蛋白质的理化性质
蛋白质的理化性质
• 应用举例 ➢ 临床医学上,变性因素常被应用来消毒及 灭菌。 ➢ 此外, 防止蛋白质变性也是有效保存蛋白质 制剂(如疫苗等)的必要条件。
若蛋白质变性程度较轻,去除变性因素 后,蛋白质仍可恢复或部分恢复其原有的构 象和功能,称为复性(renaturation) 。
去除尿素、 β-巯基乙醇
第二节 蛋白质的理化性质
蛋白质的理化性质
一、蛋白质的两性解离
蛋白质分子除两端的氨基和羧基可解离外,氨基酸 残基侧链中某些基团,在一定的溶液pH条件下都可解离 成带负电荷或正电荷的基团。
* 蛋白质的等电点( isoelectric point, pI)
当蛋白质溶液处于某一pH时,蛋白质解离成正、负 离子的趋势相等,即成为兼性离子,净电荷为零,此时溶 液的pH称为蛋白质的等电点。
天然状态, 有催化活性
尿素、 β-巯基乙醇
非折叠状态,无活性
* 蛋白质沉淀 在一定条件下,蛋白疏水侧链暴露在外,肽 链融会相互缠绕继而聚集,因而从溶液中析出。 变性的蛋白质易于沉淀,有时蛋白质发生沉 淀,但并不变性。 * 蛋白质的凝固作用(protein coagulation) 蛋白质变性后的絮状物加热可变成比较坚固 的凝块,此凝块不易再溶于强酸和强碱中。
R CH COOH NH2
R CH COOH +OH-
NH3+
+H+
R CH COO- +OH- R CH COO-
NH3+
+H+
NH2
pH<pI
阳离子
pH=pI
氨基酸的兼性离子
pH>pI
阴离子
二、蛋白质的胶体性质
蛋白质的理化性质和分类
• • • • •
3、蛋白质沉淀的方法: (1)盐析法 (2)有机溶剂沉淀法 (3)某些酸类沉淀法 (4)重金属盐沉淀法
(1)盐析法
• 定义:向蛋白质溶液中加入一定浓度的中 性盐,可破坏蛋白质表面的水化膜并中和 电荷,从而使蛋白质从溶液中析出的现象 称为盐析 • 一般用盐析法分离出来的蛋白质不变性, 故常用于天然蛋白质的分离 • 盐析时若将该溶液的PH调至该蛋白质的等 电点则效果更佳
二、蛋白质的分类
• (一)根据蛋白质形状 • 1.纤维状蛋白质 • 2.球状蛋白质
• (二)根据蛋白质组成成分 • 1.单纯蛋白质 • 根据来源及理化性质,可分为清蛋白、球 蛋白、谷蛋白、醇溶谷蛋白、精蛋白、组 蛋白、硬蛋白 • 2.结合蛋白质 = 蛋白质部分 + 非蛋白质部 分(辅基) • 根据辅基不同,结合蛋白可分为核蛋白、 糖蛋白、脂蛋白、色蛋白、磷蛋白、金属 蛋白
蛋白质的胶体性质
• 颗粒大小达1~100nm之间,属胶体。因此溶 于水,成为亲水胶体。 • 稳定亲水胶体的因素: 水化膜 表面电荷
不通透性:半透膜 透析原理:
透析
• 将蛋白质溶液(不纯)放入透析袋中,放 在流水中(纯水),让低分子杂质(如盐 类)透过半透膜扩散入水内,蛋白质则留 在袋中,质负离子结合成不溶 性的蛋白质盐而沉淀 • 此法常引起蛋白质变性 • 临床上可利用这性质抢救重金属盐中毒的 病人,如口服牛奶、蛋清等,然后把生成 的不溶性蛋白质盐排出体外
(三)凝固作用 加热使蛋白质变性并结成凝块,此凝块不在 溶于强酸和强碱中,这种现象称为蛋白质的 凝固作用。凝固其实是蛋白质变性后不可进 一步发展的不可逆的结果。
几种蛋白质的等电点
电泳
定义:溶液中带电粒子在电场中向电性相反 的电极移动的现象。
蛋白质的理化性质和生物学特性
第二节蛋白质的理化性质和生物学特性一、蛋白质的胶体性质蛋白质是高分子化合物,分子量一般在10kD~1000kD。
根据测定所知,如分子量为34.5kD的球状蛋白,其颗粒的直径为4.3nm。
所以,蛋白质分子颗粒的直径一般在1~100nm,在水溶液中呈胶体溶液,具有丁铎尔现象、布朗运动、不能透过半透膜、扩散速度减慢、粘度大等特征。
蛋白质分子表面含有很多亲水基团,如氨基、羧基、羟基、巯基、酰胺基等,能与水分子形成水化层,把蛋白质分子颗粒分隔开来。
此外,蛋白质在一定pH溶液中都带有相同电荷,因而使颗粒相互排斥。
水化层的外围,还可有被带相反电荷的离子所包围形成双电层,这些因素都是防止蛋白质颗粒的互相聚沉,促使蛋白质成为稳定胶体溶液的因素。
蛋白质分子不能透过生物膜的特点,在生物学上有重要意义,它能使各种蛋白质分别存在于细胞内外不同的部位,对维持细胞内外水和电解质分布的平衡、物质代谢的调节都起着非常重要的作用。
另外,利用蛋白质不能透过半透膜的特性,将含有小分子杂质的蛋白质溶液放入半透膜袋内,然后将袋浸于蒸馏水中,小分子物质由袋内移至袋外水中,蛋白质仍留在袋内,这种方法叫做透析。
透析是纯化蛋白质的方法之一。
二、蛋白质的两性性质蛋白质和氨基酸一样,均是两性电解质,在溶液中可呈阳离子、阴离子或兼性离子,这取决于溶液的pH值、蛋白质游离基团的性质与数量。
当蛋白质在某溶液中,带有等量的正电荷和负电荷时,此溶液的pH值即为该蛋白质的等电点(pI)。
当pH偏酸时,蛋白质分子带正电荷。
相反,pH偏碱,蛋白质分子带负电荷(图2-2-1)图2-2-1 蛋白质的两性电离蛋白质溶液的pH值在等电点时,蛋白质的溶解度、黏度、渗透压、膨胀性及导电能力均最小,胶体溶液呈最不稳定状态。
凡碱性氨基酸含量较多的蛋白质,等电点往往偏碱,如组蛋白和精蛋白。
反之,含酸性氨基酸较多的蛋白质如酪蛋白、胃蛋白酶等,其等电点往往偏酸。
人体内血浆蛋白质的等电点大多是pH 5.0左右。
蛋白质的理化性质
五、蛋白质的紫外吸收
大部分蛋白质均含有带芳香环的苯丙氨酸、酪氨酸和色氨酸。这三种 氨基酸的在280nm 附近有最大吸收值。因此,大多数蛋白质在280nm 附近显示强的吸收。利用这个性质,可以对蛋白质进行定性鉴定。
COO- H+ P
NH3+
COOH P
Cl3CCOO-
COOH P
NH3+
NH3+¡¤- OOC CCl3
蛋白质复合盐
生化检验工作中。常用此类试剂沉淀蛋白质。
(5)热凝固沉淀蛋白质
蛋白质受热变性后,在有少量盐类存在或将pH调至等电点,则很容
易发生凝固沉淀。
原因可能由于变性蛋白质的空间结构解体,疏水基团外露,水膜破 坏,同时由于等电点破坏了带电状态等而发生絮结沉淀。
天然蛋白质分子由于受各种物理和化学因素的影响,有序的空间结构 被破坏,致使蛋白质的理化性质和生物学性质都有所改变,但并不导致蛋 白质一级结构的破坏。这种现象称为蛋白质的变性作用。变性的蛋白质叫 做变性蛋白质,变性蛋白质的分子量不变。 2、变性因素
⑴物理因素。如:加热、紫外线照射、X射线照射、超声波、高压、剧烈 摇荡、搅拌、表面起泡等。
⑵化学因素。如:强酸、强碱、脲素、重金属盐、三氯醋酸、乙醇、胍、表 面活性剂、生物碱试剂等,都可引起蛋白质的变性。
3、变性的原因 可概括如下: ⑴蛋白质分子的副键破坏,致使其空间结构发生变化。 ⑵蛋白、-NH2等与某些化学试剂发生反应。
分离提取蛋白质常用硫酸铵[(NH4)2SO4]、硫酸钠(Na2SO4)、氯化钠( NaCl)、硫酸镁(MgSO4)等中性盐来沉淀蛋白质,这种沉淀蛋白质的方法 叫盐析法。
蛋白质的理化性质教学内容
蛋白质的理化性质第四节蛋白质的理化性质一、两性离解和等电点蛋白质是由氨基酸组成的,在其分子表面带有很多可解离基团,如羧基、氨基、酚羟基、咪唑基、胍基等。
此外,在肽链两端还有游离的α-氨基和α-羧基,因此蛋白质是两性电解质,可以与酸或碱相互作用。
溶液中蛋白质的带电状况与其所处环境的pH 有关。
当溶液在某一特定的pH 条件下,蛋白质分子所带的正电荷数与负电荷数相等,即净电荷数为零,此时蛋白质分子在电场中不移动,这时溶液的pH 称为该蛋白质的等电点,此时蛋白质的溶解度最小。
由于不同蛋白质的氨基酸组成不同,所以蛋白质都有其特定的等电点,在同一pH 条件下所带净电荷数不同。
如果蛋白质中碱性氨基酸较多,则等电点偏碱,如果酸性氨基酸较多,等电点偏酸。
酸碱氨基酸比例相近的蛋白质其等电点大多为中性偏酸,约在5.0 左右。
1、两性解离蛋白质可以在酸性环境中与酸中和成盐,而游离成正离子,即蛋白质分子带正电,在电场中向阴极移动;在碱性环境中与碱中和成盐而游离成负离子,即蛋白质分子带负电,在电场中向阳极移动。
以“P”代表收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除蛋白质分子,以―NH 2 和―COOH 分别代表其碱性和酸性解离基团,随pH 变化,蛋白质的解离反应可简示如下:(pH>pI ) (pH=pI ) (pH<pI )移向阳极 不移动 移向阴极2、等电点沉淀和电泳①等电点沉淀蛋白质在等电点时,以两性离子的形式存在,其总电荷数为零,这样的蛋白质颗粒在溶液中因为没有相同电荷而相互排斥的影响,所以极易借静电引力迅速结合成较大的聚集体,因而易发生沉淀析出。
这一性质常在蛋白质分离、提纯时应用。
在等电点时,除了蛋白质的溶解度最小外,其导电性、粘度、渗透压以及膨胀性均为最小。
②电泳蛋白质颗粒在溶液中解离成带电的颗粒,在直流电场中向其所带电荷相反的电极移动。
这种大分子化合物在电场中定向移动的现象称为电蛋白质的阴离子蛋白质的阳离子蛋白质的兼性离子(等电点)NH 3+COO -P NH 3+P COOHNH 2COO-P泳。
5教学设计--蛋白质的理化性质
《蛋白质的理化性质》课程设计一、教材分析《蛋白质的理化性质》是由人民卫生出版社出版《生物化学》第二章第三节的内容,也是本章的教学重内容之一。
它与日常生活、生产、医疗保健有着密切的联系属于必须掌握的知识。
之前已经学习了蛋白质的结构与功能,本节内容的学习使得学生对蛋白质的知识有更全面的认识和理解。
通过学习,可以使学生明确蛋白质的两性电离、胶体性质、变性沉淀等性质,为今后各章节如酶、氨基酸代谢、蛋白质合成等学习打下基础。
二、学情分析我们的学生都是高职学生,她们有自身的特点,比如基础知识总体欠佳,缺乏扎实的化学知识基础,部分学生心理承受能力差,应激刺激反应迟缓,难适应新环境、独立学习和生活能力弱。
而课程内容抽象、途径繁杂、更新快,使得学生对其产生了畏惧心理。
但是我们的学生以女生为主,课堂纪律好,态度端正,因此整体学习氛围好。
学生首次接触到相关专业知识,积极性较高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好充足的准备工作,充分体现教师在教学中的“导演”角色。
三、教学目标通过本次教学活动,期望学生在知识、态度和能力等方面有所收获【知识目标】掌握蛋白质的亲水胶体溶液性质及两性电离,蛋白质的变性作用及变性后理化性质的改变,理解蛋白质的沉淀【能力目标】通过临床上消毒杀菌方法的讨论培养学生分析问题、解决问题的能力;通过对蛋白质沉淀方法的学习,培养学生运用对比法进行学习。
【情感目标】激发学生探索未知知识的兴趣,让她们享受到探究未知世界的乐趣;培养学生关注社会、关注生活的意识。
四、教学重点、难点(一)教学重点蛋白质的等电点、蛋白质的变性。
(二)教学难点蛋白质的两性电离和等电点。
这是由于学生普遍缺乏化学基础,而两性电离的概念相对抽象。
五、教学方法总体的构思是多方面,多角度为学生搭建学习平台,体现以学生为主体、教师为主导的地位。
学生通过教师的指导结合自身的生活经验,用自己的实践去亲自感悟。
教学过程力求体现师生互动。
蛋白质的性质分类及研究方法
(术语:推定/推测蛋白质 putative protein)
优点:快速、无需纯化蛋白质、基因易分离测序 缺点:无法确定经后加工的蛋白质的最终序列、
被修饰的氨基酸和二硫键的位置
二、直接测定法(9大步)
(一)测定蛋白质一级结构 (测序) 的策略
(1)测定蛋白质分子中多肽链的数目 (2)拆分蛋白质分子的多肽链 (3)断开多肽链内的二硫键 (4)分析每一多肽链的氨基酸组成 √ (5)鉴定多肽链的N-末端和C-末端残基 √ (6)裂解多肽链成较小的肽段(用2种或几种不
◆蛋白质在等电点时,易沉淀析出;同时,其粘 度、渗透压、膨胀性及导电能力均为最小。
二、蛋白质的胶体性质
◆蛋白质由于分子量很大,在水溶液中形成 1~100nm的颗粒,因而具有胶体溶液的特征;
◆可溶性蛋白质分子表面分布着大量极性氨基 酸残基,对水有很高的亲和性,通过水合作用在 颗粒外面形成一层水化层;
串联质谱技术; • 重建多肽链一级序列的重叠肽拼凑法 • 用于二硫桥定位的对角线电泳等。
第三节、蛋白质的分离、纯化和分析
一、蛋白质纯化的准备工作
准备工作要解决三个问题:
(一)明确纯化蛋白质的目的; (二)建立目标蛋白的测活方法; (三)选择富含目标蛋白的原材料。
二、蛋白质纯化的一般注意事项
1.操作尽可能在低温条件下进行。2.待纯化的材料不要太稀.3. 合适的PH。4.使用蛋白酶抑制剂,防止蛋白酶对目标的降解。 5.避免样品反复冷冻盒剧烈搅动,防止蛋白质变性。6.缓冲溶 液成分尽量模拟细胞内环境。7.加入防止蛋白质氧化及对目标 蛋白破坏的DTT和EDTA。8.使用灭菌溶液防止微生物生长。
(二)沉淀 根据不同蛋白质在特定条件下溶解性不同,而 对他们进行选择性沉降从而达到分离目的一 种粗纯化方法。它通常用于目的蛋白从大体 积的粗抽提物中游离出来。这种方法既能除 去许多杂质,又有浓缩之效。 方法包括:改变PH或改变离子强度(盐析)
第三章 第二节蛋白质理化性质
4
Tab. Weak acid groups of the amino acids present in proteins
α-Carboxyl
Conjugate Acid R-COOH
Conjugate Approximate pKa
R-COO-
2.1±0.5
Non-α-carboxyl (Asp,Glu)
17
热变性: 50-60℃以上加热引起的蛋白质变性。 可逆、不可逆;多数为凝聚和沉淀的不可逆变性。 次级键变化。
• 酸和碱变性:酸和碱与蛋白质上的碱性或酸性氨基酸残基相互作用,
使维持蛋白质构型的分子内有利的荷电吸引力变成静电排斥作用,因 而导致结构松散。
• 蛋白质一般在pH 4-10范围内稳定(等电点附近比较稳定),超过这
生物化学性质改变:蛋白质变性后,分子结构 伸展松散,易为蛋白质水解酶所分解。
20
变性蛋白质
变性的可逆性 可逆变性:除去变性因素,蛋白质空间结构
可以恢复原状。 不可逆变性:除去变性因素,蛋白质空间结
构不能恢复原状。
21
4.变性的可逆性
轻度变性可逆,过度变性不可逆。
胃蛋白酶加热至80℃-90℃时,变性、 无消化蛋白质的能力,失去溶解性。如 将温度下降到37℃,就复性,又恢复溶 解性和消化蛋白质的能力。但如变性时 间加长,条件加剧,变性程度加深,就 成为不可逆变性。
8
3.等电点的测定
9
4. 等离子点 等离子点是蛋白质在不含其它溶质的纯水中,蛋白质
所带净电荷为零时的溶液的pH值。等离子点是一个特 征常数。
蛋白质在纯水中的等电点为等离子点.
10
(三 )电泳
蛋白质的理化性质(一)
蛋白质的理化性质(一)关键词:蛋白质蛋白质是由氨基酸组成的大分子化合物,其理化性质一部分与氨基酸相似,如两性电离、等电点、呈色反应、成盐反应等,也有一部分又不同于氨基酸,如高分子量、胶体性、变性等。
一、蛋白质的胶体性质蛋白质分子量颇大,介于一万到百万之间,故其分子的大小已达到胶粒1~100nm范围之内。
球状蛋白质的表面多亲水基团,具有强烈地吸引水分子作用,使蛋白质分子表面常为多层水分子所包围,称水化膜,从而阻止蛋白质颗粒的相互聚集。
与低分子物质比较,蛋白质分子扩散速度慢,不易透过半透膜,粘度大,在分离提纯蛋白质过程中,我们可利用蛋白质的这一性质,将混有小分子杂质的蛋白质溶液放于半透膜制成的囊内,置于流动水或适宜的缓冲液中,小分子杂质皆易从囊中透出,保留了比较纯化的囊内蛋白质,这种方法称为透析(dialysis)。
蛋白质大分子溶液在一定溶剂中超速离心时可发生沉降。
沉降速度与向心加速度之比值即为蛋白质的沉降系数S。
校正溶剂为水,温度20℃时的沉降系数S20·w可按下式计算:式中X 为沉降界面至转轴中心的距离,W为转子角速度,W2X为向心加速度,dX/dt为沉降速度。
单位用S,即Svedberg单位,为1×1013秒,分子愈大,沉降系数愈高,故可根据沉降系数来分离和检定蛋白质。
二、蛋白质的两性电离和等电点蛋白质是由氨基酸组成的,其分子中除两端的游离氨基和羧基外,侧链中尚有一些解离基,如谷氨酸、天门冬氨酸残基中的γ和β-羧基,赖氨酸残基中的ε-氨基,精氨酸残基的胍基和组氨酸的咪唑基。
作为带电颗粒它可以在电场中移动,移动方向取决于蛋白质分子所带的电荷。
蛋白质颗粒在溶液中所带的电荷,既取决于其分子组成中碱性和酸性氨基酸的含量,又受所处溶液的pH影响。
当蛋白质溶液处于某一pH时,蛋白质游离成正、负离子的趋势相等,即成为兼性离子(zwitterion,净电荷为O),此时溶液的pH值称为蛋白质的等电点(isoelectricpoint,简写pI)。
蛋白质的理化性质和分离纯化
一、蛋白质的两性电离
蛋白质分子除两端的氨基和羧基可解离外,
氨基酸残基侧链中某些基团,在一定的溶液pH条
件下都可解离成带负电荷或正电荷的基团。
* 蛋白质的等电点( isoelectric point, pI) 当蛋白质溶液处于某一pH时,蛋白质解离成 正、负离子的趋势相等,即成为兼性离子,净电 荷为零,此时溶液的pH称为蛋白质的等电点。
名词解释
等电点(pI) 肽键和肽链 肽平面及二面角 二级结构 三级结构 四级结构 超二级结构 蛋白质变性与复性 分子病 肽 一级结构 结构域
三、是非题 1.构成蛋白质的20种基本氨基酸除脯氨酸外,在结 构上的共同点是与羧基相邻α-碳原子上都有一个氨 基。( ) 2.一个氨基酸在水溶液中或固体状态时是以两性离 子形式存在。( ) 3. .构型的改变必须有旧共价键的破坏和新共价键的 形成,而构象的改变则不发生此变化。( ) 4.肽的命名是从肽链的游离氨基开始的。( ) 5.蛋白质分子中肽链能自由旋转。( ) 6.所有的蛋白质都具有一、二、三、四级结构。.( )
(二)蛋白质的胶体性质
蛋白质属于生物大分子之一,分子量可自
1 万 至 100 万 之 巨 , 其 分 子 的 直 径 可 达 1 ~
100nm,为胶粒范围之内。
* 蛋白质胶体稳定的因素 颗粒表面电荷
水化膜
水化膜
+ + + + + + +
带正电荷的蛋白质 脱水作用
酸 碱 在等电点的蛋白质 脱水作用 碱
术。
(四)层析
层析(chromatography)分离蛋白质的原理 待分离蛋白质溶液(流动相)经过一个固 态物质(固定相)时,根据溶液中待分离的蛋
蛋白质的理化性质和分离纯化
(二)丙酮沉淀、盐析及免疫沉淀
*使用丙酮沉淀时,必须在0~4℃低温下进行, 丙酮用量一般10倍于蛋白质溶液体积。蛋白 质被丙酮沉淀后,应立即分离。除了丙酮以 外,也可用乙醇沉淀。
*盐析(salt precipitation)是将硫酸铵、硫酸钠 或氯化钠等加入蛋白质溶液,使蛋白质表面 电荷被中和以及水化膜被破坏,导致蛋白质 沉淀。
❖ 4.肽的命名是从肽链的游离氨基开始的。( )
❖ 5.蛋白质分子中肽链能自由旋转。( )
❖ 6.所有的蛋白质都具有一、二、三、四级结构。.( )
❖ 7.蛋白质在pl时其溶解度最小。( ) ❖ 8.pH2.3时,所有氨基酸都带正电荷。.( ) ❖ 9.SDS—PAGE中,肽链越长,结合的SDS分子越多,
(四)蛋白质的紫外吸收
由于蛋白质分子中含有共轭双键的酪氨酸 和色氨酸,因此在280nm波长处有特征性吸收 峰 。 蛋 白 质 的 OD280 与 其 浓 度 呈 正 比 关 系 , 因 此可作蛋白质定量测定。
(五)蛋白质的呈色反应
⒈茚三酮反应(ninhydrin reaction)
蛋白质经水解后产生的氨基酸也可发生茚 三酮反应。
❖ 7.肽键在下列哪个波长具有最大光吸收?( ) ❖ (A)215nm (B)260nm (C)280nm (D)340nm
(E)以上都不是 ❖ 8.有一多及经酸水解后产生等摩尔的Lys、Gly和Ala。如用胰蛋白酶水解
该肽,仅发现有游离的Gly和一种二肽。下列多肽的一级结构中,哪一个 符合该肽的结构?( )
❖ 3.肽链中,共有______个原子同在一个肽平面上。
❖ 4.β-折叠结构的氢键是由邻近两条肽链中一条的______基因 与另一条的_____基之间所形成。
第4章蛋白质的化学第五节 蛋白质的理化性质
食品生物化学
二、蛋白质的两性解离和等电点
蛋白质和氨基酸一样,既能和酸作用又能和碱作用,是两 性 电 解 质 。 分 子 中 , 除 氨 基 末 端 的 α-NH2 和 羧 基 末 端 的 αCOOH,肽链内多种氨基酸残基的R侧链还有许多可离子化基 团,如-NH3、-COOH、-OH等。在一定的pH条件下,这 些基团解离而使蛋白质分子带电荷。其解离过程和带电状态取 决于溶液的pH。当某一pH条件时,蛋白质解离成阳、阴离子 的数量相等,净电荷为零,此时溶液的pH称为蛋白质等电点。 等电点时蛋白质以兼性离子状态存在。
NH2 P
COO-
蛋白质的阴离子
三、蛋白质的溶解性
蛋白质在低盐溶液中溶解度较大,在高盐溶液中溶解度下 降。前者称为盐溶,后者称为盐析。当盐溶液较低时,蛋白质 颗粒上吸附盐离子,使蛋白质颗粒带有同种电荷而相互排斥, 并加强与水分子的作用,溶解度增加。
食品生物化学
在高盐溶液中,盐不仅与水的亲合性很强,而且又是强电 解质。一方面从蛋白质中夺取水分,破坏蛋白质表面的水膜; 另一方面,由于盐离子浓度比较高,可以大量中和蛋白质颗粒 上的电荷,破坏了蛋白质胶体的稳定性,出现沉淀。
食品生物化学
第四章 蛋白质的化学
• 第一节 概述 • 第二节 蛋白质的化学组成 • 第三节 氨基酸的化学 • 第四节 蛋白质的结构 • 第五节 蛋白质的理化性质 • 第六节 蛋白质的分类 • 第七节 食物中的蛋白质 • 第八节 食品加工储藏对蛋白质的影响
食品生物化学
学习目标
1.掌握常见氨基酸的种类、结构/重要的性质以及常见氨 基酸名称和符号。
食品生物化学
五、蛋白质的呈色反应
1.双缩脲反应 尿素在加热时,两分子尿素缩合生成双缩脲并放出一分子 氨。双缩脲在碱性溶液中能与硫酸铜反应产生紫红色络合物。 蛋白质分子中含有许多与双缩脲结构相似的肽键,因此蛋白质 分子与碱性铜溶液中的铜离子形成紫红色络合物的反应,称为 双缩脲反应。碱性铜溶液称为双缩脲试剂。该反应可用于蛋白 质和多肽的定性、定量测定,也可用于蛋白质水解程度的测定。
第三节 蛋白质的理化性质 PPT课件
蛋白质具有稳定性。 原因:蛋白质与水亲和
蛋 白 质 亲水基团 分 子
羟基:-OH 水
溶于水 化
羧基:-COOH
膜
氨基:-NH2
稳定性增加
故蛋白质溶液具有胶体溶液的典型性 质,如
(1)稳定性 (2)丁达尔现象 (3)电泳现象 (4)布郎运动 (5)不能通过半透膜等。
3、蛋白质的沉淀作用
在适当的条件下,蛋白质能够 从溶液中沉淀出来。
作用: 蛋白质的两性解离性质使其成
为人体及动物体中的重要缓冲剂, 调节体液正常pH。
2、蛋白质具有胶体性质
• 蛋白质属于生物大分子,分子量可自1万至 100万之巨,其分子的直径可达1~100nm, 为胶粒范围之内。因此,它在水中能够形成
胶体溶液。
故蛋白质溶液具有胶体溶液的典 型性质,如
(1)稳定性 (2)丁达尔现象 (3)电泳现象 (4)布郎运动 (5)不能通过半透膜等。
蛋白质 酒精
蛋白质沉淀
高温会变性,低温不会。
3、酸类沉淀法
用硝酸 苦味酸、三氯乙酸、目酸、钨酸
蛋白质
浓硝酸
蛋白盐沉淀
蛋白质已经失去活性
应用:在临床检验中,除去血液中的干扰蛋白质
(三)重金属盐沉淀
重金属盐:Cu2+ 、Hg2+、Ag+、Pb2+
蛋白质 铜离子
蛋白盐沉淀
蛋白质已经失去活性
应用:重金属盐中毒的解毒
1、硝酸与蛋白质反应
硝酸+蛋白质
蛋白质变黄
这是蛋白质的特征反应之一。 常用来鉴别部分蛋白质。
2、双缩脲反应
尿素 + 尿素
双缩脲
双缩脲+Cu2+ 碱性 紫红色配合物
【生物知识点】简述蛋白质的理化性质
【生物知识点】简述蛋白质的理化性质1、具有两性;2、可发生水解反应;3、溶水具有胶体的性质;4、加入电解质可产生盐析作用;5、蛋白质的变性;6、颜色反应,蛋白质可以跟许多试剂发生颜色反应;7、气味反应。
两性蛋白质是由α-氨基酸通过肽键构成的高分子化合物,在蛋白质分子中存在着氨基和羧基,因此跟氨基酸相似,蛋白质也是两性物质。
水解反应蛋白质在酸、碱或酶的作用下发生水解反应,经过多肽,最后得到多种α-氨基酸。
蛋白质水解时,应找准结构中键的“断裂点”,水解时肽键部分或全部断裂。
胶体性质有些蛋白质能够溶解在水里(例如鸡蛋白能溶解在水里)形成溶液。
蛋白质的分子直径达到了胶体微粒的大小(10-9~10-7m)时,所以蛋白质具有胶体的性质。
沉淀原因:加入高浓度的中性盐、加入有机溶剂、加入重金属、加入生物碱或酸类、热变性少量的盐(如硫酸铵、硫酸钠等)能促进蛋白质的溶解。
如果向蛋白质水溶液中加入浓的无机盐溶液,可使蛋白质的溶解度降低,而从溶液中析出,这种作用叫做盐析。
这样盐析出的蛋白质仍旧可以溶解在水中,而不影响原来蛋白质的性质,因此盐析是个可逆过程。
利用这个性质,采用分段盐析方法可以分离提纯蛋白质。
变性在热、酸、碱、重金属盐、紫外线等作用下,蛋白质会发生性质上的改变而凝结起来。
这种凝结是不可逆的,不能再使它们恢复成原来的蛋白质。
蛋白质的这种变化叫做变性,蛋白质变性之后,紫外吸收,化学活性以及粘度都会上升,变得容易水解,但溶解度会下降。
蛋白质变性后,就失去了原有的可溶性,也就失去了它们生理上的作用。
因此蛋白质的变性凝固是个不可逆过程。
造成蛋白质变性的原因物理因素包括:加热、加压、搅拌、振荡、紫外线照射、X射线、超声波等。
化学因素包括:强酸、强碱、重金属盐、三氯乙酸、乙醇、丙酮等。
颜色反应例如在鸡蛋白溶液中滴入浓硝酸,则鸡蛋白溶液呈黄色。
这是由于蛋白质(含苯环结构)与浓硝酸发生了颜色反应的缘故。
还可以用双缩脲试剂对其进行检验,该试剂遇蛋白质生成紫色络合物。
蛋白质的理化性质
蛋白质的理化性质【摘要】蛋白质是生物体内功能最为复杂的大分子,其理化性质直接影响着其功能和应用。
氨基酸的组成和序列决定了蛋白质的结构和功能,不同的氨基酸序列会导致蛋白质不同的理化性质。
分子量也会影响蛋白质的溶解性和折叠状态,从而影响其功能。
蛋白质的溶解性和聚集态受多种因素影响,包括pH、温度等。
而蛋白质的热稳定性和折叠状态直接关系到其功能的稳定性。
深入研究蛋白质的理化性质有助于了解其功能和应用,同时也为蛋白质工程和药物设计提供重要依据。
对蛋白质的理化性质进行细致研究,有助于揭示其内在机制,进而推动相关领域的发展和应用。
【关键词】蛋白质、理化性质、氨基酸、分子量、溶解性、聚集态、构象、热稳定性、折叠状态、结构、功能、应用。
1. 引言1.1 蛋白质的理化性质概述蛋白质是生物体内最重要的大分子有机化合物之一,具有多样的生物学功能。
蛋白质的理化性质涉及其组成、结构及行为特性等方面,对于揭示蛋白质在生物体内的功能和作用具有重要意义。
蛋白质的理化性质受到多种因素的影响,包括氨基酸组成和序列、分子量、溶解性、聚集态和构象以及热稳定性等。
氨基酸是构成蛋白质的基本单元,不同氨基酸的组成和排列方式决定了蛋白质的结构和功能。
蛋白质的氨基酸序列对其理化性质有重要影响,不同氨基酸的性质可以影响蛋白质的溶解性、稳定性等特性。
分子量是影响蛋白质理化性质的重要因素之一。
分子量较大的蛋白质通常具有较高的溶解性和稳定性,同时也可能对其聚集态和构象造成影响。
蛋白质的溶解性受到多种因素的影响,包括pH 值、离子强度、温度等。
溶解性的变化可能导致蛋白质结构的改变,从而影响其功能和生物学活性。
蛋白质的热稳定性与其折叠状态密切相关。
蛋白质在特定温度范围内保持特定的折叠状态,一旦超出该范围可能导致蛋白质失去功能。
研究蛋白质的热稳定性可以为其在生物学的应用提供重要参考。
蛋白质的理化性质是与其结构密切相关的,深入研究蛋白质的理化性质有助于了解其功能和应用,为生物学和药物研究提供重要参考。
蛋白质的理化性质
14.2.3 蛋白质的理化性质 Physical and Chemical Properties of Proteins讨论蛋白质的性质,一定要理解蛋白质分子的结构.蛋白质分子是具有生物活 性的大分子化合物,分子量很大.蛋白质分子具有一、二、三、四级结构,一级结构是蛋白质分子结构的基础。
蛋白质分子除主链(肽链)外,还有各种不同的侧链。
在这些侧链中,既有各种烃基,也有活泼的羧基、氨基、巯基、醇羟基和酚羟基等。
这些侧链基团有些是亲水基团;有些是疏水基团;有些是酸性基团;有些是碱性基团;有些裸露在二、三级结构外面;有些是掩蔽在二、三级结构的内部。
蛋白质分子内除主键(肽键)外,还有很多副键维持它的空间结构。
蛋白质的性质主要有如下几个方面: (1)蛋白质的两性性质和等电点。
蛋白质多肽链的N ―端有氨基,C ―端有 羧基,其侧链上也常有碱性基团和酸性基团。
因此,蛋白质和氨基酸相似,也具有两性性质和等电点。
调节溶液到某一pH 值时,蛋白质分子所带的正、负电荷相等,分子可成为两性离子,此时溶液的pH 值称为该蛋白质的等电点(pI )。
如果溶液的pH 值在等电点的酸侧,溶液中的H +会抑制羧基电离,并有利于氨基与H +结合,因而蛋白质的净电荷为正。
如果溶液的pH 值在等电点的碱侧,OH - 有利于羧基的电离,不利于氨基与H +结合,故蛋白质的净电荷为负。
因此,蛋白质和α―氨基酸溶液相似,也存在下列平衡关系。
如用H 2N ―Pr ―COOH 表示蛋白质分子,羧基代表分子中所有的酸性基团,氨基代表所有的碱性基团,Pr 代表其它部分,则: H2N Pr COO −H 3N COO -H 3N COOH ++pH>pI 等电点(pI )pH<pI 阴离子两性离子阳离子++ 不同的蛋白质具有不同的等电点,多数蛋白质的等电点小于7。
在动植物组织液中,pH 值一般在7―7.4之间,蛋白质大都以阴离子形式存在,并与两性离子达成平衡。
蛋白质的理化性质
14.2.3 蛋白质的理化性质 Physical and Chemical Properties of Proteins讨论蛋白质的性质,一定要理解蛋白质分子的结构.蛋白质分子是具有生物活性的大分子化合物,分子量很大.蛋白质分子具有一、二、三、四级结构,一级结构是蛋白质分子结构的基础。
蛋白质分子除主链(肽链)外,还有各种不同的侧链。
在这些侧链中,既有各种烃基,也有活泼的羧基、氨基、巯基、醇羟基和酚羟基等。
这些侧链基团有些是亲水基团;有些是疏水基团;有些是酸性基团;有些是碱性基团;有些裸露在二、三级结构外面;有些是掩蔽在二、三级结构的内部。
蛋白质分子内除主键(肽键)外,还有很多副键维持它的空间结构。
蛋白质的性质主要有如下几个方面:(1)蛋白质的两性性质和等电点。
蛋白质多肽链的N ―端有氨基,C ―端有羧基,其侧链上也常有碱性基团和酸性基团。
因此,蛋白质和氨基酸相似,也具有两性性质和等电点。
调节溶液到某一pH 值时,蛋白质分子所带的正、负电荷相等,分子可成为两性离子,此时溶液的pH 值称为该蛋白质的等电点(pI )。
如果溶液的pH 值在等电点的酸侧,溶液中的H +会抑制羧基电离,并有利于氨基与H +结合,因而蛋白质的净电荷为正。
如果溶液的pH 值在等电点的碱侧,OH - 有利于羧基的电离,不利于氨基与H +结合,故蛋白质的净电荷为负。
因此,蛋白质和α―氨基酸溶液相似,也存在下列平衡关系。
如用H 2N ―Pr ―COOH 表示蛋白质分子,羧基代表分子中所有的酸性基团,氨基代表所有的碱性基团,Pr 代表其它部分,则:H 2N Pr COO −H 3N COO -H 3N COOH H +H +pH>pI 等电点(pI )pH<pI 阴离子两性离子阳离子++不同的蛋白质具有不同的等电点,多数蛋白质的等电点小于7。
在动植物组织液中,pH 值一般在7―7.4之间,蛋白质大都以阴离子形式存在,并与两性离子达成平衡。
蛋白质理化性质
教案续页
教学步骤及主要内容教学过程
一、蛋白质的两性解离和等电点
当蛋白质处于某一PH溶液时,蛋白质分子上正、负电荷相等,净电荷为零,蛋白质为兼性离子,此时PH之称为该蛋白质的等电点。
含碱性氨基酸,PI高;含酸性氨基酸PI低。
二、蛋白质的高分子性质
蛋白质分子量从一万到十万。
蛋白质亲水胶体溶液的稳定是分子表面水化层和电荷层。
三、蛋白质的变性与凝固
1、蛋白质的变性
蛋白质在某些理化因素影响下,其特定空间结构破坏而导致理提出重点、难点,等电点。
举临床实例分离蛋白质
教案续页
教案续页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、蛋白质的理化性质包括什么?
2、什么是两性电解质?
3、蛋白质在溶液中的解离状态受什么影响?
4、蛋白质是否具有胶体性质?
5、维持蛋白质亲水胶体稳定的因素有哪些?
6、使蛋白质从水溶液中析出形成沉淀的方法是什么?
7、用半透膜来分离纯化蛋白质的方法称什么?
8、血透的目的是什么?
9、什么是沉降系数?
10、什么是蛋白质变性?
11、蛋白质变性的主要原因是什么?
12、什么是不可逆变性、
13、什么是蛋白质的复性?
14、蛋白质的呈色反应有哪些、
15、蛋白质可以分成哪三大类?
16、按蛋白质分子的组成特点,可分为?
17、什么是单纯蛋白质?
18、什么是结合蛋白质?
19、按分子形状的不同,可分为?
20、什么是球状蛋白质?
21、什么是纤维状蛋白质?
22、按功能,可分为?。