广东省佛山市南海区南海一中2019高考概率高三一轮复习学案

合集下载

【数学】2019届一轮复习人教A版(文)11.3概率学案

【数学】2019届一轮复习人教A版(文)11.3概率学案

11.3 几何概型最新考纲考情考向分析1.了解随机数的意义,能运用随机模拟的方法估计概率.2.了解几何概型的意义.以理解几何概型的概念、概率公式为主,会求一些简单的几何概型的概率,常与平面几何、线性规划、不等式的解集等知识交汇考查,在高考中多以选择,填空题的形式考查,难度为中档.1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. 2.在几何概型中,事件A 的概率的计算公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).3.要切实理解并掌握几何概型试验的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算器或计算机模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M 和总的随机数个数N ;③计算频率f n (A )=MN作为所求概率的近似值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)在一个正方形区域内任取一点的概率是零.( √ )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( × )题组二 教材改编2.[P137思考]在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12B.13C.14D .1 答案 B解析 坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.3.[P140T1]有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).4.[P146B 组T4]设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22C.π6D.4-π4答案 D解析 如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,故选D.题组三 易错自纠5.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.答案 3解析 由|x |≤m ,得-m ≤x ≤m .当0<m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.6.在Rt △ABC 中,∠A =30°,过直角顶点C 作射线CM 交线段AB 于点M ,则|AM |>|AC |的概率为________. 答案 16解析 设事件D 为“作射线CM ,使|AM |>|AC |”. 在AB 上取点C ′使|AC ′|=|AC |, 因为△ACC ′是等腰三角形, 所以∠ACC ′=180°-30°2=75°,事件D 发生的区域μD =90°-75°=15°, 构成事件总的区域μΩ=90°, 所以P (D )=μD μΩ=15°90°=16.题型一 与长度、角度有关的几何概型1.(2016·全国Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.310 答案 B解析 至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.2.如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.答案 13解析 因为在∠DAB 内任作射线AP ,所以它的所有等可能事件所在的区域H 是∠DAB ,当射线AP 与线段BC 有公共点时,射线AP 落在∠CAB 内,则区域H 为∠CAB ,所以射线AP 与线段BC 有公共点的概率为∠CAB ∠DAB =30°90°=13.3.(2018届铁岭月考)在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为________. 答案 23解析 设AC =x cm(0<x <12),则CB =(12-x )cm ,则矩形的面积S =x (12-x )=12x -x 2. 由12x -x 2<32,即(x -8)(x -4)>0,解得0<x <4或8<x <12. 在数轴上表示,如图所示.由几何概型概率公式,得所求概率为812=23.思维升华求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).题型二 与面积有关的几何概型命题点1 与平面图形面积有关的问题典例(2017·全国Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是________.答案 π8解析不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.命题点2 与线性规划知识交汇命题的问题典例由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为______. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32,故由几何概型的概率公式,得所求概率 P =S 四边形OACDS △OAB=S △OAB -S △BCD S △OAB=2-142=78.跟踪训练 (1)(2016·全国Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2mn 答案 C解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn,∴π=4mn,故选C.(2)(2017·石家庄调研)在满足不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0的平面内随机取一点M (x 0,y 0),设事件A =“y 0<2x 0”,那么事件A 发生的概率是( ) A.14 B.34 C.13 D.23答案 B解析 作出不等式组⎩⎨⎧x -y +1≥0,x +y -3≤0,y ≥0的平面区域即△ABC ,其面积为4,且事件A=“y 0<2x 0”表示的区域为△AOC ,其面积为3,所以事件A 发生的概率是34.题型三 与体积有关的几何概型典例 (1)已知正三棱锥S —ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P —ABC <12V S —ABC 的概率是( )A.78B.34C.12D.14 答案 A解析 当P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求,由几何概型知, P =1-18=78.(2)如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M —ABCD 的体积小于16的概率为________.答案 12解析 过点M 作平面RS ∥平面AC ,则两平面间的距离是四棱锥M —ABCD 的高,显然点M 在平面RS 上任意位置时,四棱锥M —ABCD 的体积都相等.若此时四棱锥M —ABCD 的体积等于16,只要M 在截面以下即可小于16,当V M —ABCD =16时,即13×1×1×h =16,解得h =12,即点M 到底面ABCD 的距离,所以所求概率P =1×1×121×1×1=12.思维升华求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.跟踪训练 (2017·湖南长沙四县联考)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .1-π4B.π12C.π4 D .1-π12答案 A解析 鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4,故选A.几何概型中的“测度”典例(1)在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________.(2)在长为1的线段上任取两点,则这两点之间的距离小于12的概率为( )A.14B.12C.34D.78 错解展示:(1)∵∠C =90°,∠CAM =30°, ∴所求概率为30°90°=13.(2)当两点之间线段长为12时,占长为1的线段的一半,故所求概率为12.错误答案 (1)13 (2)B现场纠错解析 (1)∵点M 在直角边BC 上是等可能出现的,∴“测度”是长度.设直角边长为a,则所求概率为33aa=33.(2)设任取两点所表示的数分别为x,y,则0≤x≤1,且0≤y≤1.由题意知|x-y|<12,所以所求概率为P=1-2×12×12×121=34.答案(1)33(2)C纠错心得(1)在线段上取点,则点在线段上等可能出现;在角内作射线,则射线在角内的分布等可能.(2)两个变量在某个范围内取值,对应的“测度”是面积.1.(2018届潍坊检测)如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43 B.83C.23D.无法计算答案B解析正方形中随机撒一粒豆子,它落在阴影区域内的概率P=S阴影S正方形=23,即S阴影4=23,解得S 阴影=83.2.设复数=(x -1)+y i(x ,y ∈R ),若| |≤1,则y ≥x 的概率为( ) A.34+12π B.14-12π C.12-1π D.12+1π答案 B解析 由| |≤1可得(x -1)2+y 2≤1,表示以(1,0)为圆心,1为半径的圆及其内部,满足y ≥x 的部分为如图阴影部分所示,由几何概型概率公式可得所求概率为 P =14π×12-12×12π×12=π4-12π=14-12π.3.(2018·石家庄模拟)已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( ) A.14B.13C.23D.12 答案 D解析 以PB ,PC 为邻边作平行四边形PBDC , 则PB →+PC →=PD →,因为PB →+PC →+2P A →=0, 所以PB →+PC →=-2P A →,得PD →=-2P A →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12,故选D.4.已知在△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( )A.16B.13C.12D.23答案 C解析 如图,当BE =1时,∠AEB 为直角,则当点D 在线段BE (不包含B ,E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则当点D 在线段CF (不包含C ,F 点)上时,△ABD 为钝角三角形,所以△ABD 为钝角三角形的概率为1+26=12.5.在区间[0,2]上随机地取一个数x ,则事件“-1≤121log ()2x +≤1”发生的概率为( )A.34B.23C.13D.14 答案 A解析 由-1≤121log ()2x +≤1,得12≤x +12≤2,得0≤x ≤32.由几何概型的概率计算公式,得所求概率 P =32-02-0=34.6.在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12 B .1-π12C.π6 D .1-π6答案 B解析 记“点P 到点O 的距离大于1”为A , P (A )=23-12×43π×1323=1-π12.7.(2017·江苏)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________. 答案 59解析 设事件“在区间[-4,5]上随机取一个数x ,则x ∈D ”为事件A ,由6+x -x 2≥0,解得-2≤x ≤3, ∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5,∴P (A )=59.8.已知平面区域D ={(x ,y )|-1≤x ≤1,-1≤y ≤1},在区域D 内任取一点,则取到的点位于直线y =kx (k ∈R )下方的概率为________. 答案 12解析 由题设知,区域D 是以原点为中心的正方形,根据图形的对称性知,直线y =kx 将其面积平分,如图,故所求概率为12.9.如图,在长方体ABCD —A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A —A 1BD 内的概率为______.答案 16解析 因为11A A BD A ABD V V --==13AA 1×S △ABD=16×AA 1×S 矩形ABCD =16V 长方体,故所求概率为1A A BD V V -长方体=16. 10.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12解析 ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分, ∴所求的概率为P =12.11.在区间[-π,π]内随机取出两个数分别记为a ,b ,求函数f (x )=x 2+2ax -b 2+π2有零点的概率.解 由函数f (x )=x 2+2ax -b 2+π2有零点,可得Δ=(2a )2-4(-b 2+π2)≥0,整理得a 2+b 2≥π2,如图所示,(a ,b )可看成坐标平面上的点,试验的全部结果构成的区域为Ω={(a ,b )|-π≤a ≤π,-π≤b ≤π},其面积S Ω=(2π)2=4π2.事件A 表示函数f (x )有零点,所构成的区域为M ={(a ,b )|a 2+b 2≥π2},即图中阴影部分,其面积为S M =4π2-π3,故P (A )=S M S Ω=4π2-π34π2=1-π4.12.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率. 解 (1)将一枚质地均匀的正方体骰子先后抛掷两次, 所包含的基本事件总数为6×6=36, 由a ·b =-1,得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个.故满足a ·b =-1的概率为336=112. (2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6}.满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}.画出图象如图所示,矩形的面积为S 矩形=25, 阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.13.如图,“天宫一号”运行的轨迹是如图的两个类同心圆,小圆的半径为2km ,大圆的半径为4km ,卫星P 在圆环内无规则地自由运动,则在运行过程中,点P 与点O 的距离小于3km 的概率为________.答案512解析 根据几何概型公式,小于3km 的圆环面积为π(32-22)=5π.圆环总面积为π(42-22)=12π,所以点P 与点O 的距离小于3km 的概率为P (A )=5π12π=512.14.已知关于x 的二次函数f (x )=ax 2-4bx +1.设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的一点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解 ∵函数f (x )=ax 2-4bx +1的图象的对称轴为直线x =2ba,要使f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且2ba≤1,即2b≤a.如图所示,事件的全部结果所构成的区域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(a,b)⎪⎪⎪⎪⎩⎨⎧a+b-8≤0,a>0,b>0,构成所求事件的区域为三角形部分(阴影部分).由⎩⎪⎨⎪⎧a+b-8=0,b=a2,得交点坐标为⎝⎛⎭⎫163,83,故所求事件的概率为P=12×8×8312×8×8=13.15.在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤12”的概率,p2为事件“xy≤12”的概率,则( )A.p1<p2<12B.p2<12<p1C.12<p2<p1D.p1<12<p2答案D解析在直角坐标系中,依次作出不等式⎩⎪⎨⎪⎧0≤x≤1,0≤y≤1,x+y≤12和⎩⎪⎨⎪⎧0≤x≤1,0≤y≤1,xy≤12的可行域如图所示:依题意知,p 1=S △ABOS 四边形OCDE ,p 2=S 曲边多边形OEGFCS 四边形OCDE,而12=S △OEC S 四边形OCDE ,所以p 1<12<p 2.故选D. 16.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h ,乙船停泊时间为2h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1h 以上或乙比甲早到达2h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=10131152.。

2019年南海区南海中学分校高考数学选择题专项训练(一模)

2019年南海区南海中学分校高考数学选择题专项训练(一模)

2019年南海区南海中学分校高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。

第 1 题:来源:山东省临沂市2017届高三第二次模拟考试数学试题(理)含答案已知x,y满足若目标函数的最大值不超过5,则实数m的取值范围是(A) (B) (C) (D)【答案】D第 2 题:来源:福建省龙海市2017_2018学年高一数学上学期第二次月考试题试卷及答案函数的图象大致是()【答案】D第 3 题:来源:西藏自治区拉萨市2017_2018学年高二数学上学期第三次月考试题试卷及答案命题“如果,那么”的逆否命题是A.如果,那么 B.如果,那么C.如果,那么 D.如果,那么【答案】C第 4 题:来源:辽宁省实验中学分校2016-2017学年高一数学上学期期末考试试题试卷及答案已知函数若关于的方程有两个不等的实根,则实数的取值范围是 ( )A. B. C. D.【答案】D第 5 题:来源:广西南宁市2016_2017学年高一数学下学期第一次月考试题试卷及答案在内,使得成立的的取值范围是()A. B.C. D.【答案】C 提示:在同一坐标系中画出正弦曲线和余弦曲线观察即可第 6 题:来源:湖北省荆州市沙市区2017_2018学年高一数学上学期第一次双周考试题试卷及答案已知集合,集合,则集合( )A. B. C.D.【答案】C【解析】根据题意可得,,解得,满足题意,所以集合=故选C.第 7 题:来源:广东省天河区普通高中2017_2018学年高一数学10月月考试题试卷及答案02已知,则()A、6B、7C、9D、11【答案】 B第 8 题:来源:重庆市2017_2018学年高一数学上学期第一次月考试题已知和的定义域合值域均是,其定义如下表:1 2 3 44 3 1 21 2 3 42 1 4 3则不等式的解集为()A. B.C. D.第 9 题:来源:安徽省定远重点中学2018_2019学年高二数学下学期开学考试试题理在△ABC中,若p:A=60°,q:sinA=,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A第 10 题:来源:河北省大名县2018届高三数学上学期第一次月考试题(普通班)理试卷及答案若函数的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称函数具有性质,下列函数具有性质的是()A. B. C. D.【答案】A第 11 题:来源:宁夏六盘山2018届高三数学上学期第一次月考试题理定义在上的奇函数满足,,且当时,,则()A. B. C. 1 D.-1【答案】D第 12 题:来源:广东省江门市第一中学2017届高三数学上学期1月月考试题在抛物线y2=2px(p>0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为(A)(B)(C)(D)【答案】C;第 13 题:来源:黑龙江省大庆市2017_2018学年高一数学上学期第二次阶段测试试题试卷及答案设,,为正数,且,则A. B. C.D.第 14 题:来源:甘肃省甘谷县第一中学2019届高三数学上学期第一次检测考试试题理(含解析)已知定义在上的函数满足条件:①对任意的,都有;②对任意的且,都有;③函数的图象关于轴对称,则下列结论正确的是()A. B.C. D.【答案】C【解析】【分析】根据条件判断函数的周期性和对称性,利用函数对称性,周期性和单调性之间的关系将函数值进行转化比较即可得到结论.【详解】:∵对任意的,都有;∴函数是4为周期的周期函数,∵函数的图象关于轴对称∴函数函数)的关于对称,∵且,都.∴此时函数在上为增函数,则函数在上为减函数,则,,,则,即,故选C.【点睛】本题主要考查与函数有关的命题的真假判断,根据条件判断函数的周期性和对称性,和单调性之间的关系是解决本题的关键.第 15 题:来源:湖北省宜城市第二中学2016-2017学年高二数学下学期开学考试试题试卷及答案理在直角坐标系中,直线的倾斜角是A. B. C.D.【答案】C第 16 题:来源: 2019高考数学一轮复习第9章平面解析几何第7讲抛物线分层演练文201809101132.直线l过抛物线y2=2px(p>0)的焦点,且与抛物线交于A,B两点,若线段AB的长是8,AB的中点到y 轴的距离是2,则此抛物线方程是( )A.y2=12x B.y2=8x C.y2=6x D.y2=4x第 17 题:来源:湖北省孝感市七校教学联盟2017届高三数学上学期期末考试试题文.设,,,则()A. c<b<aB. c<a<bC. a<b<cD. a<c<b【答案】B第 18 题:来源:湖北省襄阳市2016_2017学年高二数学3月月考试题理试卷及答案若直线与曲线有且仅有三个交点,则的取值范围是()A. B. C. D.【答案】B第 19 题:来源: 2017年湖北省宜昌市长阳县高一数学3月月考试题试卷及答案在△ABC中,若,则△ABC是()A.等边三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形【答案】B第 20 题:来源:四川省成都经济技术开发区2018届高三数学上学期第三次月考(11月)试题理试卷及答案如图所示程序框图输出的结果是,则判断框内应填的条件是()....【答案】 A第 21 题:来源:江西省奉新县2018届高三数学上学期第四次月考试题理试卷及答案已知函数是定义域为的偶函数. 当时,,若关于的方程(),有且仅有6个不同实数根,则实数的取值范围A. B.C.D.【答案】D第 22 题:来源:河北省石家庄市辛集中学2018_2019学年高一数学月考试题求值:等于( )A.B. C. D.【答案】C第 23 题:来源: 2016_2017学年宁夏银川市勤行高二数学下学期第一次(3月)月考试题试卷及答案理曲线在点处切线的斜率等于()A. B.C. D.【答案】B第 24 题:来源:江西省南昌市2017_2018学年高二数学上学期期中试题理试卷及答案已知是抛物线上一动点,则点到直线和轴的距离之和的最小值是()A. B. C.2D.【答案】D第 25 题:来源: 2016_2017学年河北省张家口市高一数学6月月考试题(实验班、普通班)试卷及答案在△ABC中,sinA:sinB:sinC=2:3:,则cosC=()A. B. C. D.【答案】D第 26 题:来源:江西省吉安市新干县2016_2017学年高二数学下学期第一次段考试题(3、4班)试卷及答案如图6,四面体A-BCD中,AB=AD=CD=1,BD=,BD⊥CD,平面ABD⊥平面BCD,若四面体A-BCD的四个顶点在同一个球面上,则该球的体积为()A. B.C.D.【答案】C第 27 题:来源:湖北省荆州市2017_2018学年高一数学上学期期中试题理试卷及答案设全集是实数集,,,则如图所示阴影部分所表示的集合是()A.B.C.D.【答案】A第 28 题:来源:河北省大名县2017_2018学年高二数学上学期第二次月考试题试卷及答案已知,成等差数列,成等比数列,则的最小值为()A. 0B. 1C.2 D. 4【答案】D第 29 题:来源: 2017_2018学年高中数学第四章圆与方程4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用学业分层测评试卷及答案半径长为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=6B.(x±4)2+(y-6)2=6C.(x-4)2+(y-6)2=36D.(x±4)2+(y-6)2=36【答案】 D第 30 题:来源:四川省绵阳市江油中学2018_2019学年高二数学下学期期中试题理已知四棱锥中,平面ABCD的法向量为,,则点到底面的距离为()A. B. C.1 D.2【答案】D第 31 题:来源:安徽省肥东县高级中学2019届高三数学12月调研考试试题理在中,点为边上一点,若,,,,则的面积是()A. B.C.D.【答案】C第 32 题:来源:山西省应县2017_2018学年高二数学上学期第四次月考试题理试卷及答案在同一坐标系中,方程a2x2+b2y2=1与ax+by2=0(a>b>0)表示的曲线大致是( )【答案】 D第 33 题:来源:安徽省阜阳市临泉县2018届高三数学上学期第一次模拟考试试题理试卷及答案已知是定义在上的偶函数,且在上是增函数,设,,,则的大小关系是 ( )A. B. C. D.【答案】 B第 34 题:来源: 2017-2018学年吉林省通化市梅河口高一(上)期末数学试卷(2)含答案解析已知函数f(x)=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,﹣π<ϕ<π),其部分图象如图所示,则ω,ϕ的值为()A.B.C.D.【答案】A解:(1)由图知,A=1.f(x)的最小正周期T=4×2=8,所以由T=,得ω=.又f(1)=sin(+ϕ)=1且,﹣π<ϕ<π,所以,+ϕ=,解得ϕ=.故选A.第 35 题:来源:福建省漳州市华安县第一中学2016-2017学年高二数学上学期期末考试试题试卷及答案文“函数在R上单调递增”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A第 36 题:来源:课时跟踪检测(18)三角函数的图象与性质试卷及答案函数y=sin在x=2处取得最大值,则正数ω的最小值为( )A.【答案】D第 37 题:来源: 2017-2018学年吉林省通化市梅河口高一(上)期末数学试卷(2)含答案解析如果 sin(π﹣α)=,那么 cos(+α)等于()A.﹣ B. C. D.﹣【答案】A解:∵sin(π﹣α)=sinα=,那么 cos(+α)=﹣sinα=﹣,第 38 题:来源:宁夏2017-2018学年高二数学12月月考试题理已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上的一点,则△ABP的面积为( )A.18 B.24 C.36D.48【答案】C第 39 题:来源:江西省南昌市实验中学2016-2017学年高一数学上学期期末考试试题试卷及答案若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.【答案】B第 40 题:来源: 2016_2017学年浙江省东阳市高二数学下学期期中试题试卷及答案设是△ABC的外心(三角形外接圆的圆心).若,则的度数为()A.30°B.60°C.90°D.不确定【答案】B。

广东省佛山市南海区南海一中2019高考三角、正余弦、向量高三一轮复习学案

广东省佛山市南海区南海一中2019高考三角、正余弦、向量高三一轮复习学案

三角函数的基本概念(1)一、练习:判断下列说法是否正确,错请说明理由(1)小于o 90的角是锐角; ( ) (2)若将分针拨快10分钟,则分针转过的角度是3π; ( ) (3)角()Z k k ∈+=6ππα是第一象限角; ( ) (4)角()Z k ∈+=62ππα是第一象限角; ( )(5)若3sinsin πα=,则3πα=; ( )(6)若βα=,则βαcos cos = ; ( ) (7)o300-角与o 60角的终边相同; ( ) (8)若{}Z k k A ∈==,2παα,{}Z k k B ∈==,4παα,则B A = ; ( )二、与o2018终边相同的角是( )A.o 38 B.o38- C.o142 D.o142-三、设集合⎭⎬⎫⎩⎨⎧∈+⨯==⎭⎬⎫⎩⎨⎧∈+⨯==Z k kx x N Z k k x x M o o o o ,451804,,451802,那么两集合的关系是什么?课后练习:(必做题1,2,选做题3)(1)下列与49π终边相同的角的表达式中正确的是( ) A.()Z k k o ∈+452π B.()Z k k o∈+⋅49360π C.()Z k k o o ∈-⋅315360 D.()Z k k ∈+45ππ (2)o2015是第 象限角,与o2015终边相同的角的最小正角是 ,最大负角是弧度制及任意角的三角函数(2)例1:(1)求半径为2,圆心角为3的圆弧长度; (2)在半径为6的圆中,求长度为6的弦所对的劣狐所对围成的弓形面积。

练习1:一个半径为R 的扇形,周长为4R ,则这个扇形的面积是 .课后练习:(1)已知θ终边上的一点(,3)P x ()x x 1010cos ,0=≠θ,求sin ,cos ,tan ααα;(2)已知α终边在y =上,求sin ,cos ,tan ααα;任意角三角函数+三角函数的符号(3)巩固练习:1、 已知α终边上的一点()P m ,0m ≠,sin 4m α=,则cos α的值为2、 设α在第二象限,(,4)P x 为其终边上一点,1cos 5x α=,求sin α=任意角的三角函数的符号【练习1】确定下列函数值的符号: ①o190sin ②⎪⎭⎫ ⎝⎛-45cos π ③⎪⎭⎫⎝⎛-⋅ππ415tan 54cos【练习2】若sin tan 0αα<,cos 0tan αα<,则α在第几象限? 【练习3】()sin 2015,cos 2015A 在直角坐标系的第几象限? 课后作业:1.已知角α的顶点是坐标原点,始边是x 轴正半轴,终边过点()1,2-,则α2sin 的值为( ) A.54-B.54C.53-D. 53 2为角β的终边上的一点,,则y 的值为( ) D. 2± 3.已知角θ的终边经过点()(),30P x x <,且,则x 的值为( ) 4.已知角α的终边过点()3,4-P ,则αtan 的值是 ( ) A. -1 B. 1 C. 43-D. 34-同角三角函数基本关系知一求二(四)平方和关系: 商的关系:【例1】(1)已知135cos =α,且α是第四象限角,求αsin 和αtan ; (2)已知125tan =α,⎪⎭⎫ ⎝⎛∈23,ππα,求αsin 、αcos ;【变式】(1)已知135cos =α,求αsin 和αtan ;练习1:【2017年全国1 卷 】已知π(0)2α∈,,tan 2α=,则πcos ()4α-=__________.【例2】已知()πθαα,0,137cos sin ∈=+ (1)=+ααcos sin (2)αtan =【练习2】已知α是三角形的内角,且51cos sin =+αα,则=-α22sin cos 1课后作业:1、已知4sin cos 3αα-=,则sin2α=( ) A. 79 B. 29- C. 29 D. 79-2.已知51cos sin =+ββ,且πβ<<0.(1)求ββcos sin 、ββcos sin -、ββcos 1sin 1+的值; (2)求βsin 、βcos 、βtan 的值.弦切互化问题(五)【例1】已知tan 2α=,则sin cos sin cos αααα+=-【例2】已知3tan =α,求=+-1cos sin 3sin 2ααα【练习1】(新课标全国卷)若43tan =α,则=+αα2sin 2cos ( ) A. 2564 B.2548 C. 1 D. 2516【练习2】已知2tan =α,则=+1sin 2x课后练习:1、已知2tan =α,则=-+ααααcos sin cos sin 。

广东省佛山市南海区南海一中2019高考函数识图高三一轮复习学案

广东省佛山市南海区南海一中2019高考函数识图高三一轮复习学案

函数识图问题1.函数f (x )=(x 2﹣2x )e x 的图象大致是( )A .B .C .D . 2.函数xxx y ln 2=的图象大致是( )A .B .C .D .3.函数x x y ln =的大致图象是( )A .B .C .D .4.函数()1ln f x x x =+的图象大致为( )A .B .C .D .5.在下列图象中,二次函数bx ax y +=2及指数函数x ab y )(=的图象只可能是( ) A .B. C . D . 6.()28(sin )2x x f x x x -=+-的部分图象大致是( )A .B .C .D .7.函数ln 1()xx f x e +=的图象大致为( ) A . B. C . D .8.函数1()(1)x x e f x x e +=-(其中e 为自然对数的底数)的图象大致为( )AB .C .D . 9.函数()()241x x x e e f x x --=-的部分图象大致是( )10.函数()(22)cos x x f x x -=-区间[﹣5,5]上的图象大致为( )A .B .C .D .11.函数(21)x y e x =-的大致图象是( )A .B .C .D . 13.函数()x e f x x=的部分图象大致为( ) A .B .C .D .14.函数2sin ,,22y x x x ππ⎡⎤=-∈-⎢⎥⎣⎦的大致图象是( )A .B .C .D .15.函数222x y x =-+在[﹣2,2]的图象大致为( )A .B .C .D .2018年02月18日165****7346的高中数学组卷参考答案与试题解析一.选择题(共15小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A.B.C.D.【分析】本题是选择题,可采用排除法进行逐一排除,根据f(0)=0可知图象经过原点,以及根据导函数大于0时原函数单调递增,求出单调增区间,从而可以进行判定.【解答】解:因为f(0)=(02﹣2×0)e0=0,排除C;因为f'(x)=(x2﹣2)e x,解f'(x)>0,所以或时f(x)单调递增,排除B,D.故选A.2.函数y=的图象大致是()A.B. C.D.【分析】根据掌握函数的奇偶性和函数的单调性即可判断.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D3.函数y=xln|x|的大致图象是()A.B.C.D.【分析】容易看出,该函数是奇函数,所以排除B项,再原函数式化简,去掉绝对值符号转化为分段函数,再从研究x>0时,特殊的函数值符号、极值点、单调性、零点等性质进行判断.【解答】解:令f(x)=xln|x|,易知f(﹣x)=﹣xln|﹣x|=﹣xln|x|=﹣f(x),所以该函数是奇函数,排除选项B;又x>0时,f(x)=xlnx,容易判断,当x→+∞时,xlnx→+∞,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x>0时,函数图象与x轴只有一个交点,所以C选项满足题意.故选:C.4.函数f(x)=+ln|x|的图象大致为()A.B.C.D.【分析】当x<0时,函数f(x)=,由函数的单调性,排除CD;当x>0时,函数f(x)=,此时,代入特殊值验证,排除A,只有B正确,【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f (x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.5.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.【分析】根据二次函数的对称轴首先排除B、D选项,再根据a﹣b的值的正负,结合二次函数和指数函数的性质逐个检验即可得出答案.【解答】解:根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C不正确故选:A6.f(x)=的部分图象大致是()A.B.C.D.【分析】通过函数的解析式,利用函数的奇偶性的性质,函数的图象经过的特殊点判断函数的图象即可.【解答】解:∵f(﹣x)=f(x)∴函数f(x)为奇函数,排除A,∵x∈(0,1)时,x>sinx,x2+x﹣2<0,故f(x)<0,故排除B;当x→+∞时,f(x)→0,故排除C;故选:D7.函数的图象大致为()A.B.C.D.【分析】利用函数的奇偶性排除选项,通过特殊点的位置判断即可.【解答】解:函数是非奇非偶函数,排除A、B,函数的零点是x=e﹣1,当x=e时,f(e)=,排除选项D.故选:C.8.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B. C.D.【分析】判断f(x)的奇偶性,f(x)的单调性或变化趋势即可得出答案.【解答】解:f(﹣x)====f(x),∴f(x)是偶函数,故f(x)图形关于y轴对称,排除B,D;又x→0时,e x+1→2,x(e x﹣1)→0,∴→+∞,排除C,故选A.9.函数f(x)=的部分图象大致是()A.B.C.D.【分析】先判断函数的奇偶性,再根据函数值的变化趋势即可求出.【解答】解:∵函数f(x)的定义域为(﹣∞,﹣)∪(﹣,)∪(,+∞)f(﹣x)===f(x),∴f(x)为偶函数,∴f(x)的图象关于y轴对称,故排除A,令f(x)=0,即=0,解得x=0,∴函数f(x)只有一个零点,故排除D,当x=1时,f(1)=<0,故排除C,综上所述,只有B符合,故选:B.10.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A.B.C.D.【分析】判断函数在[0,5]之间的零点个数以及特殊点的位置判断选项即可.【解答】解:当x∈[0,5]时,f(x)=(2x﹣2﹣x)cosx=0,可得函数的零点为:0,,,排除A,B,当x=π时,f(π)=﹣2π+2﹣π,<0,对应点在x轴下方,排除选项C,故选:D.11.函数y=e x(2x﹣1)的大致图象是()A.B.C.D.【分析】判断函数的单调性,计算函数与坐标轴的交点坐标即可得出答案.【解答】解:y′=e x(2x﹣1)+2e x=e x(2x+1),令y′=0得x=﹣,∴当x<﹣时,y′<0,当x时,y′>0,∴y=e x(2x﹣1)在(﹣∞,﹣)上单调递减,在(﹣,+∞)上单调递增,当x=0时,y=e0(0﹣1)=﹣1,∴函数图象与y轴交于点(0,﹣1);令y=e x(2x﹣1)=0得x=,∴f(x)只有1个零点x=,当x时,y=e x(2x﹣1)<0,当x时,y=e x(2x﹣1)>0,综上,函数图象为A.故选A.12.函数的部分图象大致为()A.B.C.D.【分析】可得f(x)为奇函数,<1,排除A、B.当x>0时,可得,在区间(1,+∞)上f(x)单调递增,排除D即可.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选C.13.函数的部分图象大致为()A. B.C.D.【分析】可得f(x)为奇函数,<1,排除A、B.当x>0时,可得,在区间(1,+∞)上f(x)单调递增,排除D即可.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选C.14.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.【分析】f(﹣x)=﹣x+2sinx=﹣(x﹣2sinx)=﹣f(x),所以函数为奇函数,故函数的图象关于原点对称,只有CD适合;由于CD图象中极值点不同,可再求函数的极值点选择答案.【解答】解:f(﹣x)=﹣x+2sinx=﹣(x﹣2sinx)=﹣f(x),所以函数为奇函数,故函数的图象关于原点对称,只有CD适合,y′=1﹣2cosx,由y′=0解得x=,∴当x=时,函数取极值,故D适合,故选:D.15.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B.C.D.【分析】利用函数的奇偶性排除选项,特殊点的位置判断即可.【解答】解:由y=﹣2x2+2|x|知函数为偶函数,即其图象关于y轴对称,故可排除B,D.又当x=2时,y=﹣2•(﹣2)2+22=﹣4.所以,C是错误的,故选:A.。

广东省佛山市南海区南海一中2019高考向量高三一轮复习学案

广东省佛山市南海区南海一中2019高考向量高三一轮复习学案

知识点:(1)有向线段: 、 、 (2)向量AB : 、(3)向量AB 的长度(模):(4)零向量: ,记为: ,方向 (5)单位向量:(6)平行向量(共线向量):方向 或 的 向量 (7)相等向量:长度 方向 的向量(8)相反向量:长度 方向 的向量(a 的相反向量为 ) 【概念辨析】下列说法正确的是 (1)向量就是有向线段; (2)零向量没有方向;(3)若向量a 和向量b 平行,则a 与b 的方向平行或相反; (4)若两个向量相等,则它们的起点相同,终点也相同;(5)若向量a 和向量b 共线,b 和向量c 共线,则a 和向量c 也共线(6)若不共线的四点D C B A 、、、,且CD AB =,则ABCD 为平行四边形; (7)b a =的充要条件是b a =且b a //;【向量运算】 加减法法则AB BC +=AC AB -= AB AC += AB BA +=12231n A A A A A A +++=ACBBCAD【练习1】化简下列各式:(1)AB BC AD ++=(2)AB BC AD +-= (3)AB AC BC -+=【练习2】如图所示,在正六边形ABCDEF 中,则AB DE +=AB FE CD ++=A BCDEF【例1】在ABC ∆中,若D 为BC 的中点,则( )A.12AD AB AC =+B.12AD AB AC =-C.1122AD AB AC =+D.1122AD AB AC =-【练习1】在ABC ∆中,若2BD DC = ,则AD = ( 用,AB AC来表示)【练习2】已知,,O A B 为平面上的三点,直线AB 上有一点C ,满足2CB AC =,则OC =( 用,OA OB来表示)【练习3】已知,,O A B 为平面上的三点,直线AB 上有一点C ,满足2CB AC =-,则OC =( 用,OA OB来表示)【练习4】在ABC ∆中,已知D 为AB 上一点,若12,3AD DB CD CA CB λ==+,则λ=【练习4】P 是ABC ∆所在平面内的一点,,且2CP PA =,则PAB ∆和PBC ∆的面积比为共线向量定理及其应用(1)运算律:a b +=()a b c ++= ()a λμ=()a λμ+=()a b λ+=(2)共线向量的充要条件向量a 和向量b共线⇔【例1】已知,a b是两个不共线的向量,且向量2a b + 和向量2a b λ+ 共线,则λ=【练习1】已知,a b是两个不共线的向量,且向量a b λ+ 和向量()3b a -- 共线,则λ=【练习2】已知向量,a b 且2,56,72AB a b BC a b CD a b =+=-+=-,则一定共线的是( )A.C B A ,,B.D B A ,,C.D C B ,,D.D C A ,,【练习3】,a b是两个非零不共线的向量,试确定实数k ,使得ka b + 和向量a kb + 共线。

2019届高考英语第一轮复习学案.doc

2019届高考英语第一轮复习学案.doc

2019 届高考英语第一轮复习教案课题名称 revision of module 1-2 of book 5一、单项选择 1 i was unable _____them of the truthof mystory.a satisfying b to satisfy c to be satisfied d to be satisfactory2he went to the american embassy many times to apply___ his visa.a with b in c for d at 3 the book didn ’t____ to children probably because she employed too many scientificterms. a apply b suit c intend dadapt4 the idea seems good ___, but some people doubt ifit ’ll work ____.a in theory; in practice b in theory; in theory c in practice; in theory d in practice; inpractice5don’t take__ for granted that you didn ’t pass the final exam.a that b this c it d one6 they were just___ the point of leaving the disco____ a former schoolmate called them. a on; while b in; while c on ; when don; before7 european football is played in 80 countries,____ it the most popular sports in the world. a making b males c made d to make 8 he hurried to the station only__ that the train had left.a to have found b finding c foundd to find二、阅读理解 last year my husband developed a terribledisease.dale became fearful of going anywhere alone or of being alone as some of his seizures (发生)were quite severe, even putting him in the hospital on three separateoccasions. we decided that a trained medical service dog would greatly help dale.it would be a companion for dale, and the dog would be trained to stay with him. if he hada seizure,with a service dog beside a downed person,others could see and would be more likely to help. a local person sold us a black labrador puppy at a reduced price. nevaehwas eight weeks old when we got her. at that point, we turned to the local papers for help.we hoped that getting dale ’s story out would help raise funds to pay for the p uppy’s training.dale has been on disability,and his need to have someone with him at all times means i can not work either. we don’t have a lot of money left over at the end of themonth. fundraising started off with the help of familydonations, but we had a long way to go. then one day therewas a knock at the door. i went to answer it; a strangerstood there holding the newspaper article about dale in her hand. she introduced herself as june and told me that her daughter ’s dog had warned her of a canc er she never knewshe had, probably saving her life. now, she felt obligedto help our dog because a dog had helped her. she shockedus when she gave us $100! we never expected such caring and kindness from a complete stranger. 3456782019-03-30课题名称 revision of module 1-2 of book 5一、单项选择 1 i was unable _____them of the truth of my story.a satisfying b to satisfy c to be satisfied d to be satisfactory2he went to the american embassy many times to apply___ his visa.a with b in c for d at 3 the book didn ’t____ to children probably because she employed too many scientificterms. a apply b suit c intend dadapt4 the idea seems good ___, but some people doubt ifit ’ll work ____.a in theory; in practice b in theory; intheory c in practice; in theory d in practice; inpractice5don’t take __ for granted that you didn ’t pass the final exam.a that b this c it d one6 they were just___ the point of leaving the disco____ a former schoolmate called them. a on; while b in; while c on ; when don; before7 european football is played in 80 countries,____ it the most popular sports in the world. a making b males c made d to make 8 he hurried to the station only__ that the train had left.a to have found b finding c foundd to find二、阅读理解 last year my husband developed a terrible disease.dale became fearful of going anywhere alone or of being alone as some of his seizures (发生)were quite severe, even putting him in the hospital on three separateoccasions. we decided that a trained medical service dog would greatly help dale.it would be a companion for dale, and the dog would be trained to stay with him. if he hada seizure,with a service dog beside a downed person,others could see and would be more likely to help. a local person sold us a black labrador puppy at a reduced price. nevaehwas eight weeks old when we got her. at that point,we turned to the local papers for help.we hoped that getting dale ’s story out would help raise funds to pay for the puppy’s training.dale has been on disability,and his need to have someone with him at all times means i can not work either. we don’t have a lot of money left over at the end of themonth. fundraising started off with the help of familydonations, but we had a long way to go. then one day therewas a knock at the door. i went to answer it; a strangerstood there holding the newspaper article about dale in herhand. she introduced herself as june and told me that her daughter ’s dog had warned her of a cancer she never knewshe had, probably saving her life. now, she felt obligedto help our dog because a dog had helped her. she shockedus when she gave us $100! we never expected such caring and kindness from a complete stranger. 3456782019-03-30课题名称 revision of module 1-2 of book 5一、单项选择 1 i was unable _____them of the truth ofmystory.a satisfying b to satisfy c to be satisfied d to be satisfactory2he went to the american embassy many times to apply___ his visa.a with b in c for d at 3 the book didn ’t____ to chi ldren probably because she employed too many scientificterms. a apply b suit c intend dadapt4 the idea seems good ___, but some people doubt ifit ’ll work ____.a in theory; in practice b in theory; intheory c in practice; in theory d in practice; inpractice5don’t take __ for granted that you didn ’t pass the final exam.a that b this c it d one6 they were just___ the point of leaving the disco____ a former schoolmate called them. a on; while b in; while c on ; when don; before7 european football is played in 80 countries,____ it the most popular sports in the world. a making b males c made d to make 8 he hurried to the station only__ that the train had left.a to have found b finding c foundd to find二、阅读理解 last year my husband developed a terrible disease.dale became fearful of going anywhere alone or of being alone as some of his seizures (发生)were quite severe, even putting him in the hospital on three separateoccasions. we decided that a trained medical service dog would greatly help dale.it would be a companion for dale, and the dog would be trained to stay with him. if he hada seizure,with a service dog beside a downed person,others could see and would be more likely to help. a local person sold us a black labrador puppy at a reduced price. nevaehwas eight weeks old when we got her. at that point,we turned to the local papers for help.we hoped that getting dale ’s story out would help raise funds to pay for the puppy’s training.dale has been on disability,and his need to have someone with him at all times means i can not work either. we don’t have a lot of money left over at the end of themonth. fundraising started off with the help of familydonations, but we had a long way to go. then one day therewas a knock at the door. i went to answer it; a strangerstood there holding the newspaper article about dale in her hand. she introduced herself as june and told me that herdaughter ’s dog had warned her of a cancer she never knewshe had, probably saving her life. now, she felt obligedto help our dog because a dog had helped her. she shockedus when she gave us $100! we never expected such caring and kindness from a complete stranger. 3456782019-03-30课题名称 revision of module 1-2 of book 5一、单项选择 1 i was unable _____them of the truth ofmystory.a satisfying b to satisfy c to be satisfied d to be satisfactory2he went to the american embassy many times to apply___ his visa.a with b in c for d at 3 the book didn ’t____ to children probably because she employed too many scientificterms. a apply b suit c intend dadapt4 the idea seems good ___, but some people doubt ifit ’ll work ____.a in theory; in practice b in theory; intheory c in practice; in theory d in practice; inpractice5don’t take __ for granted that you didn ’t passthe final exam.a that b this c it d one6 they were just___ the point of leaving the disco ____ a former schoolmate called them. a on; while b in; while c on ; when don; before7 european football is played in 80 countries,____ it the most popular sports in the world. a making b males c made d to make 8 he hurried to the station only__ that the train had left.a to have found b finding c foundd to find二、阅读理解 last year my husband developed a terrible disease.dale became fearful of going anywhere alone or of being alone as some of his seizures (发生)were quite severe, even putting him in the hospital on three separateoccasions. we decided that a trained medical service dog would greatly help dale.it would be a companion for dale, and the dog would be trained to stay with him. if he hada seizure,with a service dog beside a downed person,others could see and would be more likely to help. a local person sold us a black labrador puppy at a reduced price. nevaehwas eight weeks old when we got her. at that point,we turned to the local papers for help.we hoped that getting dale ’s story out would help raise funds to pay for the puppy’s training.dale has been on disability,and his need to havesomeone with him at all times means i can not work either. we don’t have a lot of money left over at the end of themonth. fundraising started off with the help of familydonations, but we had a long way to go. then one day therewas a knock at the door. i went to answer it; a strangerstood there holding the newspaper article about dale in her hand. she introduced herself as june and told me that herdaughter ’s dog had warned her of a cancer she never knewshe had, probably saving her life. now, she felt obligedto help our dog because a dog had helped her. she shockedus when she gave us $100! we never expected such caring and kindness from a complete stranger. 3456782019-03-30课题名称 revision of module 1-2 of book 5一、单项选择 1 i was unable _____them of the truth of my story.a satisfying b to satisfy c to be satisfied d to be satisfactory2he went to the american embassy many times to apply ___ his visa.a with b in c for d at 3 the book didn ’t ____ to children probably because she employed too many scientificterms. a apply b suit c intend dadapt4 the idea seems good ___, but some people doubt ifit ’ll work ____.a in theory; in practice b in theory; intheory c in practice; in theory d in practice; inpractice5don’t take__ for granted that you didn ’t pass the final exam.a that b this c it d one6 they were just___ the point of leaving the disco____ a former schoolmate called them. a on; while b in; while c on ; when don; before7 european football is played in 80 countries,____ it the most popular sports in the world. a making b males c made d to make 8 he hurried to the station only__ that the train had left.a to have found b finding c foundd to find二、阅读理解 last year my husband developed a terrible disease.dale became fearful of going anywhere alone or of being alone as some of his seizures (发生)were quite severe, even putting him in the hospital on three separateoccasions. we decided that a trained medical service dog would greatly help dale.it would be a companion for dale, and the dog would be trained to stay with him. if he hada seizure,with a service dog beside a downed person,others could see and would be more likely to help. a local person sold us a black labrador puppy at a reduced price. nevaehwas eight weeks old when we got her.at that point,we turnedto the local p apers for help. we hoped that getting dale ’s story out would help raise funds to pay for the puppy’s training.dale has been on disability,and his need to have someone with him at all times means i can not work either. we don’t have a lot of money left over at the end of themonth. fundraising started off with the help of familydonations, but we had a long way to go. then one day therewas a knock at the door. i went to answer it; a strangerstood there holding the newspaper article about dale in her hand. she introduced herself as june and told me that herdaughter ’s dog had warned her of a cancer she never knewshe had, probably saving her life. now, she felt obligedto help our dog because a dog had helped her. she shockedus when she gave us $100! we never expected such caring and kindness from a complete stranger. 3456782019-03-30课题名称 revision of module 1-2 of book 5一、单项选择 1 i was unable _____them of the truth of my story.a satisfying b to satisfy c to be satisfied d to be satisfactory2he went to the american embassy many times to apply ___ his visa.a with b in c for d at 3 the bookdidn ’t____ to children probably because she employed too many scientificterms. a apply b suit c intend dadapt4 the idea seems good ___, but some people doubt ifit ’ll work ____.a in theory; in practice b in theory; intheory c in practice; in theory d in practice; inpractice5 don’t take__ for granted that you didn ’t pass the final exam.a that b this c it d one6 they were just___ the point of leaving the disco____ a former schoolmate called them. a on; while b in; while c on ; when don; before7 european football is played in 80 countries,____ it the most popular sports in the world. a making b males c made d to make 8 he hurried to the station only__ that the train had left.a to have found b finding c foundd to find二、阅读理解 last year my husband developed a terrible disease.dale became fearful of going anywhere alone or of being alone as some of his seizures (发生)were quite severe, even putting him in the hospital on three separateoccasions. we decided that a trained medical service dog would greatly help dale.it would be a companion for dale, and the dog would be trained to stay with him. if he hada seizure,with a service dog beside a downed person,otherscould see and would be more likely to help. a local person sold us a black labrador puppy at a reduced price. nevaehwas eight weeks old when we got her. at that point,we turned to the local papers for help.we hoped that getting dale ’s story out would help raise funds to pay for the puppy’s training.dale has been on disability,and his need to have someone with him at all times means i can not work either. we don’t have a lot of money left over at the end of themonth. fundraising started off with the help of familydonations, but we had a long way to go. then one day therewas a knock at the door. i went to answer it; a strangerstood there holding the newspaper article about dale in her hand. she introduced herself as june and told me that herdaughter ’s dog had warned her of a cancer she never knewshe had, probably saving her life. now, she felt obligedto help our dog because a dog had helped her. she shockedus when she gave us $100! we never expected such caring and kindness from a complete stranger. 3456782019-03-30课题名称 revision of module 1-2 of book 5一、单项选择 1 i was unable _____them of the truth of mystory.a satisfying b to satisfy c to be satisfied d to be satisfactory2he went to the american embassy many times to apply___ his visa.a with b in c for d at 3 the book didn ’t____ to children probably because she employed too many scientificterms. a apply b suit c intend dadapt4 the idea seems good ___, but some people doubt ifit ’ll work ____.a in theory; in practice b in theory; intheory c in practice; in theory d in practice; inpractice5 don’t take__ for granted that you didn ’t pass the final exam.a that b this c it d one6 they were just___ the point of leaving the disco____ a former schoolmate called them. a on; while b in; while c on ; when don; before7 european football is played in 80 countries,____ it the most popular sports in the world. a making b males c made d to make 8 he hurried to the station only__ that the train had left.a to have found b finding c foundd to find二、阅读理解 last year my husband developed a terrible disease.dale became fearful of going anywhere alone or of being alone as some of his seizures (发生)were quite severe, even putting him in the hospital on three separateoccasions. we decided that a trained medical service dogwould greatly help dale.it would be a companion for dale, and the dog would be trained to stay with him. if he hada seizure,with a service dog beside a downed person,others could see and would be more likely to help. a local person sold us a black labrador puppy at a reduced price. nevaehwas eight weeks old when we got her. at that point,we turned to the l ocal papers for help.we hoped that getting dale ’s story out would help raise funds to pay for the puppy’s training.dale has been on disability,and his need to have someone with him at all times means i can not work either. we don’t have a lot of money l eft over at the end of the month. fundraising started off with the help of familydonations, but we had a long way to go. then one day therewas a knock at the door. i went to answer it; a strangerstood there holding the newspaper article about dale in her hand. she introduced herself as june and told me that her daughter ’s dog had warned her of a cancer she never knewshe had, probably saving her life. now, she felt obligedto help our dog because a dog had helped her. she shockedus when she gave us $100! we never expected such caring and kindness from a complete stranger. 3456782019-03-30课题名称 revision of module 1-2 of book 5一、单项选择 1 i was unable _____them of the truthof mystory.a satisfying b to satisfy c to be satisfied d to be satisfactory2he went to the american embassy many times to apply___ his visa.a with b in c for d at 3 the book didn ’t____ to children probably because she employed too many scientificterms. a apply b suit c intend dadapt4 the idea seems good ___, but some people doubt ifit ’ll work ____.a in theory; in practice b in theory; intheory c in practice; in theory d in practice; inpractice5don’t take__ for granted that you didn ’t pass the final exam.a that b this c it d one6 they were just___ the point of leaving the disco____ a former schoolmate called them. a on; while b in; while c on ; when don; before7 european football is played in 80 countries,____ it the most popular sports in the world. a making b males c made d to make 8 he hurried to the station only__ that the train had left.a to have found b finding c foundd to find二、阅读理解 last year my husband developed a terribledisease.dale became fearful of going anywhere alone or of being alone as some of his seizures (发生)were quite severe, even putting him in the hospital on three separateoccasions. we decided that a trained medical service dog would greatly help dale.it would be a companion for dale, and the dog would be trained to stay with him. if he hada seizure,with a service dog beside a downed person,others could see and would be more likely to help. a local person sold us a black labrador puppy at a reduced price. nevaehwas eight weeks old when we got her. at that point, we turned to the local papers for help.we hoped that getting dale ’s story out would help raise funds to pay for the puppy’s training.dale has been on disability,and his need to have someone with him at all times means i can not work either. we don’t have a lot of money left over at the end of themonth. fundraising started off with the help of familydonations, but we had a long way to go. then one day therewas a knock at the door. i went to answer it; a strangerstood there holding the newspaper article about dale in her hand. she introduced herself as june and told me that herdaughter ’s dog had warned her of a cancer she never knewshe had, probably saving her life. now, she felt obligedto help our dog because a dog had helped her. she shockedus when she gave us $100! we never expected such caring and kindness from a complete stranger. 3456782019-03-30课题名称 revision of module 1-2 of book 5一、单项选择 1 i was unable _____them of the truth of my story.a satisfying b to satisfy c to be satisfied d to be satisfactory2he went to the american embassy many times to apply___ his visa.a with b in c for d at 3 the book didn ’t____ to children probably because she employed too many scientificterms. a apply b suit c intend dadapt4 the idea seems good ___, but some people doubt ifit ’l work ____.a in theory; in practice b in theory; intheory c in practice; in theory d in practice; inpractice5don’t take __ for granted that you didn ’t pass the final exam.a that b this c it d one6 they were just___ the point of leaving the disco____ a former schoolmate called them. a on; while b in; while c on ; when don; before7 european football is played in 80 countries,____ it the most popular sports in the world. a making b males c made d to make 8 he hurried to the station only__ that the train had left.a to have found b finding c foundd to find二、阅读理解 last year my husband developed a terrible disease.dale became fearful of going anywhere alone or of being alone as some of his seizures (发生)were quite severe, even putting him in the hospital on three separateoccasions. we decided that a trained medical service dog would greatly help dale.it would be a companion for dale, and the dog would be trained to stay with him. if he hada seizure,with a service dog beside a downed person,others could see and would be more likely to help. a local person sold us a black labrador puppy at a reduced price. nevaehwas eight weeks old when we got her. at that point,we turned to the local papers for help.we hoped that getting dale ’s story out would help raise funds to pay for the puppy’s training.dale has been on disability,and his need to have someone with him at all times means i can not work either. we don’t have a lot of money left over at the end of themonth. fundraising started off with the help of familydonations, but we had a long way to go. then one day therewas a knock at the door. i went to answer it; a strangerstood there holding the newspaper article about dale in herhand. she introduced herself as june and told me that her daughter ’s dog had warned her of a cancer she never knewshe had, probably saving her life. now, she felt obligedto help our dog because a dog had helped her. she shockedus when she gave us $100! we never expected such caring and kindness from a complete stranger. 3456782019-03-30课题名称 revision of module 1-2 of book 5一、单项选择 1 i was unable _____them of the truth ofmystory.a satisfying b to satisfy c to be satisfied d to be satisfactory2he went to the american embassy many times to apply___ his visa.a with b in c for d at 3 the book didn ’t____ to children probably because she employed too many scientificterms. a apply b suit c intend dadapt4 the idea seems good ___, but some people doubt ifit ’ll work ____.a in theory; i n practice b in theory; in theory c in practice; in theory d in practice; inpractice5don’t take __ for granted that you didn ’t pass the final exam.a that b this c it d one6 they were just___ the point of leaving the disco____ a former schoolmate called them. a on; while b in; while c on ; when don; before7 european football is played in 80 countries,____ it the most popular sports in the world. a making b males c made d to make 8 he hurried to the station only__ that the train had left.a to have found b finding c foundd to find二、阅读理解 last year my husband developed a terrible disease.dale became fearful of going anywhere alone or of being alone as some of his seizures (发生)were quite severe, even putting him in the hospital on three separateoccasions. we decided that a trained medical service dog would greatly help dale.it would be a companion for dale, and the dog would be trained to stay with him. if he hada seizure,with a service dog beside a downed person,others could see and would be more likely to help. a local person sold us a black labrador puppy at a reduced price. nevaehwas eight weeks old when we got her. at that point,we turned to the local papers for help.we hoped that getting dale ’s story out would help raise funds to pay for the puppy’s training.dale has been on disability,and his need to have someone with him at all times means i can not work either. we don’t have a lot of money left over at the end of themonth. fundraising started off with the help of familydonations, but we had a long way to go. then one day therewas a knock at the door. i went to answer it; a strangerstood there holding the newspaper article about dale in her hand. she introduced herself as june and told me that herdaughter ’s dog ha d warned her of a cancer she never knew she had, probably saving her life. now, she felt obligedto help our dog because a dog had helped her. she shockedus when she gave us $100! we never expected such caring and kindness from a complete stranger. 345678。

!!2019年高三物理第一轮复习教学案(全)

!!2019年高三物理第一轮复习教学案(全)

题一各种性质的力和物体的平衡【重点知识梳理】一.各种性质的力:1.重力:重力与万有引力、重力的方向、重力的大小G = mg (g随高度、纬度、地质结构而变化)、重心(悬吊法,支持法);2.弹力:产生条件(假设法、反推法)、方向(切向力,杆、绳、弹簧等弹力方向)、大小F = Kx (x为伸长量或压缩量,K为倔强系数,只与弹簧的原长、粗细和材料有关) ;3.摩擦力:产生条件(假设法、反推法)、方向(法向力,总是与相对运动或相对运动趋势方向相反)、大小(滑动摩擦力:f= μN ;静摩擦力:由物体的平衡条件或牛顿第二定律求解)4.万有引力:F=G(注意适用条件);5.库仑力:F=K(注意适用条件) ;6.电场力:F=qE (F 与电场强度的方向可以相同,也可以相反);7.安培力:磁场对电流的作用力。

公式:F= BIL (B⊥I)方向一左手定则;8.洛仑兹力:磁场对运动电荷的作用力。

公式:f=BqV (B⊥V) 方向一左手定则;9.核力:短程强引力。

二.平衡状态:1.平衡思想:力学中的平衡、电磁学中的平衡(电桥平衡、静电平衡、电磁流量计、磁流体发电机等)、热平衡问题等;静态平衡、动态平衡;2.力的平衡:共点力作用下平衡状态:静止(V=0,a=0)或匀速直线运动(V≠0,a=0);物体的平衡条件,所受合外力为零。

∑F=0 或∑F x =0 ∑F y =0;推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。

[2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力(一个力)的合力一定等值反向三、力学中物体平衡的分析方法:1.力的合成与分解法(正交分解法); 2.图解法;3.相似三角形法; 4.整体与隔离法;【分类典型例题】一.重力场中的物体平衡:题型一:常规力平衡问题解决这类问题需要注意:此类题型常用分解法也可以用合成法,关键是找清力及每个力的方向和大小表示!多为双方向各自平衡,建立各方向上的平衡方程后再联立求解。

广东省佛山市南海区南海一中2019高考选做题高三一轮复习学案

广东省佛山市南海区南海一中2019高考选做题高三一轮复习学案

极坐标与参数方程1、极坐标系与极坐标(1)极坐标系:如图所示,在平面上取一定点O 叫做极点,自点O 引一条射线Ox 叫做极轴,再选定一个单位长度、角度单位(通常取弧度)及其正方向(通常取逆时针方向为正方向),这样就建立了一个一个正方向。

(2)极坐标:设M 是平面上的任一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点 M 的极角,记为θ.有序数对()θρ,称为点M 的极坐标,记作()θρ,M .一般地,不做特殊说明时,我们认为0≥ρ,θ可取任意实数. 二、相关题型1、极坐标、参数方程与直角坐标方程的互化(1)直角坐标方程化为极坐标方程比较容易,只要直接将cos ρθ、sin ρθ代入x 、y 并化简即可; 而极坐标方程化为直角坐标方程则相对困难一些,经常需要两边同时乘以ρ,构造2cos ,sin ,ρθρθρ。

特别地:①3πρ=,表示的是一条射线;,3R πρρ=∈,表示的是一条直线②直角坐标化极坐标是,角θ的确定要看点(),x y 在第几象限,如点()1,1A --的极坐标的2ρ=,tan 1y x θ==,因为点在第三象限,所以54πθ=,所以点A 的极坐标为52,4π⎛⎫ ⎪⎝⎭(2)化直角坐标方程为参数方程,要熟记圆、椭圆、直线的参数方程;化参数方程为普通方程的方法: 化参数方程为普通方程的基本思路是消去参数,从而将参数方程化为普通方程。

消去参数的常用方法有:①代入消元法;②加减消元法;③恒等式(如22sin cos 1θθ+=,()2sin cos 1sin 2θθθ+=+)消元法;参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围,这一点最易忽视.如已知曲线的参数方程是sin cos ()sin 2x y θθθθ=+⎧⎨=⎩为参数,其普通方程为21y x =-,注意要写上x 的取值范围2,2⎡⎤-⎣⎦第二问:有四种类型①与解析几何有关的问题,如求交点,求距离等,一般会直接用直接坐标方程去解题 1、以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为圆心、为半径。

2019届高考数学一轮复习 选考部分 不等式选讲学案 理

2019届高考数学一轮复习 选考部分 不等式选讲学案 理

不等式选讲第一节绝对值不等式1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值不等式|x |<a 与|x |>a 的解法: 不等式 a >0 a =0a <0|x |<a {}x |-a <x <a ∅∅ |x |>a {}x |x >a 或x <-a{}x |x ∈R 且x ≠0R(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .1.设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<||a |-|b || D .|a -b |<|a |+|b | 解析:选B ∵ab <0, ∴|a -b |=|a |+|b |>|a +b |.2.若不等式|kx -4|≤2的解集为{}x |1≤x ≤3,则实数k =________. 解析:由|kx -4|≤2⇔2≤kx ≤6. ∵不等式的解集为{}x |1≤x ≤3,∴k =2. 答案:23.函数y =|x -4|+|x +4|的最小值为________.解析:因为|x -4|+|x +4|≥|(x -4)-(x +4)|=8, 所以所求函数的最小值为8. 答案:84.不等式|x +1|-|x -2|≥1的解集是________. 解析:令f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1恒成立. 所以不等式的解集为{}x |x ≥1. 答案:{}x |x ≥1考点一 绝对值不等式的解法基础送分型考点——自主练透[考什么·怎么考]绝对值不等式的解法是每年高考的重点,既单独考查,也与函数的图象、含参问题等的综合考查,难度较小,属于低档题.(1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.解:(1)由题意得f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或1<x <3或x >5. 2.解下列不等式. (1)|2x +1|-2|x -1|>0; (2)|x +3|-|2x -1|<x2+1.解:(1)法一:原不等式可化为|2x +1|>2|x -1|, 两边平方得4x 2+4x +1>4(x 2-2x +1), 解得x >14,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >14.法二:原不等式等价于⎩⎪⎨⎪⎧x <-12,-2x +1+2x -1>0或⎩⎪⎨⎪⎧-12≤x ≤1,2x +1+2x -1>0或⎩⎪⎨⎪⎧x >1,2x +1-2x -1>0.解得x >14,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >14.(2)①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3. ②当-3≤x ≤12时,原不等式化为(x +3)-(1-2x )<x2+1,解得x <-25,∴-3≤x <-25.③当x >12时,原不等式化为(x +3)+(1-2x )<x2+1,解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2. [怎样快解·准解]绝对值不等式的常见3解法 (1)零点分段讨论法含有两个或两个以上绝对值符号的不等式,可用零点分段讨论法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组),一般步骤如下:①令每个绝对值符号里的代数式为零,并求出相应的根; ②将这些根按从小到大排序,它们把实数集分为若干个区间;③在所分的各区间上,根据绝对值的定义去掉绝对值符号,求所得的各不等式在相应区间上的解集;④这些解集的并集就是原不等式的解集. (2)利用绝对值的几何意义由于|x -a |+|x -b |与|x -a |-|x -b |分别表示数轴上与x 对应的点到与a ,b 对应的点的距离之和与距离之差,因此对形如|x -a |+|x -b |<c (c >0)或|x -a |-|x -b |>c (c >0)的不等式,利用绝对值的几何意义求解更直观.(3)数形结合法在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解. [易错提醒] 用零点分段法和几何意义求解绝对值不等式时,去绝对值符号的关键点是找零点,将数轴分成若干段,然后从左到右逐段讨论.考点二 绝对值三角不等式的应用 重点保分型考点——师生共研应用绝对值三角不等式证明不等式或求最值是高考的常考内容,难度适中.[典题领悟]1.若对于实数x ,y 有|1-x |≤2,|y +1|≤1,求|2x +3y +1|的最大值. 解:因为|2x +3y +1|=|2(x -1)+3(y +1)| ≤2|x -1|+3|y +1|≤7, 所以|2x +3y +1|的最大值为7.2.若a ≥2,x ∈R ,求证:|x -1+a |+|x -a |≥3. 证明:因为|x -1+a |+|x -a | ≥|(x -1+a )-(x -a )|=|2a -1|, 又a ≥2,故|2a -1|≥3, 所以|x -1+a |+|x -a |≥3成立.[解题师说]证明绝对值不等式的3种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为一般不等式再证明. (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,利用数形结合进行证明.[冲关演练]已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证明:∵|x +5y |=|3(x +y )-2(x -y )|. ∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1成立.考点三 绝对值不等式的综合应用重点保分型考点——师生共研绝对值不等式的综合应用是每年高考的热点,主要涉及绝对值不等式的解法、恒成立问题,难度适中,属于中档题.(2017·全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解:(1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝ ⎛⎭⎪⎫|x |-322+54≤54,当且仅当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为⎝⎛⎦⎥⎤-∞,54.[解题师说]设函数f (x )中含有绝对值,则 (1)f (x )>a 有解⇔f (x )max >a . (2)f (x )>a 恒成立⇔f (x )min >a .(3)f (x )>a 恰在(c ,b )上成立⇔c ,b 是方程f (x )=a 的解.[冲关演练]1.(2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解:(1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1]. 2.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3,即⎪⎪⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪⎪⎪12-x ≥3-a 2. 又⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪⎪⎪12-x min =⎪⎪⎪⎪⎪⎪12-a 2,所以⎪⎪⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2. 所以a 的取值范围是[2,+∞).1.已知函数f (x )=|x -4|+|x -a |(a ∈R)的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2,当2<x ≤4时,显然不等式成立, 当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤112.2.(2018·石家庄质检)已知函数f (x )=|x -3|+|x +m |(x ∈R). (1)当m =1时,求不等式f (x )≥6的解集;(2)若不等式f (x )≤5的解集不是空集,求实数m 的取值范围. 解:(1)当m =1时,f (x )≥6等价于⎩⎪⎨⎪⎧x ≤-1,-x -3-x +1≥6或⎩⎪⎨⎪⎧-1<x <3,-x -3+x +1≥6或⎩⎪⎨⎪⎧x ≥3,x -3+x +1≥6,解得x ≤-2或x ≥4,所以不等式f (x )≥6的解集为{x |x ≤-2或x ≥4}. (2)∵|x -3|+|x +m |≥|(x -3)-(x +m )|=|m +3|, ∴f (x )min =|3+m |,∴|m +3|≤5, 解得-8≤m ≤2,∴实数m 的取值范围为[-8,2].3.(2018·郑州质检)已知函数f (x )=|2x +1|,g (x )=|x |+a . (1)当a =0时,解不等式f (x )≥g (x );(2)若存在x ∈R ,使f (x )≤g (x )成立,求实数a 的取值范围. 解:(1)当a =0时,由f (x )≥g (x ),得|2x +1|≥|x |, 两边平方整理得3x 2+4x +1≥0, 解得x ≤-1或x ≥-13,故原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫-13,+∞. (2)由f (x )≤g (x ),得a ≥|2x +1|-|x |, 令h (x )=|2x +1|-|x |,则h (x )=⎩⎪⎨⎪⎧-x -1,x ≤-12,3x +1,-12<x <0,x +1,x ≥0,故h (x )min =h ⎝ ⎛⎭⎪⎫-12=-12,所以实数a 的取值范围为⎣⎢⎡⎭⎪⎫-12,+∞.4.已知函数f (x )=|4x -a |+a 2-4a (a ∈R). (1)当a =1时,求不等式-2≤f (x )≤4的解集;(2)设函数g (x )=|x -1|,若对任意的x ∈R ,f (x )-4g (x )≤6恒成立,求实数a 的取值范围.解:(1)f (x )=|4x -a |+a 2-4a , 当a =1时,f (x )=|4x -1|-3.因为-2≤f (x )≤4,所以1≤|4x -1|≤7,即⎩⎪⎨⎪⎧-7≤4x -1≤7,4x -1≥1或4x -1≤-1,解得-32≤x ≤0或12≤x ≤2,因此-2≤f (x )≤4的解集为⎣⎢⎡⎦⎥⎤-32,0∪⎣⎢⎡⎦⎥⎤12,2.(2)因为f (x )-4g (x )=|4x -a |+a 2-4a -4|x -1|≤|4x -a +4-4x |+a 2-4a =a 2-4a +|4-a |,所以a 2-4a +|4-a |≤6,当a ≥4时,a 2-4a +a -4≤6,得4≤a ≤5, 当a <4时,a 2-4a +4-a ≤6,得5-332≤a <4,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤5-332,5.5.设函数f (x )=|x +2|-|x -1|. (1)求不等式f (x )>1的解集;(2)若关于x 的不等式f (x )+4≥|1-2m |有解,求实数m 的取值范围. 解:(1)函数f (x )可化为f (x )=⎩⎪⎨⎪⎧-3,x ≤-2,2x +1,-2<x <1,3,x ≥1,当x ≤-2时,f (x )=-3<0,不合题意;当-2<x <1时,f (x )=2x +1>1,得x >0,即0<x <1; 当x ≥1时,f (x )=3>1,即x ≥1.综上,不等式f (x )>1的解集为(0,+∞).(2)关于x 的不等式f (x )+4≥|1-2m |有解等价于(f (x )+4)max ≥|1-2m |,由(1)可知f (x )max =3(也可由|f (x )|=||x +2|-|x -1||≤|(x +2)-(x -1)|=3,得f (x )max =3),即|1-2m |≤7,解得-3≤m ≤4.故实数m 的取值范围为[-3,4].6.(2018·东北四市模拟)已知a >0,b >0,函数f (x )=|x +a |+|2x -b |的最小值为1. (1)证明:2a +b =2;(2)若a +2b ≥tab 恒成立,求实数t 的最大值. 解:(1)证明:因为-a <b2,所以f (x )=|x +a |+|2x -b |=⎩⎪⎨⎪⎧-3x -a +b ,x <-a ,-x +a +b ,-a ≤x ≤b 2,3x +a -b ,x >b2,显然f (x )在⎝ ⎛⎭⎪⎫-∞,b 2上单调递减,在⎝ ⎛⎭⎪⎫b2,+∞上单调递增,所以f (x )的最小值为f ⎝ ⎛⎭⎪⎫b 2=a +b 2,所以a +b2=1,即2a +b =2.(2)因为a +2b ≥tab 恒成立,所以a +2bab≥t 恒成立, a +2b ab =1b +2a =12⎝ ⎛⎭⎪⎫1b +2a (2a +b ) =12⎝⎛⎭⎪⎫5+2a b +2b a ≥12⎝ ⎛⎭⎪⎫5+22a b ·2b a =92. 当且仅当a =b =23时,a +2b ab 取得最小值92,所以t ≤92,即实数t 的最大值为92.7.已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),所以△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞). 8.已知函数f (x )=|3x +2|. (1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n(a >0)恒成立,求实数a 的取值范围.解:(1)不等式f (x )<4-|x -1|, 即|3x +2|+|x -1|<4.当x <-23时,不等式化为-3x -2-x +1<4,解得-54<x <-23;当-23≤x ≤1时,不等式化为3x +2-x +1<4,解得-23≤x <12;当x >1时,不等式化为3x +2+x -1<4,无解.综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-54<x <12.(2)1m +1n =⎝ ⎛⎭⎪⎫1m +1n (m +n )=1+1+n m +mn≥4,当且仅当m =n =12时等号成立.令g (x )=|x -a |-f (x )=|x -a |-|3x +2|=⎩⎪⎨⎪⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,解得0<a ≤103,所以实数a 的取值范围是⎝⎛⎦⎥⎤0,103.第二节不等式的证明1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证A B≥1. 3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( )A .s ≥tB .s >tC .s ≤tD .s <t解析:选A ∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t . 2.已知a ,b ∈R +,且a +b =2,则1a +1b的最小值为( )A .1B .2C .4D .8解析:选B ∵a ,b ∈R +,且a +b =2,∴(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab=4, ∴1a +1b ≥4a +b =2,即1a +1b 的最小值为2(当且仅当a =b =1时,等号成立). 3.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c的最小值为________.解析:把a +b +c =1代入1a +1b +1c中得a +b +c a +a +b +c b +a +b +cc=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.故1a +1b +1c的最小值为9.答案:9考点一 比较法证明不等式重点保分型考点——师生共研比较法证明不等式是高考考查的重点,主要涉及作差比较法和作商比较法,难度适中,有时难度也较大.(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |.[解题师说]1.作差比较法(1)作差比较法证明不等式的4步骤(2)作差比较法的应用范围当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.2.作商比较法(1)作商比较法证明不等式的一般步骤(2)作商比较法的应用范围当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.[冲关演练]1.求证:当x ∈R 时,1+2x 4≥2x 3+x 2. 证明:法一:(1+2x 4)-(2x 3+x 2) =2x 3(x -1)-(x +1)(x -1) =(x -1)(2x 3-x -1) =(x -1)(2x 3-2x +x -1) =(x -1)[2x (x 2-1)+(x -1)] =(x -1)2(2x 2+2x +1) =(x -1)2⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +122+12≥0, 所以1+2x 4≥2x 3+x 2. 法二:(1+2x 4)-(2x 3+x 2) =x 4-2x 3+x 2+x 4-2x 2+1 =(x -1)2·x 2+(x 2-1)2≥0, 所以1+2x 4≥2x 3+x 2.2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b ab+2a b=⎝ ⎛⎭⎪⎫a b -2a b ,∴当a =b 时,⎝ ⎛⎭⎪⎫a b -2a b =1, 当a >b >0时,a b>1,a -b2>0,∴⎝ ⎛⎭⎪⎫a b -2a b >1,当b >a >0时,0<a b<1,a -b2<0,∴⎝ ⎛⎭⎪⎫a b -2a b >1,∴a a b b≥(ab )+2a b .考点二 综合法证明不等式重点保分型考点——师生共研综合法证明不等式是每年高考的重点,主要涉及基本不等式的应用,难度适中.[典题领悟](2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明:(1)(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3a +b24(a +b )=2+3a +b 34,∴(a +b )3≤8,因此a +b ≤2.[解题师说]1.综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ;a 2+b 2≥12(a +b )2;a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22.(4)a +b2≥ab ,它的变形形式有a +1a ≥2(a >0);ab +ba≥2(ab >0); a b +ba≤-2(ab <0). (5)(a 2+b 2)(c 2+d 2)≥(ac +bd )2.[冲关演练]1.已知a >0,b >0,a +b =1,求证: (1)1a +1b +1ab≥8;(2)⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b ≥9. 证明:(1)∵a +b =1,a >0,b >0, ∴1a +1b +1ab=1a +1b+a +b ab=2⎝ ⎛⎭⎪⎫1a +1b =2⎝⎛⎭⎪⎫a +b a +a +b b=2⎝ ⎛⎭⎪⎫b a +a b +4≥4b a ·a b +4=8,当且仅当a =b =12时,等号成立, ∴1a +1b +1ab≥8.(2)∵⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b =1a +1b +1ab+1,由(1)知1a +1b +1ab≥8.∴⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b ≥9.2.已知函数f (x )=2|x +1|+|x -2|. (1)求f (x )的最小值m ;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c≥3.解:(1)当x <-1时,f (x )=-2(x +1)-(x -2)=-3x ∈(3,+∞); 当-1≤x <2时,f (x )=2(x +1)-(x -2)=x +4∈[3,6); 当x ≥2时,f (x )=2(x +1)+(x -2)=3x ∈[6,+∞). 综上,f (x )的最小值m =3.(2)证明:因为a ,b ,c 均为正实数,且满足a +b +c =3,所以b 2a +c 2b +a 2c+(a +b +c )=⎝ ⎛⎭⎪⎫b 2a +a +⎝ ⎛⎭⎪⎫c 2b +b +⎝ ⎛⎭⎪⎫a 2c +c ≥2⎝⎛⎭⎪⎫b 2a·a +c 2b·b +a 2c ·c =2(a +b +c ), 当且仅当a =b =c =1时,取“=”,所以b 2a +c 2b +a 2c ≥a +b +c ,即b 2a +c 2b +a 2c≥3.考点三 分析法证明不等式 重点保分型考点——师生共研分析法证明不等式是高考考查的重点,常与充要条件等综合考查,难度中等及以上.[典题领悟]已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解;③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2, 即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[解题师说]1.分析法的应用条件当所证明的不等式不能使用比较法,且和重要不等式(a 2+b 2≥2ab )、基本不等式⎝ ⎛⎭⎪⎫ab ≤a +b 2,a >0,b >0没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.用分析法证“若A 则B ”这个命题的模式 为了证明命题B 为真,只需证明命题B 1为真,从而有… 只需证明命题B 2为真,从而有… ……只需证明命题A 为真,而已知A 为真,故B 必真.[冲关演练]已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab , 即证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,即证(a -c )2<c 2-ab , 即证a 2-2ac <-ab .因为a >0,所以只要证a -2c <-b , 即证a +b <2c .由已知条件知,上式显然成立,所以原不等式成立.1.设a ,b ,c ∈R +,且a +b +c =1. (1)求证:2ab +bc +ca +c 22≤12;(2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a≥2.证明:(1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2, 所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12.(2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bca,所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝ ⎛⎭⎪⎫ac b +ab c +⎝ ⎛⎭⎪⎫ab c +bc a +⎝ ⎛⎭⎪⎫ac b +bc a =a ⎝ ⎛⎭⎪⎫c b +b c +b ⎝ ⎛⎭⎪⎫a c +c a +c ⎝ ⎛⎭⎪⎫a b +b a ≥2a +2b +2c =2.2.若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.设a ,b ,c ,d 均为正数,且a +b =c +d ,求证: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2.因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1),得a +b >c +d .②充分性:若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.4.已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a .(1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3.(2)证明:由(1)知p +q +r =3,又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.5.已知函数f (x )=|x -1|.(1)解不等式f (2x )+f (x +4)≥8;(2)若|a |<1,|b |<1,a ≠0,求证:f ab |a |>f ⎝ ⎛⎭⎪⎫b a . 解:(1)f (2x )+f (x +4)=|2x -1|+|x +3|=⎩⎪⎨⎪⎧ -3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103; 当-3≤x <12时,-x +4≥8无解; 当x ≥12时,由3x +2≥8,解得x ≥2. 所以不等式f (2x )+f (x +4)≥8的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≤-103或x ≥2. (2)证明:f ab |a |>f ⎝ ⎛⎭⎪⎫b a 等价于f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 即|ab -1|>|a -b |.因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0,所以|ab -1|>|a -b |.故所证不等式成立.6.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M .(1)求M ;(2)当x ∈M 时,证明:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧ x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1,解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1,解得x ≤43,显然不成立. 故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14. 令g (x )=-⎝ ⎛⎭⎪⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数,∴g (x )≤g (0)=0.故x [f (x )]2-x 2f (x )≤0.7.已知a ,b 都是正实数,且a +b =2,求证:a 2a +1+b 2b +1≥1.证明:∵a >0,b >0,a +b =2, ∴a 2a +1+b 2b +1-1=a 2b +1+b 2a +1-a +1b +1a +1b +1=a 2b +a 2+b 2a +b 2-ab -a -b -1a +1b +1=a 2+b 2+ab a +b -ab -a +b -1a +1b +1=a 2+b 2+2ab -ab -3a +1b +1=a +b 2-3-ab a +1b +1=1-ab a +1b +1. ∵a +b =2≥2ab ,∴ab ≤1.∴1-ab a +1b +1≥0. ∴a 2a +1+b 2b +1≥1.8.设函数f (x )=x -|x +2|-|x -3|-m ,若∀x ∈R ,1m-4≥f (x )恒成立. (1)求实数m 的取值范围;(2)求证:log (m +1)(m +2)>log (m +2)(m +3).解:(1)∵∀x ∈R ,1m-4≥f (x )恒成立, ∴m +1m≥x -|x +2|-|x -3|+4恒成立. 令g (x )=x -|x +2|-|x -3|+4=⎩⎪⎨⎪⎧ 3x +3,x <-2,x -1,-2≤x ≤3,-x +5,x >3.∴函数g (x )在(-∞,3]上是增函数,在(3,+∞)上是减函数,∴g (x )max =g (3)=2,∴m +1m ≥g (x )max =2, 即m +1m -2≥0⇒m 2-2m +1m =m -12m ≥0, ∴m >0,综上,实数m 的取值范围是(0,+∞).(2)证明:由m >0,知m +3>m +2>m +1>1, 即lg(m +3)>lg(m +2)>lg(m +1)>lg 1=0. ∴要证log (m +1)(m +2)>log (m +2)(m +3).只需证lg m +2lg m +1>lg m +3lg m +2, 即证lg(m +1)·lg(m +3)<lg 2(m +2), 又lg(m +1)·lg(m +3)< ⎣⎢⎡⎦⎥⎤lg m +1+lg m +32 2 =[lg m +1m +3]24<[lg m 2+4m +4]24=lg 2(m +2), ∴log (m +1)(m +2)>log (m +2)(m +3)成立.。

广东省佛山市顺德区均安中学2019届高三数学(文)一轮复习学案:23 随机事件的概率

广东省佛山市顺德区均安中学2019届高三数学(文)一轮复习学案:23 随机事件的概率

学案23 随机事件的概率班级_____ 姓名__________导学目标:1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.自主梳理1.事件的分类(1)一般地,我们把在条件S下,____________的事件,叫做相对于条件S的必然事件,简称必然事件.(2)在条件S下,____________的事件,叫做相对于条件S的不可能事件,简称不可能事件.(3)在条件S下__________________________的事件,叫做相对于条件S的随机事件,简称随机事件.事件一般用大写字母A,B,C…表示.2.频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n 次试验中事件A 出现的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=_______为事件A出现的频率.(2)在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个________附近摆动,即随机事件A发生的频率具有________,这个常数叫事件A的概率.3.事件的关系与运算定义符号表示包含关系如果事件A________,则事件B________,这时称事件B包含事件A(或称事件A包含于事件B)______(或______)相等关系若B⊇A且______,那么称事件A与事件B相等______并事件(和事件) 若某事件发生_________________________________,则称此事件为事件A与事件B的并事件(或和事件)______(或______)交事件(积事件) 若某事件发生________________________,则称此事件为事件A与事件B的交事件(或积事件)________(或______)互斥事件若A∩B为________事件,那么称事件A与事件B互斥A∩B=____对立事件若A∩B为________事件,A∪B为________事件,那么称事件A与事件B互为对立事件P (B)=______(或P(A)=____)(1)概率的取值范围:________. (2)必然事件的概率:P(E)=____.(3)不可能事件的概率:P(F)=____.(4)概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=________.(5)对立事件的概率:若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=____,P(A)=________.自我检测1.下列说法正确的是( )A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D.某事件发生的概率是随着试验次数的变化而变化的2.如果把必然事件和不可能事件看做随机事件的极端情形,随机事件A的概率取值范围是( ) A.P(A)>0 B.P(A)≥0 C.0<P(A)<1 D.0≤P(A)≤13.从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是( ) A.3个都是正品B.至少有1个是次品C.3个都是次品D.至少有1个是正品4.袋中装有白球3个,黑球4个,从中任取3个,①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( )A.①B.②C.③D.④5.关于互斥事件的理解,错误的是( )A.若A发生,则B不发生;若B发生,则A不发生B.若A发生,则B不发生,若B发生,则A不发生,二者必具其一C.A发生,B不发生;B发生,A不发生;A、B都不发生D.若A、B又是对立事件,则A、B中有且只有一个发生探究点一随机事件的概念例1一个口袋内装有5个白球和3个黑球,从中任意取出一只球.(1)“取出的球是红球”是__________事件,它的概率是__________;(2)“取出的球是黑球”是__________事件,它的概率是__________;(3)“取出的球是白球或是黑球”是_________事件,它的概率是___________.变式1某城市有甲、乙两种报纸供居民们订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.探究点二 随机事件的频率与概率例2 某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了“频数分布直方图”如图,请回答: (1)该中学参加本次高中数学竞赛的学生有多少人?(2)如果90分以上(含90分)获奖,那么获奖的概率大约是多少? (结果保留分数)变式2 某篮球运动员在同一条件下进行投篮练习,结果如下表所示:投篮次数n 8 10 15 20 30 40 50 进球次数m 6 8 12 17 25 32 38 进球频率mn(1)填写上表.探究点三 互斥事件与对立事件的概率例3 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.变式3 一个箱子内有5张票,其号数分别为1,2,…,5,从中任取2张,其号数至少有一个为奇数的概率是多少?【课后练习与提高】1.从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,下列事件是互斥事件的是( )①恰好有1件次品和恰好有两件次品;②至少有1件次品和全是次品; ③至少有1件正品和至少有1件次品;④至少1件次品和全是正品. A .①②B .①③C .③④D .①④2.下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率mn 就是事件A 发生的概率;③百分率是频率,但不是概率;④频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值; ⑤频率是概率的近似值,概率是频率的稳定值. 其中正确的是( )A .①②③④B .①④⑤C .①②③④⑤D .②③ 3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件4.某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )A .至多有1次中靶B .2次都中靶C .2次都不中靶D .只有1次中靶5.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ):492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g ~501.5 g 之间的概率约为________.6.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.7.某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率;(2)该队员最多属于两支球队的概率.8.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、得到黄球、得到绿球的概率各是多少?9.现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率; (2)求B 1和C 1不全被选中的概率.10.(2019湖南)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:()()()()()()()()()()()()()()()a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,其中a a ,分别表示甲组研发成功和失败;b b ,分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.。

广东省佛山市南海第一高级中学2019年高三物理期末试题含解析

广东省佛山市南海第一高级中学2019年高三物理期末试题含解析

广东省佛山市南海第一高级中学2019年高三物理期末试题含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. 我国未来将在月球地面上建立月球基地,并在绕月轨道上建造空间站.如图1所示,关闭发动机的航天飞机A在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆轨道的近月点B处与空间站C对接,已知空间站绕月运行的圆轨道的半径为r,周期为T,万有引力常量为G,月球的半径为R.下列说法正确的是A.要使对接成功,飞机在接近B点时必须减速B.航天飞机在图示位置正在加速向B运动C.月球的质量为M=D.月球的第一宇宙速度为v=参考答案:ABC2. (单选)从地面上以初速度x=ν0t竖直向上抛出一质量为m的球,若运动过程中受到的空气阻力与其速率成正比关系,球运动的速率随时间变化规律如图所示,t1时刻到达最高点,再落回地面,落地时速率为v1,且落地前球已经做匀速运动.则下列说法正确的是().小球抛出瞬间的加速度大小为(1+)g.小球抛出瞬间的加速度最大,到达最高点的加速度最小.小球上升过程中的平均速度大于参考答案:解:A、C、上升过程,受重力和阻力,合力向下,根据牛顿第二定律,有:f+mg=ma,解得a=g+>g;由于是减速上升,阻力逐渐减小,故加速度不断减小;下降过程,受重力和阻力,根据牛顿第二定律,有:mg﹣f=ma′,解得:<g;由于速度变大,阻力变大,故加速度变小;即上升和下降过程,加速度一直在减小;故AC错误;B、空气阻力与其速率成正比,最终以v1匀速下降,有:mg=kv1;小球抛出瞬间,有:mg+kv0=ma0;联立解得:,故B正确;D、速度时间图象与时间轴包围的面积表示位移,从图象可以看出,位移小于阴影部分面积,而阴影部分面积是匀减速直线运动的位移,匀减速直线运动的平均速度等于,故小球上升过程的平均速度小于,故D错误;故选:B.3. 下列说法中正确的()A.外界对气体做功,气体的温度一定升高B.布朗运动就是液体分子的热运动C.分子间的斥力和引力同时存在D.电冰箱是将热量由高温物体传递到低温物体的电器参考答案:C4. 一个带电导体周围的电场线和等势面的分布情况如图所示,关于图中各点的场强和电势的关系,下列描述正确的是()A. 1、2两点的场强相等B. 2、3两点的场强相等C. 1、2两点的电势相等D. 2、3两点的电势相等参考答案:C考点:电场强度与电势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机事件的概率
1、必然事件: ,概率为
2、不可能事件: ,概率的取值范围是
3、随机事件: ,概率为
4、事件A 发生的概率:在大量重复进行同一试验时,事件A 发生的 n
m
总接近于某个常数,在它的附近摆动,这时把这个 叫做事件A 的概率,记作P(A) 5、基本事件的特点:①任何两个基本事件是 的;
②任何事件(初不可能事件)都可以表示成 的和。

6、含事件:对于事件A 和事件B ,如果事件A 发生,则事件B 一定发生,记作B A ⊆ 7、相等事件:B A ⊆且B A ⊇,记作B A =
8、并事件:某件事发生当且仅当事件A 发生或事件B 发生,记作B A 9、并事件:某件事发生当且仅当事件A 发生且事件B 发生,记作B A 10、互斥事件:不可能同时发生的两个事件。

11、对立事件:两个事件不可能同时发生,但必须有一个发生。

一、随机事件的频率与概率 【例1】同时掷两颗骰子一次
(1)“点数之和是13”是什么事件,其概率是多少?
(2)“点数之和在2---13范围之内”是什么事件?其概率是多少? (3)“点数之和是7”是什么事件?其概率是多少? (4)“点数之积是12”的率是多少?
【练习】随机抽取一个年份,对西安市该四月份d 的天气情况进行统计,结果如下: 日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 天气 晴 雨 阴 阴 阴 雨 阴 晴 晴 晴 阴 晴 晴 晴 晴 日期 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 天气















(1)在4月分任取一天,估计西安市在该天不下雨的概率;
(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率。

二、随机事件的关系
1、把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( )
A .对立事件
B .不可能事件
C .互斥但不对立事件
D .以上均不对
2、某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立的两个事件是( )
A .“至少1名男生”与“全是女生”
B .“至少1名男生”与“至少有1名是女生”
C .“至少1名男生”与“全是男生”
D .“恰好有1名男生”与“恰好2名女生”
3、袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( ) A .至少有一个白球;都是白球 B .至少有一个白球;至少有一个红球 C .至少有一个白球;红、黑球各一个 D .恰有一个白球;一个白球一个黑球 三、互斥事件、对立事件的概率
【例2】某商场有奖销售中,购满100元商品得1张奖券,多购多得,100-张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个,设一张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C ,求: (1)=
==
)(,)(,)(C P B P A P
(2)1张奖券中奖的概率为: (3)1张奖券不中特等奖且不中一等奖的概率。

【练习1】根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.
(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率; (2)求该地1位车主甲、乙两种保险都不购买的概率。

【练习2】某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为
6
1
.甲、乙、丙三位同学每人购买了一瓶该饮料. (Ⅰ)求三位同学都没有中奖的概率;
(Ⅱ)求三位同学中至少有两位没有中奖的概率.
(1)古典概型的特征:①试验中所有可能出现的基本事件 ②每个基本事件出现的可能性
(2)古典概型的概率公式:()=A m
P A n
包含的基本事件的个数基本事件总数
【例1】将一枚骰子先后抛掷2次,观察向上的点数,求: ①两数之和为5的概率
②两数之中至少有一个奇数的概率
③第一次抛出的点数比第二次抛出的点数大的概率
【练习1 全国卷】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从
1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
(A )
310 (B )15 (C )110 (D )1
20
【练习2 全国卷】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张, 则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A.
110 B.15 C.310 D.2
5
【练习3】已知5件产品中有2件次品,其余为合格品,现从5件产品中任取2件,恰好有一件次品的概率为( ) A.0.4 B.0.6 C.0.8 D.1
【练习4】袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( ) A.
34 B.56 C.16 D.13
【练习4】甲、乙两人参加法律知识竞答,共有10道不同的题目,其中6道选择题,4道判断题,甲、乙两人依次各抽一题。

(1)甲抽到选择题,乙抽到选择题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?
【练习5】某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团
未参加书法社团
参加演讲社团 8 5 未参加演讲社团
2
30
(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学54321A A A A A ,,,,,3名女同学
321B B B ,,,现从这5名男同学和3名女同学中各随机选1人,求1A 被选中求1B 未被选中的概率。

(1)几何概型的特征:①无限性:在每一次试验中,可能出现的结果有 ②等可能性:每个结果的发生具有
(2)几何概型的概率公式:()P A =
【长度型】
【例1 全国卷】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.
710 B.58 C.38 D.3
10
【练习1】设[]40,∈x ,则42
≤x 的概率为
【练习2】在区间[]30,上任取一个数x ,使得不等式0232
>+-x x 成立的概率为
【练习3】已知已知蚂蚁在边长分别为5,12,13的三角形的边上随机爬行,则其恰在到三个顶点的距离都大于1的概率为
【练习4】利用计算机随机产生0~1之间的随机数a ,则事件“013>-a ”发生的概率为 【面积型】
【例2 全国卷】如图,正方形ABCD 内的图形来自中国古代太极图,正方形内切圆中的黑色部分和白色
部分关于正方形中心成中心对称,在正方形内随机去一点,则此点取自黑色部分的概率是( )
A.
41 B.8π C.21 D.4
π 【练习1】已知圆O 的一条直径为线段BC ,A 为圆上一点,45ABC ∠=︒,
30BCD CBD ∠=∠=︒,则向圆O 中任意投掷一点,该点落在阴影区域内的概率______.
【练习2】设[][]4030,,,∈∈y x ,求点落在不等式组⎪⎩

⎨⎧≥≥≤-+00032y x y x 所表示的 平面区域内的概率
【练习3】设不等式组⎩
⎨⎧≤≤≤≤202
0y x ,表示的平面区域为D ,在D 内随机取一个点,则此点到坐标的原点的
距离大于2的概率为
【体积型】
【例1】若在棱长为a 的正方体1111D C B A ABCD -内任取一点,则点P 到点A 的距离不大于a 的概率为
【练习1】有一个底面半径为1,高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则P 到点O 的距离小于1的概率为
A
B
C
D
O
A
B
C
D。

相关文档
最新文档