沪科版九年级数学上册-第一学期期中考试.docx

合集下载

沪科版九年级数学上册期中测试卷【含答案】

沪科版九年级数学上册期中测试卷【含答案】

沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
期中检测卷
时间:120分钟 总分:150分
ห้องสมุดไป่ตู้科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷
沪科版九年级数学上册期中测试卷

沪科版九年级数学上册第一学期期中考试试卷.docx

沪科版九年级数学上册第一学期期中考试试卷.docx

2015学年第一学期期中考试九年级数学试卷(考试时间:100分钟 满分:150分)命题者:七宝二中 张家楣一、选择题(本大题共6小题,每题4分,共24分)1、已知点C 是线段AB 的黄金分割点()BC AC >,4=AB ,则线段AC 的长是( ) (A )252-; (B )526-; (C )15-; (D )53-.2、已知E 为的边BC 延长线上一点,AE 交CD 于F ,BC ﹕CE =5﹕3, 则DF ﹕CD 为 …………… ……………… ( )(A )3﹕8; (B )8﹕3; (C )5﹕8; (D )8﹕5. 3、 如图,DE ∥BC , EF ∥AC , 则下列比例式中不正确的是 ( )(A )AB AD AC AE =; (B )FC BFEC AE =; (C )FC BF BD AD =; (D )FCBFAD BD =. 4、若0a 、0b 都是单位向量,则有 …………… ……………… ( ) (A )00b =; (B )00-=; (C )00b a =; (D )00b a ±=. 5、下面命题中,假命题是 …………… ………… ( )(A )有一个角是︒100的两个等腰三角形相似; (B )全等三角形都是相似三角形;(C )两边对应成比例,且有一个角相等的两个三角形相似; (D )两条直角边对应成比例的两个直角三角形相似.6、在RtABC ∆中,AB CD ACB ⊥︒=∠,90于D 且BC :AC 2=∶3,则BD ∶=AD ( )(A )2∶3; (B )4∶9; (C )2∶5; (D )2∶3. 二、 填空题(本大题共12小题,每题4分,共48分) 7、如果32x y =,那么=-yyx 3______▲_______ 学校_______________________ 班级__________ 学号_________ 姓名______________ ……………………………密○…………………………………封○…………………………………○线…………………………F8、 在比例尺为1﹕10000000的地图上,上海与香港之间的距离为3.12厘米, 则上海与香港之间的实际距离为 ▲ 千米.9、在△ABC 中,点D 、E 分别在边AB 、AC 上,CD 平分ACB ∠,DE ∥BC ,如果AC =10,AE =4,那么BC = ▲ .10、两个相似三角形的面积比是1﹕9,小三角形的周长为4,则另一个三角形的周长是___▲___. 11、在ABC ∆中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,2,1==BD AD ,则=∆∆ABC ADE S S : ▲ .12、 在ABC ∆中,cm BC cm AC AB 8,5===,则这个三角形的重心G 到BC 的距离是▲ .13、如图,ABC ∆中,6,10==AC AB ,D 为BC 上的一点,四边形AEDF 为菱形,则菱形的边长为 ▲ .14、如图,ABC ∆中,点D 、E 分别在AB 、AC 上,且DE ∥BC ,若4=∆ADE S ,3=∆BDE S ,那么 DE ∶BC = ▲ .15、如图,正方形ABCD 的边长为2,,1,==MN EB AE ,线段MN 的两端在CB 、CD 上滑动,当=CM ▲ 时,△AED 与以M 、N 、C 为顶点的三角形相似。

初中数学九年级数学上学期期中测考试题考试卷及答案(新版)沪科版.docx

初中数学九年级数学上学期期中测考试题考试卷及答案(新版)沪科版.docx

XX 学校XX 学年XX 学期XX 试卷试题函数'一〒的图象经过点(1, 一 1),则函数y = kx ~2的图象不经过第()象限.AB.二C.三D.四试题2:γ = X 2 +(2-Q X + t对于任意实数抛物线总经过一个固定的点,这个点是()A. (1, 0)B. (-1,0) C. (^1,3) D. (1, 3)试题3:把抛物线∙y = ^2j2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A i y = —2 仗 + 1尸 + 2B.》=一2 仗 +1)2 — 2c. ^ = -2⅛-l)2+2Dy = -2(^-I)2-2试题4:当α>0, "VO’ C=O 0寸,下列图象有可能是抛物^y=ClX 2 + bjc+c 的是()—V XX 题(每空XX 分,共XX 分)试题5:已知二次函数y=a√+Z>x+c (a≠0)的图象如图所示,且关于X的一元二次方程/+bx+cF0没有实数根,有下列结论:①∂z~4^>0;②abc<Q i③〃>2.其中,正确结论的个数是()A. 0B. 1C. 2D. 3试题6:2二次函数尸似+bx + C (a≠0)的图象如图所示,其对称轴为厂1・下列结论中错误的是()A. abc<QB. 2a+*0C. F-4ac>0D. a-6+c>0试题7:反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,它们的关系式可能分别是()_ k _ kA y =B∕-I5= ⅛x2+x试题8:k在同一坐标系中,函数’ X 和的图象大致是()试题9:丄正比例函数y=为与反比例函数y=χ的图象相交于儿C 两点,ABrX 轴于点$ 〃丄X 轴于点。

(如图),则四边形朋〃 的面积为()5D. 2试题10:A. 1C. 2第9题丄=丄已知Ra rIJl ),府(冷丿2)是同一个反比例函数图象上的两点•若r2 = rI ÷ 2,且儿 儿 数的表达式为 ___________________ . 试题12:已知二次函数y = CIX中,函数F 与自变量X 的部分对应值如下表:-11 2 3 .・・...105212・・・则当y <5时,X 的取值范围是 __________试题13:有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线% = 4乙:与咒轴相交的两个交点的横坐标都是整数;已知反比例函数r的图象如图所示,则二次函数》=Ikx2~4r+ 2的图象大致为(1亍,则这个反比例函丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写岀满足上述全部特点的一个二次函数的表达式 ________________________________ .试题14:设抛物线P = " +肚HO)过«0,2), E(4,3), U三点,其中点C在直线H二2上,且点U到抛物线对称轴的距离等于1,则抛物线的函数表达式为 _______________________________ .试题15:已知二次函数y =妒-滋+α,下列说法中错误的是__________________ .(把所有你认为错误的序号都写上)①当兀灯时,A随X的増大而减小:②若图象与X轴有交点,则«<4;③当« = 3时,不等式X2-4X+Λ> 0的解集是④若将图象向上平移1个单位长度,再向左平移3个单位长度后过点(1,一2),则« = -3.试题16:=JC一?若反比例函数'^ 的图象位于第一、三象限内,正比例函数y = ^k~9>的图象过第二、四象限,则上的整数值是_________ .试题17:2已知反比例函数y = X,图象上到%轴的距离等于1的点的坐标为 _______________ .试题2若一次函数y=kx +1■的图象与反比例函数卩=X的图象没有公共点,则实数女的取值范围是 __________________________________ .试题19:已知二次函数y=—2於+4^ + 6(1)求函数图象的顶点坐标及对称轴.(2)求此抛物线与尤轴的交点坐标.试题20: 炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军炮位/1与射击目标B的水平距离为600 m,炮弹运行的最大高度为1 200 m.(1)求此抛物线的关系式.(2)若在儿B之间距离>1点500 m处有一高350 m的障碍物,计算炮弹能否越过障碍物.试题21:如图所示是某一蓄水池的排水速度U (m'/"与排完水池中的水所用的时间t(h)之间的函数关系图象•(1)请你根据图象提供的信息求岀此蓄水池的蓄水虽•(2)写出U关于£的函数的表达式.(3)如果要6 h排完水池中的水,那么每小时的排水虽应该是多少?(4)如果每小时排水虽是5 m:那么水池中的水要多少小时排完?试题22:JC如图,已知函数y=兀(X 0)的图象经过点S, &点/1的坐标为(1, 2).过点力作ACHy轴,AC=↑ (点C位于点A 的下方),过点C作CD//X轴,与函数的图象交于点0,过点B作BE丄CD,垂足F在线段CD匕连接0C, OD.(1)求ZiOCQ的面积;试题23:若反比例函数兀与一次函数P=2χ∙4的图象都经过点力(a, 2)・k y = -(1)求反比例函数 兀的函数表达式;兀的值大于一次函数P=2χ-4的值时,求自变虽*的取值范围.试题24:如图,一位运动员在距篮筐4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2. 5米时,达到最大高度3. 5米,然后准确落入篮筐•已知篮筐中心到地面的距离为3. 05米. (1) 建立如图所示的直角坐标系,求抛物线的表达式;(2) 已知该运动员身高1・8米,在这次投篮中,球在头顶上方0・25米处出手,问:球出手时,他跳离地面的高度是多少.第24题图试题25: 九(1)班数学兴趣小组经过市场调查,整理岀某种商品在第X (1≤x≤90)天的售价与销虽的相关信息如下表:时间X (天) 1≤x<50 50≤x≤90(2)当反比例函数V£⑵当BE=PAC 时,求CF 的长.已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出F与X的函数关系式.(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4 800元?请直接写出结果.试题1答案:A 解析:因为函数'~〒的图象经过点(1, 一P,所以-1,所以PT,根据一次函数的图象可知不经过第一象限.试题2答案:D解析:当X=1时,y= i + (2-O+i = 3t故抛物线经过固定点(1, 3).试题3答案:C 解析:抛物线尸—2F向右平移1个单位长度后,所得函数的表达式为P=Y(X-I)2,抛物线y = -2^-l)1向上平移2个单位长度后,所得函数的表达式为^ = ^2∙^-I)2 +2.试题4答案:A 解析:因为α>°,所以抛物线开口向上•因为c>°,所以抛物线与y轴的交点在尤轴上方,排除B, D.又bv°,所以-±>0a ,所以抛物线的对称轴在卩轴右侧,故选A.试题5答案:D 解析:T抛物线与X轴有两个交点,.∙.方程朋 +滋+C二°有两个不相等的实数根,.∙. Zl = b2-4^>0tb bX = ——_——> 0 r ①正确・•・•抛物线的开口向下,・•・a又・・・抛物线的对称轴是直线2J ,2α , : b > 0.・・・抛物线与丿2轴交于正半轴,.∙.c>°, /.<O ,②正确.方程ax 2-^-bx + c-m = °的根是抛物线P =仮十$兀十C 与直2线y = rn 交点的横坐标,当^>2时,抛物线y = ax 十bχ+c 与直线y = m 没有交点,此时方程 (τr 2+bx+c-ra=O 没有实数根,③正确,.∙.正确的结论有3个.试题6答案:D 解析:T=次函数的图象开口向下,.∙. a 0.T 二次函数的图象与F 轴的交点在F 轴的正半轴上,∙∙∙ C 0.•••二次函数图象的对称轴是直线W1, ∙∙. 2° , .∙. b 0,.∙.β⅛C<O ιA正确.∙.∙ 2卫 ,.∙.⅛ = -2α,即2Λ+⅛ = 0J ΛB 正确.T 二次函数的图象与X 轴有2个交点,.∙.方程血?+肚+c==0有两个不相等的实数根,.∙. b l -4ac>Q, /. C 正确.∙.∙当忑=_1时, ∕=S -Z H -C <O, .,. D 错误.试题7答案:B 解析:双曲线的两分支分别位于第二、四象限,即比°°C 中,当-kv°,即*>0时,抛物线开口向上,不符合题意,错误;A 中,当*6时,抛物线开口向下,对称轴,不符合题意,错误;B 中,当kG⅛t,抛物线开口向下,对称轴乂 = — — > 02k,符合题意,正确;试题12答案:错误・故选B. 试题8答案:A 解析:由于不知道W 的符号,此题可以分类讨论,当fc>0时,反比例函数y=^的图象在第一' 三象限,一次函 数y = kχ-^-3的图象经过第一、二、三象限,可知A 项符合;同理可讨论当fc<0时的情况.试题9答案:y = _C 解析:联立方程组”得A (1, D , Cr L 一 [)・=4× — =22试题10答案:D 解析:由反比例函数的图象可知,当兀=一1时,y >X ,即k<-1,所以在二次函数^ = 2^2-4χ+^2中,-4 1 I 1 nX = — — = —-1≤ — K 02力<0,则抛物线开口向下,对称轴为4上Ic ,贝IJk ,故选D.试题门答案:丄—丄丄 1—=—+ τ χ2 = χ1+,兀儿2,所以 2D 中,当7 C 时,抛物线开口向下,但对称轴≡2l" "2^<0,不符合题意,因为x2 =rι÷2j所以2 ,解得住4,所以反比例函数的表达式为兀试题12答案:OVxV4 解析:根据二次函数图象的对称性确定出该二次函数图象的对称轴,然后解答即可.∙.∙和记3时的函数值都是2, .∙.二次函数图象的对称轴为直线22•由表可知,当WO时,尸5, 当右4时,y=5.由表格中数据可知,当22时,函数有最小值1. .∙. a>0,・•・当yV5时,X的取值范围是OVXV4.试题13答案:本题答案不唯一,只要符合题意即可,如1 2 8 . 1→ 1 2丄8 1→ 1 2 名.Q→ 1 2丄8 Qy= — XΛ+15∖y = -- X+—Λ- ls∖y = -Λ --Λ +3S∖X =--Λ +- X-3试题14答案:解析:由题意知抛物线的对称轴为怎二1或λ = 3(1)当对称轴为直线怎二1时,B二一2(2,抛物线经过/∙(°>2), 5(4^3),(2)当对称轴为直线= 3时,b = -6a 9抛物线经过且(02), 3(4,3)3 = 16a 一8。

沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)

沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)

沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)AC51.将抛物线y=x^2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为哪一个?A。

y=(x-1)^2+2B。

y=(x+1)^2+2C。

y=(x-1)^2-2D。

y=(x+1)^2-22.已知二次函数y=ax^2-1的图象经过点(1,-2),那么a的值为多少?A。

a=-2B。

a=2C。

a=1D。

a=-13.对于非零向量a、b,如果2|a|=3|b|,且它们的方向相同,那么用向量a表示向量b正确的是哪一个?A。

b=a*(3/2)B。

b=a*(2/3)C。

b=-a*(3/2)D。

b=-a*(2/3)4.在四边形ABCD中,若AB=a,AD=b,BC=c,则CD等于哪一个?A。

a-b-cB。

-a+b-cC。

a-b+cD。

-a+b+c5.在直角三角形ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于哪一个?A。

3sinαB。

3cosαC。

sinα/3D。

cosα/36.在直角三角形ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为多少?A。

3/4B。

4/3C。

5/3D。

3/57.在直角三角形ABC中,∠ACB=90°,BC=1,AC=2,则下列结论正确的是哪一个?A。

sinA=3/2B。

tanA=1/2C。

cosB=3/2D。

tanB=3/48.抛物线y=-3x^2+2x-1的图象与x轴交点的个数是多少?A。

没有交点B。

只有一个交点C。

有且只有两个交点D。

有且只有三个交点9.关于二次函数y=(x+1)^2的图象,下列说法正确的是哪一个?A。

开口向下B。

经过原点C。

对称轴右侧的部分是下降的D。

顶点坐标是(-1,0)10.在三角形ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE//BC的是哪一个?A。

DE^2/BC^2=3/2B。

沪教版(五四制)九年级数学上第一学期期中考试.docx

沪教版(五四制)九年级数学上第一学期期中考试.docx
∴ ∴ ……………………(2分)
∴ 点的坐标为: ……………………(1分)
(3)当点P在OA延长线上时, , ,
且 ∴点P在射线AO上…………(1分)
1当 时, ……………………(1分)
2当 时, ……………………(1分)
综上所述:符合条件的 点坐标为 或 …………(1分)
五、(本题满分14分)
(1)正方形ABCD中,DC∥AB,
设BE ,CF .
(1)求 关于 的函数解析式,并写出 的取值范围;
(2)如图2,对角线AC、BD的交点记作O,直线OF交线段CE于点G,求证: ;
(3)在(2)的条件下,当 时,求 的值.
2013学年第一学期九年级期中考试
参考答案及评分说明
一、选择题(本大题共6题,每题4分,满分24分)
1.C; 2.C; 3.D; 4. A; 5.C; 6.B.

∴ , 解得 , …(2分)
经检验 , 都是满足方程的解
答(略)
初中数学试卷
桑水出品
………………………………………………(2分)
图(略).…………………………………………………………(4分)
结论.………………………………………………………………(1分)
22.证明:(1)∵△ 是等边三角形
∴ ………………………………(1分)
∵ …………(1分)
又∵ ,
∴ …………………………Байду номын сангаас(1分)
由(1)得 ,即 …………………(1分)
设 , ,则 ,
∴ …………………………………………(1分)
∴ ,即 ……………………………(2分)
24.(1) , , ………………………(3分)

沪科版九年级上册数学期中考试试卷含答案

沪科版九年级上册数学期中考试试卷含答案

沪科版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列函数关系中,是二次函数的是( )A .在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系B .当距离一定时,火车行驶的时间t 与速度v 之间的关系C .等边三角形的周长c 与边长a 之间的关系D .圆心角为120°的扇形面积S 与半径R 之间的关系2.反比例函数k y x=的图象过点()3,5-,则k 的值为( ) A .15 B .1 15 C .-15 D .3 5- 3.下列各式中,y 是x 的二次函数的是( ) A .21xy x += B .220x y -+= C .21y x= D .243y x -= 4.已知矩形的面积为36cm 2,相邻的两条边长为xcm 和ycm ,则y 与x 之间的函数图像大致是A .B .C .D . 5.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x 元,所获利润为y 元,可得函数关系式为( ) A .21011010y x x =-++ B .210100y x x =-+C .210100110y x x =-++D .21090100y x x =-++ 6.如图,已知经过原点的直线AB 与反比例函数()0k y k x=≠图象分别相交于点A 和点B ,过点A 作AC x ⊥轴于点C ,若ABC 的面积为4,则k 的值为( )A .2B .4C .6D .87.如图,在Rt ABC 中,90ACB ∠=,CD 是AB 边上的高,6AC =,9AB =,则AD =( )A .2B .3C .4D .58.已知函数2y ax ax =+与函数(0)a y a x=<,则它们在同一坐标系中的大致图象是( ) A . B .C .D . 9.如图,已知点()4,2E -,点()1,1F --,以O 为位似中心,把EFO 放大为原来的2倍,则E 点的对应点坐标为( )A .()2,1-或()2,1-B .()8,4-或()8,4-C .()2,1-D .()8,4-10.已知矩形的面积为20,则如图给出的四个图象中,能大致呈现矩形的长y 与宽x 之间的函数关系的是( )A .B .C .D .二、填空题 11.下列各式:()()()()2222212;2;;;12;2(1)2;2122y x y x y y y x x y x y x x x x x=+====-+=-+=+--;其中y 是x 的二次函数的有________(只填序号)12.若113,4A y ⎛⎫- ⎪⎝⎭,25,4B y ⎛⎫- ⎪⎝⎭,31,4C y ⎛⎫ ⎪⎝⎭为二次函数245y x x =+-的图象上三点,则1y ,2y ,3y 的大小关系为________<________<________.13.如图,抛物线2y ax bx c =++与x 轴交于()1,0和()3,0两点,交y 轴与()0,3,当x ________时,0y >.14.若15x y x y -=+,x y =________;若34x y =,则232x y x y+=-________. 15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x )件.若使利润最大,每件的售价应为______元. 16.小颖用几何画板软件探索方程ax 2+bx+c=0的实数根,作出了如图所示的图象,观察得一个近似根为x 1=-4.5,则方程的另一个近似根为x 2=____.(精确到0.1)17.已知C 是AB 的黄金分割点,若AB=4cm ,则AC 的长为___________.18.若直线y =kx 与四条直线x =1,x =2,y =1,y =2围成的正方形有公共点,则k 的取值范围是_________.19.如图,纵截面是一等腰梯形的拦水坝,两腰与上底的和为4m ,底角为60,当坝高为________m 时,纵截面的面积最大.20.如图,已知在ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,//DE BC ,//EF AB ,且:3:8AD AB =,那么:ADE EFC S S =________.三、解答题21.已知:如图,网格中的每个小正方形的边长都是1个单位,请在图中画出一个与格点DEF 相似但相似比不等于1的格点三角形.22.如图,已知ABD ACE ∽,50ABC ∠=,60BAC ∠=,求AED ∠的度数.23.已知,在ABC 中,点D 、E 分别在边AB 、AC 上,连接DE 并延长交BC 的延长线于点F ,连接DC 、BE .且180BDE BCE ∠+∠=,求证:FDC FBE ∽.24.反比例函数()0k y k x=≠过()3,4A ,点B 与点A 关于直线2y =对称,抛物线2y x bx c =-++过点B 和()0,3C .()1求反比例函数的表达式;()2求抛物线的表达式;()3若抛物线2y x bx m =-++在22x -≤<的部分与k y x=无公共点,求m 的取值范围.25.已知AD 为BAC ∠的平分线,EF 为AD 的垂直平分线,求证:2FD FB FC =⋅.26.为测量学校操场上旗杆的高度,某数学活动小组设计如下测量方法:将镜子放在离旗杆()27AB m 的点E 处,然后沿直线BE 后退,使在点D 处恰好看到旗杆顶端A 在镜子中的像与镜子上的标记重合(如图),若 2.4DE m =,观测者的眼睛离地面的高度CD 为1.6m ,求旗杆的高度.参考答案1.D【分析】根据各选项的意思,列出个选项的函数表达式,再根据二次函数定义的条件判定则可.【详解】解:A 、y=mx+b ,当m≠0时(m 是常数),是一次函数,错误;B 、t=sv ,当s≠0时,是反比例函数,错误;C 、C=3a ,是正比例函数,错误;D 、S=13πR 2,是二次函数,正确.故选D .【点睛】本题考查二次函数的定义.2.C【分析】让点的横纵坐标相乘即为反比例函数的比例系数,根据比例系数的符号即可判断反比例函数的两个分支所在的象限.【详解】解:∵反比例函数解析式为y=k x, ∵反比例函数的图象经过点(-3,5),∴k=-3×5=-15,故选C .【点睛】此题主要考查了待定系数法求反比例函数,用到的知识点为:反比例函数的比例系数等于在它上面的点的横纵坐标的积.3.B【分析】一般地,如果y=ax 2+bx+c (a ,b ,c 是常数,a≠0),那么y 叫做x 的二次函数.此题将式子整理成一般形式后,根据二次函数的定义判定即可.【详解】解:A 、整理为y=21-x x,不是二次函数,故A 错误; B 、x 2-y+2=0变形,得y=x 2+2,是二次函数,故B 正确;C 、分母中含自变量,不是二次函数,故C 错误;D 、y 的指数是2,不是函数,故D 错误.故选B .【点睛】本题考查二次函数的定义.4.A【详解】解:根据矩形的面积公式,得xy =36,即()36y x>0x=,是一个反比例函数 故选A5.D【分析】根据总利润=单件利润×数量建立等式就可以得出结论.【详解】解:由题意,得y=(10+x-9)(100-10x),y=-10x2+90x+100.故选D.【点睛】本题考查了销售问题的数量关系的运用,总利润=单件利润×数量的运用,解答时找准销售问题的数量关系是关键.6.B【分析】首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于2,然后由反比例函数y=kx的比例系数k的几何意义,可知△AOC的面积等于12|k|,从而求出k的值.【详解】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=4÷2=2,又∵A是反比例函数y=kx图象上的点,且AC⊥x轴于点C,∴△AOC的面积=12|k|,∴12|k|=2,∵k>0,∴k=4.故选B.【点睛】本题考查的是反比例函数与一次函数的交点问题,涉及到反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=12|k|.7.C【分析】利用射影定理得到:AC2=AD•AB,把相关线段的长度代入进行解答即可.【详解】解:∵Rt△ABC中,∠ACB=90°,CD是AB边上的高,∴AC2=AD•AB,∵AC=6,AB=9,∴36=9AD,则AD=4.故选C.【点睛】本题考查了射影定理.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.8.B【分析】根据a<0,直接判断抛物线的开口方向,对称轴,双曲线所在的象限,选择正确结论.【详解】解:当a<0时,二次函数y=ax2+ax的图象开口向下,对称轴x=-12;函数y=ax的图象在二、四象限,符合题意的是图象B.故选B.【点睛】主要考查二次函数和反比例函数图象的有关性质,应该熟记且灵活掌握.9.B【分析】E(-4,2)以O为位似中心,按比例尺2:1,把△EFO放大,则点E的对应点E′的坐标是E(-4,2)的坐标同时乘以2或-2.【详解】解:根据题意可知,点E的对应点E′的坐标是E(-4,2)的坐标同时乘以2或-2.所以点E′的坐标为(8,-4)或(-8,4).故选B.【点睛】本题考查了位似变换的知识,注意掌握关于原点成位似的两个图形,若位似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(-kx,-ky).10.A【解析】由矩形的面积公式可知y=20x,则图象为双曲线.又矩形的长、宽都是正数,故图象在第一象限,故选A.11.②⑤⑥【分析】根据二次函数的定义与一般形式即可求解.【详解】解:y是x的二次函数的有②,⑤,⑥.故答案是:②,⑤,⑥.【点睛】本题考查了二次函数的定义,一般形式是y=ax2+bx+c(a≠0,且a,b,c是常数,x是未知数).12.2y1y3y【分析】此题可根据给出的二次函数判断开口方向向上,对称轴为直线x=-2,再比较图象上三点到对称轴的距离,则距离越大,其纵坐标越大.【详解】解:对二次函数y=x2+4x-5,a=1>0,开口向上,对称轴为直线x=-2.又A、B、C三点到对称轴的距离分别为|-134-(-2)|=54,|-54-(-2)|=34,|14-(-2)|=94,∴y2<y1<y3,故答案是:y2、y1、y3.【点睛】本题考查了二次函数的性质,重点是判断函数的对称轴,由点到对称轴的距离比较出各点纵坐标的大小.13.1<或3x >【分析】写出函数图象x 轴上方部分的x 的取值范围即可.【详解】解:由图可知,x <1或x >3时,y >0.故答案为<1或x >3.【点睛】本题考查了二次函数与不等式,此类题目,利用数形结合的思想求解是解题的关键.14.32 116【分析】根据比例的性质,可得等式,根据等式的性质,可得答案;根据等式的性质,可用x 表示y ,根据分式的性质,可得答案.【详解】 解:由x y x y -+=15,得5x-5y=x+y ,移项,合并同类项,得4x=6y ,两边都除以4y ,得32xy =;由3x=4y ,得 y=34x,3112x 2+1144=333-263242x xx y x x x y x +==-⨯, 故答案为32,116.【点睛】本题考查了比例的性质,利用了比例的性质,等式的性质.15.25【详解】试题分析:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案为25.考点:1.二次函数的应用;2.销售问题.16.2.5【详解】由函数的图象可求出函数的对称轴方程,再根据对称轴与方程两根之间的关系建立起方程,求出未知数的值即可.解:由函数图象可知,此函数的对称轴为x=﹣1,设函数的另一根为x,则=﹣1,解得x=2.5.17.2或6-【解析】【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分)叫做黄金比.【详解】AB==(AC>BC)由题意知:AC= 41)或AC=4-(2)=6-(AC<BC)故本答案为:2或6-【点睛】考查了黄金分割点的概念,能够根据黄金比进行计算.18.12≤k≤2【详解】根据题意结合图形可知,在与该正方形有公共点的直线中,直线l1解析式中的k值最大,直线l2解析式中的k值最小.由图可知,直线l1过点A(1, 2),直线l2过点C(2, 1).将点A的坐标代入解析式y=kx,得21k=⋅,∴k=2.将点C的坐标代入解析式y=kx,得12k=⋅,∴12 k=.∴k的取值范围是12 2k≤≤.故本题应填写:12 2k≤≤.点睛:本题考查了一次函数的图象和性质的相关知识. 在一次函数的解析式中,k的绝对值越大,相应的直线就越靠近y轴,反之则越靠近x轴. 本题考查的一个重点在于利用上述结论确定k的值最大和最小时直线的位置. 另外,通过正比例函数与图象之间的关系确定正比例函数解析式也是本题考查的重点.19.3【分析】设AB=xm,利用x表示出坝高DE和AD、BC的长,利用x表示梯形的面积,然后利用函数的性质即可求解.【详解】解:设AB=x,则AD=4-2x,∵DE⊥BC,∠C=60°,∴在直角△DCE中,DE=CD•sin∠,CE=12CD=12x,则BC=x+AD=x+(4-2x)=4-x,则梯形ABCD的面积y=12(AD+BC)•DE=12(4-x+4-2x)•2x,即y=-4x2,则当4⎝⎭=43时,y取得最大值是,此时y=-4×(43)2×43=4;∴×43.【点睛】本题考查等腰梯形的计算和二次函数等知识,考查求函数的解析式和求函数的最值问题,求最值的问题常用的方法是转化为函数的问题求解.20.9:25【分析】根据平行线分线段成比例定理求出AE:AC=AD:AB=3:8,求出AE:CE=3:5,根据平行线的性质得出∠A=∠EFC,∠AED=∠C,根据相似三角形的判定得出△ADE∽△EFC,根据相似三角形的性质得出即可.【详解】解:∵DE∥BC,AD:AB=3:8,∴AE:AC=AD:AB=3:8,∴AE:CE=3:5,∵DE∥BC,EF∥AB,∴∠A=∠EFC,∠AED=∠C,∴△ADE ∽△EFC , ∴ADE EFC S S ∆∆=(AE CF )2=(35)2=925, 故答案为9:25.【点睛】本题考查了相似三角形的性质和判定,平行线分线段成比例定理的应用,能灵活运用定理进行推理是解此题的关键,注意:相似三角形的面积之比等于相似比的平方.21.见解析.【解析】【分析】利用相似三角形的性质,对应边的相似比相等,对应角相等,可以让各边长都放大一倍,得到新三角形.本图形的答案不唯一,只要是相似三角形,都在格点上就正确.【详解】解:ABD 就是所求.【点睛】本题主要考查了相似三角形的画法,注意做这类题时的关键是对应边相似比相等,对应角相等.22.70AED ∠=.【分析】根据三角形内角和定理求出∠ACB=70°,根据相似三角形的性质得出AB AC =AD AE ,∠BAD=∠CAE ,求出AB AD =AC AE,∠BAC=∠DAE ,推出△BAC ∽△DAE ,根据相似三角形的性质得出∠AED=∠ACB 即可.【详解】解:∵50ABC ∠=,60BAC ∠=,∴18070ACB ABC BAC ∠=-∠-∠=,∵ABD ACE ∽, ∴AB AD AC AE=,BAD CAE ∠=∠, ∴AB AC AD AE =,BAD DAC CAE DAC ∠+∠=∠+∠, ∴BAC DAE ∠=∠,∴BAC DAE ∽,∴AED ACB ∠=∠,∴70AED ∠=.【点睛】本题考查了相似三角形的性质和判定,三角形的内角和定理的应用,解此题的关键是求出△BAC ∽△DAE .23.证明见解析.【分析】首先由∠BDE+∠BCE=180°,∠ECF+∠BCE=180°,可得∠BDE=∠ECF ,又由∠F 是公共角,即可证得△ECF ∽△BDF ,根据相似三角形的对应边成比例,可得EF :BF=CF :DF ,继而证得:△FDC ∽△FBE .【详解】证明:∵180BDE BCE ∠+∠=,180ECF BCE ∠+∠=,∴BDE ECF ∠=∠,∵F ∠是公共角,∴ECF BDF ∽,∴::EF BF CF DF =,即::EF CF BF DF =,∵F ∠是公共角,∴FDC FBE ∽.【点睛】此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.24.(1)12y x=;(2)223y x x =-++;(3)m 的范围:26m <≤, 【分析】 (1)将点(3,4)代入反比例函数的解析式即可求出k 的值.(2)求出点B 的坐标,然后将B 与C 的坐标代入即可求出抛物线的解析式即可求出b 与c 的值.(3)令x=2和-2代入反比例函数中求出相应的点坐标,然后将两点的坐标代入y=-x2+2x+m 中求出m 的值【详解】解:()1∵反比例函数k y x =过()3,4A , ∴12k =, ∴12y x= ()2∵点B 与点A 关于直线2y =对称,∴()3,0B .∵抛物线2y x bx c =-++过点B 和()0,3C∴9303b c c -++=⎧⎨=⎩∴23b c =⎧⎨=⎩∴223y x x =-++()3反比例函数的解析式:12y x= 令2x =-时,6y =-,即()2,6--令2x =时,6y =,即()2,6当22y x x m =-++过点()2,6--时,2m = 当当22y x x m =-++过点()2,6时,6m = ∴22y x x m =-++在22x -≤<的部分与12y x=无公共点时,此时m 的范围:26m <≤,本题考查二次函数的综合问题,解题的关键是求出相关点的坐标,然后利用待定系数法求出系数的值,本题属于中等题型.25.证明见解析.【分析】要证明结论成立,只要证明△AFC ∽△BFA 即可,根据题目中的条件,可以找到两个三角形相似的条件,从而可以解答本题.【详解】证明:连接AF ,∵AD 是角平分线,∴BAD CAD ∠=∠,又∵EF 为AD 的垂直平分线,∴AF FD =,DAF ADF ∠=∠,∴DAC CAF B BAD ∠+∠=∠+∠,∴CAF B ∠=∠,∵AFC AFC ∠=∠,∴ACF BAF ∽,即CF AF AF BF=, ∴2AF CF BF =⋅,即2FD CF BF =⋅.【点睛】本题考查相似三角形的性质、线段垂直平分线的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似解答.26.旗杆AB 的高度是18 m .【分析】先得出△ABE ∽△EDC ,再由相似三角形的对应边成比例即可得出AB 的值.解:在Rt △ABE 和Rt △CED 中,∵∠ABE=∠CDE=90°,∠AEB=∠CED ,∴△ABE ∽△CED . ∴AB CD =BE ED. ∵BE=27m ,DE=2.4m ,CD=1.6m , ∴1.6AB =272.4, ∴AB=18.答:旗杆AB 的高度是18 m .【点睛】本题考查的是相似三角形在实际生活中的应用,熟知相似三角形的对应边成比例是解答此题的关键.。

沪科版九年级数学上册第一学期期中考试.docx

沪科版九年级数学上册第一学期期中考试.docx

桑水合肥市第五十中学2014-2015学年度九年级第一学期期中考试数 学 试 卷题 号一 二三 四五 总 分得 分得 分 评卷人一、选择题(共10小题,每小题3分,共30分)1.抛物线122+-=x y 的对称轴是( )A.直线12x = B. 直线12x =- C. y 轴 D. 直线x=22.已知(5,-1)是双曲线)0(≠=k xky 上的一点,则下列各点中不在..该图象上的是( )A .( 13 ,-15) B .(5,1)C . (-1,5)D .(10,21-) 3.已知x :y=5:2,则下列各式中不正确的是( )A .x+y y = 72B .x-y y = 32C .x x+y = 57D .x y-x = 534.下列四个函数图象中,当x<0时,函数值y 随自变量x 的增大而减小的是( )A. B. C. D.5.若△ABC ∽△A ′B ′C ′,其面积比为1:2,则△ABC 与△A ′B ′C ′的相似比为( ) A .1:2 B .2:2 C .1:4 D .1:26.如图,在△ABC 中,∠ADE =∠C ,那么下列等式中,成立的是( )A .BC DE=AB AE B .BC AE =BD ADC .ABAD =AC AE D .BC DE =ABAD7.如图,△ABC 中,AE 交BC 于点D ,∠C =∠E ,AD :DE = 3:5,AE =8,BD =4,则DC 的长等于( )班级________________ 姓名_______________ 座位号______________ ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 密 封 线 内 不 要 答 题 ____________________________________________________________________________________________________________________________________A.B.桑水桑水C .D .8.函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若212x x <<-,则( ) A.21y y < B.21y y > C.21y y = D.1y 、2y 的大小不确定9.将抛物线221y x =+的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是( ) A .22(2)3y x =+- B .22(2)2y x =+- C .22(2)3y x =-- D .22(2)2y x =--10.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,点D 是AB 上的一个动点 (不与A 、B 两点重合),DE ⊥AC 于点E ,DF ⊥BC 于点F ,点D 从靠近点A 的某一点向点B 移动,矩形DECF 的周长变化情况是( )A.逐渐减小B.逐渐增大C.先增大后减小D.先减小后增大得 分 评卷人 二、填空题(共6小题,每小题3分,共18分)11.写出一个开口向下,顶点坐标是(1,-2)的二次函数解析式 .12.如图,A 、B 两点被池塘隔开,在AB 外取一点C ,连接AC 、BC ,在AC 上取点M ,使AM =3MC ,作MN ∥AB 交BC 于N ,量得MN =38m ,则AB 的长为 .2 6 第14题 第13题 A B C E D F 第10题 第12题桑水13.教练对小明推铅球的录像进行技术分析(如图),发现铅球行进高度y (m)与水平距离x (m)之间的关系为()  x -y 24121-=+3,由此可知铅球推出的距离是 m . 14.已知二次函数m x x y ++-=42的部分图象如图所示,则关于x 的一元二次方程042=++-m x x 的15.16.二次函数y=ax 2+bx+c 的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac-b 2<0;⑤当x ≠2时,总有4a+2b>ax 2+bx 其中正确的有 (填写正确结论的序号). 得 分 评卷人 三、(本题共3小题,每小题6分,满分18 分)17.已知二次函数6422++-=x x y .(1)求该函数图象的顶点坐标. (2)求此抛物线与x 轴的交点坐标.18.如图,D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD=∠C ,AB=6,AD=4,求线段CD 的长.19.如图,已知抛物线32-+=bx ax y 的对称轴为直线1=x ,交x 轴于A 、B 两点,交y 轴于C 点,其中B 点的坐标为(3,0)。

沪科版九年级数学上册第一学期期中考试练习卷.docx

沪科版九年级数学上册第一学期期中考试练习卷.docx

—————————— 新学期 新成绩 新目标 新方向 ——————————2014年9年级第一学期期中考试练习卷一.选择题(本大题共6小题,每小题4分,满分24分)( )1.如果抛物线2)1(--=x y 经过平移可以与抛物线2x y -=互相重合,那么这个平移是. (A )向上平移1个单位;(B )向下平移1个单位;(C )向左平移1个单位 ;(D )向右平移1个单位. ( )2.下列抛物线中对称轴为13x =的是. A .213y x = ;B .2133y x =+ ;C .213y x ⎛⎫=+ ⎪⎝⎭ ; D .213y x ⎛⎫=- ⎪⎝⎭ .( )3.下列命题不一定...成立的是 (A )斜边与一条直角边对应成比例的两个直角三角形相似; (B )两个等腰直角三角形相似;(C )两边对应成比例且有一个角相等的两个三角形相似; (D )各有一个角等于95°的两个等腰三角形相似.( )4.二次函数y=ax 2+bx+c 的图像如图所示,下列结论正确的是 (A )ab>0; (B )当x ≤1时,y 随x 的增大而增大; (C )ac>0;; (D )方程ax 2+bx+c=0有两个正实数根. ( ).5.如果线段a 、b 、c 、d 满足a cb d=,那么下列等式不一定成立的是 A .a b c d b d ++=; B .a b c d b d --=; C .a c a b d d +=+; D .a b c da b c d--=++. ( )6.如图在正方形ABCD 中,E 为BC 中点,DF=3FC ,联结AE 、AF 、EF ,那么下列错误..的是 (A )△ABE 与△EFC 相似; (B )△ABE 与△AEF 相似;(C )△ABE 与△AFD 相似; (D )△AEF 与△EFC 相似. 二.填空题(本大题共12小题,每小题4分,满分48分)7.如果57a a b =+,那么ab= .8.线段c 是线段a 和线段b 的比例中项,若4a =,9b =,则线段c =_______. 9.二次函数2365y x x =-+的图像的顶点坐标是 .10.抛物线c bx x y ++-=2与x 轴交于A (1,0),B (-3,0)两点,则二次函数解析式是 . 11.如图,已知21//l l 3//l ,若AB : BC =3:5,DF =16,则DE = .12.二次函数y=ax 2+bx+c 的图像如图所示,对称轴为直线x =2,若与x 轴交点为A (6,0),则由图像可知,当0>y 时,自变量x 的取值范围是 .13.如将抛物线22y x =平移,平移后的抛物线顶点坐标为()3,2-,那么平移后的抛物线的表达式_____. 14.如图,在菱形ABCD 中,∠ABC =60°,AE ⊥AB ,交BD 于点G ,交BC 的延长线于点E ,那么GEAG= .GDEBA第4题第6题装班级15. 已知,D 、E 分别是ABC ∆的边AB 、AC 上的点,5AB =,2AD =,4AC =,如果要使DE ∥BC ,则EC = .16.如图,是用手电来测量古城墙高度的示意图, 将水平的平面镜放置在点P 处,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,若AB ⊥BD ,CD ⊥BD ,且AB=1.2米,BP=1.8米,PD=12米,则该古城墙的高度约是 米.17. 如图,在△ABC 中,D 是AB 上一点,如果∠B =∠ACD ,AB =6cm ,AC =4cm ,若S △ABC =36cm 2,则△ACD 的面积是 cm 2.18.如图,在△ABC 中,AC =BC =2,∠C =900,点D 为腰BC 中点,点E 在底边AB 上,且DE ⊥AD ,则BE 的长为 .三.解答题19.解方程:x 2+x -x x +26+1=0. 20.解方程组:⎪⎩⎪⎨⎧-=-+=-542222y xy x y x21.如图,已知向量a r 、b r 、c r,(1) 作出)232()213(b a b a --+ a r b r c r(2)作出c r 分别在a r 、b r方向上的分向量第12题 第14题 第11题(第23题图)22, 如图:AD //EG //BC ,EG 分别交AB 、DB 、AC 于点E 、F 、G , 已知AD =6,BC =10,AE =3,AB =5,求EG 、FG 的长.23. 已知:如图,在△ABC 中,AB =AC ,DE ∥BC ,点F 在边AC 上, DF 与BE 相交于点G ,且∠EDF =∠ABE .求证:(1)△DEF ∽△BDE ;(2)EF DB DF DG ⋅=⋅.24. 如图,抛物线225212-+-=x x y 与x 轴相交于A 、B ,与y 轴相交于点C ,过点C 作C D ∥x 轴,交抛物线点D .(1)求梯形ABCD 的面积;(2) 若梯形ACDB 的对角线AC 、BD 交于点E ,求点E 的坐标,并求经过A 、B 、E 三点的抛物线的解析式;(3)点P 是射线CD 上一点,且△PBC 与△ABC点坐标.25.如图,在梯形ABCD 中,AD//BC ,AB=CD=BC=6,AD=3.点M 为边BC 的中点,以M 为顶点作∠EMF=∠B ,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,连结EF . (1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF ⊥CD ,求BE 的长.M B C装答案一、选择题1.C; 2. D; 3.C; 4.B; 5,C .B; 6.C. 二、填空题7.25; 8.6; 9.(1,2); 10.223y x x =--+; 11.6; 12.62<<-x ; 13.()2232y x =--; 14.21; 15.125; 16. 8; 17. 16; 18.32。

沪科版九年级数学上册第一学期期中练习卷.docx

沪科版九年级数学上册第一学期期中练习卷.docx

2014学年第一学期期中数学练习卷一、 选择题:(本大题共6题,每题4分,满分24分)[每题列出的四个答案中,只有一个是正确的,把正确答案的代号填入括号内.错选或不选,得0分.]1.下列等式中,一定成立的是( ).(A ) 222)(b a b a +=+; (B ) 222)(b a ab =;(C ) ab b a 532=+; (D ) 236a a a =÷.2.计算28-,正确的结果是( ).(A )2; (B )4 ; (C )6; (D )23.3.关于二次函数2)2(--=x y 的图像,下列说法正确的是( ).(A )是中心对称图形; (B )开口向上;(C )对称轴是直线2-=x ; (D )最高点是)0,2(.4.根据你对相似的理解,下列命题中,不.正确的是( ). (A )两个全等三角形一定相似; (B )两个等边三角形一定相似;(C )两个直角三角形一定相似; (D )两个正方形一定相似.5.在ABC ∆中,︒=∠90C ,3=AC ,4=AB ,则下列结论中,正确的是( ).(A )43sin =A ; (B )43cos =A ; (C )43tan =A ; (D )43cot =A . 6. 已知点C 是线段AB 的中点,如果设=,那么下列结论中,正确的是( ).(A )a AC 21=; (B )a BC 21= ; (C )BC AC =; (D )0=+BC AC . 二、 填空题:(本大题共12题,每题4分,满分48分)7.计算:=--2)(3 .8.计算:=---112x x x x . 9.方程12=-x 的解为 .10.平面直角坐标系中,已知点),1(m m P +在第四象限,则m 的取值范围是 .11.已知抛物线m x m x y ++-=)1(2与y 轴交于点)3,0(-P ,则=m .12.抛物线142+-=x x y 的顶点坐标为 .13.受国际金融危机影响,某钢铁厂八月份的产量为20万吨,从九月份起,每月的产量均比上个月减少x %,如果记十月份的产量为y 万吨,那么y 关于x 的函数关系式是 .14.抛物线12-=ax y 上有一点)2,2(P ,平移该抛物线,使其顶点落在点)1,1(A 处,这时,点P落在点Q 处,则点Q 的坐标为 .15.如图,一条细绳系着一个小球在平面内摆动.已知细绳的长度为20厘米,当小球摆动到最高位置时,细绳偏转的角度为28°,那么小球在最高位置与最低位置时的高度差为 厘米(用所给数据表示即可).16.如图,在5×5的正方形网格中,点A 、B 、C 、E 、F 都在小正方形的顶点上,试在该网格中找点D ,联结DE 、DF ,使得DEF ∆与ACB ∆相似,且点E 与点C 对应,点F 与点B 对应.17.已知一次函数b kx y +=的图像与x 轴交于点)0,1(-A ,且经过点)3,3(B ,O 为坐标原点,则BAO ∠sin 的值是 .18.已知ABC ∆中,4=AB ,3=AC ,把ABC ∆绕点A 旋转某个角度后,使得点B 落在点1B 处,点C 落在点1C 处.这时,若21=BB ,则1CC 的长度为 .三、简答题19.(本题满分10分)2-=20.(本题满分10分) 如图,已知两个不平行的向量a r 、b r . 先化简,再求作:11(4)2()33a b a b --+r r r r(不要求写作法,但要指出图中表示结论的向量)21.(本题满分10分)已知:如图,AB=AC,∠DAE=∠B.求证:△ABE∽△DCA.22.(本题满分10分,第(1)小题6分,第(2)小题4分)如图是某货站传送货物的平面示意图, AD与地面的夹角为60°.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°成为37°,因此传送带的落地点由点B到点C向前移动了2米.(1)求点A与地面的高度;(2)如果需要在货物着地点C的左侧留出2米,那么请判断距离D点14米的货物Ⅱ是否需要挪走,并说明理由.(参考数据:sin37°取0.6,cos37°取23.(本题满分12分,第(1)小题6分,第(2)小题6如图,在Rt ACB △中,90ACB ∠=°,点D 在边AB 上,于点E ,EM 是线段BD 的垂直平分线.(1)求证:CD BE BC BD=; (2)若410cos 5AB B ==,,求CD 的长.24.(本题满分12分,第(1)小题3分,第(2)小题3分,第(2)小题6分)已知抛物线24y ax ax c =-+与y 轴交于点()0,3A ,点B 是抛物线上的点,且满足AB ∥x 轴,点C 是抛物线的顶点.(1)求抛物线的对称轴及B 点坐标;(2)若抛物线经过点()2,0-,求抛物线的表达式;(3)对(2)中的抛物线,点D 在线段AB 上,若以点A 、C 、D 为顶点的三角形与AOC ∆相似,试求点D 的坐标.25、(本题满分14分,第(1)小题4分,第(2)小题4分,第(2)小题6分)如图,已知ABC ∆与BDE ∆都是等边三角形,点D 在边AC 上(不与A 、C 重合),DE 与AB 相交于点F .(1)求证:BCD ∆∽DAF ∆;(2)若1BC =,设CD x =,AF y =;①求y 关于x 的函数解析式及定义域;②当x 为何值时,79BEF BCD S S ∆∆=?参考答案一、选择题:(本大题6题,每题4分,满分24分)1、B .2、A .3、D .4、C .5、B .6、A .二、填空题:(本大题共12题,每题4分,满分48分)7、3-. 8、x . 9、3=x . 10、01<<-m .11、3-=m . 12、),(32-. 13、()2%120x y -=.14、),(43. 15、()︒-28cos 120. 16、见右图. 17、53. 18、23.19、(本题满分10分)解:解:两边平方得743x x +-=-. ………………………………………2分移项、化简得4x =+,………………………………………………………1分两边平方整理得 24120x x +-= ……………………………………………………3分解得12x =,26x =- …………………………………………………………………2分经检验26x =-是增根,舍去,…………………………………………………………1分所以原方程的根为2x =. ……………………………………………………………1分20、(本题满分10分)11(4)2()33a b a b --+r r r r 解:原式=b a b a ϖϖϖϖ322314---……………………………………3分 =b a ϖϖ-2 ……………………………………………………………3分作图(略)………………………………………………………4分21.(本题满分10分)证明:∵AB=AC,∴B C ∠=∠.……………………………………………………………………(3分)∵BAE BAD DAE ∠=∠+∠,CDA BAD B ∠=∠+∠,又DAE B ∠=∠,∴BAE CDA ∠=∠.……………………………………………………………(5分)又∵B C ∠=∠,∴△ABE∽△DCA.……………………………………………………………(2分)22.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)解:(1)作AE ⊥BC 于点E , ……………………………………………………(1分)设AE x =,在Rt△ACE 中,4cot 3CE AE ACE x =⋅∠=,……………………………………(1分) 在Rt△A BE 中, cot BE AE ABE x =⋅∠=,……………………………………(1分) ∵BC=CE -BE ,423x x -= 解得6x =.………………………………………………………(2分) 答:点A 与地面的高度为6米.……………………………………………………(1分)(2)结论:货物Ⅱ不用挪走. ………………………………………………………(1分)在Rt△ADE 中,cot 6ED AE ADE =⋅∠==……………………(1分)cot 8CE AE ACE =⋅∠=…………………………………………………………(1分)∴CD=CE+ED=811.46+≈1411.46 2.542-=>……………………………………………………………(1分)∴货物Ⅱ不用挪走.23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)(1)证明:∵EM 是线段BD 的垂直平分线, ∴ED=EB,∴∠EDB=∠B.∵DE 平分CDB ∠, ∴∠CDE =∠EDB.∴∠CDE =∠B.……………………………………………………………(2分)又∵∠DCE=∠BCD, ∴△CDE∽△CBD.………………………………(1分) ∴CD DE BC BD=, 又由ED=EB , 得CD BE BC BD=……………………………………………(2分) (2)解:∵90ACB ∠=°,410cos 5AB B ==, ∴68AC BC ==,.…………………………………………………………(1分) ∵EM 是线段BD 的垂直平分线, ∴DM=BM ∴2CD BE BE BC BD BM==.………………………………………………………(2分) ∴82CD BE BM =, 即4BE CD BM= …………………………………………(1分) 4cos 5BM B BE ==Q ∴5454CD =⨯=.……………………………………(2分)24.(本题满分12分,第(1)小题满分3分,第(2)小题满分3分,第(2)小题满分6分) 解(1)由题意得,42a x a-=-,∴对称轴为直线2x =;…………………(2分) ∵点()0,3A ,点B 是抛物线上的点,AB ∥x 轴,∴AB 被直线2x =垂直平分,∴()4,3B .………………………………………(1分)(2)∵抛物线经过点()0,3,()2,0-,所以有3,4830c a a =⎧⎨++=⎩,……………(2分) 解得1,43.a c ⎧=-⎪⎨⎪=⎩,∴抛物线的表达式为2134y x x =-++.………………………(1分) (3)∵抛物线的对称轴为直线2x =,∴()2,4C ,…………………………(1分)过点C 作CE y ⊥轴,垂足为点E ,设对称轴与AB 交于点F .……………(1分)∵AB ∥x 轴,∴90CFA ∠=︒,∴CEO CFA ∠=∠, 又∵2142CE OE ==,12CF AF =,∴CE CF OE AF =,∴EOC ∆∽FAC ∆,…………(1分)∴AOC CAF ∠=∠,………………………………………………………………(1分)当AOC ∆∽DAC ∆时,有AO CO AD AC=,∵3,AO CO AC ===,∴32AD =,∴3,32D ⎛⎫ ⎪⎝⎭;…………………(1分) 当AOC ∆∽CAD ∆时,有AO CO AC AD=, ∴103AD =,∴10,33D ⎛⎫ ⎪⎝⎭,………………………………………………………(1分) 综上所述满足条件的点D 的坐标为3,32⎛⎫ ⎪⎝⎭或10,33⎛⎫ ⎪⎝⎭.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(2)小题满分6分)(1)证明:∵ABC ∆与BDE ∆都是等边三角形,∴60A C BDE ∠=∠=∠=︒,……………………………………………………(1分)∵ADF BDE C DBC ∠+∠=∠+∠,∴ADF DBC ∠=∠,……………………(2分)∴BCD ∆∽DAF ∆.………………………………………………………………(1分)(2)∵BCD ∆∽DAF ∆,∴BC CD AD AF=,………………………………………(1分) ∵1BC =,设CD x =,AF y =,∴11x x y =-,………………………………(1分) ∴()201y x x x =-<<.……………………………………………………………(2分)(3)解法一:∵ABC ∆与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD ∠=∠,…………(1分)∴EBF ∆∽CBD ∆,∴BE BF BC BD=,……………………………………………(1分) ∵BE BD =,1BC =,∴2BE BF =,……………………………………………(1分) ∵EBF ∆∽CBD ∆,79BEF BCD S S ∆∆=,∴2279BEF BCD S BE S BC ∆∆==, ……………………(1分) ∴279BE BF ==,∴29AF =,…………………………………………………(1分) ∴229x x -=,解得1221,33x x ==,∴当13x =或23时,79BEF BCD S S ∆∆=.…………(1分) 解法二:∵△ABC 与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD ∠=∠,…………(1分)∴EBF ∆∽CBD ∆,∵79BEF BCD S S ∆∆=,∴2279BEF BCD S BE S BC ∆∆==,……………………(1分)∵1BC =,BE BD =,∴279BD =. ……………………………………………(1分) 过点B 作BH AC ⊥于点H ,……………………………………………………(1分)∵60C ∠=︒,∴BH =,∴16DH =,12CH =, 当点D 在线段CH 上时,111263CD CH DH =-=-=;………………………(1分) 当点D 在线段CH 的延长线上时,112263CD CH DH =+=+=,……………(1分) 综上所述,当13x =或23时,79BEF BCD S S ∆∆=.初中数学试卷桑水出品。

沪科版九年级上册数学期中考试试卷及答案详解

沪科版九年级上册数学期中考试试卷及答案详解

沪科版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.抛物线2y 2(x 1)3=+-的顶点坐标是( )A .(13),-B .(13),C .(13)--,D .(13)-, 2.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位3.已知点A (1,-3)关于x 轴的对称点A'在反比例函数k y=x 的图像上,则实数k 的值为( )A .3B .13C .-3D .1-3 4.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h =-t 2+24t +1.则下列说法中正确的是( )A .点火后9 s 和点火后13 s 的升空高度相同B .点火后24 s 火箭落于地面C .点火后10 s 的升空高度为139 mD .火箭升空的最大高度为145 m5.已知()2y x t 2x 2=+--,当x 1>时y 随x 的增大而增大,则t 的取值范围是() A .t 0> B .t 0= C .t 0< D .t 0≥ 6.如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE =3CE ,AB =8,则AD 的长为( )A .3B .4C .5D .67.如图,一张矩形纸片ABCD 的长AB a =,宽BC b.=将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则a :b (= )A .2:1B 1C .3D .3:28.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A .B .C .米D .7米9.已知一次函数y ax b =+与反比例函数c y x=的图象在第二象限有两个交点,且其中一个交点的横坐标为1-,则二次函数2y ax bx c =+-的图象可能是( )A .B .C .D . 10.图中的两个三角形是位似图形,它们的位似中心是( )A .点PB .点OC .点MD .点N二、填空题11.若35a b b -= ,则a b=_________. 12.已知二次函数y=ax 2+bx+c 的部分图象如图所示,则关于x 的方程ax 2+bx+c=0的两个根的和为_____.13.如图所示,点C 在反比例函数k y (x 0)x=>的图象上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB BC =,已知AOB 的面积为1,则k 的值为______.14.已知抛物线21y ax bx a=+-与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)此抛物线的对称轴是直线______;(2)已知点11P ,2a ⎛⎫-⎪⎝⎭,()Q 2,2,若抛物线与线段PQ 恰有一个公共点,则a 的取值范围是______.15.如图,////AB GH CD ,点H 在BC 上,AC 与BD 交于点G ,2AB =,3CD =,则GH 的长为 .三、解答题16.九()1班数学兴趣小组经过市场调查,整理出某种商品在第x 天(1x 80≤≤且x 为正整数)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元.(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800.17.已知二次函数2y x bx c =++的图像经过点(4,3)和点(2,1)-,求该函数的表达式,并求出当03x 时,y 的最值.18.已知::2:3:4a b c =,且3215a b c +-=,求43a b c -+的值.19.如图,二次函数2y (x 2)m =++的图象与y 轴交于点C ,点B 在抛物线上,且点B 与点C 关于该二次函数图象的对称轴对称,已知一次函数y kx b =+的图象经过该二次函数图象上点()A 1,0-及点B .(1)求二次函数的解析式;(2)根据图象,写出满足2kx b (x 2)m +≥++的x 的取值范围.20.如图是反比例函数k y x=的图象,当4x 1-≤≤-时,4y 1-≤≤-.(1)求该反比例函数的解析式;(2)若M 、N 分别在反比例函数图象的两个分支上,请直接写出线段MN 长度的最小值.21.如图,点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,求3S :2S 的值.22.如图,函数的图象11y k x b =+与函数()220k y x x=>的图象交于点A (2,1)、B,与y 轴交于C (0,3)(1)求函数y 1的表达式和点B 的坐标;(2)观察图象,比较当x >0时y 1与y 2的大小.23.如图,开口向下的抛物线与x 轴交于点()1,0A -、(2,0)B ,与y 轴交于点(0,4)C ,点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.24.如图,两个反比例函数y=kx和y=2x在第一象限内的图象分别是C1和C2,设点P(1,4)在C1上,P A⊥x轴于点A,交C2于点B(1,m),求k,m的值及△POB的面积.参考答案与详解1.C【详解】解:直接根据顶点式得到抛物线2y 2(x 1)3=+-的顶点坐标是(13)--, 故选:C2.B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5), 故选B .【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.3.A【分析】先求出A'坐标,代入函数解析式即可求出k.【详解】解:点A (1,-3)关于x 轴的对称点A'的坐标为:(1,3),将(1,3)代入反比例函数k y=x, 可得:k=1×3=3, 故选A.【点睛】本题考查了反比例函数图像上点的坐标特征,根据对称的性质求出A'的坐标是解题关键. 4.D【详解】分析:分别求出t=9、13、24、10时h 的值可判断A 、B 、C 三个选项,将解析式配方成顶点式可判断D 选项.详解:A 、当t=9时,h=136;当t=13时,h=144;所以点火后9s 和点火后13s 的升空高度不相同,此选项错误;B 、当t=24时h=1≠0,所以点火后24s 火箭离地面的高度为1m ,此选项错误;C 、当t=10时h=141m ,此选项错误;D、由h=-t2+24t+1=-(t-12)2+145知火箭升空的最大高度为145m,此选项正确;故选D.点睛:本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.5.D【分析】可先求得抛物线的对称轴,再利用增减性可得到关于t的不等式,可求得答案.【详解】解:∵y=x2+(t−2)x−2,∴抛物线对称轴为x=−22t-,开口向上,∴在对称轴右侧y随x的增大而增大,∵当x>1时y随x的增大而增大,∴−22t-≤1,解得t≥0,故选:D.【点睛】本题主要考查二次函数的性质,利用二次函数的增减性得到关于t的不等式是解题的关键.6.D【分析】先根据DE∥BC,得出△ADE∽△ABC,再由相似三角形对应边成比例可得出AD的长.【详解】∵AE=3CE∴AC=4CE∵DE∥BC,∴△ADE∽△ABC∴AD AE AB AC=∴3 84 AD CECE=∴AD=6 故选:D.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键,本题也可根据平行线分线段成比例定理求解.7.B【分析】根据折叠性质得到AF=12AB=12a,再根据相似多边形的性质得到AB ADAD AF=,即12a bb a=,然后利用比例的性质计算即可.【详解】解:∵矩形纸片对折,折痕为EF,∴AF=12AB=12a,∵矩形AFED与矩形ABCD相似,∴AB ADAD AF=,即12a bb a=,∴a∶b.所以答案选B.【点睛】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.8.B【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A 的小孔所在抛物线的解析式,将x=﹣10代入可求解.【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y=ax2+32,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+32,∴a=-3 50,∴大孔所在抛物线解析式为y=-350x2+32,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为-7,∴点E坐标为(-7,-3625),∴-3625=m(x﹣b)2,∴x1,x2,∴MN=4,∴()|=4∴m=-925,∴顶点为A的小孔所在抛物线的解析式为y=-925(x﹣b)2,∵大孔水面宽度为20米,∴当x=-10时,y=-92, ∴-92=-925(x ﹣b )2,∴x 1,x 2,∴单个小孔的水面宽度=|)-(), 故选:B .【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.9.A【分析】根据一次函数与反比例函数的位置关系即可得到a ,b ,c 和0的大小关系,从而判断二次函数2y ax bx c =+-的图像走向即可.【详解】一次函数和反比例函数的两个交点在第二象限0a ∴>,0b >,0c <∴二次函数2y ax bx c =+-的图像开口向上,与y 轴交于正半轴,02b a-<,对称轴在y 轴左侧其中一个交点的横坐标为1- a b c ∴-+=-,即0a b c --=∴二次函数2y ax bx c =+-的图像与x 轴有一个交点为()1,0-,故选:A.【点睛】本题主要考查了通过一次函数和反比例函数的关系判断a 、b 、c 和0的大小关系;得到三者的相关特性是判断二次函数图像走势的关键.错因分析中等难度题.失分原因是:1.不会通过题干给出的一次函数和反比例函数的两个交点在第二象限得出a、b、c和0的大小关系;2.不会运用题干给出的其中一个交点的横坐标为得出a、b、c三者之间的关系.10.A【分析】连接其中的两对对应点,它们所在直线的交点即为位似中心.【详解】解:如图所示,连接两对对应点之后,它们的连线都经过点P,因此位似中心是点P;故选:A.【点睛】本题考查了位似图形、位似中心的概念,要求学生理解相关概念并能通过连线正确判断出位似中心,本题较基础,考查了学生对基础概念的理解与掌握.11.8 5【分析】直接利用已知进而变形得出a,b的关系.【详解】解:∵35 a bb-=∴3b=5a-5b,则5a=8b,∴85 ab=故答案为:85【点睛】 此题主要考查了比例的性质,正确将已知变形是解题关键.12.2【详解】解:根据函数的图像可知其对称轴为x=-2b a =1,解得b=-2a ,然后可知两根之和为x 1+x 2=-b a =2.故答案为:2【点睛】此题主要考查了二次函数的图像与一元二次方程的关系,解题关键是由函数的图像求得对称轴x=-2b a ,然后根据一元二次方程的根与系数的关系x 1+x 2=-b a求解即可. 13.13.4【分析】根据题意可以设出点A 的坐标,从而以得到点C 和点B 的坐标,再根据AOB 的面积为1,即可求得k 的值.【详解】解:设点A 的坐标为()a,0-,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB BC =,AOB 的面积为1,∴点k C a,a ⎛⎫ ⎪⎝⎭, ∴点B 的坐标为k 0,2a ⎛⎫ ⎪⎝⎭, 1k a 122a∴⋅⋅=, 解得,k 4=,故答案为4.【点睛】本题考查了反比例函数系数k 的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.x 1= 1a 2≤-【分析】(1)直接根据抛物线的对称性即可求解;(2)根据二次函数的图象和性质即可求解.【详解】解:(1)∵抛物线过点A (0,1a -)和点B (2,1a -),由对称性可得,抛物线对称轴为 直线02x 12+==,故对称轴为直线x=1; 故答案为:x=1;(2)①当a>0时,则10a-<,分析图象可得:根据抛物线的对称性,抛物线不可能同时经过点A 和点P ;也不可能同时经过点B 和点Q ,所以,此时线段PQ 与抛物线没有交点; ②当a<0时,则10a->,分析图象可得:根据抛物线的对称性,抛物线不可能同时经过点A 和点P ;但当点Q 在点B 上方或与点B 重合时,抛物线与线段PQ 恰有一个公共点,此时12a-≤即1a 2≤-. 综上所述,当1a 2≤-时,抛物线与线段PQ 恰有一个公共点. 故答案为:1a 2≤-. 【点睛】 此题主要考查抛物线的对称性、二次函数的图象和性质,正确理解性质是解题关键. 15.65【分析】 根据平行线分线段成比例定理,由AB ∥GH ,得出GH CH AB BC =,由GH ∥CD ,得出3GH BH BC=,将两个式子相加,即可求出GH 的长. 【详解】解://AB GH ,GH CH AB BC ∴=, 即2GH CH BC=①, //GH CD ,GH BH CD BC ∴=, 即3GH BH BC=②, ①+②, 得23GH GH CH BH BC BC +=+, CH BH BC +=,123GH GH ∴+=, 解得65GH =. 故答案为:65 【点睛】本题考查了平行线分线段成比例定理,熟练运用等式的性质进行计算.本题难度适中. 16.(1)()()y 2100x x 10=-+或()y 120100x =-;(2)第41天,利润最大,最大利润为7080元;(3)共有41天.【分析】(1)根据总利润等于单价减去成本再乘以件数即可;(2)按1≤x≤40和41≤x≤80时函数表达式求最大值即可;(3)按1≤x≤40和41≤x≤80时函数表达式y≥4800即可求解.【详解】解:(1)由题意得:()()y 2002x x 4030=-+-或()()y 2002x 9030=--, 即为()()y 2100x x 10=-+或()y 120100x =-;(2)当1x 40≤≤时,()()y 2x 10x 100=-+-,则函数对称轴为45x =, 故x 40=时,函数取得最大值为6000,当41x 80≤≤时,y 12000120x =-,函数在x 41=时,取得最大值为:7080, 故:第41天,利润最大,最大利润为7080元;(3)当1x 40≤≤时,()()y 2x 10x 1004800=-+-≥,解得:20x 70≤≤,20x 40≤≤,为21天,则函数对称轴为45x =,故x 40=时,函数取得最大值为4000,当41x 80≤≤时,y 12000120x 4800=-≥,x 60≤,即:41x 60≤≤,为20天, 故:共有41天.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在b x 2a=-时取得. 17.当x=0时,y 有最大值是3【分析】利用待定系数法求出二次函数的解析式,根据二次函数的性质求出最大值即可.【详解】解:∵二次函数y=x 2+bx+c 的图象经过点(4,3),(3,0),∴1643930b c b c ++=⎧⎨++=⎩, 解得,43b c =-⎧⎨=⎩, ∴函数解析式为:y=x 2-4x+3,y=x 2-4x+3=(x-2)2-1,∴当x=0时,y 有最大值是3.【点睛】本题考查的是待定系数法求二次函数的解析式和二次函数的最值,掌握待定系数法求解析式的一般步骤是解题的关键.18.15.【分析】先根据比例式设2,3,4(0)a k b k c k k ===≠,再根据3215a b c +-=求出k 的值,从而可得,,a b c 的值,然后代入求值即可得.【详解】由题意设2,3,4(0)a k b k c k k ===≠,3215a b c +-=,29815k k k ∴+-=,解得5k =,10,15,20a b c ∴===,4341031520a b c ∴-+=⨯-⨯+,404520=-+,15=.【点睛】本题考查了比例的性质的应用、解一元一次方程、代数式求值,熟练掌握“设k 法”是解题关键.19.(1)抛物线解析式为2y (x 2)1=+-;(2)满足2kx b (x 2)m +≥++的x 的取值范围为4x 1-≤≤-.【分析】() 1先利用待定系数法求出m ,即可求得抛物线的解析式;()2先求得C 的坐标,然后根据对称性求出点B 坐标,即可根据二次函数的图象在一次函数的图象下面即可写出自变量x 的取值范围.【详解】解:()1抛物线2y (x 2)m =++经过点()A 1,0-,01m ∴=+,m 1∴=-,∴抛物线解析式为2y (x 2)1=+-;()2令x 0=,则2y (x 2)13=+-=,∴点C 坐标()0,3,对称轴为直线x 2=-,B 、C 关于对称轴对称,∴点B 坐标()4,3-,由图象可知,满足2kx b (x 2)m +≥++的x 的取值范围为4x 1-≤≤-.【点睛】本题考查二次函数与不等式、待定系数法等知识,解题的关键是灵活运用待定系数法确定二次函数解析式,学会利用图象根据条件确定自变量取值范围.20.(1)反比例函数的解析式为4y x=;(2)线段MN 的最小值为 【分析】(1)用待定系数法求反比例函数的解析式;(2)经观察后可发现当MN 为直线y x =与双曲线的两个交点时,线段MN 最短;联立两方程可求得两交点的坐标()M 2,2,()N 2,2--,然后根据两点之间的距离公式求得线段MN 的最小值.【详解】解:()1在反比例函数的图象中,当4x 1-≤≤-时,4y 1-≤≤-, ∴反比例函数经过坐标()4,1--,k 41∴-=-, k 4∴=,∴反比例函数的解析式为4y x=; ()2当M ,N 为一,三象限角平分线与反比例函数图象的交点时,线段MN 最短. 将y x =代入4y x=, 解得x 2y 2=⎧⎨=⎩或x 2y 2=-⎧⎨=-⎩, 即()M 2,2,()N 2,2--.OM ∴=则MN =.∴线段MN 的最小值为【点睛】本题考查用待定系数法求反比例函数解析式,在第()2问中关键是要正确判断MN 何时出现最小值.21. 【分析】根据黄金分割的定义:把线段AB 分成两条线段AC 和BC (BC >AC ),且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中12AC AB =,由定义可得:2AE AB BE =,设1,1,AB BE AB AE AE ==-=- 求解,AE BE ,从而可得答案.【详解】解:如图,设1AB =,点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,2AE AB BE ∴=,2AE AB AE ∴=-,210,AE AE ∴+-=AE ∵>0,12AE GF ∴==, 正方形ABCD ,正方形AEFG ,,,AB AD AE AG ∴==,DG BE ∴=32BE DG AB AE ∴==-=, 3S ∴:()2S GF DG =⋅:()BC BE ⋅=⎝⎭:1⎛ ⎝⎭12=. 【点睛】本题考查了黄金分割、矩形的性质、正方形的性质,一元二次方程的解法,解决本题的关键是掌握黄金分割定义.22.(1)13,(1,2)y x B =-+;(2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2;当x=1或x=2时,y 1=y 2【分析】(1)先用待定系数法求一次函数的解析式,再通过解方程组,求B 的坐标;(2)根据函数图象分析函数值的大小.【详解】解:(1)由题意,得1213k b b +=⎧⎨=⎩解得113k b =-⎧⎨=⎩∴13y x =-+又A 点在函数()220k y x x =>上,所以212k =,解得22k = 所以222k y =解方程组32y xy x=-+⎧⎪⎨=⎪⎩得1112x y =⎧⎨=⎩2221x y =⎧⎨=⎩所以点B 的坐标为(1, 2).(2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2;当x=1或x=2时,y 1=y 2.【点睛】本题考查反比例函数与一次函数的综合,利用数形结合思想解题是关键.23.(1)2224y x x =-++;(2)8【分析】(1)设二次函数表达式为()()12y a x x =+-,再将点C 代入,求出a 值即可;(2)连接OP ,设点P 坐标为(m ,2224m m -++),m >0,利用S 四边形CABP =S △OAC +S △OCP +S △OPB 得出S 关于m 的表达式,再求最值即可.【详解】解:(1)∵A (-1,0),B (2,0),C (0,4),设抛物线表达式为:()()12y a x x =+-,将C 代入得:,解得:a=-2,∴该抛物线的解析式为:()()2212224y x x x x =-+-=-++;(2)连接OP ,设点P 坐标为(m ,2224m m -++),m >0,∵A (-1,0),B (2,0),C (0,4),可得:OA=1,OC=4,OB=2,∴S=S 四边形CABP =S △OAC +S △OCP +S △OPB =()21111442224222m m m ⨯⨯+⨯⨯+⨯⨯-++=2246m m -++当m=1时,S 最大,且为8.【点睛】本题考查了二次函数的应用,待定系数法求二次函数表达式,解题的关键是能将四边形CABP 的面积表示出来.24.k=4,m=2,POB S1=. 【详解】试题分析:将点P 的坐标代入C 1的解析式即可求出k 的值;将点B 的横坐标代入C 2的解析式即可求出m 的值;S △POB =S △POA -S △BOA ,由反比例函数k 的几何意义可以分别求出S △POA 、S △BOA 的值.试题解析:∵P (1,4),∴k =4;∵B (1,m ),C 2解析式为:y =2x,∴m =2; S △POB =S △POA -S △BOA =2-1=1.点睛:掌握反比例函数k 的几何意义.。

沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)

沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)

沪教版-九年级(初三)数学上册-期中考试复习试卷试题一.选择题(共24小题)1.(2019•徐汇区一模)将抛物线2y x =向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为( ) A .2(1)2y x =-+B .2(1)2y x =++C .2(1)2y x =--D .2(1)2y x =+-2.(2019•宝山区一模)已知二次函数21y ax =-的图象经过点(1,2)-,那么a 的值为() A .2a =-B .2a =C .1a =D .1a =-3.(2019•奉贤区一模)对于非零向量a 、b ,如果2||3||a b =,且它们的方向相同,那么用向量a 表示向量b 正确的是( ) A .32b a =B .23b a =C .32b a =-D .23b a =-4.(2019•长宁区期末)在四边形ABCD 中,若AB a =,AD b =,BC c =,则CD 等于()A .a b c --B .a b c -+-C .a b c -+D .a b c -++5.在Rt ABC ∆中,90C ∠=︒,如果A α∠=,3AB =,那么AC 等于( ) A .3sin αB .3cos αC .3sin αD .3cos α6.(2019•松江区一模)在Rt ABC ∆中,90C ∠=︒,如果4AC =,3BC =,那么A ∠的正切值为( ) A .34B .43 C .35D .457.(2015•奉贤区一模)在Rt ABC ∆中,90ACB ∠=︒,1BC =,2AC =,则下列结论正确的是( )A .sin A =B .1tan 2A =C .cos B =D .tan B =8.抛物线2321y x x =-+-的图象与x 轴交点的个数是( ) A .没有交点 B .只有一个交点C .有且只有两个交点D .有且只有三个交点9.(2019•射阳县一模)关于二次函数21(1)2y x =+的图象,下列说法正确的是( )A .开口向下B .经过原点C .对称轴右侧的部分是下降的D .顶点坐标是(1,0)-10.(2019•松江区一模)在ABC ∆中,点D 、E 分别在AB 、AC 上,如果2AD =,3BD =,那么由下列条件能够判定//DE BC 的是( ) A .23DE BC = B .25DE BC = C .23AE AC = D .25AE AC = 11.(2016秋•闵行区期中)已知两个三角形相似,其中一个三角形的两个角分别为60︒、90︒,那么另一个三角形的最小内角为( ) A .90︒B .60︒C .30︒D .不能确定12.(2019•普陀区一模)已知二次函数2(1)3y a x =-+的图象有最高点,那么a 的取值范围是( ) A .0a >B .0a <C .1a >D .1a <13.(2019•浦东新区一模)已知二次函数2(3)y x =-+,那么这个二次函数的图象有()A .最高点(3,0)B .最高点(3,0)-C .最低点(3,0)D .最低点(3,0)-14.(2019•奉贤区一模)如图,在直角坐标平面内,射线OA 与x 轴正半轴的夹角为α,如果OA =tan 3α=,那么点A 的坐标是( )A .(1,3)B .(3,1)C .D .15.(2019•松江区二模)如图,已知ABCD 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么:AFE FCDE S S ∆四边形为( )A .1:3B .1:4C .1:5D .1:616.(2019•香坊区模拟)如图,已知BD 与CE 相交于点A ,//ED BC ,8AB =,12AC =,6AD =,那么AE 的长等于( )A .4B .9C .12D .1617.(2019•宝山区一模)如图,已知////AB CD EF ,:1:2BD DF =,那么下列结论正确的是( )A .:1:3AC AE =B .:1:3CE EA =C .:1:2CD EF =D .:1:2AB CD =18.(2019•嘉定区一模)如图,在ABC ∆中,点D 是在边BC 上,且2BD CD =,AB a =,BC b =,那么AD 等于( )A .AD a b =+B .2233AD a b =+C .23AD a b =-D .23AD a b =+19.(2019•嘉定区二模)已知||1,||3a b ==,而且b 和a 的方向相反,那么下列结论中正确的是( ) A .3a b =B .3a b =-C .3b a =D .3b a =-20.(2019•静安区一模)如图,点D 、E 分别在ABC ∆的边AB 、AC 上,且DE 与BC 不平行.下列条件中,能判定ADE ∆与ACB ∆相似的是( )A .AD AEAC AB=B .AD ABAE AC=C .DE AEBC AB=D .DE ADBC AC=21.(2019•虹口区一模)如图,传送带和地面所成斜坡AB 的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A .5 米B .C .米D .22.(2019•杨浦区一模)如果二次函数中函数值y 与自变量x 之间的部分对应值如下表所示:那么这个二次函数的图象的对称轴是直线( ) A .0x =B .12x =C .34x =D .1x =23.(2019•徐汇区一模)如图,下列条件中不能判定ACD ABC ∆∆∽的是( )A .ADC ACB ∠=∠ B .AB ACBC CD=C .ACD B ∠=∠ D .2AC AD AB =24.(2019•浦东新区一模)如果将抛物线241y x x =++平移,使它与抛物线21y x =+重合,那么平移的方式可以是( )A .向左平移 2个单位,向上平移 4个单位B .向左平移 2个单位,向下平移 4个单位C .向右平移 2个单位,向上平移 4个单位D .向右平移 2个单位,向下平移 4个单位 二.填空题(共17小题) 25.(2019•杨浦区一模)如果53x x y =-,那么xy= . 26.(2019•黄浦区一模)抛物线248y x x =-+的顶点坐标是 . 27.(2015•黄浦区一模)如果抛物线21(1)22y x m x m =+--+的对称轴是y 轴,那么m 的值是 .28.(2019•奉贤区一模)计算:sin30tan60︒︒= .29.(2019•杨浦区一模)如果开口向下的抛物线2254(0)y ax x a a =++-≠过原点,那么a 的值是 .30.(2019•普陀区一模)将抛物线21(3)42y x =+-先向右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是 .31.(2019•杨浦区一模)已知点1(A x ,1)y 、2(B x ,2)y 在抛物线22y x x m =++上,如果120x x <<,那么1y 2y (填入“<”或“>” ).32.(2015•建湖县校级模拟)如图,已知////AB CD EF ,:3:5AD AF =,12BE =,那么CE 的长是 .33.(2018秋•普陀区期中)如图,梯形ABCD 中,//AD BC ,AC 与BD 相交于点O ,已知14AOD COB S S ∆∆=,那么AOD AOBSS ∆∆= .34.(2019•奉贤区一模)如果一个二次函数的图象在其对称轴左侧部分是上升的,那么这个二次函数的解析式可以是 .(只需写一个即可)35.(2019•金山区一模)如图,为了测量铁塔AB 的高度,在离铁塔底部(点)60B 米的C 处,测得塔顶A 的仰角为30︒,那么铁塔的高度AB = 米.36.(2019•奉贤区一模)联结三角形各边中点,所得的三角形的周长与原三角形周长的比是 .37.(2019•杨浦区一模)如图,某单位门前原有四级台阶,每级台阶高为18cm ,宽为30cm ,为方便残疾人土,拟在门前台阶右侧改成斜坡,设台阶的起点为A 点,斜坡的起点为C 点,准备设计斜坡BC 的坡度1:5i =,则AC 的长度是 cm .38.(2016•徐汇区一模)如果两个相似三角形的面积比是4:9,那么它们对应高的比是 . 39.(2018秋•普陀区期中)已知点(3,)A n 在二次函数223y x x =-+的图象上,那么n 的值为 .40.(2016•天门模拟)如图,正方形CDEF 内接于Rt ABC ∆,点D 、E 、F 分别在边AC 、AB 和BC 上,当2AD =,3BF =时,正方形CDEF 的面积是 .41.(2016秋•闵行区期中)如图,已知小丽的身高是1.6米,他在路灯下的影长为2米,小明距路灯灯杆的底部3米,那么路灯灯泡距地面的高度是 米.三.解答题(共9小题)42.(2019•静安区一模)计算:22260cos60604cos45sin tan ︒-︒︒+︒.43.(2019•普陀区一模)计算:24sin 45cos 30︒+︒44.(2017秋•浦东新区校级期中)计算:cos30tan60cos45|sin 45tan 45|cot30︒-︒-︒︒-︒+︒.45.(2019•青浦区二模)解方程组:226021x xy y x y ⎧+-=⎨+=⎩.46.(2019•随县模拟)先化简,再求值:22169(2)11x x x x x -++-÷+-,其中2x =.47.(2018秋•普陀区期中)已知二次函数2(0)y ax bx c a =++≠图象经过点(3,0)A -、点(0,3)B -和点(2,5)C ,求该二次函数的解析式,并指出图象的对称轴和顶点坐标.48.(2019•普陀区一模)已知:如图,ADE ∆的顶点E 在ABC ∆的边BC 上,DE 与AB 相交于点F ,2AE AF AB =,DAF EAC ∠=∠. (1)求证:ADE ACB ∆∆∽;(2)求证:DF CEDE CB=.49.(2019•黄浦区一模)如图,已知//AB CD ,AC 与BD 相交于点E ,点F 在线段BC 上,12AB CD =,12BF CF =. (1)求证://AB EF ; (2)求::ABE EBC ECD S S S ∆∆∆.50.(2019•黄浦区一模)如图,P 点是某海域内的一座灯塔的位置,船A 停泊在灯塔P 的南偏东53︒方向的50海里处,船B 位于船A 的正西方向且与灯塔P 相距海里.(本题参考数据sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈.) (1)试问船B 在灯塔P 的什么方向? (2)求两船相距多少海里?(结果保留根号)沪教版-九年级(初三)数学上册-期中考试复习试卷试题参考答案与试题解析一.选择题(共24小题)1.(2019•徐汇区一模)将抛物线2y x =向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为( ) A .2(1)2y x =-+B .2(1)2y x =++C .2(1)2y x =--D .2(1)2y x =+-【解答】解:将抛物线2y x =向右平移1个单位长度,再向上平移2+个单位长度所得的抛物线解析式为2(1)2y x =-+. 故选:A .2.(2019•宝山区一模)已知二次函数21y ax =-的图象经过点(1,2)-,那么a 的值为() A .2a =-B .2a =C .1a =D .1a =-【解答】解:把(1,2)-代入21y ax =-得12a -=-,解得1a =-. 故选:D .3.(2019•奉贤区一模)对于非零向量a 、b ,如果2||3||a b =,且它们的方向相同,那么用向量a 表示向量b 正确的是( ) A .32b a =B .23b a =C .32b a =-D .23b a =-【解答】解:2||3||a b =, 2||||3b a ∴=. 又非零向量a 与b 的方向相同,∴23b a =. 故选:B .4.(2019•长宁区期末)在四边形ABCD 中,若AB a =,AD b =,BC c =,则CD 等于()A .a b c --B .a b c -+-C .a b c -+D .a b c -++【解答】解:如图,连接BD . AB a =,AD b =,∴BD AD AB b a =-=-.又BC c =,∴CD BD BC b a c =-=--,即CD a b c =-+-.故选:B .5.(2019•静安区)在Rt ABC ∆中,90C ∠=︒,如果A α∠=,3AB =,那么AC 等于() A .3sin αB .3cos αC .3sin αD .3cos α【解答】解:A α∠=,3AB =, cos ACABα∴=, cos 3cos AC AB αα∴==,故选:B .6.(2019•松江区一模)在Rt ABC ∆中,90C ∠=︒,如果4AC =,3BC =,那么A ∠的正切值为( ) A .34B .43 C .35D .45【解答】解:4AC =,3BC =,3tan 4BC A AC ∴==, 故选:A .7.(2015•奉贤区一模)在Rt ABC ∆中,90ACB ∠=︒,1BC =,2AC =,则下列结论正确的是( )A .sin 2A =B .1tan 2A =C .cos 2B =D .tan B =【解答】解:90ACB ∠=︒,1BC =,2AC =,AB ∴==则sin BC A AB ==1tan 2BC A AC ==,cos BC B AB ==,tan 2ACB BC==. 故选:B .8.抛物线2321y x x =-+-的图象与x 轴交点的个数是( ) A .没有交点 B .只有一个交点C .有且只有两个交点D .有且只有三个交点【解答】解:22424(3)(1)80b ac -=-⨯-⨯-=-<∴二次函数2321y x x =-+-的图象与x 轴没有交点.故选:A .9.(2019•射阳县一模)关于二次函数21(1)2y x =+的图象,下列说法正确的是( )A .开口向下B .经过原点C .对称轴右侧的部分是下降的D .顶点坐标是(1,0)-【解答】解:A 、由二次函数二次函数21(1)2y x =+中102a =>,则抛物线开口向上;故本项错误;B 、当0x =时,12y =,则抛物线不过原点;故本项错误; C 、由二次函数21(1)2y x =+得,开口向上,对称轴为直线1x =-,对称轴右侧的图象上升;故本项错误;D 、由二次函数21(1)2y x =+得,顶点为(1,0)-;故本项正确;故选:D .10.(2019•松江区一模)在ABC ∆中,点D 、E 分别在AB 、AC 上,如果2AD =,3BD =,那么由下列条件能够判定//DE BC 的是( ) A .23DE BC = B .25DE BC = C .23AE AC = D .25AE AC = 【解答】解:当AD AE DB EC =或AD AEAB AC=时,//DE BD ,即23AE EC =或25AE AC =. 故选:D .11.(2016秋•闵行区期中)已知两个三角形相似,其中一个三角形的两个角分别为60︒、90︒,那么另一个三角形的最小内角为( ) A .90︒B .60︒C .30︒D .不能确定【解答】解:一个三角形的两个内角分别为60︒和90︒,∴第三个内角为180609030︒-︒-︒=︒, ∴这个三角形的最小的内角的度数为30︒,两个三角形是相似形,∴另一个三角形的最小内角的度数为30︒.故选:C .12.(2019•普陀区一模)已知二次函数2(1)3y a x =-+的图象有最高点,那么a 的取值范围是( ) A .0a >B .0a <C .1a >D .1a <【解答】解:由题意可知:10a -<, 1a ∴<,故选:D .13.(2019•浦东新区一模)已知二次函数2(3)y x =-+,那么这个二次函数的图象有()A .最高点(3,0)B .最高点(3,0)-C .最低点(3,0)D .最低点(3,0)-【解答】解:在二次函数2(3)y x =-+中,10a =-<,∴这个二次函数的图象有最高点(3,0)-,故选:B .14.(2019•奉贤区一模)如图,在直角坐标平面内,射线OA 与x 轴正半轴的夹角为α,如果OA =tan 3α=,那么点A 的坐标是( )A .(1,3)B .(3,1)C .D .【解答】解:过点A 作AB x ⊥轴于点B , 由于tan 3α=,∴3ABOB=, 设3AB x =,OB x =, 10OA =,∴由勾股定理可知:22910x x +=,21x ∴=, 1x ∴=,3AB ∴=,1OB =,A ∴的坐标为(1,3),故选:A .15.(2019•松江区二模)如图,已知ABCD 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么:AFE FCDE S S ∆四边形为( )A .1:3B .1:4C .1:5D .1:6【解答】解:连接CE ,//AE BC ,E 为AD 中点,∴12AE AF BC FC ==. FEC ∴∆面积是AEF ∆面积的2倍.设AEF ∆面积为x ,则AEC ∆面积为3x ,E 为AD 中点,DEC ∴∆面积AEC =∆面积3x =.∴四边形FCDE 面积为5x ,所以:AFE FCDE S S ∆四边形为1:5.故选:C .16.(2019•香坊区模拟)如图,已知BD 与CE 相交于点A ,//ED BC ,8AB =,12AC =,6AD =,那么AE 的长等于( )A .4B .9C .12D .16【解答】解://ED BC ,∴AB ACAD AE =, 即8126AE=, 9AE ∴=,故选:B .17.(2019•宝山区一模)如图,已知////AB CD EF ,:1:2BD DF =,那么下列结论正确的是( )A .:1:3AC AE =B .:1:3CE EA =C .:1:2CD EF =D .:1:2AB CD =【解答】解:////AB CD EF ,::1:2AC CE BD DF ∴==,即2CE AC =,:1:3AC CE ∴=,:2:3CE EA =.故选:A .18.(2019•嘉定区一模)如图,在ABC ∆中,点D 是在边BC 上,且2BD CD =,AB a =,BC b =,那么AD 等于( )A .AD a b =+B .2233AD a b =+C .23AD a b =-D .23AD a b =+【解答】解:2BD CD =, 23BD BC ∴=. BC b =,∴23BD b =.又AB a =,∴23AD AB BD a b =+=+.故选:D .19.(2019•嘉定区二模)已知||1,||3a b ==,而且b 和a 的方向相反,那么下列结论中正确的是( ) A .3a b = B .3a b =- C .3b a = D .3b a =-【解答】解:||1,||3a b ==,而且b 和a 的方向相反,∴3b a =-,故选:D .20.(2019•静安区一模)如图,点D 、E 分别在ABC ∆的边AB 、AC 上,且DE 与BC 不平行.下列条件中,能判定ADE ∆与ACB ∆相似的是( )A .AD AEAC AB=B .AD ABAE AC=C .DE AEBC AB=D .DE ADBC AC=【解答】解:在ADE ∆与ACB ∆中, AD AEAC AB=,且A A ∠=∠, ADE ACB ∴∆∆∽.故选:A .21.(2019•虹口区一模)如图,传送带和地面所成斜坡AB 的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A .5 米B .C .米D .【解答】解:作BC ⊥地面于点C ,设BC x =米, 传送带和地面所成斜坡AB 的坡度为1:2, 2AC x ∴=米,由勾股定理得,222AC BC AB +=,即222(2)10x x +=,解得,x =BC =米,故选:C .22.(2019•杨浦区一模)如果二次函数中函数值y 与自变量x 之间的部分对应值如下表所示:那么这个二次函数的图象的对称轴是直线( ) A .0x =B .12x =C .34x =D .1x =【解答】解:0x =、2x =时的函数值都是3相等,∴此函数图象的对称轴为直线0212x +==. 故选:D .23.(2019•徐汇区一模)如图,下列条件中不能判定ACD ABC ∆∆∽的是( )A .ADC ACB ∠=∠ B .AB ACBC CD=C .ACD B ∠=∠ D .2AC AD AB =【解答】解:A 、由ADC ACB ∠=∠,A A ∠=∠可得ACD ABC ∆∆∽,此选项不符合题意;B 、由AB ACBC CD=不能判定ACD ABC ∆∆∽,此选项符合题意; C 、由ACD B ∠=∠,A A ∠=∠可得ACD ABC ∆∆∽,此选项不符合题意;D 、由2AC AD AB =,即AC ABAD AC=,且A A ∠=∠可得ACD ABC ∆∆∽,此选项不符合题意; 故选:B .24.(2019•浦东新区一模)如果将抛物线241y x x =++平移,使它与抛物线21y x =+重合,那么平移的方式可以是( )A .向左平移 2个单位,向上平移 4个单位B .向左平移 2个单位,向下平移 4个单位C .向右平移 2个单位,向上平移 4个单位D .向右平移 2个单位,向下平移 4个单位【解答】解:抛物线2241(2)3y x x x =++=+-的顶点坐标为(2,3)-,抛物线21y x =+的顶点坐标为(0,1),∴顶点由(2,3)-到(0,1)需要向右平移2个单位再向上平移4个单位.故选:C .二.填空题(共17小题) 25.(2019•杨浦区一模)如果53x x y =-,那么x y =52. 【解答】解:53x x y =-, 35x y x -=, 315y x -=, 25y x =, 52x y =. 故答案为:52. 26.(2019•黄浦区一模)抛物线248y x x =-+的顶点坐标是 (2,4) . 【解答】解:2248(2)4y x x x =-+=-+,∴抛物线顶点坐标为(2,4).故答案为(2,4).27.(2015•黄浦区一模)如果抛物线21(1)22y x m x m =+--+的对称轴是y 轴,那么m 的值是 1 . 【解答】解:21(1)22y x m x m =+--+的对称轴是y 轴, 10m ∴-=,解得1m =,故答案为:1.28.(2019•奉贤区一模)计算:sin30tan60︒︒= .【解答】解:1sin30tan 602︒︒=.. 29.(2019•杨浦区一模)如果开口向下的抛物线2254(0)y ax x a a =++-≠过原点,那么a 的值是 2- .【解答】解:抛物线2254(0)y ax x a a =++-≠过原点,且开口向下, ∴240a a <⎧⎨-=⎩, 解得:2a =-. 故答案为:2-.30.(2019•普陀区一模)将抛物线21(3)42y x =+-先向右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是21(1)12x +- . 【解答】解:将抛物线21(3)42y x =+-向右平移2个单位所得直线解析式为:2211(32)4(1)422y x x =+--=+-;再向上平移3个单位为:21(1)432y x =+-+,即21(1)12y x =+-.故答案是:21(1)12y x =+-.31.(2019•杨浦区一模)已知点1(A x ,1)y 、2(B x ,2)y 在抛物线22y x x m =++上,如果120x x <<,那么1y < 2y (填入“<”或“>” ).【解答】解:抛物线的对称轴为直线212x =-=-,当1x >-时,y 随x 的增大而增大, 因为120x x <<, 所以12y y <. 故答案为<.32.(2015•建湖县校级模拟)如图,已知////AB CD EF ,:3:5AD AF =,12BE =,那么CE 的长是245.【解答】解:////AB CD EF ,∴AD CB AF BE =,即3512CB=. 365BC ∴=. 36241255CE BE BC =-=-=. 故答案为:245. 33.(2018秋•普陀区期中)如图,梯形ABCD 中,//AD BC ,AC 与BD 相交于点O ,已知14AOD COB S S ∆∆=,那么AOD AOBSS ∆∆= 1:2.【解答】解://AD BC ,AOD COB ∴∆∆∽,∴21()4AOD COB S OD S OB ∆∆==, :1:2OD OB ∴=,∴:1:2AODAOBS OD OB S ∆∆== 故答案为1:2.34.(2019•奉贤区一模)如果一个二次函数的图象在其对称轴左侧部分是上升的,那么这个二次函数的解析式可以是 22y x =-+(答案不唯一) .(只需写一个即可) 【解答】解:二次函数的图象在其对称轴左侧部分是上升的, 0a ∴<,∴符合条件的二次函数解析式可以为:22y x =-+(答案不唯一).故答案为:22y x =-+(答案不唯一).35.(2019•金山区一模)如图,为了测量铁塔AB 的高度,在离铁塔底部(点)60B 米的C处,测得塔顶A 的仰角为30︒,那么铁塔的高度AB =【解答】解:由题意可得:tan3060AB AB CB ︒===,解得:AB =答:铁塔的高度AB 为.故答案为:.36.(2019•奉贤区一模)联结三角形各边中点,所得的三角形的周长与原三角形周长的比是 1:2 .【解答】解:如图, D 、E 、F 分别是AB 、BC 、AC 的中点,12DE AC ∴=,12DF BC =,12EF AB =, 111222DE DF EF AC BC AB ∴++=++, DEF ABC ∆∆∽,∴所得到的DEF ∆与ABC ∆的周长之比是:1:2.故答案为:1:2.37.(2019•杨浦区一模)如图,某单位门前原有四级台阶,每级台阶高为18cm ,宽为30cm ,为方便残疾人土,拟在门前台阶右侧改成斜坡,设台阶的起点为A 点,斜坡的起点为C 点,准备设计斜坡BC 的坡度1:5i =,则AC 的长度是 270 cm .【解答】解:由题意得,BH AC ⊥,则18472BH =⨯=,斜坡BC 的坡度1:5i =,725360CH ∴=⨯=,360303270()AC cm ∴=-⨯=,故答案为:270.38.(2016•徐汇区一模)如果两个相似三角形的面积比是4:9,那么它们对应高的比是2:3 .【解答】解:两个相似三角形的面积比是4:9,∴两个相似三角形相似比是2:3,∴它们对应高的比是2:3.故答案为:2:3.39.(2018秋•普陀区期中)已知点(3,)A n 在二次函数223y x x =-+的图象上,那么n 的值为 6 .【解答】解:(3,)A n 在二次函数223y x x =-+的图象上,(3,)A n ∴满足二次函数223y x x =-+,9636n ∴=-+=,即6n =,故答案是:6.40.(2016•天门模拟)如图,正方形CDEF 内接于Rt ABC ∆,点D 、E 、F 分别在边AC 、AB 和BC 上,当2AD =,3BF =时,正方形CDEF 的面积是 6 .【解答】解:四边形CDEF是正方形,//DE BC∴,AED B∴∠=∠,90ADE EFB∠=∠=︒,ADE BEF∴∆∆∽,∴AD DE EF BF=,即23DEEF=,236 DE EF∴=⨯=,∴正方形CDEF的面积是6.故答案为:6.41.(2016秋•闵行区期中)如图,已知小丽的身高是1.6米,他在路灯下的影长为2米,小明距路灯灯杆的底部3米,那么路灯灯泡距地面的高度是4米.【解答】解:结合题意画出图形得:ADC AEB∴∆∆∽,∴AC ABCD BE=,小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,2AC∴=,3BC=, 1.6CD=,∴25 1.6BE=,解得:4BE=,则路灯灯泡距地面的高度是4m.故答案为:4.三.解答题(共9小题)42.(2019•静安区一模)计算:22260cos60604cos45sin tan ︒-︒︒+︒【解答】解:原式212⨯-===3=-43.(2019•普陀区一模)计算:24sin 45cos 30︒+︒【解答】解:原式24=+-34=+-34=- 44.(2017秋•浦东新区校级期中)计算:cos30tan60cos45|sin 45tan 45|cot30︒-︒-︒︒-︒+︒ 【解答】解:原式1|-=-1112=--122=-- 45.(2019•青浦区二模)解方程组:226021x xy y x y ⎧+-=⎨+=⎩【解答】解:原方程组变形为(3)(2)021x y x y x y +-=⎧⎨+=⎩, ∴3021x y x y +=⎧⎨+=⎩或2021x y x y -=⎧⎨+=⎩∴原方程组的解为 2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=-⎪⎩ 46.(2019•随县模拟)先化简,再求值:22169(2)11x x x x x -++-÷+-,其中2x =. 【解答】解:22169(2)11x x x x x -++-÷+- 22(1)(1)(1)(1)1(3)x x x x x x +--+-=++ 2221(1)(1)1(3)x x x x x x +-++-=++ 23(1)(1)1(3)x x x x x ++-=++ 13x x -=+, 当2x =时,原式211235-==+. 47.(2018秋•普陀区期中)已知二次函数2(0)y ax bx c a =++≠图象经过点(3,0)A -、点(0,3)B -和点(2,5)C ,求该二次函数的解析式,并指出图象的对称轴和顶点坐标.【解答】解:把点(3,0)A -、点(0,3)B -和点(2,5)C 代入二次函数2y ax bx c =++中,得 9303425a b c c a b c -+=⎧⎪=-⎨⎪++=⎩①②③, 解得123a b c =⎧⎪=⎨⎪=-⎩,∴抛物线代解析式为223y x x =+-,化为顶点式为2(1)4y x =+-,∴对称轴为直线1x =-,顶点坐标为(1,4)--.48.(2019•普陀区一模)已知:如图,ADE ∆的顶点E 在ABC ∆的边BC 上,DE 与AB 相交于点F ,2AE AF AB =,DAF EAC ∠=∠.(1)求证:ADE ACB ∆∆∽;(2)求证:DF CE DE CB=.【解答】证明:(1)2AE AF AB =, ∴AE AF AB AE=,EAF BAE ∠=∠, AEF ABE ∴∆∆∽,AEF B ∴∠=∠,DAF EAC ∠=∠,DAE BAC ∴∠=∠,ADE ACB ∴∆∆∽.(2)ADE ACB ∆∆∽, ∴DE AD BC AC=,D C ∠=∠, DAF EAC ∠=∠,ADF ACE ∴∆∆∽, ∴AD DF AC EC =, ∴DE DF BC EC =, ∴DF CE DE CB=. 49.(2019•黄浦区一模)如图,已知//AB CD ,AC 与BD 相交于点E ,点F 在线段BC 上,12AB CD =,12BF CF =. (1)求证://AB EF ;(2)求::ABE EBC ECD S S S ∆∆∆.【解答】(1)证明://AB CD,∴12 AB BECD ED==,12BFCF=,∴BE BFED FC=,//EF CD∴,//AB EF∴.(2)解:设ABE∆的面积为m.//AB CD,ABE CDE∴∆∆∽,∴21()4ABEEDCS ABS CD∆∆==,4CDES m∆∴=,12AE ABCE CD==,2BECS m∆∴=,:::2:41:2:4ABE EBC ECDS S S m m m∆∆∆∴==.50.(2019•黄浦区一模)如图,P点是某海域内的一座灯塔的位置,船A停泊在灯塔P的南偏东53︒方向的50海里处,船B位于船A的正西方向且与灯塔P相距海里.(本题参考数据sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈.)(1)试问船B在灯塔P的什么方向?(2)求两船相距多少海里?(结果保留根号)【解答】解:(1)过P 作PC AB ⊥交AB 于C , 在Rt APC ∆中,90C ∠=︒,53APC ∠=︒,50AP =海里, cos53500.6030PC AP ∴=︒=⨯=海里,在Rt PBC ∆中,PB =30PC =,cos PC BPC PB ∴∠== 30BPC ∴∠=︒,∴船B 在灯塔P 的南偏东30︒的方向上;(2)sin53500.840AC AP =︒=⨯=海里, 12BC PB ==(40AB AC BC ∴=-=-海里,答:两船相距(40-海里.。

沪科版数学九年级上册期中考试卷含答案解析

沪科版数学九年级上册期中考试卷含答案解析

沪科版数学九年级上册期中考试试题一.选择题(本大题共10小题,每题3分,满分30分)1.下列函数属于二次函数的是()A.y=2x﹣1 B.y=C.y=x2+2x﹣3 D.y=2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+3上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y24.将抛物线y=x2﹣2x+1向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是()A.y=x2﹣2x﹣1 B.y=x2+2x﹣1 C.y=x2﹣2 D.y=x2+25.已知抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),则代数式m2﹣m+2016的值为()A.2015 B.2016 C.2017 D.20106.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.7.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.8.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE :S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:259.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.1210.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论是()A.①②③ B.①③④ C.③④⑤ D.②③⑤二.填空题(本大题共6小题,每题4分,满分24分)11.若线段MN的长为1,P是MN的黄金分割点,则MP的长为.12.若4a﹣3b=0,则=.13.如果两个相似三角形周长的比是2:3,那么它们的相似比是.14.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.15.若抛物线y=x 2﹣kx +k ﹣1的顶点在x 轴上,则k= .16.如图,在Rt △ABC 中,∠ABC=90°,BA=BC .点D 是AB 的中点,连接CD ,过点B 作BG 丄CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF .给出以下四个结论:①;②点F 是GE 的中点;③AF=AB ;④S △ABC =5S △BDF ,其中正确的结论序号是 .三、解答题(本大题共6题,满分66分)17.已知:如图△ABC 三个顶点的坐标分别为A (0,﹣3)、B (3,﹣2)、C (2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC 向上平移6个单位得到的△A 1B 1C 1;(2)以点C 为位似中心,在网格中画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且△A 2B 2C 2与△ABC 的位似比为2:1,并直接写出点A 2的坐标.18.已知二次函数y=﹣x 2+2x +3(1)在如图所示的坐标系中,画出该函数的图象(2)根据图象回答,x 取何值时,y >0?(3)根据图象回答,x 取何值时,y 随x 的增大而增大?x 取何值时,y 随x 的增大而减小?19.如图所示,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(﹣2,n),B(1,﹣3)两点.(1)试确定上述一次函数和反比例函数的表达式;(2)求△AOB的面积.20.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?21.在等腰△ABC中,AB=AC=10,BC=12,D为底边BC的中点,以D为顶点的角∠PDQ=∠B.(1)如图1,若射线DQ经过点A,DP交AC边于点E,直接写出与△CDE相似的三角形;(2)如图2,若射线DQ交AB于点F,DP交AC边于点E,设AF=x,AE为y,试写出y 与x的函数关系式;(不要求写出自变量的取值范围)(3)在(2)的条件下,连接EF,则△DEF与△CDE相似吗?试说明理由.22.为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)参考答案与试题解析一.选择题(本大题共10小题,每题3分,满分30分)1.下列函数属于二次函数的是()A.y=2x﹣1 B.y=C.y=x2+2x﹣3 D.y=【考点】二次函数的定义.【分析】依据二次函数的定义回答即可.【解答】解:A、y=2x﹣1是一次函数,故A错误;B、y=+3自变量的次数是﹣2,故B错误;C、y=x2+2x﹣3是二次函数,故C正确;D、y=是反比例函数,故D错误.故选:C.2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【考点】二次函数的性质.【分析】根据抛物线的顶点式解析式写出顶点坐标即可.【解答】解:y=(x﹣1)2+2的顶点坐标为(1,2).故选A.3.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+3上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性,可利用对称性,找出点A的对称点A′,再利用二次函数的增减性可判断y值的大小.【解答】解:∵函数的解析式是y=﹣(x+1)2+3,如右图,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.4.将抛物线y=x2﹣2x+1向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是()A.y=x2﹣2x﹣1 B.y=x2+2x﹣1 C.y=x2﹣2 D.y=x2+2【考点】二次函数图象与几何变换.【分析】抛物线y=x2﹣2x+1化为顶点坐标式再按照“左加右减,上加下减”的规律平移则可.【解答】解:根据题意y=x2﹣2x+1=(x﹣1)2向下平移2个单位,再向左平移1个单位,得y=(x﹣1+1)2﹣2,y=x2﹣2.故选C.5.已知抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),则代数式m2﹣m+2016的值为()A.2015 B.2016 C.2017 D.2010【考点】抛物线与x轴的交点.【分析】由点(m,0)在抛物线y=x2﹣x﹣1上,可得出m2﹣m﹣1=0,将其代入m2﹣m+2016中即可得出结论.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m+2016=m2﹣m﹣1+2017=2017.故选C.6.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】当反比例函数图象分布在第一、三象限,则a>0,然后根据一次函数图象与系数的关系对A、B进行判断;当反比例函数图象分布在第二、四象限,则a<0,然后根据一次函数图象与系数的关系对C、D进行判断.【解答】解:A、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以A选项错误;B、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以B选项错误;C、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以C选项错误;D、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以D选项正确.故选D.7.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【考点】相似三角形的判定.【分析】根据勾股定理求出△ABC的三边,并求出三边之比,然后根据网格结构利用勾股定理求出三角形的三边之比,再根据三边对应成比例,两三角形相似选择答案.【解答】解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误.故选:B.8.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE :S△COA=1:25,则S△BDE与S△CDE的比是()A .1:3B .1:4C .1:5D .1:25【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定定理得到△DOE ∽△COA ,根据相似三角形的性质定理得到=, ==,结合图形得到=,得到答案.【解答】解:∵DE ∥AC ,∴△DOE ∽△COA ,又S △DOE :S △COA =1:25,∴=,∵DE ∥AC ,∴==,∴=,∴S △BDE 与S △CDE 的比是1:4,故选:B .9.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数y=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k=( )A .B .C .D .12【考点】反比例函数系数k 的几何意义.【分析】所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B 的横纵坐标的积即是反比例函数的比例系数.【解答】解:∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (,b ),∵点D ,E 在反比例函数的图象上,∴=k ,∴E (a ,),∵S △ODE =S 矩形OCBA ﹣S △AOD ﹣S △OCE ﹣S △BDE =ab ﹣﹣﹣•(b ﹣)=9,∴k=,故选C .10.如图是抛物线y=ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a ﹣b +c >0;②3a +b=0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx +c=n ﹣1有两个不相等的实数根.其中正确结论是( )A .①②③B .①③④C .③④⑤D .②③⑤【考点】抛物线与x 轴的交点;二次函数图象与系数的关系.【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y >0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n ﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y >0,即a ﹣b +c >0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a ,∴3a +b=3a ﹣2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ),∴=n ,∴b 2=4ac ﹣4an=4a (c ﹣n ),所以③正确; ∵抛物线与直线y=n 有一个公共点, ∴抛物线与直线y=n ﹣1有2个公共点,∴一元二次方程ax 2+bx +c=n ﹣1有两个不相等的实数根,所以④正确. 故选B .二.填空题(本大题共6小题,每题4分,满分24分)11.若线段MN 的长为1,P 是MN 的黄金分割点,则MP 的长为 或.【考点】黄金分割.【分析】分MP >NP 和MP <NP 两种情况,根据黄金比值是进行计算即可.【解答】解:当MP >NP 时,MP=,当MP <NP 时,MP=1﹣=,故答案为:或.12.若4a ﹣3b=0,则=.【考点】比例的性质.【分析】根据4a ﹣3b=0整理得4a=3b ,将分子与分母同乘以4即可得到答案.【解答】解:∵4a ﹣3b=0, ∴4a=3b ,∴====,故答案为.13.如果两个相似三角形周长的比是2:3,那么它们的相似比是 2:3 . 【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比解答即可. 【解答】解:∵两个相似三角形周长的比是2:3, ∴两个相似三角形相似比是2:3, 故答案为:2:3.14.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为 2 米.【考点】二次函数的应用.【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,故答案为:2米.15.若抛物线y=x2﹣kx+k﹣1的顶点在x轴上,则k=2.【考点】二次函数的性质.【分析】顶点在x轴上,所以顶点的纵坐标是0.【解答】解:根据题意得=0,解得k=2.故答案为:2.16.如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B 作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F 是GE 的中点;③AF=AB ;④S △ABC =5S △BDF ,其中正确的结论序号是 ①③ .【考点】相似三角形的判定与性质;勾股定理;等腰直角三角形.【分析】首先根据题意易证得△AFG ∽△CFB ,根据相似三角形的对应边成比例与BA=BC ,继而证得正确;由点D 是AB 的中点,易证得BC=2BD ,由等角的余角相等,可得∠DBE=∠BCD ,即可得AG=AB ,继而可得FG=BF ;即可得AF=AC ,又由等腰直角三角形的性质,可得AC=AB ,即可求得AF=AB ;则可得S △ABC =6S △BDF .【解答】解:∵在Rt △ABC 中,∠ABC=90°, ∴AB ⊥BC ,AG ⊥AB , ∴AG ∥BC ,∴△AFG ∽△CFB ,∴,∵BA=BC ,∴,故①正确;∵∠ABC=90°,BG ⊥CD ,∴∠DBE +∠BDE=∠BDE +∠BCD=90°, ∴∠DBE=∠BCD , 在△ABG 和△BCD 中,故△ABG ≌△BCD (ASA ), 则AG=BD ,∵AB=CB ,点D 是AB 的中点,∴BD=AB=CB ,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC =6S△BDF,故④错误.故答案为:①③.三、解答题(本大题共6题,满分66分)17.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.【考点】作图-位似变换;作图-平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,A2坐标(﹣2,﹣2).18.已知二次函数y=﹣x2+2x+3(1)在如图所示的坐标系中,画出该函数的图象(2)根据图象回答,x取何值时,y>0?(3)根据图象回答,x取何值时,y随x的增大而增大?x取何值时,y随x的增大而减小?【考点】抛物线与x轴的交点;二次函数的图象.【分析】(1)列表,描点,连线,画出抛物线;(2)(3)根据图象回答问题即可.(2)当﹣1<x<3时,y>0;(3)当x<1时,y随x的增大而增大.当x>1时,y随x的增大而减小.19.如图所示,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(﹣2,n),B(1,﹣3)两点.(1)试确定上述一次函数和反比例函数的表达式;(2)求△AOB的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点B的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的解析式,再将点A的坐标代入其内求出n值,由点A、B的坐标利用待定系数法即可求出一次函数的解析式;(2)设一次函数图象与y轴交于点C,根据一次函数图象上点的坐标特征找出点C的坐标,再利用三角形的面积公式即可求出△AOB的面积.【解答】解:(1)∵一次函数y 1=kx +b 的图象与反比例函数y 2=的图象交于A (﹣2,n ),B (1,﹣3)两点,∴将B (1,﹣3)代入反比例函数y 2=,得:﹣3=,解得:m=﹣3,∴反比例函数为y 2=﹣.将A (﹣2,n )代入反比例函数y 2=﹣,得:n=,即A (﹣2,),将A (﹣2,)、B (1,﹣3)代入一次函数y 1=kx +b ,得:,解得:,∴一次函数为y 1=﹣x ﹣.(2)如图,设一次函数图象与y 轴交于点C ,当x=0时,y=﹣,∴C (0,﹣),∴S △AOB =S △AOC +S △COB =××[1﹣(﹣2)]=××3=.20.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x +80.设这种产品每天的销售利润为y (元).(1)求y 与x 之间的函数关系式,自变量x 的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? 【考点】二次函数的应用.【分析】(1)根据数量乘以单位的利润,等于总利润,可得答案;(2)根据二次函数的性质,可的大啊俺.【解答】解:(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,则y=﹣2x2+120x﹣1600.由题意,有,解得20≤x≤40.故y与x的函数关系式为:y=﹣2x2+120x﹣1600,自变量x的取值范围是20≤x≤40;(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴当x=30时,y有最大值200.故当销售价定为30元/千克时,每天可获最大销售利润200元;21.在等腰△ABC中,AB=AC=10,BC=12,D为底边BC的中点,以D为顶点的角∠PDQ=∠B.(1)如图1,若射线DQ经过点A,DP交AC边于点E,直接写出与△CDE相似的三角形;(2)如图2,若射线DQ交AB于点F,DP交AC边于点E,设AF=x,AE为y,试写出y 与x的函数关系式;(不要求写出自变量的取值范围)(3)在(2)的条件下,连接EF,则△DEF与△CDE相似吗?试说明理由.【考点】相似形综合题.【分析】(1)由等腰三角形的性质得出∠B=∠C,∠ADB=∠ADC=90°,因此△ABD∽△ACD,证出∠PDQ=∠C,由∠DAE=∠CAD,得出△ADE∽△ACD;在证出△CDE∽△CAD,即可得出结果;(2)证出△BDF∽△CDE,得出对应边成比例,即可得出y与x的函数关系式;(3)由(2)可知:△BDF∽△CDE,得出,证出,由∠EDF=∠C,即可得出△DEF∽△CED.【解答】解:(1)与△CDE相似的三角形为△ABD,△ACD,△ADE;理由如下:∵AB=AC,D为底边BC的中点,∴∠B=∠C,AD⊥BC,∴∠ADB=∠ADC=90°,∴△ABD∽△ACD,∵∠PDQ=∠B,∴∠PDQ=∠C,又∵∠DAE=∠CAD,∴△ADE∽△ACD;∵∠CDE+∠PDQ=90°,∴∠C+∠PDQ=90°,∴∠CED=90°=∠ADC,又∵∠C=∠C,∴△CDE∽△CAD,∴△△ABD∽△ACD∽△ADE∽△CDE;(2)∵∠FDC=∠B+∠BDF,∠FDC=∠FDE+∠EDC,∴∠EDC=∠BDF,∴△BDF∽△CDE,∴,∵D为BC的中点,∴BD=CD=6,∴∴y=;(3)△DEF与△CDE相似.理由如下:如图所示:由(2)可知:△BDF∽△CDE,则,∵BD=CD,∴,又∵∠EDF=∠C,∴△DEF∽△CED.22.为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【考点】二次函数的应用.【分析】(1)根据此时抛物线顶点坐标为(7,3.2),设解析式为y=a(x﹣7)2+3.2,再将点C坐标代入即可求得;(2)由(1)中解析式求得x=9.5时y的值,与他起跳后的最大高度为3.1米比较即可得;(3)设抛物线解析式为y=a(x﹣7)2+h,将点C坐标代入得到用h表示a的式子,再根据球既要过球网,又不出边界即x=9时,y>2.43且x=18时,y≤0得出关于h的不等式组,解之即可得.【解答】解:(1)根据题意知此时抛物线的顶点G的坐标为(7,3.2),设抛物线解析式为y=a(x﹣7)2+3.2,将点C(0,1.8)代入,得:49a+3.2=1.8,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣7)2+;(2)由题意当x=9.5时,y=﹣(9.5﹣7)2+≈3.02<3.1,故这次她可以拦网成功;(3)设抛物线解析式为y=a(x﹣7)2+h,将点C(0,1.8)代入,得:49a+h=1.8,即a=,∴此时抛物线解析式为y=(x﹣7)2+h,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.。

初中数学九年级数学上学期期中测考试题考试卷及答案 (新版)沪科版.docx

初中数学九年级数学上学期期中测考试题考试卷及答案 (新版)沪科版.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:函数的图象经过点(,,则函数的图象不经过第()象限.A .一 B.二 C.三 D.四试题2:对于任意实数,抛物线总经过一个固定的点,这个点是()A.(1, 0)B.(, 0)C.(, 3)D.(1, 3)试题3:把抛物线先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A. B.C. D.试题4:当时,下列图象有可能是抛物线的是()评卷人得分试题5:已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0B.1C.2D.3试题6:二次函数y=(a≠0)的图象如图所示,其对称轴为x=1.下列结论中错误的是()A.abc<0B.2a+b=0C.b2-4ac>0D.a-b+c>0试题7:反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,它们的关系式可能分别是()A.,B.,C. ,D.,试题8:在同一坐标系中,函数和的图象大致是()试题9:正比例函数与反比例函数的图象相交于A、C两点,AB⊥x轴于点B,CD⊥x轴于点D(如图),则四边形ABCD 的面积为()A.1B.C.2D.试题10:已知反比例函数的图象如图所示,则二次函数的图象大致为()试题11:已知,是同一个反比例函数图象上的两点.若,且,则这个反比例函数的表达式为 .试题12:已知二次函数中,函数y与自变量x的部分对应值如下表:x... -1 0 1 2 3 ...y... 10 5 2 1 2 ...则当时,x的取值范围是_____.试题13:有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线;乙:与轴相交的两个交点的横坐标都是整数;丙:与轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数的表达式__________________.试题14:设抛物线过,,三点,其中点在直线上,且点到抛物线对称轴的距离等于1,则抛物线的函数表达式为 .试题15:已知二次函数,下列说法中错误的是________.(把所有你认为错误的序号都写上)①当时,随的增大而减小;②若图象与轴有交点,则;③当时,不等式的解集是;④若将图象向上平移1个单位长度,再向左平移3个单位长度后过点,则.试题16:若反比例函数的图象位于第一、三象限内,正比例函数的图象过第二、四象限,则的整数值是________.试题17:已知反比例函数,图象上到轴的距离等于1的点的坐标为________.试题18:若一次函数的图象与反比例函数的图象没有公共点,则实数k的取值范围是 .试题19:已知二次函数.(1)求函数图象的顶点坐标及对称轴.(2)求此抛物线与轴的交点坐标.试题20:炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军炮位A与射击目标B的水平距离为600 m,炮弹运行的最大高度为1 200 m.(1)求此抛物线的关系式.(2)若在A、B之间距离A点500 m处有一高350 m的障碍物,计算炮弹能否越过障碍物.试题21:如图所示是某一蓄水池的排水速度h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量.(2)写出关于的函数的表达式.(3)如果要6 h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是,那么水池中的水要多少小时排完?试题22:如图,已知函数y=(x0)的图象经过点A,B,点A的坐标为 (1,2).过点A作AC∥y轴,AC=1(点C位于点A 的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.试题23:若反比例函数与一次函数的图象都经过点A(a,2).(1)求反比例函数的函数表达式;(2)当反比例函数的值大于一次函数的值时,求自变量x的取值范围.试题24:如图,一位运动员在距篮筐4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮筐.已知篮筐中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的表达式;(2)已知该运动员身高1.8米,在这次投篮中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少.第24题图试题25:九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出y与x的函数关系式.(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4 800元?请直接写出结果.试题1答案:A 解析:因为函数的图象经过点(,,所以,所以,根据一次函数的图象可知不经过第一象限.试题2答案:D 解析:当时,,故抛物线经过固定点(1,3).试题3答案:C 解析:抛物线y=向右平移1个单位长度后,所得函数的表达式为,抛物线向上平移2个单位长度后,所得函数的表达式为.试题4答案:A 解析:因为,所以抛物线开口向上.因为,所以抛物线与轴的交点在轴上方,排除B,D.又,所以,所以抛物线的对称轴在轴右侧,故选A.试题5答案:D 解析:∵抛物线与轴有两个交点,∴方程有两个不相等的实数根,∴,①正确.∵抛物线的开口向下,∴.又∵抛物线的对称轴是直线,,∴.∵抛物线与轴交于正半轴,∴,∴,②正确.方程的根是抛物线与直线交点的横坐标,当时,抛物线与直线没有交点,此时方程没有实数根,③正确,∴正确的结论有3个.试题6答案:D 解析: ∵二次函数的图象开口向下,∴a0.∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c0.∵二次函数图象的对称轴是直线x=1,∴,∴b0,∴,∴A正确.∵,∴,即,∴ B正确.∵二次函数的图象与x轴有2个交点,∴方程有两个不相等的实数根,∴b2-4ac>0,∴ C正确.∵当时,y=a-b+c<0,∴ D错误.试题7答案:B 解析:双曲线的两分支分别位于第二、四象限,即.A中,当时,抛物线开口向下,对称轴,不符合题意,错误;B中,当时,抛物线开口向下,对称轴,符合题意,正确;C中,当,即时,抛物线开口向上,不符合题意,错误;D中,当时,抛物线开口向下,但对称轴,不符合题意,错误.故选B.试题8答案:A 解析:由于不知道k的符号,此题可以分类讨论,当时,反比例函数的图象在第一、三象限,一次函数的图象经过第一、二、三象限,可知A项符合;同理可讨论当时的情况.试题9答案:C 解析:联立方程组得A(1,1),C().所以,所以S四边形ABCD.试题10答案:D 解析: 由反比例函数的图象可知,当时,,即,所以在二次函数中,,则抛物线开口向下,对称轴为,则,故选D.试题11答案:解析: 设反比例函数的表达式为,因为,,所以.因为,所以,解得k=4,所以反比例函数的表达式为.试题12答案:0<x<4 解析:根据二次函数图象的对称性确定出该二次函数图象的对称轴,然后解答即可.∵x=1和x=3时的函数值都是2,∴二次函数图象的对称轴为直线x=2.由表可知,当x=0时,y=5,∴当x=4时,y=5.由表格中数据可知,当x=2时,函数有最小值1, ∴a>0,∴当y<5时,x的取值范围是0<x<4.试题13答案:本题答案不唯一,只要符合题意即可,如试题14答案:或解析:由题意知抛物线的对称轴为或.(1)当对称轴为直线时,,抛物线经过,,∴解得∴.(2)当对称轴为直线时,,抛物线经过,,∴解得∴.∴抛物线的函数表达式为或.试题15答案:③解析:①因为函数图象的对称轴为,又抛物线开口向上,所以当时,随的增大而减小,故正确;②若图象与轴有交点,则Δ,解得,故正确;③当时,不等式的解集是,故不正确; ④因为抛物线,将图象向上平移1个单位长度,再向左平移3个单位长度后为,若过点,则,解得.故正确.只有③不正确.试题16答案:4 解析:由反比例函数的图象位于第一、三象限内,得,即.又正比例函数的图象过第二、四象限,所以,所以,所以的整数值是4.试题17答案:(2,1)或()解析:∵反比例函数的图象上的一点到轴的距离等于1,∴.①当时,,解得;②当时,,解得.综上所述,反比例函数的图象上到轴的距离等于1的点的坐标为(2,1)或().试题18答案:解析:若一次函数的图象与反比例函数的图象没有公共点,则方程没有实数根,将方程整理得判别式Δ,解得.试题19答案:分析:(1)首先把已知函数解析式配方,然后利用抛物线的顶点坐标、对称轴的公式即可求解;(2)根据抛物线与轴交点坐标特点和函数关系式即可求解.解:(1)∵,∴顶点坐标为(1,8),对称轴为直线.(2)令,则,解得,.∴抛物线与轴的交点坐标为(),().试题20答案:解:(1)建立直角坐标系,设点A为原点,则抛物线过点(0,0),(600,0),从而抛物线的对称轴为.又抛物线的最高点的纵坐标为1 200,则其顶点坐标为(300,1 200),所以设抛物线的关系式为,将(0,0)代入得,所以抛物线的关系式为.(2)将代入关系式,得,所以炮弹能越过障碍物.试题21答案:分析:观察图象易知(1)蓄水池的蓄水量.(2)与之间是反比例函数关系,所以可以设,依据图象上点(12,4)的坐标可以求得与之间的函数的表达式.(3)求当h时的值.(4)求当h时,t的值.解:(1)蓄水池的蓄水量=12×4=48 .(2)函数的表达式为.(3).如果要6 h排完水池中的水,那么每小时的排水量应该是8 .(4)依题意有,解得(h).所以如果每小时排水量是5 ,那么水池中的水要9.6小时排完.试题22答案:解:(1)反比例函数y=(x>0)的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴CD的长为1.∴(2)∵BE=,AC=1,∴.∵BE⊥CD,∴点B的纵坐标是.设,把点代入y=得即点B的横坐标是,∴点E的横坐标是,CE的长等于点E的横坐标减去点C的横坐标.∴CE=.试题23答案:解:(1)因为的图象过点A(),所以.因为的图象过点A(3,2),所以,所以.(2)由反比例函数与一次函数的图象相交,得到方程:,解得.所以另外一个交点是(-1,-6).画出图象,可知当或时,.试题24答案:解:(1)设抛物线的表达式为.由图象可知抛物线过点:(0,3.5),(1.5,3.05),所以解得所以抛物线的表达式为.(2)当时,,所以球出手时,他跳离地面的高度是(米).试题25答案:解:(1)当1≤x<50时,y=(x+40-30)(200-2x)=-2x2+180x+2 000; 当50≤x≤90时,y=(90-30)(200-2x)=-120x+12 000.综上,y=(2)当1≤x<50时,y=-2x2+180x+2 000=-2(x-45)2+6 050.∵a=-2<0,∴当x=45时,y有最大值,最大值为6 050元.当50≤x≤90时,y=-120x+12 000,∵k=-120<0,∴y随x的增大而减小.∴当x=50时,y有最大值,最大值为6 000元.综上可知,当x=45时,当天的销售利润最大,最大利润为6 050元. (3)当1≤x<50时,由,解得20≤x≤70,故20≤x<50;当50≤x≤90时,由,解得x≤60,故50≤x≤60.综上可知,20≤x≤60.所以该商品在销售过程中,共有41天每天销售利润不低于4 800元。

沪科版九年级数学上册期中测试题(含答案)

沪科版九年级数学上册期中测试题(含答案)

沪科版九年级数学上册期中测试题(含答案)(考试时间:120分钟满分:150分)姓名:______班级:______分数:______一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.二次函数y=-2(x+1)2+5的顶点坐标是(D) A.-1 B.5C.(1,5) D.(-1,5)2.为方便市民进行垃圾分类投放,某环保公司第一个月投放a个垃圾桶,计划第三个月投放垃圾桶y个,设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x,那么y 与x的函数关系是(A) A.y=a(1+x)2B.y=a(1-x)2C.y=(1-x)2+a D.y=x2+a3.若△ABC∽△DEF,相似比为9 ∶4,则△ABC与△DEF 对应中线的比为(A) A.9 ∶4 B.4 ∶9 C.81 ∶16 D.3 ∶24.在同一时刻,身高1.6 m的小强,在太阳光线下影长是1.2 m,旗杆的影长是6 m,则旗杆高为(C) A.4.5 m B.6 m C.8 m D.9 m5.已知点A(-3,y1),B(-2,y2),C(3,y3)都在反比例函数y =4x的图象上,则 ( D ) A .y 1<y 2<y 3 B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 36.下面四组图形中,必是相似三角形的为 ( D )A .两个直角三角形B .两条边对应成比例,一个对应角相等的两个三角形C .有一个角为40°的两个等腰三角形D .有一个角为100°的两个等腰三角形7.在平面直角坐标系中,点P (1,-2)是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点P 对应点的坐标为 ( B )A .(2,-4)B .(2,-4)或(-2,4)C.⎝ ⎛⎭⎪⎫12,-1D.⎝ ⎛⎭⎪⎫12,-1或⎝ ⎛⎭⎪⎫-12,1 8.抛物线y =ax 2+bx +c 与直线y =ax +c (a ≠0)在同一直角坐标系中的图象可能是 ( D )9.已知:正比例函数y =k 1x 的图象与反比例函数y =k 2x(x >0)的图象交于点M (a ,1),MN ⊥x 轴于点N (如图),若△OMN 的面积等于2,则 ( A )A.k1=14,k2=4 B.k1=4,k2=14C.k1=14,k2=-4 D.k1=-14,k2=4第9题图第10题图第13题图10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a b c>0;②2a+b=0;③m为任意实数,则a+b>am2+b m;④a-b+c>0;⑤若ax21+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的有(C)A.①②③B.②④C.②⑤D.②③⑤二、填空题(本大题共4小题,每小题5分,满分20分) 11.若y=(m-1)xm2+2m-1是二次函数,则m的值是-3 .12.反比例函数y=kx图象上的一点到x轴距离为2,到y轴距离为3,且当x<0时,y随x的增大而增大,则k的值是-6 .13.★如图,抛物线y=ax2+c与直线y=3相交于点A,B,与y轴交于点C(0,-1),若∠ACB为直角,则当ax2+c<0时,自变量x的取值范围是-2<x<2 .14.在△ABC 中,AB =9,AC =12,BC =18,D 为AC 上一点,其中DC =23AC ,在AB 上取一点E 得△ADE ,若△ABC 与△ADE 相似,则DE = 6或8 .三、(本大题共2小题,每小题8分,满分16分)15.已知:a ∶b ∶c =2 ∶3 ∶5,求代数式3a -b +c 2a +3b -c的值. 解:∵a ∶b ∶c =2 ∶3 ∶5,∴设a =2k ,b =3k ,c =5k (k ≠0),则3a -b +c 2a +3b -c =6k -3k +5k 4k +9k -5k=1. 16.已知二次函数y =ax 2+bx +c 的图象经过点A(1,5),B(-1,9),C(0,8).求这个二次函数的表达式,开口方向,对称轴和顶点坐标.解:由题意得,⎩⎨⎧a +b +c =5,a -b +c =9,c =8,解得⎩⎨⎧a =-1,b =-2,c =8,∴二次函数表达式为y =-x 2-2x +8,∵y =-x 2-2x +8=-(x +1)2+9,∴这个二次函数的抛物线开口向下,对称轴为x =-1,顶点坐标为(-1,9).四、(本大题共2小题,每小题8分,满分16分)17.在如图所示的网格中,已知△ABC 和点M(1,2).(1)以点M 为位似中心把三角形放大,位似比为2,画出△ABC的位似图形△A′B′C′;(2)写出△A′B′C′的各顶点坐标.解:(1)如图,△A′B′C′即为所求.(2)△A′B′C′的各顶点坐标分别为A′(3,6),B′(5,2),C′(11,4).18.某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(k Pa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气球内的气压大于150 k Pa时,气球将会爆炸,为了安全起见,气体的体积应至少是多少?解:(1)设p=kV,将A(0.5,120)代入求出k=60,∴p=60V.(2)当p>150 kPa时,气球将爆炸,∴p ≤150,即p =60V≤150, 解得V ≥60150=0.4. 故为了安全起见,气体的体积应不小于0.4 m 3.五、(本大题共2小题,每小题10分,满分20分)19.某数学兴趣小组想用所学的知识测量小河的宽.测量时,他们选择了河对岸的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D ,竖起标杆DE ,使得点E ,C ,A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1 m ,DE =1.5 m ,BD =7 m (测量示意图如图所示).请根据相关测量信息,求河宽AB 的长.解:∵CB ⊥AD ,ED ⊥AD ,∴∠ABC =∠ADE.又∵∠BAC =∠DAE ,∴△ABC ∽△ADE ,∴BC DE =AB AD ,∴11.5=AB AB +7, 解得AB =14 m ,经检验:AB =14是分式方程的解.答:河宽AB 的长为14米.20.如图,一次函数y 1=k x +b 的图象与反比例函数y 2=6x的图象交于A(m ,3),B(-3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x 的不等式6x>k x +b 的解集.解:(1)∵A (m ,3),B (-3,n )两点在反比例函数y 2=6x的图象上,∴m =2,n =-2.∴A (2,3),B (-3,-2).根据题意得⎩⎪⎨⎪⎧2k +b =3,-3k +b =-2,解得⎩⎪⎨⎪⎧k =1,b =1,∴一次函数的表达式是y 1=x +1.(2)根据图象得0<x <2或x <-3.六、(本题满分12分)21.已知:如图,在△ABC 中,BD 平分∠ABC 交AC 于点D ,点E 在AB 上,且BD 2=BE·BC.(1)求证:∠BDE =∠C ;(2)求证:AD 2=AE·AB.证明:(1)∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵BD 2=BE·BC ,∴BD BE =BC BD,∴△EBD ∽△DBC , ∴∠BDE =∠C.(2)∵∠BDE =∠C , ∠DBC +∠C =∠BDE +∠ADE ,∴∠DBC =∠ADE ,∵∠ABD =∠CBD ,∴∠ABD =∠ADE ,∴△ADE ∽△ABD , ∴AD AB =AE AD,即AD 2=AE·AB. 七、(本题满分12分)22.某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x天(1≤x≤30且x为整数)的销量为y件.(1)直接写出y与x的函数关系式;(2)在这30天内,哪一天的利润是6 300元?(3)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.解:(1)由题意可知y=5x+30.(2)根据题意可得(130-x-60-4)(5x+30)=6 300,即x2-60x+864=0,解得x=24或36(舍),∴在这30天内,第24天的利润是6 300元.(3)根据题意可得w=(130-x-60-4)(5x+30)=-5x2+300x+1 980=-5(x-30)2+6 480,∵a=-5<0,∴函数有最大值,∴当x=30时,w有最大值为6 480元,∴第30天的利润最大,最大利润是6 480元.八、(本题满分14分)23.如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B,D,P,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)求证:AB·CD=PB·PD;(2)如图乙也是一个“三垂图”,上述结论还成立吗?请说明理由;(3)已知抛物线交x轴于A(-1,0),B(3,0)两点,交y轴于点(0,-3),顶点为P,如图丙所示,若Q是抛物线上异于A,B,P的点,设AQ与y轴相交于D,且∠QAP=90°,利用上述结论求Q点坐标.(1)证明:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PDC,∴ABPD=PBCD,∴AB·CD=PB·PD.(2)解:AB·CD=PB·PD仍然成立.理由如下:∵AB⊥BD,CD⊥BD,∴∠B=∠CDP=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PDC,∴ABPD=PBCD,11 ∴AB·CD =PB·PD.(3)解:设抛物线表达式为y =ax 2+bx +c (a ≠0),∵抛物线与x 轴交于点A (-1,0),B (3,0),与y 轴交于点(0,-3),∴⎩⎨⎧a -b +c =0,9a +3b +c =0,c =-3,解得⎩⎨⎧a =1,b =-2,c =-3,∴y =x 2-2x -3, ∵y =x 2-2x -3=(x -1)2-4,∴顶点P 的坐标为(1,-4), 过点P 作PC ⊥x 轴于C ,∵AQ 与y 轴相交于D ,∴AO =1,AC =1+1=2,PC =4,由(2)得,AO ·AC =OD·PC ,∴1×2=OD·4,解得OD =12,∴点D 的坐标为⎝ ⎛⎭⎪⎫0,12, 设直线AD 的表达式为y =kx +b (k ≠0),则⎩⎪⎨⎪⎧-k +b =0,b =12,解得⎩⎪⎨⎪⎧k =12,b =12,∴y =12x +12, 联立⎩⎪⎨⎪⎧y =12x +12,y =x 2-2x -3,解得⎩⎪⎨⎪⎧x 1=72,y 1=94,⎩⎪⎨⎪⎧x 2=-1,y 2=0.(与A 重合,舍去)∴点Q 的坐标为⎝ ⎛⎭⎪⎫72,94.。

沪科版九年级数学上册期中测试题(含答案)

沪科版九年级数学上册期中测试题(含答案)

沪科版九年级数学上册期中测试题(含答案)(考试时间:120分钟满分:150分)姓名:______班级:______分数:______一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.二次函数y=-2(x+1)2+5的顶点坐标是(D) A.-1 B.5C.(1,5) D.(-1,5)2.为方便市民进行垃圾分类投放,某环保公司第一个月投放a个垃圾桶,计划第三个月投放垃圾桶y个,设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x,那么y 与x的函数关系是(A) A.y=a(1+x)2B.y=a(1-x)2C.y=(1-x)2+a D.y=x2+a3.若△ABC∽△DEF,相似比为9 ∶4,则△ABC与△DEF 对应中线的比为(A) A.9 ∶4 B.4 ∶9 C.81 ∶16 D.3 ∶24.在同一时刻,身高1.6 m的小强,在太阳光线下影长是1.2 m,旗杆的影长是6 m,则旗杆高为(C) A.4.5 m B.6 m C.8 m D.9 m5.已知点A(-3,y1),B(-2,y2),C(3,y3)都在反比例函数y =4x的图象上,则 ( D ) A .y 1<y 2<y 3 B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 36.下面四组图形中,必是相似三角形的为 ( D )A .两个直角三角形B .两条边对应成比例,一个对应角相等的两个三角形C .有一个角为40°的两个等腰三角形D .有一个角为100°的两个等腰三角形7.在平面直角坐标系中,点P (1,-2)是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点P 对应点的坐标为 ( B )A .(2,-4)B .(2,-4)或(-2,4)C.⎝ ⎛⎭⎪⎫12,-1D.⎝ ⎛⎭⎪⎫12,-1或⎝ ⎛⎭⎪⎫-12,1 8.抛物线y =ax 2+bx +c 与直线y =ax +c (a ≠0)在同一直角坐标系中的图象可能是 ( D )9.已知:正比例函数y =k 1x 的图象与反比例函数y =k 2x(x >0)的图象交于点M (a ,1),MN ⊥x 轴于点N (如图),若△OMN 的面积等于2,则 ( A )A.k1=14,k2=4 B.k1=4,k2=14C.k1=14,k2=-4 D.k1=-14,k2=4第9题图第10题图第13题图10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a b c>0;②2a+b=0;③m为任意实数,则a+b>am2+b m;④a-b+c>0;⑤若ax21+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的有(C)A.①②③B.②④C.②⑤D.②③⑤二、填空题(本大题共4小题,每小题5分,满分20分) 11.若y=(m-1)xm2+2m-1是二次函数,则m的值是-3 .12.反比例函数y=kx图象上的一点到x轴距离为2,到y轴距离为3,且当x<0时,y随x的增大而增大,则k的值是-6 .13.★如图,抛物线y=ax2+c与直线y=3相交于点A,B,与y轴交于点C(0,-1),若∠ACB为直角,则当ax2+c<0时,自变量x的取值范围是-2<x<2 .14.在△ABC 中,AB =9,AC =12,BC =18,D 为AC 上一点,其中DC =23AC ,在AB 上取一点E 得△ADE ,若△ABC 与△ADE 相似,则DE = 6或8 .三、(本大题共2小题,每小题8分,满分16分)15.已知:a ∶b ∶c =2 ∶3 ∶5,求代数式3a -b +c 2a +3b -c的值. 解:∵a ∶b ∶c =2 ∶3 ∶5,∴设a =2k ,b =3k ,c =5k (k ≠0),则3a -b +c 2a +3b -c =6k -3k +5k 4k +9k -5k=1. 16.已知二次函数y =ax 2+bx +c 的图象经过点A(1,5),B(-1,9),C(0,8).求这个二次函数的表达式,开口方向,对称轴和顶点坐标.解:由题意得,⎩⎨⎧a +b +c =5,a -b +c =9,c =8,解得⎩⎨⎧a =-1,b =-2,c =8,∴二次函数表达式为y =-x 2-2x +8,∵y =-x 2-2x +8=-(x +1)2+9,∴这个二次函数的抛物线开口向下,对称轴为x =-1,顶点坐标为(-1,9).四、(本大题共2小题,每小题8分,满分16分)17.在如图所示的网格中,已知△ABC 和点M(1,2).(1)以点M 为位似中心把三角形放大,位似比为2,画出△ABC的位似图形△A′B′C′;(2)写出△A′B′C′的各顶点坐标.解:(1)如图,△A′B′C′即为所求.(2)△A′B′C′的各顶点坐标分别为A′(3,6),B′(5,2),C′(11,4).18.某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(k Pa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气球内的气压大于150 k Pa时,气球将会爆炸,为了安全起见,气体的体积应至少是多少?解:(1)设p=kV,将A(0.5,120)代入求出k=60,∴p=60V.(2)当p>150 kPa时,气球将爆炸,∴p ≤150,即p =60V≤150, 解得V ≥60150=0.4. 故为了安全起见,气体的体积应不小于0.4 m 3.五、(本大题共2小题,每小题10分,满分20分)19.某数学兴趣小组想用所学的知识测量小河的宽.测量时,他们选择了河对岸的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D ,竖起标杆DE ,使得点E ,C ,A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1 m ,DE =1.5 m ,BD =7 m (测量示意图如图所示).请根据相关测量信息,求河宽AB 的长.解:∵CB ⊥AD ,ED ⊥AD ,∴∠ABC =∠ADE.又∵∠BAC =∠DAE ,∴△ABC ∽△ADE ,∴BC DE =AB AD ,∴11.5=AB AB +7, 解得AB =14 m ,经检验:AB =14是分式方程的解.答:河宽AB 的长为14米.20.如图,一次函数y 1=k x +b 的图象与反比例函数y 2=6x的图象交于A(m ,3),B(-3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x 的不等式6x>k x +b 的解集.解:(1)∵A (m ,3),B (-3,n )两点在反比例函数y 2=6x的图象上,∴m =2,n =-2.∴A (2,3),B (-3,-2).根据题意得⎩⎪⎨⎪⎧2k +b =3,-3k +b =-2,解得⎩⎪⎨⎪⎧k =1,b =1,∴一次函数的表达式是y 1=x +1.(2)根据图象得0<x <2或x <-3.六、(本题满分12分)21.已知:如图,在△ABC 中,BD 平分∠ABC 交AC 于点D ,点E 在AB 上,且BD 2=BE·BC.(1)求证:∠BDE =∠C ;(2)求证:AD 2=AE·AB.证明:(1)∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵BD 2=BE·BC ,∴BD BE =BC BD,∴△EBD ∽△DBC , ∴∠BDE =∠C.(2)∵∠BDE =∠C , ∠DBC +∠C =∠BDE +∠ADE ,∴∠DBC =∠ADE ,∵∠ABD =∠CBD ,∴∠ABD =∠ADE ,∴△ADE ∽△ABD , ∴AD AB =AE AD,即AD 2=AE·AB. 七、(本题满分12分)22.某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x天(1≤x≤30且x为整数)的销量为y件.(1)直接写出y与x的函数关系式;(2)在这30天内,哪一天的利润是6 300元?(3)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.解:(1)由题意可知y=5x+30.(2)根据题意可得(130-x-60-4)(5x+30)=6 300,即x2-60x+864=0,解得x=24或36(舍),∴在这30天内,第24天的利润是6 300元.(3)根据题意可得w=(130-x-60-4)(5x+30)=-5x2+300x+1 980=-5(x-30)2+6 480,∵a=-5<0,∴函数有最大值,∴当x=30时,w有最大值为6 480元,∴第30天的利润最大,最大利润是6 480元.八、(本题满分14分)23.如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B,D,P,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)求证:AB·CD=PB·PD;(2)如图乙也是一个“三垂图”,上述结论还成立吗?请说明理由;(3)已知抛物线交x轴于A(-1,0),B(3,0)两点,交y轴于点(0,-3),顶点为P,如图丙所示,若Q是抛物线上异于A,B,P的点,设AQ与y轴相交于D,且∠QAP=90°,利用上述结论求Q点坐标.(1)证明:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PDC,∴ABPD=PBCD,∴AB·CD=PB·PD.(2)解:AB·CD=PB·PD仍然成立.理由如下:∵AB⊥BD,CD⊥BD,∴∠B=∠CDP=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PDC,∴ABPD=PBCD,11 ∴AB·CD =PB·PD.(3)解:设抛物线表达式为y =ax 2+bx +c (a ≠0),∵抛物线与x 轴交于点A (-1,0),B (3,0),与y 轴交于点(0,-3),∴⎩⎨⎧a -b +c =0,9a +3b +c =0,c =-3,解得⎩⎨⎧a =1,b =-2,c =-3,∴y =x 2-2x -3, ∵y =x 2-2x -3=(x -1)2-4,∴顶点P 的坐标为(1,-4), 过点P 作PC ⊥x 轴于C ,∵AQ 与y 轴相交于D ,∴AO =1,AC =1+1=2,PC =4,由(2)得,AO ·AC =OD·PC ,∴1×2=OD·4,解得OD =12,∴点D 的坐标为⎝ ⎛⎭⎪⎫0,12, 设直线AD 的表达式为y =kx +b (k ≠0),则⎩⎪⎨⎪⎧-k +b =0,b =12,解得⎩⎪⎨⎪⎧k =12,b =12,∴y =12x +12, 联立⎩⎪⎨⎪⎧y =12x +12,y =x 2-2x -3,解得⎩⎪⎨⎪⎧x 1=72,y 1=94,⎩⎪⎨⎪⎧x 2=-1,y 2=0.(与A 重合,舍去)∴点Q 的坐标为⎝ ⎛⎭⎪⎫72,94.。

2024-2025学年沪科版初中九年级数学上学期期中模拟考试卷(一)

2024-2025学年沪科版初中九年级数学上学期期中模拟考试卷(一)

2024-2025学年九年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪科版九上第21~22.3章(二次函数与反倒函数+比例线段+相似三角形判定与性质)。

5.难度系数:0.65。

第一部分(选择题共40分)一、选择题(本大题共10个小题,每小题4分,满分40分.在每个小题给出的四个选项中,只有一项符合题目要求的)A .B ADE ∠=∠B .C ∠5.二次函数()220y ax ax c a =-+≠的图象过点()3,0,方程220ax ax c -+=的解为()A .123,1x x =-=-B .121,3x x =-=C .121,3x x ==D .123,1x x =-=A .16B .24.点P ,点Q 是线段AB 的黄金分割点,若A .2B .6-8.如图,是二次函数2y ax bx c =++(,,a b c 是常数,且0a ≠)的图象,虚线是抛物线的对称轴.则一次函数y acx b =+的图象经过()A .第二三四象限.如图1,点A 、B 在反比例函数延长线段AB 交x 轴于点函数()220k y k x=≠的图象上,过点A .2B .2-C .10.二次函数2y ax bx c =++()0a ≠与一次函数y x c =-+(都在坐标轴上,两图象与x 轴交于点M ,二次函数y =若12ON OM =,求b 的值()二、填空题(本大题共4小题,每小题5分,满分20分).如图,ABC 是等边三角形,点交于点F ,连接DE ,则下列结论:正确的结论有三、解答题(本大题共9个小题,共90分,其中15~18题每题8分,19~20题每题10分,21~22题每题12分,第23题14分.解答应写出文字说明,证明过程或演算步骤)(1)求该曲线对应的函数解析式;C℃的取值范围.(2)若6t≥,求温度(),是反比例函数y(8分)如图,A B线段AB的延长线交x轴于点C.(1)求a的值和该反比例函数的函数关系式;(2)求直线AB的函数关系式.19.(10分)九(1)班数学课外活动小组利用阳光下的影子来测量教学楼顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该教学楼OB的影长OC为12米,OA的影长OD为15米,测量者的⊥,影长FG为1.2米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO OD ⊥.已知测量者的身高EF为1.8米,求旗杆的高AB.EF FG.(10分)我省某风景区统计了近三年国庆节的游客人数.据统计,2023年国庆节游客人数约为(1)求2021年到2023年该风景区国庆节游客人数的年平均增长率;(2)已知该风景区有A,B(1)求抛物线的解析式;(2)如图,点C 为第四象限抛物线上的一个动点,直线AC 与y 轴交于点D ,连接BC .当90ACB ∠=︒时,求点C 的坐标.22.(12分)如图,在ABC 中,90B ∠=︒,8cm AB =,12cm BC =,点P 从点A 开始沿AB 向点B 以2cm /s 的速度运动,点Q 从点B 开始沿BC 向点C 以4cm /s 的速度运动,如果P ,Q 分别从A ,B 同时出发,4秒后停止运动,设运动时间为t 秒.(1)求BP ,BQ 的长度;(2)当t 为何值时,PBQ 的面积为212cm(3)是否存在某一时间t ,使得PBQ 和ABC 相似?若存在,请求出此时t 的值,若不存在,请说明理由.23.(14分)在平面直角坐标系xOy 中(如图),已知抛物线2y ax x c =++经过()2,0A -和()0,4B ,与x 轴的另一个交点为C .(1)求该抛物线的表达式及顶点M 的坐标;(2)将抛物线2y ax x c =++先向右平移2个单位,再向下平移m (0m >)个单位后得到的新抛物线与y 轴交于点()0,1P -,新抛物线的顶点为M ';①求新抛物线的表达式及顶点M '的坐标;②点N 是新抛物线对称轴上的一点,且'M MN ACB ∠=∠,当ABC 与MM N '△相似时,求点N 的坐标.2024-2025学年九年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

沪科版九年级上册数学期中考试试题含答案

沪科版九年级上册数学期中考试试题含答案

沪科版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1.在下列关于x 的函数中,一定是二次函数的是()A .y=x 2B .y=ax 2+bx+cC .y=8xD .y=x 2(1+x )2.某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x (x >0),设2015,2016,2017这三年该产品的总产量为y 吨,则y 关于x 的函数关系式为()A .y =100(1﹣x )2B .y =100(1+x )C .y =2100(1)x +D .y =100+100(1+x )+100(1+x )23.在平面直角坐标系中,抛物线y=-12(x+1)2-12的顶点是()A .(-1,-12)B .(-1,12)C .(1,-12)D .(1,12)4.函数22(21)m y m x -=-是反比例函数,在第一象限内y 随x 的增大而减小,则m =()A .1B .﹣1C .±1D .5.二次函数222=++y x x 与坐标轴的交点个数是()A .0个B .1个C .2个D .3个6.如图,若一次函数y ax b =+的图象经过二、三、四象限,则二次函数2y ax bx =+的图象可能是()A .B .C .D .7.已知:0.5a =, 3.2b =,16c =, 2.5d =,下列各式中,正确的是()A .a b =c dB .a c =d bC .a b =d cD .d c =b a8.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是()A .∠ABP=∠CB .∠APB=∠ABC C .AP ABAB AC =D .AB ACBP CB=9.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x =2,且OA =OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c =0(a ≠0)有一个根为1;其中正确的结论个数有()A .1个B .2个C .3个D .4个10.如图,已知点A 是反比例函数6y x=在第一象限图像上的一个动点,连接OA ,以为长,OA 为宽作矩形AOCB ,且点C 在第四象限,随着点A 的运动,点C 也随之运动,但点C 始终在反比例函数ky x=的图像上,则k 的值为()A .-B .C .D .二、填空题11.若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是________.12.若53x x y =-,则y x=________.13.如图,直线A l A ∥BB 1∥CC 1,若AB=8,BC=4,A 1B 1=6,则线段A 1C 1的长是________.14.如图,在钝角△ABC 中,AB =3cm ,AC =6cm ,动点D 从点A 出发到点B 止.动点E 从点C 出发到点A 止.点D 运动的速度为1cm /s ,点E 运动的速度为2cm /s .如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与△ABC 相似时.运动的时间是_____.三、解答题15.已知二次函数y =212x ﹣2x +6.用配方法求函数图象的顶点坐标和对称轴.16.将抛物线y =﹣x 2向左平移3个单位,再向上平移4个单位.(1)写出平移后的抛物线的函数关系式.(2)若平移后的抛物线的顶点为A ,与x 轴的两个交点分别是B 、C ,求△ABC 的面积.17.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax 2+bx +c =0的两个根;(2)写出不等式ax 2+bx +c >0的解集;(3)若方程ax 2+bx +c =k 有两个不相等的实数根,求k 的取值范围.18.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=°,BC=;(2)判断△ABC与△DEF是否相似,并证明你的结论.19.如题图,已知A(-4,2),B(n,-4)是一次函数y=kx+b的图象和反比例函数m yx的图象的两个交点.(1)求m,n的值;(2)求一次函数的关系式;、(3)结合图象直接写出一次函数小于反比例函数的x的取值范围.20.如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?21.某电子厂商投产一种新型电子产品,每件制造成本为16元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?22.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC上的点,连接PQ,MN,PN交AD于E.求(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.23.如图1,点M放在正方形ABCD的对角线AC(不与点A重合)上滑动,连结DM,做MN⊥DM,交直线AB于N.(1)求证:DM=MN;(2)若将(1)中的正方形变为矩形,其余条件不变如图,且DC=2AD,求MD:MN的值;(3)在(2)中,若CD=nAD,当M滑动到CA的延长线上时(如图3),请你直接写出MD:MN 的比值.参考答案1.A【分析】根据二次函数的定义:y=ax2+bx+c(a≠0.a是常数),可得答案.【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A.【点睛】本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意a是不等于零的常数.2.D【分析】直接表示出2016年,2017年的产量进而得出y关于x的函数关系式.【详解】解:设2015,2016,2017这三年该产品的总产量为y吨,则y关于x的函数关系式为:y=100+100(1+x)+100(1+x)2.故选:D.【点睛】此题主要考查了根据实际问题列二次函数解析式,正确表示出2017年的产量是解题关键.3.A【分析】结合抛物线的解析式和二次函数的性质即可得出该抛物线顶点坐标.【详解】∵抛物线的解析式为y=12(x+1)2﹣12,∴该抛物线的顶点坐标为(﹣1,﹣1 2).故选A【点睛】本题考查二次函数的性质.4.A【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.【详解】解:根据题意得:2m21 2m10⎧-=-⎨->⎩,解得:m=1.故选:A.【点睛】本题考查了反比例函数的性质.对于反比例函数y=kx,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.5.B【分析】先计算根的判别式的值,然后根据b 2−4ac 决定抛物线与x 轴的交点个数进行判断.【详解】∵△=22−4×1×2=−4<0,∴二次函数y =x 2+2x +2与x 轴没有交点,与y 轴有一个交点.∴二次函数y =x 2+2x +2与坐标轴的交点个数是1个,故选:B .【点睛】本题考查了抛物线与x 轴的交点:求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标,令y =0,即ax 2+bx +c =0,解关于x 的一元二次方程即可求得交点横坐标.二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)的交点与一元二次方程ax 2+bx +c =0根之间的关系:△=b 2−4ac 决定抛物线与x 轴的交点个数;△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点.6.C 【分析】根据一次函数的性质判断出a 、b 的正负情况,再根据二次函数的性质判断出开口方向与对称轴,然后选择即可.【详解】解:y ax b =+ 的图象经过二、三、四象限,0a ∴<,0b <,∴抛物线开口方向向下, 抛物线对称轴为直线02bx a=-<,∴对称轴在y 轴的左边,纵观各选项,只有C 选项符合.故选C .【点睛】本题考查了二次函数的图象,一次函数的图象与系数的关系,主要利用了二次函数的开口方向与对称轴,确定出a 、b 的正负情况是解题的关键.7.C 【分析】如果其中两个数的乘积等于另外两个数的乘积,则四个数成比例.【详解】因为16×0.5=8,3.2×2.5=8,所以ac=bd ,可得:a d b c=,故选C点睛:此题考查比例线段问题,理解成比例的概念,注意在数两两相乘的时候,要让最小的和最大的相乘,另外两个数相乘,看它们的积是否相等进行判断.8.D 【详解】试题分析:A .当∠ABP=∠C 时,又∵∠A=∠A ,∴△ABP ∽△ACB ,故此选项错误;B .当∠APB=∠ABC 时,又∵∠A=∠A ,∴△ABP ∽△ACB ,故此选项错误;C .当AP ABAB AC=时,又∵∠A=∠A ,∴△ABP ∽△ACB ,故此选项错误;D .无法得到△ABP ∽△ACB ,故此选项正确.故选D .考点:相似三角形的判定.9.B 【分析】根据抛物线的图象与系数的关系即可求出答案.【详解】解:由抛物线的开口可知:a <0,由抛物线与y 轴的交点可知:c <0,由抛物线的对称轴可知:﹣2ba>0,∴b >0,∴abc >0,故①正确;令x =3,y >0,∴9a +3b +c >0,故②错误;∵OA =OC <1,∴c >﹣1,故③正确;观察图象可知关于x 的方程ax 2+bx +c (a ≠0)=0的两根:一个根在0与1之间,一个根在3与4之间,故④错误;故选:B .【点睛】本题考查的是二次函数图象与系数的关系,二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.本题属于中等题型.10.A 【解析】分析:设A (a ,b ),则,分别过A ,C 作AE ⊥x 轴于E ,CF ⊥x 轴于F ,根据相似三角形的判定证得△AOE ∽△COF ,由相似三角形的性质得到,b ,则k=-OF•CF .详解:设A (a ,b ),∴OE=a ,AE=b ,∵在反比例函数y=x的图象上,∴,分别过A ,C 作AE ⊥x 轴于E ,CF ⊥x 轴于F ,∵四边形AOCB 是矩形,∴∠AOE+∠COF=90°,∴∠OAE=∠COF=90°-∠AOE ,∴△AOE ∽△OCF ,∵OA ,∴OC OF CFOA AE OE==,∴b ,OE=a ,∵C 在反比例函数y=kx的图象上,且点C 在第四象限,∴,故选:A.点睛:本题主要考查了矩形的性质,相似三角形的判定和性质,反比例函数的几何意义和求法,正确作出辅助线证得△AOE ∽△COF 是解题的关键,同时注意k 的符号.11.(﹣2,﹣3)【解析】∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,3)关于原点对称,∴该点的坐标为(−2,−3).故答案为(−2,−3).12.25【解析】解:∵53x x y =-,∴3x =5(x ﹣y ),∴2x =5y ,∴25y x =.故答案为25.13.9【解析】根据平行线分线段成比例定理,列出比例式,利用比例的基本性质即可得解.解:∵A l A ∥BB 1∥CC 1,∴1111B C A B =BC AB,∵AB=8,BC=4,A 1B 1=6,∴B1C 1=3.∴A1C 1=A 1B 1+B1C 1=6+3=9.“点睛”考查了平行线分线段成比例定理,明确线段之间的对应关系.14.32秒或125秒【分析】如果以点A 、D 、E 为顶点的三角形与△ABC 相似,由于A 与A 对应,那么分两种情况:①D 与B 对应;②D 与C 对应.根据相似三角形的性质分别作答.【详解】解:如果两点同时运动,设运动t 秒时,以点A 、D 、E 为顶点的三角形与△ABC 相似,则AD =t ,CE =2t ,AE =AC ﹣CE =6﹣2t .①当D 与B 对应时,有△ADE ∽△ABC .∴AD :AB =AE :AC ,∴t :3=(6﹣2t ):6,∴t =32;②当D 与C 对应时,有△ADE ∽△ACB .∴AD :AC =AE :AB ,∴t :6=(6﹣2t ):3,∴t =125.∴当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是32秒或125秒.故答案为:32秒或125秒.【点睛】本题考查的是相似三角形的判定定理,相似三角形的对应边成比例的性质.本题分析出以点A 、D 、E 为顶点的三角形与△ABC 相似,有两种情况是解决问题的关键.15.顶点坐标为(2,4)对称轴为x =2【分析】根据配方法的步骤把一般式转化为顶点式,根据顶点式的坐标特点,写出顶点坐标.【详解】解:y =212x ﹣2x +6=12(x 2﹣4x +4+8)=12(x ﹣2)2+4,所以顶点坐标为(2,4)对称轴为x =2.【点睛】本题考查了二次函数的性质,配方法,二次函数的顶点式y =a (x−h )2+k ,顶点坐标是(h ,k ),对称轴是x =h .16.(1)y =﹣(x +3)2+4;(2)8【分析】(1)分别根据“上加下减,左加右减”的原则进行解答即可;(2)在解析式中令y =0,求得x 的值,即可求得B 和C 的横坐标,则BC 的长即可求得,然后根据三角形的面积公式即可求得.【详解】解:(1)由“左加右减”的原则可知,将抛物线y =﹣x 2向左平移3个单位所得直线的解析式为:y =﹣(x +3)2;由“上加下减”的原则可知,将抛物线y =﹣(x +3)2向上平移4个单位所得抛物线的解析式为:y =﹣(x +3)2+4.故平移后的抛物线的函数关系式是:y =﹣(x +3)2+4.(2)顶点坐标A (﹣3,4)令y =﹣(x +3)2+4=0,解得x 1=﹣1,x 2=﹣5.∴B (﹣1,0),C (﹣5,0),BC =4.则三角形ABC 底边BC 边上的高h=4,∴S △ABC =12BC ×h =12×4×4=8.【点睛】本题考查了抛物线的平移以及二次函数与x 轴的交点坐标的求法,正确理解平移法则是关键.17.(1)x 1=1,x 2=3;(2)1<x <3;(3)k <2.【分析】(1)根据函数图象,二次函数图象与x 轴的交点的横坐标即为方程的根;(2)根据函数图象写出x 轴上方部分的x 的取值范围即可;(3)能与函数图象有两个交点的所有k 值即为所求的范围.【详解】解:(1)∵函数图象与x 轴的两个交点坐标为(1,0)(3,0),∴方程的两个根为x 1=1,x 2=3;(2)由图可知,不等式ax 2+bx +c >0的解集为1<x <3;(3)∵二次函数的顶点坐标为(2,2),∴若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为k <2.【点睛】本题考查了二次函数与不等式,抛物线与x 轴的交点问题,数形结合是数学中的重要思想之一,解决函数问题更是如此,同学们要引起重视.18.(1)(2)△ABC ∽△DEF .【分析】(1)根据已知条件,结合网格可以求出∠ABC 的度数,根据,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC 的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC 与△DEF 相似.【详解】(1)9045135ABC ∠=+= ,BC ===故答案为(2)△ABC ∽△DEF .证明:∵在4×4的正方形方格中,135,9045135ABC DEF ∠=∠=+= ,∴∠ABC =∠DEF .∵2,2,AB BC FE DE ====∴222AB BC DE FE ====∴△ABC ∽△DEF .【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.19.(1)m=-8,n=2;(2)y=-x-2;(3)-4<x<0,或x>2.【解析】分析:(1)先把A 的坐标代入反比例函数y=m x中求出m 的值,写出反比例函数的解析式,再将点B 的坐标代入求n 的值;(2)利用待定系数法求一次函数的关系式;(3)结合图象写结论即可.本题解析:(1)把A(−4,2)代入y=mx,即:m=−8,∴y=8x-,把B(n,−4)代入y=8x-得:解得n=2,∴B(2,−4);(2)把A(−4,2),B(2,−4)代入y=kx+b中,得24{42k bk b=-+-=+,解得k=−1,b=−2,∴y=−x−2;(3)由图象得:一次函数小于反比例函数的x的取值范围是:−4<x<0或x>2.20.24m【解析】试题分析:首先设AH=x,BH=y,根据△AHF∽△CBF,△AHG∽△EDG,得出B B=B B,B B= D B,然后将各数字代入求出x的值.试题解析:由题意知,设AH=x,BH=y,△AHF∽△CBF,△AHG∽△EDG,∴B B=B B,B B=D B,∴3x=1.5×(y+3),5x=1.5×(y+30+5)解得x=24m.答:旗杆AH的高度为24m.21.(1)z=﹣2x2+132x﹣1600;(2)当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.【分析】(1)根据每月的利润z=(x−16)×y,再把y=−2x+100代入即可求出z与x之间的函数解析式,(2)先根据制造成本不超过480万元知生产量不超过30万件,结合一次函数解析式得出x 的取值范围,把函数关系式变形为顶点式运用二次函数的性质求出最值.【详解】解:(1)根据题意知,z=(x﹣16)(﹣2x+100)=﹣2x2+132x﹣1600;(2)厂商每月的制造成本不超过480万元,每件制造成本为16元,∴每月的生产量为:小于等于48016=30万件,则y=﹣2x+100≤30,解得:x≥35,∵z=﹣2x2+132x﹣1600=﹣2(x﹣33)2+578,∴图象开口向下,对称轴右侧z随x的增大而减小,∴x=35时,z最大为570万元.当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.【点睛】本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式以及利用增减性求出最值.22.(1)PQ=154,PN=152;(2)PQ=5,PN=6.【分析】(1)设PQ=y,则PN=2y,根据相似三角形的对应边上的高的比=相似比,构建方程即可解决问题;(2)设AE=x.利用相似三角形的性质,用x表示PN,PQ,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:(1)设PQ=y,则PN=2y,∵四边形PQMN是矩形,∴PN∥BC,∴△APN∽△ABC,∵AD⊥BC,∴AD⊥PN,∴PNBC=AEAD,即212y=1010y-,解得y=15 4,∴PQ=154,PN=152.(2)设AE=x.∵四边形PQMN是矩形,∴PN∥BC,∴△APN∽△ABC,∵AD⊥BC,∴AD⊥PN,∴PNBC=AEAD,∴PN=65x,PQ=DE=10﹣x,∴S矩形PQMN =65x(10﹣x)=﹣65(x﹣5)2+30,∴当x=5时,S的最大值为30,∴当AE=5时,矩形PQMN的面积最大,最大面积是30,此时PQ=5,PN=6.【点睛】本题考查相似三角形的应用、二次函数的应用、矩形的性质等知识,解题的关键是学会利用相似三角形的性质构建二次函数或方程解决问题,属于中考常考题型.23.(1)见解析;(2)MD:2MN=;(3)MD:MN n=.【分析】(1)过M作MQ⊥AB于Q,MP⊥AD于P,则∠PMQ=90°,∠MQN=∠MPD=90°,根据ASA即可判定△MDP≌△MNQ,进而根据全等三角形的性质得出DM=MN;(2)过M作MS⊥AB于S,MW⊥AD于W,则∠WMS=90°,根据∠DMW=∠NMS,∠MSN=∠MWD=90°,判定△MDW∽MNS,得出MD:MN=MW:MS=MW:WA,再根据△AWM ∽△ADC ,DC=2AD ,即可得出MD :MN=MW :WA=CD :DA=2;(3)过M 作MX ⊥AB 于X ,MR ⊥AD 于R ,则易得△NMX ∽△DMR ,得出MD :MN=MR :MX=AX :MX ,再由AD ∥MX ,CD ∥AX ,易得△AMX ∽△CAD ,得出AX :MX=CD :AD ,最后根据CD=nAD ,即可得出MD :MN=CD :AD=n .【详解】()1证明:过M 作MQ AB ⊥于Q MP AD ⊥,于P ,则9090PMQ MQN MPD ∠=∠=∠= ,,90DMN ∠= ,DMP NMQ ∴∠=∠,ABCD 是正方形,AC ∴平分DAB ∠,PM MQ ∴=,在MDP 和MNQ △中,MQN MPDPM MQ DMP NMQ∠=∠⎧⎪=⎨⎪∠=∠⎩,MDP ∴ ≌()MNQ ASA ,DM MN ∴=;()2过M 作MS AB ⊥于S MW AD ⊥,于W ,则90WMS ∠=,MN DM ⊥ ,DMW NMS ∴∠=∠,又90MSN MWD ∠=∠= ,MDW ∴∽MNS ,MD ∴:MN MW =:MS MW =:WA ,//MW CD ,AMW ACD AWM ADC ∴∠=∠∠=∠,,AWM ∴ ∽ADC ,又2DC AD = ,MD ∴:MN MW =:WA CD =:2DA =;()3MD :MN n =,理由:过M 作MX AB ⊥于X MR AD ,⊥于R ,则易得NMX ∽DMR ,MD ∴:MN MR =:MX AX =:MX ,由////AD MX CD AX ,,易得AMX ∽CAD ,AX ∴:MX CD =:AD ,又CD nAD = ,MD ∴:MN CD =:AD n =.【点睛】相似形综合题,主要考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形、矩形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形或相似三角形,运用相似三角形和全等三角形的性质进行推导即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CG 教研中心2016-2017学年度第一学期期中考试九年级数学试卷考生注意:1、本卷共八大题,计23小题,满分150分,考试时间120分钟。

2、请在答题卷上答题,在试题卷上答题无效!考试结束后,将试题卷与答题卷一并交回!一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在答题卷相应位置内.每一小题,选对得4分,不选、选错或选出的代号超过一个的一律得0分.1、下列函数是二次函数的是( )A 、y =3x +1B 、y =ax 2+bx +cC 、y =x 2+3D 、y =(x ﹣1)2﹣x 22、若反比例函数21k y x+=的图象位于第一、三象限,则k 的取值可以是( )A 、﹣3B 、﹣2C 、﹣1D 、03、如果一个三角形保持形状不变,但周长扩大为原来的4倍,那么这个三角形的边长扩大为原来的( )A.2倍B.4倍C.8倍D.16倍4、已知二次函数y =x 2+x +c 的图象与x 轴的一个交点为(2,0),则它与x 轴的另一个交点坐标是( )A 、(1,0)B 、(﹣1,0)C 、(2,0)D 、(﹣3,0)5.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形, 相似比为1:2,∠OCD =90°,CO =CD .若B (1,0), 则点C 的坐标为( ) A .(1,2) B .(1,1)C .(2,2)D .(2,1)6、抛物线y =13x 2,y =﹣3x 2,y =﹣x 2,y =2x 2的图象开口最大的是( )A 、y =13x 2B 、y =﹣3x 2C 、y =﹣x 2D 、y =2x 27、如图,在△ABC 中,点 D 、E 分别在边AB 、AC 上,且DE 不行于BC ,则下列条件中不能判断△ABC ∽△ADE 的是( )A .∠AED =∠B B .∠ADE =∠CC .AD AB =AEAC D .AD AE =ACAB8、若y =ax 2+bx +c ,则由表格中信息可知y 与x 之间的函数关系式是( )x -1 0 1 ax 2 1 ax 2+bx +c83A 、y =x 2-4x +3B 、y =x 2-3x +4C 、y =x 2-3x +3D 、y =x 2-4x +89、如图所示,某大学的楼门是一抛物线形水泥建筑物,大门的地面宽度为8m ,两侧距离地面4m 高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6m ,则校门的高约为(精确到0.1m ,水泥建筑物的厚度忽略不计)( )A 、9.2mB 、9.1mC 、9.0mD 、8.9m10、已知函数y=222(2)68(2)x x x x x x ⎧-≤⎪⎨-+->⎪⎩,其图象如图(网格的单位长度为1),若使y =k 成立的x 值恰好有两个,则k 的值为( ) A 、﹣1 B 、1 C 、0D 、±1二、填空题(本题共4小题,每题5分,共20分) 11、抛物线y =2(x ﹣1)2+5的顶点坐标是_________. 12、若34a b b -=,则ab=______. 13、若12x m ﹣1y 2与3xy n +1是同类项,点P (m ,n )在双曲线1a y x-=上,则a 的值为____. 14、已知抛物线y 1=﹣2x 2+2和直线y 2=2x +2的图象如图所示,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M =y 1=y 2.例如:当x =1时,y 1=0,y 2=4,y 1<y 2,此时M =0.则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)①当x >0时,y 1>y 2;②使得M 大于2的x 值不存在; ③当x <0时,x 值越大,M 值越小;④使得M=1的x值是12或22.三、(本题共2小题,每题8分,共16分)15、某运输队要运300t物资到江边防洪.(1)运输时间t(单位:h)与运输速度v(单位:t/h)之间有怎样的函数关系?(2)运了一半时,接到防洪指挥部命令,剩下的物资要在2h之内运到江边,则运输速度至少为多少?16、已知:如图,△ABC中,∠BAC=90°,AB=AC,点D是BC边上的一个动点(不与B,C重合),∠ADE=45°.求证:△ABD∽△DCE.四、(本题共2小题,每小题8分,共16分)17、如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点A的坐标为(1,0),点B是点C关于该函数图象对称轴对称的点.(1)求二次函数的解析式;(2)求点B的坐标.18、如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.五、(本题共2小题,每题10分,共20分)19、在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =xm ,花园的面积为S . (1)求S 与x 之间的函数表达式;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积的最大值.20、如图,在Rt △ABC 中,∠A =90°,BC =10cm ,AC =6cm ,在线段BC 上,动点P 以2cm /s 的速度从点B 向点C 匀速运动;同时在线段CA 上,点Q 以acm /s 的速度从点C 向点A 匀速运动,当点P 到达点C (或点Q 到达点A )时,两点运动停止,在运动过程中. (1)当点P 运动3011s 时,△CPQ 与△ABC 第一次相似,求点Q 的速度a ; (2)当△CPQ 与△ABC 第二次相似时,求点P 总共运动了多少秒?六、(本题共1小题,共12分)21、如图,已知一次函数y1=kx+b的图象与反比例函数28yx=-的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是﹣2.求:(1)一次函数的解析式;(2)△AOB的面积;(3)并利用图象指出,当x为何值时有y1>y2.七、(本题共1小题,共12分)22.如图,在△ABC中,点P是BC边上任意一点(点P与点B,C不重合),平行四边形AFPE的顶点F,E分别在AB,AC上.已知BC=2,S△ABC=1.设BP=x,平行四边形AFPE的面积为y.(1)求y与x的函数关系式;(2)上述函数有最大值或最小值吗?若有,则当x取何值时,y有这样的值,并求出该值;若没有,请说明理由.八、(本题共1小题,共14分)23、某水果经销商到水果种植基地采购葡萄,经销商一次性采购葡萄的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB→BC→CD所示(不包括端点A),(1)当500<x≤1000时,写出y与x之间的函数关系式;(2)若经销商一次性付了16800元货款,求经销商的采购单价是多少?(3)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,水果种植基地获利最大,最大利润是多少元?CG 教研中心2016-2017学年度第一学期期中考试九年级数学试卷参考答案及评分标准(沪科版21-22章)一、选择题(本题共10小题,每题4分,共40分)1-5CDBDB 6-10ACABD二、填空题(本题共4小题,每题5分,共20分)11、(1,5) 12、7413、3 14、②④三、(本题共2小题,每题8分,共16分)15、解:(1)由已知,得vt =300. ∴t 与v 之间的函数关系式为t =300v(v >0).….3分(2)运了一半物资后还剩300×⎝⎛⎭⎫1-12=150(t ),故t 与v 之间的函数关系式变为t =150v(v >0).将t =2代入t =150v ,得2=150v.解得v =75.因此剩下的物资要在2h 之内运到江边,运输速度至少为75t /h …………8分16、解:∵∠BAC =90°,AB =AC ,∴∠B =∠C =45°,………………2分∴∠1+∠2=180°-∠B =135°,∵∠2+∠ADE +∠3=180°,∠ADE =45°,∴∠2+∠3=180°-∠ADE =135°, ∴∠1=∠3,∴△ABD ∽△DCE …………8分四、(本题共2小题,每小题8分,共16分)17、解:(1)把A (1,0)代入y =(x ﹣2)2+m 得1+m =0,解得m =﹣1,所以二次函数的解析式为y =(x ﹣2)2﹣1;……2分 (2)抛物线的对称轴为直线x =2,……4分当x =0时,y =(x ﹣2)2﹣1=3,则C (0,3), 因为点B 是点C 关于该函数图象对称轴对称的点, 所以B 点坐标为(4,3),………………………………..8分18、解:在△ABC 中,∠C =90°,AC =8,BC =6,∴AB =22AC BC +=10,又∵BD =BC =6,∴AD =AB ﹣BD =4,∵DE ⊥AB ,∴∠ADE =∠C =90°,又∵∠A =∠A ,∴△AED ∽△ABC ,……5分 ∴DE AD BC AC =,∴DE =AD AC ·BC =49×6=3.…………….8分 五、(本题共2小题,每题10分,共20分)19、解:(1)∵AB =xm ,∴BC =(28-x )m . 于是易得S =AB ·BC =x (28-x )=-x 2+28x .即S =-x 2+28x (0<x <28).………..5分(2)由题意可知,⎩⎪⎨⎪⎧x≥6,28-x≥15,解得6≤x ≤13. 由(1)知,S =-x 2+28x =-(x -14)2+196.易知当6≤x ≤13时,S 随x 的增大而增大,∴当x =13时,S 最大值=195,即花园面积的最大值为195m 2…..10分20、解:(1)如图1,BP =3011×2=6011, ∵∠QCP =∠ACB ,∴当QC PC AC BC=,△CPQ ∽△CBA ,即3060101111610a -=, 解得a =1,∴点Q 的速度a 为1cm /s ;……5分 (2)如图2,设点P 总共运动了t 秒,∵∠QCP =∠ACB ,∴当QC PCBC AC=,△CPQ ∽△CAB ,即102106t t -=,解得t =5013,∴点P 总共运动了5013秒.………..10分 六、(本题共1小题,共12分)21、解:(1)∵点A 的横坐标和点B 的纵坐标都是﹣2,∴y =﹣82-=4, ﹣8x=﹣2,解得x =4,∴A (﹣2,4),B (4,﹣2), 把点AB 的坐标代入函数解析式,得2442k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=⎩,∴一次函数的解析式为y =﹣x +2;……6分 (2)一次函数图象与y 轴的交点坐标为(0,2),∴S △AOB =S △AOC +S △BOC ,=12×2×|﹣2|+12×2×4=2+4=6;…………..9分 (3)根据图象,当x <﹣2或0<x <4时,y 1>y 2……………………12分七、(本题共1小题,共12分)22、解:(1)∵四边形AFPE 是平行四边形,∴PF ∥CA ,∴△BFP ∽△BAC ,∴BFP BACS S ∆∆=(2x )2,∵S △ABC =1,∴S △BFP =24x ,同理:S △PEC =(22x -)2=2444x x -+,∴y =1-24x -2444x x -+,∴y =-12x 2+x ;……………8分(2)上述函数有最大值 ;理由如下:∵y =-12x 2+x =-12(x ﹣1)2+12,又-12<0,∴y 有最大值, ∴当x =1时,y 有最大值,最大值为12.…..12分 八、(本题共1小题,共14分)23、解:(1)设当500<x ≤1000时,y 与x 之间的函数关系式为:y =ax +b ,50030100020a b a b +=⎧⎨+=⎩,解得0.0240a b =-⎧⎨=⎩.故y 与x 之间的函数关系式为:y =﹣0.02x +40;…………..4分 (2)当x =500时,y =30,采购总费用为15000元;当x =1000时,y =20采购总费用为20000元;∵15000<16800<20000,∴该经销商一次性采购量500<x <1000, 故该经销商采购单价为:﹣0.02x +40,根据题意得,x (﹣0.02x +40)=16800,解得x 1=1400(不符合题意,舍去), x 2=600;∴经销商的采购单价是600元………………..8分(3)当采购量是x 千克时,蔬菜种植基地获利W 元,当0<x ≤500时,W =(30﹣8)x =22x ,则当x =500时,W 有最大值11000元,………………10分当500<x ≤1000时,W =(y ﹣8)x =(﹣0.02x +32)x =﹣0.02x 2+32x =﹣0.02(x ﹣800)2+12800,故当x =800时,W 有最大值为12800元,综上所述,一次 性采购量为800千克时,蔬菜种植基地能获得最大利润为12800元;….14分初中数学试卷鼎尚图文**整理制作。

相关文档
最新文档