骤。
(1) 首先只整定比例部分。
即将比例系数由小到大,并观察相应的系统响应,直到得到反应快,超调小的响应。
(2) 加入积分环节。
整定时首先置积分系数Ki 一个较小的值,并将第(1)步中整定的比例系数略为缩小(例如缩小为原值的0.8倍),然后增大Ki ,使在保持系统良好动态性能的情况下,静差得到消除。
在此过程中,可根据响应的好坏反复改变比例系数与积分系数。
(3) 若使用比例积分调节器消除了静差,但动态过程经反复调整仍不能满意,则可加入微分环节。
在整定时,可先置微分系数为0,在第一步的基础上,增大Kd ,同时相应地改变比例系数和积分时间。
2、时间最优的控制算法采用上述PID 控制算法存在一个问题:当设定值比当前值高很多时,在相当一段时间内,控制增量都为正,而且在不断的积累增大;只有当温度上升到设定值以上时,控制增量才有可能变为负值;要用负的控制增量抵消以前积累的正控制量,需要的时间较长;这正是产生超调量的根本原因。
当设定值低于当前值时情况类似。
为解决这个问题,采用了时间最优的控制算法。
时间最优的PID 控制即开关控制(Bang-Bang 控制)与PID 控制相结合的控制方式。
其思想是:开关控制即指在当前值与设定值偏差较大的情况下,控制系统进入 “开”或者“关”两种状态。
具体到本系统,就是指当前温度和设定温度差别很大时,要么全功率(最大电压输出)的加热,要么就全功率的制冷。
{Bang-Bang PID ()()()r k c k e k αα><-=控制控制当前值与设定值相差在阈值α以内时,采用PID 算法计算输出控制量;当在α以外时,则直接输出最大值255作为控制量,不再调用PID 算法,不做控制量的累加。
这样处理可以在很大程度上改善控制性能。
第二章 重要电路设计 2.1 温度采集图2-1 温度采集电路用电桥采集温敏电阻值的变化,考虑到是小信号的放大,所以选择仪表放大电路,并且选择高精度,低温漂的OP07运算放大器。
电阻R29为薄膜铂电阻,与R28在电桥的两个臂上,将铂电阻的电阻转换为电压信号U3的放大倍数定为33倍,U4的作用是调节放大倍数,使输出电压为0~5V调节过程:1、把铂电阻定在18度的阻值106.6欧姆,调节R23,使输出为0。
2、把铂电阻定在40度的阻值114.8欧姆,调节R30,使输出为5V3、采用一阶滤波,目的是滤出高频得噪声干扰,所以f0定在几十HZ 。
2.2 温度控制1. 电压变换:电路图见图2-2图2-2 电压变换电路R420k说明:这部分电路先将D/A 输出的电压控制信号control(-5~0V) 用一个运放构成的反向放大器转移到电平0~8V ,然后通过小功率稳压芯片LM385降压2.5V 。