复变函数第二章答案
复变函数 第二章 习题 文档
第二章 解析函数一、选择题:1.函数23)(z z f =在点0=z 处是( )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析(D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析4.下列函数中,为解析函数的是( )(A )xyi y x 222-- (B )xyi x +2(C ))2()1(222x x y i y x +-+- (D )33iy x + 5.函数)Im()(2z z z f =在0=z 处的导数( ) (A )等于0 (B )等于1 (C )等于1- (D )不存在 6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常数=a ( )(A )0 (B )1 (C )2 (D )2-7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( )(A )0 (B )1 (C )1- (D )任意常数8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数(B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数(C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数9.设22)(iy x z f +=,则=+')1(i f ( )(A )2 (B )i 2 (C )i +1 (D )i 22+10.i i 的主值为( )(A )0 (B )1 (C )2πe (D )2π-e11.z e 在复平面上( )(A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期 (C )2)(iziz e e z f --= (D ))(z f 是无界的 13.设α为任意实数,则α1( )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( )(A )3)1(i - (B )i cos (C )i ln (D )i e23π- 15.设α是复数,则( )(A )αz 在复平面上处处解析 (B )αz 的模为αz(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim 0 2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是3.导函数xv i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数i i 的模为9.=-)}43Im{ln(i 10.方程01=--z e 的全部解为三、已知22y x v u -=-,试确定解析函数iv u z f +=)(.四、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析.五、解方程i z i z 4cos sin =+.。
复变函数习题解答(第2章)
p90第二章习题(一)[ 1, 6, 9, 14(3), 26 ]1. 设连续曲线C : z = z(t), t∈[α, β],有z’(t0) ≠ 0 (t0∈[α, β]),试证曲线C在点z(t0)有切线.【解】首先,因为当t →t0时,(z(t) -z(t0))/(t-t0) →z’(t0) ≠ 0,故| (z(t) -z(t0))/(t-t0) | → | z’(t0)| ≠ 0,因此存在δ> 0,使得∀t∈[α, β],当0 < | t-t0 | < δ时,有| (z(t) -z(t0))/(t-t0) |≠ 0,故| z(t) -z(t0) |≠ 0,即z(t) ≠z(t0).此时,存在唯一确定的过点z(t0)以及点z(t) (t ≠t0)的割线:(y(t) -y(t0))(X-x(t0)) + (x(t) -x(t0))(Y-y(t0)) = 0.此方程等价于(y(t) -y(t0))/(t-t0) · (X-x(t0)) + (x(t) -x(t0))/(t-t0) · (Y-y(t0)) = 0.当t→t0时,有y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0.因为z’(t0) ≠ 0,故y’(t0)2 + x’(t0)2≠ 0.直线y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0就是曲线C在点z(t0)处的切线.[这里采用的切线的定义:切线是指割线的极限位置的直线.在这个题目的证明中,我们主要说明两点:第一,当t充分接近t0 (t≠t0),有唯一确定的割线过点z(t0)和z(t);第二,当t →t0 (t≠t0)时,过z(t0)和z(t)的割线确实有“极限位置”] 6. 若函数f(z)在区域D内解析,且满足下述条件之一,试证f(z)在D内为常数.(6.1) 在D内f’(z) = 0;【解】设f(z) = u(x, y) + i v(x, y),(x, y)∈D.由f’(z) = 0及f’(z) = u x + i v x,知u x = v x = 0;由Cauchy-Riemann方程,v y = u x = 0,u y = -v x = 0;因u x = u y = 0,故u在区域D内为常数.因v x = v y = 0,故v在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.2) ( f(z))*在D内解析;【解】因f(z) = u(x, y) + i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = v y,v x = -u y;因( f(z))* = u(x, y) -i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = -v y,v x = u y;因此得到u x = u y = v x = v y = 0,所以u, v都在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.3) | f(z) |在D内为常数;【解】若| f(z) |在D内恒为零,则在D内f(z) = 0 (常数).若在D内| f(z) | = c > 0,则f(z) · ( f(z))* = c2.因f(z)在D内解析且f(z) ≠ 0,故( f(z))* = c2/ f(z)在D内解析.由(2)知f(z)在区域D内为常数.(6.4) Re( f(z))或Im( f(z))在D内为常数.【解】设f(z) = u(x, y) + i v(x, y).若u(x, y) = Re( f(z))在D内为常数,则u x = u y = 0.由Cauchy-Riemann方程,v x = -u y = 0,v y = u x = 0;所以v(x, y) = Im( f(z))也在D内为常数.故f(z)在区域D内为常数.9. 试证下面的定理:设f(z) = u(r, θ) + i v(r, θ),z = r e iθ,若u(r, θ), v(r, θ)在点(r, θ)是可微的,且满足极坐标的Cauchy-Riemann方程:∂u/∂r = (1/r)∂v/∂θ,∂v/∂r = (-1/r)∂u/∂θ(r > 0),则f(z)在点z是可微的,并且f’(z) = (cosθ-i sinθ)(∂u/∂r + i∂v/∂r) = (r/z)(∂u/∂r + i∂v/∂r).【解】注意到在点(r, θ)处,因为r > 0,r, θ也是(x, y)的可微函数,并且,r x = x/r = cosθ,r y = y/r = sinθ;θx = -y/r2 = - sinθ/r,θy = x/r2 = cosθ /r.所以u, v也是(x, y)的可微函数.由求导的链锁法则,我们有u x = u r·r x + uθ·θx = ((1/r)vθ)· cosθ + (-r v r) · (- sinθ/r)= vθ · (cosθ /r) + v r · sinθ= vθ ·θy + v r ·r y= v y;以及v x = v r·r x + vθ·θx = ((-1/r)uθ)· cosθ + (r u r) · (- sinθ/r)= uθ · (- cosθ /r) + u r · (- sinθ)= - (uθ ·θy + u r ·r y)= -u y;即满足Cauchy-Riemann方程,故f(z)在点z是可微的,且f’(a) = u x + i v x = (vθ · (cosθ /r) + v r · sinθ) + i (uθ · (- cosθ /r) + u r · (- sinθ))= (r u r · (cosθ /r) + v r · sinθ) + i ((-r v r) · (- cosθ /r) + u r · (- sinθ))= (cosθ-i sinθ)(∂u/∂r + i∂v/∂r)= (r/z)(∂u/∂r + i∂v/∂r).[ r = √(x2 + y2)在(x, y) ≠ (0, 0)处有连续的偏导数,所以是可微的.θ作为(x, y)函数在(x, y) ≠ (0, 0)处的可微性的证明如下(参考第一章习题13的解答):设D1 = { z∈ | Re(z) > 0},D2 = { z∈ | Im(z) > 0},D3 = { z∈ | Im(z) < 0},D4 = { z∈ | Re(z) < 0}.则 \{0} = D1⋂D2⋂D3⋂D4.在D1上,θ = arctan(y/x) + 2k1π;在D2上,θ = arccot(x/y) + 2k2π;在D3上,θ = arccot(x/y) -π + 2k3π;在D4上,θ = arctan(y/x) + π + 2k4π.不论在那个区域D j上,θ都有连续的偏导数,因此θ在 \{0}上是可微的.] 14. 试验证:(3) lim z→ 0 ( z–z cos z )/( z– sin z ) = 3.【解】因分母z– sin z的一阶导数1 – cos z在原点处的值为0,故此题不能直接用L’Hospital法则(第2题的结论).但可对lim z→ 0 sin z / z用L’Hospital法则.开始以为这个题目应该放在后面的章节,可是终究不甘心,考虑再三,退到sin z 最原始的定义,发现可以以它的实部和虚部为实变量展开.先用L’Hospital法则,lim z→ 0 sin z / z = cos 0 = 1,得到sin z = z + o(z),z→ 0.所以1 – cos z = 2 sin 2(z/2) = 2 ( z/2 + o(z) )2 = z2/2 + o(z2),z→ 0.而sin z = sin(x + i y) = exp( i (x + i y) ) – exp( –i (x + i y) )/(2 i)= (exp(–y)(cos x + i sin x) – exp(y)(cos x–i sin x))/(2 i)= (exp(y) + exp(–y)) sin x + i (exp(y) – exp(–y)) cos x )/2注意到当k + m≥ 3时,o(x k y m) = o(| z |3),z→ 0;故sin z = (1 + y2/2 + o(y3)) (x–x3/6 + o(x4) ) + i (y + y3/6 + o(y4)) (1 –x2/2 + o(x3))= (x + i y ) – (x3 + i 3x2y– 3xy2/2 –i y3 )/6 + o(z3) = z–z3/6 + o(z3),z→ 0.所以,( z–z cos z )/( z– sin z ) = z (1 – cos z )/( z– sin z )= z (z2/2 + o(z2))/(z3/6 + o(z3)) → 3,z→ 0.26. 试证:在将z平面适当割开后,函数f(z) = ( (1 – z ) z2 )1/3能分出三个单值解析分支.并求出在点z = 2取负值的那个分支在z = i处的值.【解】根据课本p83的结论,1和0是仅有的支点,∞不是支点.所以,将z平面沿从0到1的直线段I = { z∈ | Im(z) = 0, 0 ≤ Re(z) ≤ 1 }割开后,就能保证变点z不会单绕0或1转一周,因此在G= \I上函数f(z)就能分出三个单值解析分支.设g(z) = ((1 – z ) z2 )1/3是在点z = 2取负值的那个分支.设arg g(2) = π + 2kπ ( k∈ ).又设C是G内一条从2到i的任一曲线,当变点z沿着曲线C从2到i时,z的辐角的连续增量为∆C arg z = π/2 + 2k0π ( k0∈ ),因此∆C arg (z2 )= π + 4k0π,相应地,1 –z的辐角的连续增量为∆C arg (1 –z )= 3π/2 + 2k0π ( m∈ ),所以g(z)的辐角的连续增量为∆C arg g(z) = (π + 3π/4 + 6k0π)/3 = 7π/12 + 2k0π.根据课本p84的结论,g(i) = | g(i) | · exp( i ∆C arg g(z)) · exp( i arg g(2))= | ((1 –i )i2 )1/3 | · exp( i (7π/12 + 2k0π)) · exp( i (π + 2kπ))= - 21/6 · exp( 7πi/12 ).[从上述的做法中可以看出,我们不妨(事实上也常常地)取k, k0 = 0,并不会造成任何影响.这类题目用辐角的连续增量来考虑是方便的,否则就有可能陷入辐角难以选择的困境,因为那时我们已经忘记了要求辐角是随着变点z连续变化的.设z = r1 exp( iθ1),1 –z = r2 exp( iθ2),那么g(z) = (r12 r2 )1/3 exp( i (2θ1 + θ2 + 2kπ)/3) (k是0, 1, 2之一).当z = 2时,r1(2)= 2,r2(2)= 1;θ1(2) = 0,θ2(2)= π.由于g(2) = 21/3 exp( i (π + 2kπ)/3) < 0,故只能k = 1.当z = i时,r1(i)= 1,r2(i)= 21/2;θ1(i) = π/2,θ2(i) = 7π/4.所以g(i) = (21/2)1/3 exp( i (2(π/2) + 7π/4 + 2π)/3) = - 21/6 · exp( 7πi/12 ).但是,为什么θ2(i) = 7π/4而不是θ2(i) = –π/4 ?事实上,当初的θ1(2)和θ2(2)一旦选定,就决定了其这个单值解析分支中其他点的辐角选择,因为我们要求辐角是连续变化的.确定i的辐角θ1(i)时,要保证z从2到i的过程中,θ1(z)是连续变化的.故应该取θ1(i) = π/2.(增加了π/2)但1 –i的辐角θ2(i),则应该是从z = 2时θ2(2)= π开始连续变化到z = i时所得到的辐角θ2(i),也就是说,θ2从π开始增加了3π/4,因此θ2(i) = π + 3π/4 = 7π/4.特别强调的是:这里的θj(z)的连续变化,应该是随着同一个变点z来变化的.比如,如果我们认为z绕割线I反向地从2转到i,那么,θ1(i) = - 3π/2,这时,θ2(i) = π- 5π/4 = -π/4,显然,如此计算g(i)也会得到上述的结果.至此,我们应该可以看出,两种做法的本质是相同的.]∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞∙︒ℵℜ℘∇∏∑⎰ ⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,∃m∈ +,★〈α1, α2, ..., αn〉lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。
复变函数1到5章测试题及答案
复变函数1到5章测试题及答案(总20页)--本页仅作预览文档封面,使用时请删除本页--- 2 -第一章 复数与复变函数(答案)一、 选择题1.当iiz -+=11时,5075100z z z ++的值等于(B ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z (A )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+-3.复数)2(tan πθπθ<<-=i z 的三角表示式是(D )(A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i(C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i4.若z 为非零复数,则22z z -与z z 2的关系是(C ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是(B )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线- 3 -6.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数是(A )(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是(D )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设z 为复数,则方程i z z +=+2的解是(B ) (A )i +-43 (B )i +43 (C )i -43 (D )i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合是(D ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程232=-+i z 所代表的曲线是(C )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为(B ) (A )221=+-z z (B )433=--+z z- 4 -(C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则12()f z z -=(C ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.000Im()Im()limz z z z z z →--(D )(A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是(C ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为(A )(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg 8arctan -π 3.设43)arg(,5π=-=i z z ,则=z i 21+- 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 ie θ16- 5 -5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为6.不等式522<++-z z522=++-z (或1)23()25(2222=+y x ) 的内部 7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为 122=+y x8.方程i z i z +-=-+221所表示的曲线是连接点 12i -+ 和 2i - 的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为()2211u v -+= 10.=+++→)21(lim 421z z iz 12i -+三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围. (]25,25[+-(或25225+≤+≤-z )) 四、设0≥a ,在复数集C 中解方程a z z =+22. (当10≤≤a 时解为i a )11(-±±或)11(-+±a 当+∞≤≤a 1时解为)11(-+±a ) 五、设复数i z ±≠,试证21zz+是实数的充要条件为1=z 或Im()0z =. 六、对于映射)1(21zz +=ω,求出圆周4=z 的像.- 6 -(像的参数方程为π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u .表示w 平面上的椭圆1)215()217(2222=+v u ) 七、设iy x z +=,试讨论下列函数的连续性:1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f .(1.)(z f 在复平面除去原点外连续,在原点处不连续; 2.)(z f 在复平面处处连续)第二章 解析函数(答案)一、选择题:1.函数23)(z z f =在点0=z 处是( B )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( B )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( D )(A )设y x ,为实数,则1)cos(≤+iy x- 7 -(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( C )(A )xyi y x 222-- (B )xyi x +2 (C ))2()1(222x x y i y x +-+- (D )33iy x + 5.函数)Im()(2z z z f =在0z =处的导数( A )(A )等于0 (B )等于1 (C )等于1- (D )不存在 6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( C )(A )0 (B )1 (C )2 (D )2- 7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( C )(A )0 (B )1 (C )1- (D )任意常数8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是( C )(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数- 8 -(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( A )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.i i 的主值为( D )(A )0 (B )1 (C )2πe (D )2e π-11.z e 在复平面上( A )(A )无可导点 (B )有可导点,但不解析 (C )有可导点,且在可导点集上解析 (D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( C )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( D )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( C )(A )αz 在复平面上处处解析 (B )αz 的模为αz- 9 -(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍 二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(limi +1 2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 常数 3.导函数x v i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 xv x u ∂∂∂∂,可微且满足222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂ 4.设2233)(y ix y x z f ++=,则=+-')2323(i f i 827427- 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f ic xyi y x ++-222或ic z +2c 为实常数6.函数)Re()Im()(z z z z f -=仅在点=z i 处可导 7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k8.复数i i 的模为),2,1,0(2 ±±=π-k e k9.=-)}43Im{ln(i 34arctan -- 10 -10.方程01=--z e 的全部解为),2,1,0(2 ±±=πk i k三、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -= (;sin )(z z f -=')2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f x x ++-=(.)1()(z e z z f +=') 四、已知22y x v u -=-,试确定解析函数iv u z f +=)(. (c i z i z f )1(21)(2++-=.c 为任意实常数)第三章 复变函数的积分(答案)一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( D )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( D)(A )2i π (B )2iπ- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( B ) (A ) i π2- (B )0 (C )i π2 (D )i π44.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ( C)(A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( B) (A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( A ) (A )i π2- (B )1- (C )i π2 (D )1 7.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c ⎰+'+'')()()(2)( ( C )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定 8.设c 是从0到i 21π+的直线段,则积分=⎰cz dz ze ( A )(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( A )(A )i π22(B )i π2 (C )0 (D )i π22-10.设c 为正向圆周i a i z ≠=-,1,则=-⎰cdz i a zz 2)(cos ( C) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( C )(A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D ) (A )积分⎰=--ra z dz a z 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x ,其中c 为连接i -到i 的线段(C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( D)(A)c iz +2 (B ) ic iz +2 (C )c z +2 (D )ic z +2 14.下列命题中,正确的是(C)(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v =(B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( B )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v - (C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 2 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(23 i π103.设⎰=-=2)2sin()(ξξξξπd z z f ,其中2≠z ,则=')3(f 0 4.设c 为正向圆周3=z ,则=+⎰cdz zzz i π6 5.设c 为负向圆周4=z ,则=-⎰c z dz i z e 5)(π 12iπ 6.解析函数在圆心处的值等于它在圆周上的 平均值7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内 解析8.调和函数xy y x =),(ϕ的共轭调和函数为 C x y +-)(21229.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a -3 10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为),(y x u -三、计算积分 1.⎰=+-R z dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; (当10<<R 时,0; 当21<<R 时,i π8; 当+∞<<R 2时,0) 2.⎰=++22422z z z dz.(0) 四、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e .(i π2)五、若)(22y x u u +=,试求解析函数iv u z f +=)(. (321ln 2)(ic c z c z f ++=(321,,c c c 为任意实常数))第四章 级 数(答案)一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( C )(A )等于0 (B )等于1 (C )等于i (D )不存在 2.下列级数中,条件收敛的级数为( C )(A )∑∞=+1)231(n n i (B )∑∞=+1!)43(n nn i (C ) ∑∞=1n n n i (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) ∑∞=+1)1(1n n i n (B )∑∞=+-1]2)1([n n n in(C)∑∞=2ln n n n i (D )∑∞=-12)1(n nnn i 4.若幂级数∑∞=0n n n z c 在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( A )(A )绝对收敛 (B )条件收敛 (C )发散 (D )不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( D )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( D )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( B ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为( A )(A ))1ln(z + (B ))1ln(z - (D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n nn z c ,那么幂级数∑∞=0n n n z c 的收敛半径=R ( C )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++22111z z z z的收敛域是( B ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的 11.函数21z在1-=z 处的泰勒展开式为( D)(A ))11()1()1(11<++-∑∞=-z z n n n n (B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( B )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 2)()(( B )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若⎩⎨⎧--==-+=,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n n n z c 的收敛域为( A ) (A )3141<<z (B )43<<z(C )+∞<<z 41 (D )+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( C )(A )1 (B )2 (C )3 (D )4 二、填空题1.若幂级数∑∞=+0)(n n n i z c 在i z =处发散,那么该级数在2=z 处的收敛性为 发散2.设幂级数∑∞=0n nn z c 与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是 12R R ≥ .3.幂级数∑∞=+012)2(n n n z i 的收敛半径=R22 4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=00)()(n n n z z c z f 成立,其中=n c ),2,1,0()(!10)( =n z f n n 或()0,2,1,0()()(21010d r n dz z z z f ir z z n <<=-π⎰=-+ ). 5.函数z arctan 在0=z 处的泰勒展开式为 )1(12)1(012<+-∑∞=+z z n n n n .6.设幂级数∑∞=0n nn z c 的收敛半径为R ,那么幂级数∑∞=-0)12(n n n n z c 的收敛半径为2R. 7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 211<-<z . 8.函数zze e 1+在+∞<<z 0内洛朗展开式为 nn nn z n z n ∑∑∞=∞=+00!11!1 . 9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R π .10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 ∑∞=+--02)()1(n n nn i z i 三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式. ()2(,12110≥+===--n a a a a a n n n ,),2,1,0(})251()251{(5111 =--+=++n a n n n ) 四、求幂级数∑∞=12n nz n 的和函数,并计算∑∞=122n n n 之值.(3)1()1()(z z z z f -+=,6)五、将函数)1()2ln(--z z z 在110<-<z 内展开成洛朗级数.(n n nk k z k n z z z z z z )1()1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+)第五章 留 数(答案)一、选择题: 1.函数32cot -πz z在2=-i z 内的奇点个数为 ( D ) (A )1 (B )2 (C )3 (D )4 2.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f的( B )(A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点 3.设0=z 为函数zz ex sin 142-的m 级极点,那么=m ( C ) (A )5 (B )4 (C)3 (D )2 4.1=z 是函数11sin)1(--z z 的( D ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点5.∞=z 是函数2323z z z ++的( B ) (A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设∑∞==0)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( C ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k7.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( A ) (A)m (B )m - (C ) 1-m (D ))1(--m8.在下列函数中,0]0),([Re =z f s 的是( D )(A ) 21)(ze zf z -= (B )z z z z f 1sin )(-= (C )z z z z f cos sin )(+= (D) ze zf z 111)(--= 9.下列命题中,正确的是( C )(A ) 设)()()(0z z z z f m ϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.(B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s(C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s(D ) 若0)(=⎰cdz z f ,则)(z f 在c 内无奇点10. =∞],2cos [Re 3zi z s ( A ) (A )32- (B )32 (C )i 32 (D )i 32- 11.=-],[Re 12i ez s i z ( B) (A )i +-61 (B )i +-65 (C )i +61 (D )i +65 12.下列命题中,不正确的是( D)(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s(B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-= (D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞ 13.设1>n 为正整数,则=-⎰=211z ndz z ( A ) (A)0 (B )i π2 (C )n i π2 (D )i n π214.积分=-⎰=231091z dz z z ( B ) (A )0 (B )i π2 (C )10 (D )5i π 15.积分=⎰=121sin z dz z z ( C ) (A )0 (B )61-(C )3i π- (D )i π- 二、填空题 1.设0=z 为函数33sin z z -的m 级零点,那么=m 9 .2.函数z z f 1cos 1)(=在其孤立奇点),2,1,0(21 ±±=+=k k z k ππ处的留数=]),([Re k z z f s 2)2()1(π+π-k k. 3.设函数}1exp{)(22zz z f +=,则=]0),([Re z f s 0 4.设a z =为函数)(z f 的m 级极点,那么='],)()([Re a z f z f s m - . 5.设212)(zz z f +=,则=∞]),([Re z f s -2 . 6.设5cos 1)(z z z f -=,则=]0),([Re z f s 241- . 7.积分=⎰=113z z dz e z 12i π .8.积分=⎰=1sin 1z dz z i π2 . 三、计算积分⎰=--412)1(sin z z dz z e z z .(i π-316) 四、设a 为)(z f 的孤立奇点,m 为正整数,试证a 为)(z f 的m 级极点的充要条件是b z f a z m az =-→)()(lim ,其中0≠b 为有限数. 五、设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=.。
复变函数参考答案(1-8章)
复变函数与积分变换同步练习参考答案中北大学复变函数教研室编印1复变函数同步练习第一章参考答案三、作业题1、(1)设23412i z i +⎛⎞=⎜⎟−⎝⎠,则z = 5 ,辐角主值为4arctan()3π−。
(2)设55(1)1(1)1i z i −−=++,则其实部为125−,虚部为3225−。
提示:本题注意到2(1)2i i −=−,2(1)2i i +=。
则52225222(1)1[(1)](1)1(2)(1)1132(1)1[(1)](1)1(2)(1)12525i i i i i z i i i i i i −−−−−−−−====−−+++++++ 。
(3)一复数对应的向量按逆时针方向旋转23π时对应的复数为1i +,则原复数为1122−+−+。
提示:本题相当于解23111(1)()(1)2222i z ei i i i π−−+−=+=−−+=+。
(4)设1z =2z i =−,则12z z 的指数式i122e π,12zz 的三角式为 155[cos sin 21212i ππ+。
(5)2122lim1z zz z z z →+−−=−32。
提示:211122(2)(1)23limlim lim 1(1)(1)12z z z zz z z z z z z z z z →→→+−−+−+===−−++。
(6)设复数z 满足arg(2)3z π+=,5arg(2)6z π−=,那么z=1−+。
提示:(利用复数的几何意义)向量2z −与向量2z +夹角为5632πππ−=,在复平面上,代表复数2z −、z 、2z +的点在平行于x 轴的直线上(由于此三点的虚轴没有发生变2化)。
连接0,2z +,2z −的三角形为Rt Δ。
因此推出向量2z =,2arg 3z π=,即1z =−+。
本题也可以利用代数法来做。
2、把复数πααα≤≤+−=0,sin cos 1i z 化为三角表示式与指数表示式,并求z 的辐角主值。
复变函数课后习题答案(全)
创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。
复变函数习题答案第2章习题详解
第二章习题详解1. 利用导数定义推出: 1)()1-=n n nzz '(n 为正整数)解: ()()()()()z z z z z n n z nz z z z z z z nn n n n z n n z n∆∆∆∆∆∆∆∆-⎥⎦⎤⎢⎣⎡++-++=-+=--→→ 22100121limlim '()()11210121----→=⎥⎦⎤⎢⎣⎡++-+=n n n n z nz z z z n n nz ∆∆∆ lim 2) 211z z -=⎪⎭⎫⎝⎛'解: ()()2000111111z zz z z z z z z z z z z z z z z -=+-=+-=-+=⎪⎭⎫ ⎝⎛→→→∆∆∆∆∆∆∆∆∆lim lim lim '2. 下列函数何处可导?何处解析? 1)()iy x z f -=2解:设()iv u z f +=,则2x u =,y v -=x x u 2=∂∂,0=∂∂y u ,0=∂∂xv,1-=∂∂y v 都是连续函数。
只有12-=x ,即21-=x 时才满足柯西—黎曼方程。
()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。
2)()3332y i x z f +=解:设()iv u z f +=,则32x u =,33y v =26x x u =∂∂,0=∂∂y u ,0=∂∂xv ,29y y v =∂∂都是连续函数。
只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。
()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。
3)()y ix xy z f 22+=解:设()iv u z f +=,则2xy u =,y x v 2=2y x u =∂∂,xy y u 2=∂∂,xy xv 2=∂∂,2x y v =∂∂都是连续函数。
复变函数论第二章习题全解
第二章 解析函数(一)1.证明:0>∃δ,使{}0001/),(t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线)()(10t z t z ,是否就存在数列{}01t t n →,使)()(01t z t z n =,于是有 0)()(lim)(0101001=--='→t t t z t z t z n n t t n此与假设矛盾. 01001),(t t t t t >⇒+∈δ 因为 [])()(arg )()(arg010101t z t z t t t z t z -=--所以 []])()(lim arg[)()(arglim )()(arg lim 0101010101010101t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为)(arg 0t z '.2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在.所以 )()()()()()(lim )()()()(lim )()(lim 00000000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''=----=--=→→→ 3.证明:()()()()()3322,0,0,,0,00x y x y u x y x y x y ≠⎧-⎪=+⎨⎪=⎩()()()()()3322,0,0,,0,00x y x y v x y x y x y ≠⎧+⎪=+⎨⎪=⎩于是()()()00,00,00,0limlim 1x x x u x u xu xx →→-===,从而在原点()f z 满足C R -条件,但在原点,()()()()()'0,00,0x x u iv u iv f f z z z +-+-=()()()()()()333311i x y i zx y z ⎡⎤+--+⎣⎦=⎡⎤+⎣⎦当z 沿0y x =→时,有()()()'212f f z i z x --+= 故()f z 在原点不可微.4.证明:(1)当0≠z 时,即y x ,至少有一个不等于0时,或有y x u u ≠,,或有y x u u ≠-,故z 至多在原点可微. (2)在C 上处处不满足C R -条件.(3)在C 上处处不满足C R -条件. (4)221yx yix z z z z ++==,除原点外, 在C 上处处不满足C R -条件. 5.解:(1) y x y x v xy y x u 22),(,),(==,此时仅当0==y x 时有 xy v xy u x v y u x y y x 22,22-=-===== 且这四个偏导数在原点连续,故)(z f 只在原点可微. (2) 22),(,),(y y x v x y x u ==,此时仅当y x =这条直线上时有 00,22=-=====x y y x v u y v x u且在y x =这四个偏导数连续,故)(z f 只在y x =可微但不解析. (3) 333),(,2),(y y x v x y x u ==,且 00,9622=-=====x y y x v u y v x u 故只在曲线0212312=-x y 上可微但不解析.(4) 32233),(,3),(y y x y x v xy x y x u -=-=在全平面上有 xy v xy u y x v y x u x y y x 66,33332222-=-=-=-==-=且在全平面上这四个偏导数连续,故可微且解析. 6.证明:(1)y y x x iu v iv u z f D yi x z -=+='=∈+=∀)(0,(2)设().f z u iv =+则()f z u iv =-,由()f z 与()f z 均在D 内解析知,,x y y x u v u v ==-,,x y y x u v u v =-=结合此两式得0x y x y u u v v ====,故,u v 均为常数,故)(z f 亦为常数. (3)若0)(=≡C z f ,则显然0)(≡z f ,若0)(≠≡C z f ,则此时有0)(≠z f ,且2)()(C z f z f ≡,即)()(2z f C z f ≡也时解析函数,由(2)知)(z f 为常数. (4)设().f z u iv =+,若C y x u ≡),(,则0,0≡≡y x u u ,由C R -条件得 0,0≡=≡-=x y y x u v u v 因此v u ,为常数, 则)(z f 亦为常数.7.证明:设,f u iv g i f p iQ =+==+则,,f u iv g v iu =-=-由 ()f z 在D 内解析知,x y y x u v u v ==-从而 ,x x y v y y x p v u Q p v u Qx ==-====- 因而()g z 亦D 内解析.8.解:(1)由32233),(,3),(y y x y x v xy x y x u -=-=,则有 222233,6,6,33y x v xy v xy u y x u y x y x -==-=-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 22236)33()(z xyi y x i v u z f x x =+-=+='(2) ()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()cos sin cos x x y u e x y y y y v =-+= ()sin sin cos x y x u e x y y y y v =--+=- 故()f z 在z 平面上解析,且()()()'cos 1sin sin 1cos x xf z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦(3)由xshy y x v xchy y x u cos ),(,sin ),(==,则有xchy v xshy v xshy u xchy u y x y x cos ,sin ,sin ,cos =-===故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z xshyi xchy i v u z f x x cos sin cos )(=-=+=' (4)由xshy y x v xchy y x u sin ),(,cos ),(-==,则有xchy v xshy v xshy u xchy u y x y x sin ,cos ,cos ,sin -=-==-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z xshyi xchy i v u z f x x sin cos sin )(-=--=+=' 9.证明:设,i z x yi re θ=+=则cos ,sin ,x r y r θθ== 从而cos sin ,sin cos r x y x y u u u u u r u r θθθθθ=+=-+cos sin ,sin cos ,r x y x y v u v v v r v r θθθθθ=+=-+再由11,r r u v v u r rθθ==-,可得,x y y x u v u v ==-,因此可得()f z 在点z 可微且()()()'11cos sin sin cos x y r r f z u iu r u u i r u u r r θθθθθθ=-=--+()()1cos sin sin cos r i u i u rθθθθθ=--+()()cos sin sin cos r r i u i v θθθθ=-++ ()()cos sin r r i u iv θθ=-+ ()()1cos sin r r r r ru iv u iv i zθθ=+=++10.解:(1)x y i x z i e e e 2)21(22--+--== (2)222222y zxyiy zz e e e -+-==(3) 22222211x yi xy ix iyx yx yx y ze eeee--++++===⋅所以22221Re cos x yx y x y z e e ++⎛⎫= ⎪⎝⎭11.证明:(1)因为)sin (cos y i y e e e e e x yi x yi z z +=⋅==+ 因此 )sin (cos y i y e e x z -=而)sin (cos y i y e e e e e x yi x yi z z -=⋅==--,得证.(2)因为 ie e z iziz 2sin --=所以 z ie e i e e z iziz z i z i sin 22sin =+=-=---(3)因为2cos iziz e e z -+=所以z e e e e z iziz z i z i cos 22cos =+=+=--12.证明:分别就m 为正整数,零,负整数的情形证明,仅以正整数为例当1=m 时,等式自然成立. 假设当1-=k m 时,等式成立.那么当k m =时,kz z k z k z e e e e =⋅=-1)()(,等式任成立. 故结论正确.13.解:(1) )1sin 1(cos 333i e e e e i i +=⋅=+(2) ()()()11cos 12i i i i e e i ---+-=()112i i i e e-+++=cos11sin1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭14.证明:(1)由于z z g z z f ==)(,sin )(在点0=z 解析 且01)0(,0)0()0(≠='==g g f 因此 11cos sin lim0===→z z zz z(2)由于0)(,1)(=-=z g e z f z 在点0=z 解析,且01)0(,0)0()0(≠='==g g f因此 11lim0==-=→z z z z e ze(3)由于z z z g z z z z f sin )(,cos )(-=-=在点0=z 解析, 且1)0(,0)0()0(,0)0()0(,0)0()0(='''=''=''='='==g g f g f g f 因此 3cos 1sin cos 1lim sin cos lim00=-+-=--→→zzz z z z z z z z z 15.证明:2cos iziz e e z -+=)cos()cos(cos nb a b a a +++-+=222)()()()(nb a i nb a i b a i b a i ia ia e e e e e e +-++-+-++++++ =⎥⎦⎤⎢⎣⎡--⋅+--⋅+-+ib bn i ia ib b n i ia e e e e e e 111121)1()1(=)2cos(2sin 21sinnb a b bn ++=右边同理证明(2).16.证明:(1) z i e e i i e e i e e iz zz z z iz i iz i sinh 222)sin()()(=-⋅=-=-=--- (2) z e e e e iz z z iz i iz i cosh 22)cos()()(=+=+=-- (3) z i ie e i e e iz iziz iz iz sin 22)sinh(=-⋅=-=-- (4) z z iz i iz cos )cos()cos()cosh(=-=⋅=(5) z i zz i iz iz iz tanh cosh sinh )cos()sin()tan(===(6) z i zzi iz iz iz tan cos sin )cosh()sinh()tanh(===17.证明:(1) 1)(sin )(cos )(222222=+=+=-iz iz ishz z ch z sh z ch(2) 111sec 2222222=+=+=+zch zsh z ch z sh z ch z th z h (3) )sin()sin()cos()cos()cos()(21212121iz iz iz iz iz iz z z ch -=+=+ 2121shz shz chz chz +=18.证明:(1) xshy i xchy iy x yi x yi x z cos sin )sin(cos )cos(sin )sin(sin +=+=+= (2) xshy i xchy iy x yi x yi x z sin cos )sin(sin )cos(cos )cos(cos +=-=+= (3) y x y xsh y xch xshy i xchy z 22222222sinh sin cos sin cos sin sin +=+=+= (4) y x y xsh y xch xshyi xchy z 22222222sinh cos sin cos sin cos cos +=+=-=19.证明: chz e e e e shz zz z z =+='-='--2)2()( shz e e e e chz zz z z =-='+='--2)2()( 20.解:(1) )31arg(31ln )31ln(i i i i z +++=+= )23(2ln ππk i ++= ),1,0( ±=k(2)由于2ln iz π=,则有i i e z i=+==2sin2cos2πππ(3)由于)2(1ππk e e i z +=-=,故)2(ππk i z +=(4)z z sin cos -=,即1tan -=z ,所以ππk i i i z +-=+-=411ln21 (5) 设,z x iy =+由12tgz i =+得()()sin 122cos iz iz iz iz zi e e i e e z--=+→-=-+ 2255iz i e →=-+22cos 25y e x -→=-,1sin 25x =41ln 5,54y e y -→==且1112,222tg x x arctg π⎡⎤⎛⎫=-=-+ ⎪⎢⎥⎝⎭⎣⎦11ln 5224z arctg i π⎡⎤⎛⎫→=-++ ⎪⎢⎥⎝⎭⎣⎦21.证明:因)1arg(1ln )1ln()1ln(-+-=-=-θθθi i i re i re re z ,所以)cos 21ln(21)sin ()1(ln 1ln )]1Re[ln(222θθθθr r r re re z i i -+=+-=-=- 22.解: 32)(3)()(πθk z ik ez r z w +=,)2,1,0;2)(0;(=<<∈k z G z πθ利用i i w -=)(定2,=k k ,再计算)(2i w -23.解: 2,22ππii e i e ==-,由32)2(-=-w 定1,=k k ,再计算i e i w π451)(=24.解: )24(2ln )]2)1(arg(1[ln )1ln()1(πππk i k i i i i i i ieeei +-+++++===+)24(2ln ππk i ee+-⋅= ),2,1,0( ±±=kππk i k i i i i e e e e 23ln )]23(arg 3[ln 3ln 3-++⋅=== ),2,1,0( ±±=k25.解:z 在z 平面上沿0=z 为圆心,1>R 为半径的圆周C 从A 走到B ,经过变换4z w =,其象点w 在w 平面上沿以0=w 为心,14>R 为半径的象圆周从A '走到B ',刚好绕1+=w w 的支点-1转一整周,故它在B '的值为B w '+1.因此 1)()(4+-=-=R z f z f AB.26.证明:()f z = 0,1,∞由于 3|12+,故()f z 的支点为0,1z =,因此在将z 平面沿实轴从0到期割开后,就可保证变点z 不会单绕0或者说转一周,于是在这样割开后的z 平面上()f z 就可以分出三个单值解析分支. 另由已知 ()arg f z π=得()()arg c i f z i f i e π∆=()2arg 1arg 3c c i z z ⎡⎤∆-+∆⎣⎦=32342i ππ⎡⎤+⋅⎢⎥⎣⎦=712i π=.(二)1.证明:由()21z f z z =-得()()2'2211z f z z +=-,从而于是()f z 在D 必常数()()()()()()22'2222111111z z f z z z f z z z z+-+⋅==---()4242121Re mz I z i z z-+=+- 所以 ()()4'421Re 12Re zf z z f z z z ⎛⎫-⋅= ⎪ ⎪+-⎝⎭由于1z <,因此410,z ->且()24422212Re 1210z z z z z+-≥+-=->故()()'Re 0f z z f z ⎛⎫⋅> ⎪ ⎪⎝⎭.2.证明:同第一题221Im 2111)()(1zzi z z z z f z f z -+-=-+='''+. 3.证明:题目等价域以下命题:设1,E E 为关于实轴对称的区域,则函数在E 内解析)(z f ⇒在1E 内解析.设)(z f 在E 内解析,对任意的10E z ∈,当1E z ∈时,有E z E z ∈∈,0,所以 )()()(lim )()(lim0000000z f z z z f z f z z z f z f z z z z '=--=--→→ 这是因为)(z f 在E 内解析,从而有)()()(lim0000z f z z z f z f z z '=--→,由0z 的任意性可知, )(z f 在1E 内解析. 4.证明:(1)由于)(21),(21z z iy z z x -=+=,根据复合函数求偏导数的法则,即可得证. (2))(21)(21x vy u i yv x u z v i z u z f ∂∂+∂∂+∂∂-∂∂=∂∂+∂∂=∂∂所以x vy u y v x u ∂∂-=∂∂∂∂=∂∂,,得0=∂∂zf 5.证明: x y sh y sh x y xch yi x z 222222sin )sin 1(sin )sin(sin +=-+=+= 所以 z x y sh shy sin sin 22=+≤ 而 z y shy Im =≥ ,故左边成立.右边证明可应用z sin 的定义及三角不等式来证明. 6.证明:有 R ch y ch y sh y sh x z 2222221sin sin ≤=+≤+= 即 chR t ≤sin又有 R ch y ch y sh y x z 2222221sinh cos cos ≤=+≤+= 7.证明:据定义,任两相异点21,z z 为单位圆1<z ,有212221212121)32()32()()(z z z z z z z z z f z f -++-++=--0112222121=-->--≥++=z z z z 故函数)(z f 在1<z 内是单叶的.8.证明:因为)(z f 有支点-1,1,取其割线[-1,1],有 (1) 10182)(,8)(arg ie c ei f z f ππ-=-=∆(2) i c c e i f z f i z f 852)(,85)(arg ,811)(arg 32πππ=--=∆-=∆ 9.解: 因为)(z f 有支点∞±,,1i ,此时支割线可取为:沿虚轴割开],[i i -,沿实轴割开],1[+∞,线路未穿过支割线,记线路为C ,)]arg())(arg()1arg([21)(arg i z i z z z f c c c c ⋅∆+--∆+-∆=∆2]0[21ππ-=-=故 i z f 5)(-=.10.证明:因为()f z =0,1,z =∞,由题知()f z 的支点为0,1,z =于是在割去线段0Re 1≤≤的平面上变点就不可能性单绕0或1转一周,故此时可出两二个单值解析分支,由于当z 从支割线上岸一点出发,连续变动到1z =-时,只z 的幅角共增加2π,由已知所取分支在支割线上岸取正值,于是可认为该分支在上岸之幅角为0,因而此分支在1z =-的幅角为2π,故()21i f π-==,i f 162)1(-=-''.。
复变函数第二章答案
第二章第二章 解析函数解析函数1.用导数定义,求下列函数的导数:.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z D ®+D -D0()Re()Re lim z z z z z z zz D ®+D +D -=D 0Re Re Re limz z z z z z zz D ®D +D +D D =D0Re lim(ReRe )z zz z z z D ®D =+D +D00Re lim(Re )lim(Re ),z x y zx z z z z z x i y D ®D ®D ®D D =+=+D D +D当0z ¹时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =× 解: 22222222()||()()()(),f z z z z z z z zx y x iy x x y iy x y =×=××=×=++=+++这里2222(,)(),(,)().u x y x x y v x y y x y =+=+2222222,2,2,2.x y y x u x y x v x y y u xy v xy =++=++==要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x yu u v v 均连续,故2().f z z z =×仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+-解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=-226,6,33,y x y u xy v xy v x y =-==-四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az bc d cz d++至少有一不为零解: 当0c ¹时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点, 222()()()()()()()()().()()az b f z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +¢¢=+¢¢++-++=++-+-==++ 当0c =时,显然有0d ¹,故()az b f z d +=在复平面上处处解析,且()a f z d ¢=. 4.若函数()f z 在区域D 内解析,并满足下列条件之一,试证()f z 必为常数. (1) ()f z 在区域D 内解析; (2) 2;v u =(3) arg ()f z 在D 内为常数; (4) (,,).au bv c a b c +=为不全为零的实常数 证 (1) 因为()f z 在D 中解析,所以满足C R -条件条件,,u v u v x y y x¶¶¶¶==-¶¶¶¶又()f z u iv =-也在D 中解析,也满足C R -条件条件()(),.u v u v x y y x¶¶-¶¶-==-¶¶¶¶ 从而应有0u u v v x y x y¶¶¶¶====¶¶¶¶恒成立,故在D 中,u v 为常数, ()f z 为常数. (2) 因()f z 在D 中解析且有2()f z u iu =+,由C R -条件,有2,2.u uu x y u u u yx ¶¶ì=ﶶïí¶¶ï=-ﶶî 则可推出0u u x y¶¶==¶¶,即u C =(常数).故()f z 必为D 中常数. (3) 设()f z u iv =+,由条件知arctan v C u =,从而22(/)(/)0,0,1(/)1(/)v u v u yx v u v u ¶¶¶¶==++计算得计算得2222()/0v uu u v u xxu v ¶¶-¶¶=+,2222()/0,v uu u v u yy u v ¶¶-¶¶=+化简,利用C R -条件得条件得0,0.uu u v yx u u u v xy ¶¶ì--=ﶶïí¶¶ï-=ﶶî 所以0,u u x y ¶¶==¶¶同理0,v vx y ¶¶==¶¶即在D 中,u v 为常数,故()f z 在D 中为常数. (4) 法一:设0,a ¹则()/,u c bv a =-求导得求导得,,u b v u b v xa x ya y ¶¶¶¶=-=-¶¶¶¶由C R -条件条件,,u b u v b vx a y x a y ¶¶¶¶==¶¶¶¶ 故,u v 必为常数,即()f z 在D 中为常数. 设0,0,0a b c =¹¹则bv c =,知v 为常数,又由C R -条件知u 也必为常数,所以()f z 在D 中为常数. 法二:等式两边对,x y 求偏导得:00x x y y au bv au bv +=ìí+=î,由C R -条件,我们有条件,我们有0,00x y x x y y au bu u a b bu au u b a -=-ìæöæö=íç÷ç÷+=èøîèø即, 而220a b+¹,故0x y u u ==,从而u 为常数,即有()f z 在D 中为常数. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z xy¶¶¢+=¶¶证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().uuu u f z i f z x yx y ¶¶¶¶¢¢=-=+¶¶¶¶ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v xyx y u u v v u u v vu v u v x x x x y y y y ¶¶¶¶+=+++¶¶¶¶éù¶¶¶¶¶¶¶¶=+++++++êú¶¶¶¶¶¶¶¶ëû又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v v u v xyx y¶¶¶¶=+==+=¶¶¶¶则22222222()|()|4(()())4|()|.u u f z f z x yxy¶¶¶¶¢+=+=¶¶¶¶6.由下列条件求解解析函数().f z u iv =+ (1)22()(4);u x y x xy y =-++ 解: 因22363,u v x xy y x y ¶¶==+-¶¶所以所以 22(363)v x xy y dy =+-ò22333(),x y xy y x j =+-+又222263(),363,()3,v u xy y x x xy y x x xxj j ¶¶¢¢=++=--=-¶¶而所以 则3()x x C j =-+.故2222222233332222222233()()(4)(33)(1)()(1)()2(1)2(1)(1)()2(1)(1)(2)(1)f z u ivx y x xy y i x y xy y x C i x x iy y i x iy x y i xy i Ciz i x y xyi iz i Cii z x y xyi Ci i z Ci=+=-++++--+=-+--+-+--+=---×-+=---+=-+ (2) 23;v xy x =+解: 因23,2,v v y x xy¶¶=+=¶¶由()f z 解析,有22,2().u v x u xdx x y x yf ¶¶====+¶¶ò又23,u v y y x ¶¶=-=--¶¶而(),u y y f ¶¢=¶所以()23,y y f ¢=--则2()3.y y y C f =--+故 22()3(23).f z x y y C i xy x =--+++ (3) 2(1),(2);u x y f i =-=-解: 因2,2(1),u u y x x y ¶¶==-¶¶由()f z 的解析性,有2(1),v ux x y ¶¶=-=--¶¶22(1)(1)(),v x d x x y f =--=--+ò 又2,v uy y x ¶¶==¶¶而(),v y yf ¶¢=¶所以2()2,(),y y y y C f f ¢==+则22(1),v x y C =--++故22()2(1)((1)),f z x y i x y C =-+--++由(2)f i =-得(2)(1),f i C i =-+=-推出0.C =即2222()2(1)(21)(21)(1).f z x y i y x x i z z i z =-+-+-=-+-=--7.设sin ,pxv e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+解: 要使(,)v x y 为调和函数,则有0.xx yyv v v D =+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.xy y x uv u v ==-1(,)cos cos (),1sin ()sin .pxpx x px px y u x y u dx e ydx e y y pu e y y pe y pf f ===+¢=-+=-òò()3i 33)i 3p),i p p p.22ee e e ==c t 3(1)l n 2(2)4l n22l n 2244ln 224cos(ln 2)sin(ln 2).44i i k k i k k ee ei p p p p p p pp p p éù++-+êúëûéù+-++-êúëû+-==éù=-+-êúëû(4) 33;i- 解: 3(3)ln3(3)(ln32)3ii i k i eep---+==(3)l n 323l n 32227(c o s l n3s i n l n 3).i k k i ik ee eee i p p p-+-=×=×=-。
复变函数 刘敏思 第二章 习题解答
z =iy
+i
∂v ∂x
z =iy
= k ⋅ 0 + i ⋅0 = 0 。
3. 讨论下列函数在复平面 ℂ 上的可微性和解析性,并在可导的情况下求它们的导函数: ( 1) f ( z ) = x + i y ; (2) f ( z ) = e + ie ; (3) f ( z ) = x − 3 xy + i (3 x y − y ) ; ( 4) f ( z ) = e x ( x cos y − y sin y ) + i e x ( y cos y + x sin y ) . 解 (1)记 f ( z ) = u ( x, y ) + iv ( x , y ) ,则 u ( x, y ) = x , v( x, y ) = y 。易见它们都在复平面上可 微。要使柯西—黎曼条件满足,只须
4. 设 f ( z ) 在区域 D 内解析,若下列关系之一成立, ( 1) Im[ f ( z)] ≡ c ,其中 c 为实常数; ( 2) α Re[ f ( z )] + β Im[ f ( z)] = c ,其中 α , β , c ∈ ℝ 且 α + β ≠ 0 ;
2 2
( 3) Re[ f ( z )] = {Im[ f ( z)]} , 则 f ( z) 在区域 D 内为常数 . 证明 记 f ( z ) = u ( x, y ) + iv ( x , y ) ( 1)由条件得, v( x, y ) ≡ c ,因为 f ( z ) 在区域 D 内解析,由柯西—黎曼条件,在区域 D 内
f ( z ) = x 2 + y 2 , u ( x, y ) = x 2 + y 2 , v( x, y) = 0 。
复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案
解:f(z)除 外处处可导,且 .
(4) .
解:因为
.所以f(z)除z=0外处处可导,且 .
6.试判断下列函数的可导性与解析性.
(1) ;
解: 在全平面上可微.
所以要使得
, ,
只有当z=0时,
从而f(z)在z=0处可导,在全平面上不解析.
(2) .
解: 在全平面上可微.
只有当z=0时,即(0,0)处有 , .
它们分别为
∴
∴满足C-R条件.
(3)当z沿y=x趋向于零时,有
∴ 不存在.即f(z)在z=0处不可导.
11.设区域D位于上半平面,D1是D关于x轴的对称区域,若f(z)在区域D内解析,求证 在区域D1内解析.
证明:设f(z)=u(x,y)+iv(x,y),因为f(z)在区域D内解析.
所以u(x,y),v(x,y)在D内可微且满足C-R方程,即 .
15.计算下列各值.
(1)
(2)
(3)ln(ei)=ln1+iarg(ei)=ln1+i=i
(4)
16.试讨论函数f(z)=|z|+lnz的连续性与可导性.
解:显然g(z)=|z|在复平面上连续,lnz除负实轴及原点外处处连续.
设z=x+iy,
在复平面内可微.
故g(z)=|z|在复平面上处处不可导.
所以f(z)在z=0处可导,在全平面上不解析.
(3) ;
解: 在全平面上可微.
所以只有当 时,才满足C-R方程.
从而f(z)在 处可导,在全平面不解析.
(4) .
解:设 ,则
所以只有当z=0时才满足C-R方程.
从而f(z)在z=0处可导,处处不解析.
复变函数与积分变换答案-第2章解析函数
11 27、第二章 解析函数习题详解1、(1) f 1(z )= z 4在定义域(-,+) 内连续;2) f 2(z ) =4z +5在定义域(-,+)内连续; 1在定义域-, 3,3, +内连续。
- 4, v = 16u + 64, 为一抛物线。
4、(1)w = z 3,则w = (2i )3= -8i , w =( 2+2i )3=2 2+12i -12 2-8i =-10 2+4i ;5、 f (z )=Re z =x ,当 y →0时, f (z )→1;当x →0时, f (z )→0,因为极限不等, z x + iy 所以当z →0时, f (z )极限不存在。
1在原点处不连续,故 w =i arg z +1 在负实轴上与原点 zz3) f 3 (z )= 22、w = z2u =x 2-y 2v = 2 xy u =x 2 -4,把直线C :y =2映射成:u =x -4v = 4 xvx = ,代入第一个式子,4u =3、1zw = = = z zzx - iy22,x + yv =x 22 x + y-y 22 x + y把直线C :x =1映射成,:vu =v =1 1+y 2-y 1+y 21-u u 2u= (1- u ) u v 2 + u 22)w = z 3,像域为0arg w 26、i arg z 在负实轴上与原点处不连续, 处不连续。
f (z +z )- f (z )z →0z= limz →0(z +z )2zy 2 = 1 -1 = u为一个圆周。
uz 2-(z +z )2z 2(z +z )2z 2 -z 2 -2z z -z 22= lim = lim = - 。
z →0 z z →0z 2(z +z )2zz 38、(1) f (z ) =5-3z +5z 2,在(-,+)内解析,且导数为 f (z ) = -3+10z ;12、(1) z =e 1-2i =ecos -i sin=-ei ;1222) f (z )=1 1 1z 4 -1 (z 2 -1)(z 2 +1) (z -1)(z +1)(z +i )(z -i )在(-,+)内除z =1,5z +431 1 5 3) f (z )= z +4,在(-,+)内除z = - 3外解析, f (z )=1+ 2 =1+ 52z + 32 2 2z +32 2(2z +3)且导数为: f(z )= 1(2z +3)-2(-2)=-5 (2z +3)29、(1) f (z )=Im z = y 在z 平面上的点点不可导,不解析(因柯西-黎曼条件不满足);2) f (z )= z 4 ,在平面上的点解析。
复变函数与积分变换 第二章课后答案
e z sin z e z sin z 则 dz z 2i dz 2 z 2i z 4 z 3 z 2 i 1
2i
e 2i sin 2i e 2i sin 2i e 2i sin 2i e 2i sin( 2i ) 2i 2i 2i 2i 2i 2 2 sin 2i e 2i e 2i sin 2i cosh 2i . 2
i
i
i i
= 2 cos i .
7. 沿指定曲线的正向计算下列各积分: (1)
C
ez dz , C : z 2 1 ; z2 dz (a 0) , C : z a a ; z a2
2
(2)
C
(3)
C
eiz 3 dz , C : z 2i ; 2 z 1 2 f ( z) dz , C : z 1 ; f ( z ) 在 z 1 上解析, z0 1 ; z z0
z 0
0.
4
(8) f ( z ) 有四个奇点, 其中 z i在c 内,作互不相交互不包含且 在 C 内的小圆周 c1和c2 包含 i 与-i,则
c1
(z
2
1 dz 1 dz 2 4)( z i ) z i c2 ( z 4)( z i ) z i
(2) 由于被积函数在全平面上解析,利用柯西积分定理得
求积分
C
3 z 2 dz 0 .
2. 设 C 是由点 0 到点 3 的直线段与点 3 到点 3 i 的直线段组成的折线,
C
Re zdz .
解 将 C 分为两段,从 z=0 到 z=3, c1 的方程为 z 3 x, 0 x 1,
(含答案)复变函数与积分变换习题解析2
习题2.11. 判断下列命题的真假,若真,给出证明;若假,请举例说明. (1)如果()f z 在0z 连续,那么0()f z '存在. (2)如果0()f z '存在,那么)(z f 在0z 解析. (3)如果0z 是()f z 的奇点,那么()f z 在0z 不可导. (4) 如果0z 是()f z和()g z 的一个奇点,那么0z 也是()()f z g z +和()()f z g z ⋅的奇点.(5)如果(,)u x y 和(,)v x y 可导,那么()(,)(,)f z u x y iv x y =+亦可导.2.应用导数定义讨论函数)Re()(z z f =的可导性,并说明其解析性.3.证明函数在0z =处不可导. 习题2.21. 设试证)(z f 在原点满足柯西-黎曼方程,但却不可导.(提示:沿抛物线x y =2趋向于原点)2. 判断下列函数在何处可导,何处解析,并在可导处求出其导数.(1)y ix xy z f222)(+=; (2)i y x y x z f 22332)(+-=; (3)=)(z f232z z -+; (4)22()2(1(2)f z x y i x y y =-+-+). 3.(1 (2 (3)iy x z f 2)(+=; (4 4. (1)iz z z f 2)(3+=; (25. 讨论下列各函数的解析性.(1)3223()33f z x x yi xy y i =+--; (2 (0)z ≠; (3)1(33)x iy ω-=-; (4习题2.31. 证明下列u 或v 为某区域的调和函数,并求解析函数()f z u iv =+. (1)2(1)u x y =-; (2)3223u x x xy =-+;(3)323u x xy =-; (4)23v xy x =+;(5)x y x v 222+-=; (62. 求k 值使22ky x u +=为调和函数,并求满足1)(-=i f 的解析函数iv u z f +=)(.3. 设函数iv u z f +=)(是一个解析函数,且y x xy y x y x v u 22332233---+-=+,求iv u z f +=)(.4. 证明:如果函数iv u z f +=)(在区域D 内解析,并满足下列条件之一,则)(z f 是常数.(1(2(3(4(5.5.(1(2)u -是v 的共轭调和函数.6. 如果iv u z f +=)(是z 的解析函数,证明:(1(2习题2.41.(2 (3(4(5(6)()i Ln e ; (7)i 3; (8)i i )1(+;(9)1(34)i i ++; (10))1sin(i +;(11)cos(5)i π+; (12)i ei cos 1++π.2(1 (2)0cos sin =+z z .3. (1 (2 (34.证明:(1)121212sin()sin cos cos sin z z z z z z +=+,212121sin sin cos cos )cos(z z z z z z -=+;2)1cos sin 22=+z z ; (3(4 (55.证明:(1)122=-z sh z ch ; (2)z ch z sh z ch 222=+;(3)cos sin shz shx y ichx y =+,cos sin chz chx y ishx y =+;(4)212121)(shz chz chz shz z z sh +=+,212121)(shz shz chz chz z z ch +=+.复 习 题 二一、单项选择题1.D2.C3.B4.A5.C6.C7.A8.A9.D 10.C 11.C 12.B一、单项选择题1. ). D.z sin2. 下列说法正确的是( ).A.函数的连续点一定不是奇点B.可微的点一定不是奇点C.)(z f 在区域D 内解析,则)(z f 在D 内无奇点D.不存在处处不可导的函数3. 下列说法错误的是( ). A.如果)(z f 在点0z 解析,则)(z f 在点0z 可导B.如果0z 是)(z f 的奇点,则)(0z f '不存在C.如果)(z f 在区域D 内可导,则)(z f 在D 内解析D.如果)(z f 在点0z 可导,则)(z f 在点0z 连续 4. 下列说法正确的是( ).A.iv u z f +=)(在区域D内解析,则v u ,都是调和函数B.如果v u ,都是区域D 内的调和函数,则iv u +是D 内的解析函数C.如果v u ,满足C-R 方程,则v u ,都是调和函数D.iv u +是解析函数的充要条件是v u ,都是调和函数5. 设函数iv u z f +=)(解析,则下列命题中错误的是( ).A.v u ,均为调和函数B.v 是u 的共轭调和函数C.u 是v 的共轭调和函数D.u -是v 的共轭调和函数6. 设函数iv u z f +=)(在区域D 内解析,下列等式中错误的是( ).7. 设在区域D 内v 为u 的共轭调和函数,则下列函数中为D 内解析函数的是( ). A.iu v - B.iu v + C.iv u - D.x x iv u -8. 函数z z z f Im )(2=在0=z 处的导数( ). A. 等于0 B. 等于1 C. 等于 -1 D. 不存在9. 下列数中为实数的是( ).A. 3)1(i -B. i sinC. LniD. i e π-310. 下列函数中是解析函数的是( ).A.xyi y x 222--B.xyi x +2 C. )2()1(222x x y i y x +-+- D. 33iy x + 11. 设z z f cos )(=,则下列命题中,不正确的是( ). A. )(z f 在复平面上处处解析 B. )(z f 以π2为周期12. 设Lnz =ω是对数函数,则下列命题正确的是( ).A. nLnz Lnz n =B. 2121Lnz Lnz z Lnz +=因为x z =是实常数,所以x Lnx Lnz ln ==二、填空题 在区域D 内三、计算题1. 指出下列函数的解析区域和奇点,并求出其导数.(1)zzezf z sincos)(+-=;(2(3(4(5(62..(1(3(53. 试证下列函数为调和函数,并求出相应的解析函数ivuzf+=)(.(1)xu=;(2)xyu=;(3)3223236yxyyxxu+--=;(4(5)yev x sin2=;(64. 已知22yxvu-=-,试确定解析函数ivuzf+=)(.5. 函数yxv+=是yxu+=的共轭调和函数吗?为什么?6.(1(2)ie43+;(3)Lni;(4(5(6)i-13;(7(8四、证明题1. 若函数),(yxu和),(yxv都具有二阶连续偏导数,且满足拉普拉斯方程,现令xyvus-=,yxvut+=,则2. 设)(zf与)(zg都在,0()0g z'≠,证明第二章习题、复习题参考答案习题2.11.(1)假(2)假(3)假(4)假(5)假2. 函数)Re()(zzf=处处不可导,处处不解析.习题2.22.(1)在0z =处可导,处处不解析,导数(0)0f '=;(2)在点)0,0(和处可导,处处不解析,导数0)0(='f ,(3)处处可导, (44.(1(25.(1(3.习题2.31.(1)ci iz z z f ++=22)(; (2)ci z z z f +-=32)(; (3)=)(z f 3z ci +; (4)=)(z f 23z iz c ++;(5)c iz iz z f ++=2)(2; (62.1k =-;2()f z z =.3.c y y x y v c x xy x u --+-=+--=23,232323,c i z z z f )1(2)(3-+-=. 习题2.41.(1 (2 (3)k )1(-)(Z k ∈; ((5(6(7)3ln 2i k e e π-)(Zk ∈; (9 ( (2.(1 (23.(1)正确; (2)正确; (3)正确.复习题二二、填空题2.0;3.c uv +2(c 为实常数);4.3,1,3-==-=n m l ;5.i +1;6.常数;8.ic ixy y x ++-222或ic z +2(c 为常数);9.i -; 10.πk e 2-),2,1,0( ±±=k .三、计算题1.(1(2(3(4(5(6z z z f cot csc )(-='.2.(1)在复平面内处处不可导,处处不解析;(2)在0=z 处可导,但在复平面内处处不解析,0)0(='f ;(3)在复平面内处处不可导,处处不解析;6.(1)4e -; (2))4sin 4(cos 3i e +; (3(4(6 (7。
复变函数第二章习题解答
习题二解答1、解:1)连续 令iyx z zy x iv y x u z f +=+=+=,11),(),()(2则由222222222212111111zxy izy x zz z+-++-+=++=+显然,),(),,(y x v y x u 在1<z 内连续2)不一致连续 因为取⎪⎭⎫ ⎝⎛>-=+=>∀=δδεδδ11'',1',0,51n inn z i n n z 取显然,()δδδ<+=--+=-1111'''n n nn n n z z但()()()()222222111111''11'11nn n n z z ---⎪⎪⎭⎫⎝⎛+-=+-+δδ()()ε>=->--=-+-=41421412121212222222nn n n n n n n2、()iyx z y x zz f +=+==,222则,0),(,),(22=+=y x v y x y x u0,2,2====y x y x v v y u x u显然上述四个偏导在整个复平面上连续 由R C-条件⎩⎨⎧==⇒⎩⎨⎧==00202y x y x22222222)2()1(2),(,)2()1(1),(xy y x xyy x v xy y x yx y x u +-+-=+-+-+=∴()2zz f =∴只在0=z 处可导,而处处不解析3、证明:()yy x xziUV R C iV U z f D iy x V--+='=∈+=0,0====∴y x yx V V UU),(),,(y x V y x U 在D 内为常数 故)(z f 在D 内为常数 4、证明(1)令()),(),(y x iv y x u z f +=若),(y x u 在D 内为常数,则在D 内,0==y xu u由C-R 条件知,对),(y x v 有在D 内0==y xv v∴),(),,(y x v y x u 在D 内为常数 )(z f在D 内为常数对),(y x v 于D 内为常数时,同理可证得结论 (2)由()222v u z f +=在D 内为常数设()*22cv u =+若0=c 知()0=z f 于D若0≠c ,此时:对()*求偏微分得22022=+=+y y x x vv uu vv uu再由C-R 条件,并讨论二元一次方程组的解,可解出====y x y x v v u u ,由此可得)(z f 在D 内为常数5、证明:若∈z 上半平面,则∈z 下半平面 设()),(),(y x iv y x u z f +=,则()),(),(),(),(y x i y x y x iv y x u z f ψϕ+∆---=)(z f 在上半平面解析),(),,(y x v y x u ⇔在上半平面解析且满足RC -方程x y y x v u v u -==,又()()),(,),,(,y x v y x y x u y x --=-=ψϕ()()()()yy x v y x y x v x yy x u y x y x u x x ∂-∂=∂∂∂-∂-=∂∂∂-∂-=∂∂∂-∂=∂∂,,,,,,ψψϕϕ∴当)(z f 在半平面解析时,),(,,y x y )(x ψϕ在下半平面可微,且满足R C -方程xyy x2222,2222ψϕψϕ-==)(z f ∴在下半平面解析6、证明:(1)xyi y x iy )(x z 2.2222+-=+=xv y v y uy x ux xy y x v y x y x u y x 2,2,2,22),(,),(22==-===-=显然y x y xv v u u,,,在整个复平面连续,且xy x v uy v u -==,2z ∴在复平面解析 (2)yie y e ee xx iyx zsin cos +==-ye v y e v y e u y e u yie y x v y e y x u xy xx xy xx xxcos ,sin ,sin ,cos sin ),(,cos ),(==-====显然,yx y xv v u u,,,在整个复平面上解析,且x y y xv v v u-==,满足C-R 方程z e ∴在整个复平面上解析()()()()[]()xee y x v x ee y x u xeei x e e xe ei x eeieei z yyyyyyyyy yyyizizcos 2),(,sin 2),(cos 2sin 2sin cos 2121sin3--------=+=--+=++-=-=xee u x ee u yyy yyx sin 2,cos 2---=+=x eev x ee v yyy yyx cos 2,sin 2++=--=--yx y x v v u u ,,,在复平面上连续,且满足x y y xv u v u-==,zsin ∴在整个复平面上解析(4)同理z cos 在整个复平面上解析 (5)()xyi y x iy x z 222--=+=xv y v y u x u xy y x v y x y x u y x y x 2,2,2,22),(,),(22-=-=-==-=-=yx y x v v u u ,,,在复平面上连续由得xy y x v u v u ⎪⎩⎪⎨⎧-==⎩⎨⎧==⇒⎩⎨⎧+=--=02222y x y y x x所以2z 只在0=z 处可导,而在整个复平面上均不解析 同理可证z z e z cos ,sin ,在复平面上不解析、7、证明()θθθθθθθθθθθθ∂∂⋅=∂∂∴⎪⎪⎭⎫⎝⎛∂∂+∂∂-∂∂+⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂-===vr ru x uy u r R C r yv r xv y y vxx v v y u x u r yy u r x x u ru r y r x y x iv y x u z f 1cos sin cos sin 22sin cos sin ,cos ),,(),(条件则设()()rv ru y u xu y v x v r yy v r x x v rv x u y u r r yu r xu y yu x x u u ∂∂-=∂∂∴⋅∂∂-⋅∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⎥⎦⎤⎢⎣⎡∂∂-∂∂=∂∂+-⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθθθθcos sin sin cos sin cos cos sinrv ru vr ru :∂∂-=∂∂∂∂⋅=∂∂∴θθ,1条件是极坐标下的柯西一黎曼8、证明:(1)如同证明)(z f 存在则),(),,(y x v y x u 的偏导数也存在一样归纳可证明:)(z f 的实部和虚部在D 内也有任意阶导数 而xy y xv u u u-==,xy yy xy xxv u v u -==∴,=+∴yy xxv u,同理0=+yy xxv v(2)设()()),(,y x iv y x u z f +=,则()222vu z f +=()()⎥⎥⎦⎤⎢⎢⎣⎡∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂⋅+⎪⎪⎭⎫⎝⎛∂∂=∂∂⎥⎥⎦⎤⎢⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎭⎫ ⎝⎛∂∂=∂∂∴22222222222222222222y v vy v y u u y uyz f x v v x v x u u x u xz f又0,022222222=∂∂+∂∂=∂∂+∂∂yv xv yu xu且,,xv yu yv xu ∂∂-=∂∂∂∂=∂∂代入整理得:()()()22222222244z f x v x u yz f xz f '=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∂∂+∂∂9、()()()()()[]()[]()()()()()()()()()()()()()()(),1,0,122sin122cos 2122sin 122cos2,1,022ln 22cos 1,1,0,,2,1,0,242ln 2121arg 1ln 11sin 1cos 2122ln 222arg 2ln 2222222221arg 1ln 2122222202arg ln 222ln 2±=+++=+++====-±=+=====±=====+±+⎪⎭⎫⎝⎛++=++++=++==+++-+--++⎪⎭⎫⎝⎛+-⎥⎦⎤⎢⎣⎡++++k k i k k i k e e e e k k is k e eeek e eee i k k i k i i i i Ln i ee e ek i k i Ln k i k i k i i Ln k k i i k i i i i iLnii i ziπππππππππππππππππππ10、()()()()()1111221cos 22222-+-=-+=∴-+==+-+==-z z iLn w z z Ln iw z z ezee eez w ziwiwiwiwiw即故11、证明:()()()()()zz eeiz ee z iz i z e e ieeiee i iz ee z zzzzzzzziz i izi zzcosh cosh 21cos 2cosh sin sinh 212121sin 2sinh =∴+=+=-=∴-⋅-=-=-=-=---+---()()()()()()()222221ln 1ln 11ln 101221sin 1z iz i iiz i w iiz iw iiz eizee eeiz w ziwiwiwiwiw-+-=-+=-+=∴-+==---==-即故()()()()212112212121222222sinh cosh cosh sinh cos sin cos sin )sin()(1sin cos sin cos sinhcoshz z z z iz iz i iz iz i iz iz i z z son iz iz z i iz z z +=--=+-=+=+=--=-212121212121212121sinh sinh coshcosh )sin )(sin (cos cos sin sin cos cos )cos()(cos )cosh(z z z z iz i iz i z iz z iz iz iz iz iz z z i z z +=--+=-=+=+=+yz i y z z siyiy i i iy z ziy iy z iy x sinh cos cosh cos cos )(cos sin cos sin cos sin )sin(+=-+=+=+yx i y x iy i x i iy z iyx iy z iy x sinh sin cosh cos sin )(sin cos cos sin sin cos cos )cos(-=--=-=+ziz i iz dzd z dzd z iz iz i i iz i dz d z dz d sinh sin )(cos cosh cosh cos cos )sin (sinh =-====⋅-=-=12、证明()()⎪⎪⎭⎫⎝⎛∂∂+∂∂=∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛-⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⎪⎪⎭⎫⎝⎛∂∂-∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂-+=-=∂∂=∂∂=∂∂=∂∂-=+=-=+=y u i x u zv y u i xui zux u zy y u zx xu z u y u i x u i y u x u z y y u y x x u z u i zz z z u y x u izy zx izy zx z z iy ,z z x iy x z iy x z 21212121212121)2,2(),(21,21,21,21,2121,同理于是得由),(0,2121212121=∂∂+∂∂=∂∂∴=∂∂+∂∂=∂∂∂∂-=∂∂∂∂=∂∂⎪⎪⎭⎫⎝⎛∂∂+∂∂⋅+∂∂⋅-∂∂⋅=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂+∂∂=∂∂+=zv iz u zf z f zv izu zf y ux v y v x u:x v y u i y v x u y v i x v i y u i x u zv i z u zf ivu f 成柯西一黎曼条件可以写对于得由柯西一黎曼条件13、解:()()()⎪⎭⎫ ⎝⎛-+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+====z z Ln z z Ln z f z z Ln z f ,z e zf e z f z z111111)11(20)1(,)(11从而不解析点无定义在。
(2021年整理)复变函数与积分变换第二章测验题与答案
复变函数与积分变换第二章测验题与答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(复变函数与积分变换第二章测验题与答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为复变函数与积分变换第二章测验题与答案的全部内容。
第二章 解析函数一、选择题:1.函数23)(z z f =在点0=z 处是( )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件 (B )必要不充分条件(C)充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C)若v u ,在区域D 内满足柯西—黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( )(A )xyi y x 222-- (B )xyi x +2 (C ))2()1(222x x y i y x +-+- (D )33iy x +5.函数)Im()(2z z z f =在0=z 处的导数( )(A)等于0 (B)等于1 (C )等于1- (D)不存在6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( )(A )0 (B )1 (C )2 (D)2-7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( )(A )0 (B )1 (C )1- (D)任意常数8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数 (D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数9.设22)(iy x z f +=,则=+')1(i f ( )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.i i 的主值为( )(A )0 (B )1 (C )2πe (D )2π-e11.z e 在复平面上( )(A )无可导点 (B)有可导点,但不解析 (C)有可导点,且在可导点集上解析 (D)处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( )(A )无定义 (B )等于1(C)是复数,其实部等于1 (D)是复数,其模等于1 14.下列数中,为实数的是( )(A)3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( )(A )αz 在复平面上处处解析 (B )αz 的模为αz(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍 二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 3.导函数xv i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f 6.函数)Re()Im()(z z z z f -=仅在点=z 处可导 7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数i i 的模为 9.=-)}43Im{ln(i10.方程01=--z e 的全部解为 三、设),(),()(y x iv y x u z f +=为iy x z +=的解析函数,若记)2,2()2,2(),(iz z z z iv i z z z z u z z w -++-+=,则0=∂∂z w.四、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f x x ++-=五、设023=+-ze zw w ,求22,dz wd dz dw 。
复变函数与积分变换第二章测验题与答案
第二章 解析函数一、选择题:1.函数在点处是( )23)(z z f =0=z (A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数在点可导是在点解析的( ))(z f z )(z f z (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( )(A )设为实数,则y x ,1)cos(≤+iy x (B )若是函数的奇点,则在点不可导0z )(z f )(z f 0z (C )若在区域内满足柯西-黎曼方程,则在内解析v u ,D iv u z f +=)(D (D )若在区域内也解析)(z f D )(z if D 4.下列函数中,为解析函数的是( )(A ) (B )xyi y x 222--xyi x +2(C ) (D ))2()1(222x x y i y x +-+-33iy x +5.函数在处的导数( ))Im()(2z z z f =0=z (A )等于0 (B )等于1 (C )等于 (D )不存在1-6.若函数在复平面内处处解析,那么实常)(2)(2222x axy y i y xy x z f -++-+=数( )=a (A ) (B ) (C ) (D )0122-7.如果在单位圆内处处为零,且,那么在内( ))(z f '1<z 1)0(-=f 1<z ≡)(z f (A ) (B ) (C ) (D )任意常数011-8.设函数在区域内有定义,则下列命题中,正确的是)(z f D(A )若在内是一常数,则在内是一常数)(z f D )(z f D (B )若在内是一常数,则在内是一常数))(Re(z f D )(z f D (C )若与在内解析,则在内是一常数)(z f )(z f D )(z f D (D )若在内是一常数,则在内是一常数)(arg z f D )(z f D 9.设,则( )22)(iy x z f +==+')1(i f (A ) (B ) (C ) (D )2i 2i +1i 22+10.的主值为( )i i (A ) (B ) (C ) (D )012πe 2π-e 11.在复平面上( )z e (A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设,则下列命题中,不正确的是( )z z f sin )(=(A )在复平面上处处解析 (B )以为周期)(z f )(z f π2(C ) (D )是无界的2)(iziz e e z f --=)(z f 13.设为任意实数,则( )αα1(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( )(A ) (B ) (C ) (D )3)1(i -i cos i ln e23π-15.设是复数,则( )α(A )在复平面上处处解析 (B )的模为αz αz αz(C )一般是多值函数 (D )的辐角为的辐角的倍αz αz z α二、填空题1.设,则 i f f +='=1)0(,1)0(=-→zz f z 1)(lim2.设在区域内是解析的,如果是实常数,那么在内是 iv u z f +=)(D v u +)(z f D 3.导函数在区域内解析的充要条件为 xv i x u z f ∂∂+∂∂=')(D 4.设,则 2233)(y ix y x z f ++==+-')2323(i f 5.若解析函数的实部,那么 iv u z f +=)(22y x u -==)(z f 6.函数仅在点 处可导)Re()Im()(z z z z f -==z 7.设,则方程的所有根为 z i z z f )1(51)(5+-=0)(='z f 8.复数的模为 i i 9.=-)}43Im{ln(i 10.方程的全部解为01=--z e 三、设为的解析函数,若记),(),()(y x iv y x u z f +=iy x z +=,则.)2,2(2,2(,(i z z z z iv i z z z z u z z w -++-+=0=∂∂zw四、试证下列函数在平面上解析,并分别求出其导数z 1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=五、设,求.023=+-ze zw w 22,dz wd dz dw六、设试证在原点满足柯西-黎曼方程,但却不可导.⎪⎩⎪⎨⎧=≠++=0,00,)()(422z z y x iy x xy z f )(z f 七、已知,试确定解析函数.22y x v u -=-iv u z f +=)(八、设和为平面向量,将按逆时针方向旋转即得.如果为解析函数,s n s2πniv u z f +=)(则有(与分别表示沿,的方向导数).s v n u n v s u ∂∂-=∂∂∂∂=∂∂,s ∂∂n∂∂s n 九、若函数在上半平面内解析,试证函数在下半平面内解析.)(z f )(z f 十、解方程.i z i z 4cos sin =+答案第二章 解析函数一、1.(B ) 2.(B ) 3.(D ) 4.(C ) 5.(A ) 6.(C ) 7.(C ) 8.(C ) 9.(A ) 10.(D ) 11.(A ) 12.(C ) 13.(D ) 14.(B ) 15.(C )二、填空题1.2.常数3.可微且满足i +1x vx u ∂∂∂∂,222222,xv y x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂4.5.或,为实常数6.i 827427-ic xyi y x ++-222ic z +2c i7.8.3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k ),2,1,0(2 ±±=π-k ek 9. 10.34arctan-),2,1,0(2 ±±=πk ik 四、1.2.;sin )(z z f -='.)1()(ze z zf +='五、,zw e w dz dw z2322--=.22222222)23(2431268234)(6z w z e e w e w w e w z w e dzdw dz dw w dzwd z z z z z-+---+=--+-=七、.为任意实常数.c i z i z f )1(21)(2++-=c 十、.),2,1,0(4ln 2 ±±=+π-=k i k z。
复变答案第二章
3. 奇点的定义 若函数 f ( z ) 在 z 0 处不解析,则称 z 0是 f ( z ) 的奇点. 若 z 0 是 f ( z ) 的奇点, 但在 z 0 的某邻域内, 除 z 0 外, 没有其他的奇点,则称 z 0 是函数 f ( z ) 的孤立奇点.
二、解析函数的概念
1. 解析函数的定义
z0
如果函数 f ( z ) 在 z0 及 z0 的邻域内处处可 导, 那么称 f ( z ) 在 z0 解析. 如果函数 f ( z )在 区域 D内每一点解析, 则称 f ( z )在 区域 D内解析. 或称 f ( z )是 区域 D 内的一 G 个解析函数(全纯函数或正则函数).
u u v v 2 x, 0, y, x. x y x y
四个偏导数均连续
仅当 x y 0 时, 满足柯西-黎曼方程,
故函数 w z Re z 仅在 z 0 处可导, 且 f ( z ) 0.
在复平面内处处不解析 .
例7 证明 f ( z ) x 2 iy在复平面上不解析 .
2z z 3 的解析性区域及该区 例3 求函数 f ( z ) 2 z 1 域上的导数.
5
解
函数 f ( z )不解析. 当z 2 1 0 ,即z 2 i 时, 所以 f ( z )在复平面内除 z i 外处处解析,
z i 为它的奇点.
(10z 4 1)( z 2 1) ( 2 z 5 z 3) 2 z f ( z ) ( z 2 1)2 6 z 6 10z 4 z 2 6 z 1 . 2 2 ( z 1)
例6 判定下列函数在何处可导, 在何处解析:
复变函数习题二解答.docx
第二章部分习题解答1 •试证下列函数在7平面上任何点都不解析。
(2) /(z ) = Rez o色=1色=0空=o 勿’金 >,知1爪)在刁平面上任何点都不解析。
2.下列函数何处可导?何处解析?(1)旳“+的解 (1)由于OXf(z) = xy 2+ix 2y 仅在点“0处可导,在?平面处处不解析。
3•证明:如果函数/(z )=w + /v在区域D 内解析,并满足下列条件之一,那么/⑴ 是常数。
仃)在。
内广^ =°; ⑵雨在D 内解析。
⑶"(z)l 在D 内是一个常数。
解(1)的证明由于/⑵P+必丸,故由引理得纵"=°,根据C.R 条件 即有亏9 = 于是讥乙刃、风兀丿)恒为常数,即/⑵在D 内恒为常数。
(2)若7U) = ^ = u-iv 在区域D 内解析,贝I 」du _ d(- v) _ dv _ d(— v) _ Sudx dy dy ? dy dx dx又f(z) = u^iv 在区域D 内解析,贝IJdu du __dx , 5y dx dy知/(z)在z 平面上任何点都不解析。
du dx(1)在Z 平面上处处连续,且当且仅当 沪0时,6 才满足C~R 条件,故du dv du dv—=— —— --------- dx dy, dy dx结合(1)、(2)两式,有du _ du _dv _dv dx dy dx vy故以在〃内均为常数,分別记之为均=C 19u 2=C 2(C l9C 2为实常数), 则 /(Z ) = M+ ,V =C] +iC 2 =C 为一复常数。
(3)若1%)1在D 内为一常数,记为G,则两边分别对于x 和y 求 偏导,得由于/C)在〃内解析,满足C-R 条件du dv dudv II■I■,dx dy ?dx代入上式又可写得duu---- dx du v ——+ dxSv dv c——=——=U同理,可解得% 巧 故均为常数,分别记为U = C^V = C 29 则 /(z) = u + iv=C {+iC 2=C 为一复常数。
复变函数第二章
第二章全纯函数§2.1习题1.研究下列函数的可微性: (i )();f z z = 解: 0z ≠时00000()()limlim z z z z z z f z f z z z z z →→--=--不存在 这是因为当0z x iy =+时,000limlimy y y y →→=当0z x iy =+时,000limlimx x x x →→==故0z ≠时,()f z 不可导.当0z =时,有()(0)i i z f z f r e z z reθθ-∆∆-∆===∆∆∆ 即知()f z z =在0z =也不可导. 从而()f z z =处处不可导. (ii) 2();f z z = 解:0z ≠时00220000()()lim lim z z z z z z f z f z z z z z →→--=--显然不存在. 这是因为当0z x iy =+时0022220000000000()()lim lim 2x x x x x y x y x x x x x x iy x iy x x →→+---+==+--- 当0z x iy =+时,0022220000000000()()2lim lim ()y y y y x y x y y y y y y x iy x iy y y i i→→+---+==+--- 0z =时可导,(0)0f '=.(iii )()Re ;f z z =00000()()Re Re limlimz z z z f z f z z z z z z z →→--=--显然不存在. 这是因为当0z x iy =+时,000lim1x x x x x iy x iy →-=+--.当0z x iy =+时,00000lim0y y x x x iy x iy →-=+--从而()Re f z z =处处不可导 (v) ()f z 为常数不妨设(),f z C =显然'()0f z = 故()f z C =在处处可导.2.设f 和g 都在0z 处可微,且'000()()0,()0f z g z g z ==≠证明:0'0'0()()lim()()z z f z f z g z g z →= 提示:0000()()()limlim ()()()z z z z f z f z f z g z g z g z →→-=- 0000000()()()lim()()()z z f z f z z z f z z z g z g z g z →'--=⋅='--4.设域G 和域D 关于实轴对称,证明:如果()f z 是D 上的全纯函数,那么()f z 是G 上的全纯函数. 提示:00()()()()limlim (),z z f z z f z f z z f z f z z G z z →→⎡⎤+-+-'==∈⎢⎥⎣⎦§2.2习题1.设D 是域,).(D H f ∈如果对每个,D z ∈都有'()0f z =,证明f 是一常数. 证明:因为'()0f z =,而'()f z =u vi x x∂∂+∂∂=0(定理2.2.4) 所以u x ∂∂=0, v x ∂∂=0,而u x ∂∂=v y ∂∂,u y ∂∂=vx∂-∂.故u y ∂∂=0, v y ∂∂=0.因此f 是一个常数.3.设iy x z +=,证明xy z f =)(在z=0处满足Cauchy-Reimann 方程,但f 在z=0处不可微.提示: u =,0v =.直接算偏导.8.设D 是域, ()f H D ∈,f 在D 中不取零值,证明: 对于任意p>0,有2222()p f z x y ⎛⎫∂∂+ ⎪∂∂⎝⎭=2p 2()p f z -2'()f z . 提示:∆=2222x y ∂∂+∂∂= 42z z∂∂∂,将()f z 写成12()()f z f z ⎡⎤⎣⎦,利用f z∂∂=0, f z ∂∂=0, fz ∂∂='f , f z ∂∂='f ,计算.11.设D 是域,(]:D \ ,0f →-∞ 是非常数的全纯函数,则log ()f z 和Arg ()f z 是D 上的调和函数,而()f z 不是D 上的调和函数.提示: 2221log ()log ()2log |()|2f z f z f z z z∂∆=∆=∂∂ 21()()2|()|f z f z z f z z ⎛⎫∂∂= ⎪∂∂⎝⎭2()()2|()|f z f z z f z ⎛⎫'∂= ⎪∂⎝⎭ ()20()f z z f z ⎛⎫'∂== ⎪∂⎝⎭2a r g ()()()i f z f z e f z =对z 求偏导(a r g ())f z z ∂∂=12i '()()f z f z 2z z∂∂∂(a r g ())f z =0 42z z∂∂∂(())f z =12()'()f z f z - 如果()f z 调和,则'()f z ≡0,从而f 是常数,矛盾.12.设D,G 是域, :f D G →是全纯函数,证明:若u 是G 上的调和函数,则u f 是D 上的调和函数.证明: 因为u 是G 上的调和函数,局部存在全纯函数g ,s.t. Re u g =, 则g f 局部全纯,于是局部有Re()u f g f = ,从而u f 调和.15.举例说明:存在B(0,1)\{0}上的调和函数,它不是B(0,1)\{0}上全纯函数的实部. 解: ()log ||u z z =是B(0,1)\{0}上的调和函数,它不是B(0,1)\{0}上全纯函数的实部. (反证) 假设存在B(0,1)\{0}上的全纯函数()f z ,使得Re ()log f z z =, 设()log ||()f z z iv z =+,()v z 是实值函数.则()()||f z iv z ez e =⋅,从而()()1,(0,1)\{0}f z iv z e e z B z==∀∈. 由题2.(iv) 可知()f z e z≡常数, 故存在θ∈ s.t. ()f z i e ze θ= 即()||iv z i z e ze θ⋅=()(arg )iv z i z e e θ+⇒=()2v z argz k θπ⇒=++.由()v z 的连续性可知k 是常数.于是()2argz v z k θπ=--在B(0,1)\{0}连续,不可能.16.设f u iv =+, 000z x iy =+.证明: (i) 如果极限000()()lim Rez z f z f z z z →--存在,那么()00,ux y x ∂∂和()00,v x y y ∂∂存在,并且相等. (ii) 如果极限000()()l i m Imz z f z f z z z →--存在,那么()00,u x y y ∂∂和()00,vx y x∂∂存在,而且()00,u x y y ∂∂=-()00,vx y x∂∂.证明:(i)()00,ux y x∂∂=00000(,)(,)limx x u x y u x y x x →-- ()0z x i y =+ ()()000,z x y = =00000(,)(,)lim Rex x f x y f x y x x →--=000()()lim Rez z f z f z z z →--()00,vx y y∂∂=00000(,)(,)lim y y v x y v x y y y →-- =00000(,)(,)lim Imy y f x y f x y y y →-- ()0z x iy =+=()000()()lim Imz z f z f z i z z →---=()00()()lim Im z z f z f z iz z →--=000()()lim Rez z f z f z z z →--(ii)利用[]Im ()Re ()f z if z =-,由(i)即得.1.求映射i z iz w +-=在11-=z 和i z =2处的转动角和伸缩率. 解:因为 z if z i-=+222()()f z i z i iz z i z i ∂+-+==∂++ 122'()(1)if z i =-+=1 1arg '()f z =arg(1)-=π 2221'()(2)22i i f z i ===- 2a r g '()2f z π=-2.设f 是域D 上的全纯函数,且'()f z 在D 上不取零值,试证:(i )对每一个00()u iv f D +∈,曲线0Re ()f z u =和曲线0Im ()f z v =正交; 证明:(i )0u u =和0v v =是uv 平面中的正交直线.因为()0f z '≠,故f 是保角的. 从而曲线0Re ()f z u =和曲线0Im ()f z v =的夹角等于直线0u u =和0v v =的夹角,等于2π1.验证zze e =证明:令z x iy =+,则z x iy =-(cos sin )z x e e y i y =+(cos sin )z x e e y i y ⇒=- (cos sin )z x e e y i y =-所以z ze e =.3.证明:若1ze =,则必有2,0,1,.z k i k π==±… 证明:1ze =||1xze e ⇔==,20zArge y k π=+=0,2,x y k k π⇔==∈Z2z k i π⇔=,k ∈Z .4.设f 是整函数,()0 1.f =证明:(i)若'()(),();zf z f z z f z e =∈≡ 对每个成立则(ii) 若对每个,z ω∈ ,有()()()f z f z f ωω+=,且'(0)1f =,则()zf z e ≡. 证明(i )''(())()()()()0.z zz z z f z e f z ef z e f z e f z e -----=-=-=()z f z e c -=,11,1c c ⨯==,故()z f z e ≡(ii) ()()()f z f z f ωω''+=,令0()()z f f ωω'=⇒=7.设f 在\(,0]-∞ 中全纯,(1)0.f =证明: (i )若(]'()(),\,0,()log f z f z ez f z z -=∈-∞≡ 则;(ii)若()()()f z f z f ωω=+,(]\,0z ∈-∞ ,()0,ω∈∞,且'(1)1f =,则()log f z z ≡.证明:(i )令()()f z F z ez =-,则'()'()()10f z F z e f z =⋅-=()F z c ⇒=(常数)令z=1,则(1)0110f e c -=-==F(1)=e.故()()log (1)1f z e z f z z f ⎫=⇒=⎬=⎭(ii)提示()()f z f z ωω''=,令1z =得1()f ωω'=.8.证明:32)(2++=z z z f 在()1,0B 中单叶.证明: 取()12120,1,z z B z z ∀∈≠,12()()f z f z -=1212()(2)z z z z -++()12121212,0,1()()0()()z z z z B f z f z f z f z ≠∈⇒-≠⇒≠,故)(z f 在()0,1B 中单叶.12.设f 在(]\,0-∞ 上全纯,(1)1,0.f μ=>证明:)(i 若(]'()(),\,0f z f z z zμ=∈-∞C ,则arg ();i z f z z e μμ≡ )(ii 若()()()f z f z f ωω=,(]\,0z ∈-∞C ,()0,ω∈∞,且'(1),f μ=则arg ()i z f z z e μμ≡证明:(i) 要证arg ()i zf z z eμμ=,即证log ()z f z e μ=()log ()0zf z eμ'=,及(1)1f =log ()||z i Argz f z e z e μμμ⇒==⋅.(ii) ()()()zf z f z f ωω'=令1ω=得()()zf z f z μ= 即()()f z f z zμ'= 14.证明:)(i cos()cos cos sin sin ;z z z ωωω+=⋅-⋅ )(ii sin()sin cos cos sin ;z z z ωωω+=⋅+⋅证明:(i) cos()sin()z i z ωω+++()i z e ω+=()cos cos sin sin sin cos cos sin z z i z z ωωωω=-++ (1 ) 在上式中以z -,ω-代入,得cos()sin()z i z ωω+-+()cos cos sin sin sin cos cos sin z z i z z ωωωω=--+ (2)(1)+(2)得 cos()cos cos sin sin z z z ωωω+=-(1)(2)得 sin()sin cos cos sin z z z ωωω+=+19.证明:sin z ω=将半条形域:Re ,Im 022z z z ππ⎧⎫∈-<<>⎨⎬⎩⎭一一地映为上半平面. 证明: sin cos()cos()22z z z ππω==-=-令2u z π=-,则cos w u =是由指数,(Re 0,Im 0),iuz e u u π=-<<>与Rokovsky 函数{}11(),((0,1)\0,0),2zz z B argz ωπ=+∈-<<的复合.故sin w z =将半条形区域{:Re ,Im 0}22z z z ππ∈-<<> 一一映成上半平面.20.证明(0,1)B 是2()(1)zf z z =-的单叶性域,并求出((0,1))f B . 证明: []1212122121()()()(1)(1)z z f z f z z z z z --=--- 给出f 的单叶性0z ≠时,112()z f z z=+-由Rokovsky 函数的性质易得 1((0,1))\(,]4f B =-∞-21.当z 按逆时针方向沿圆周{:2}z z =}旋转一圈后,计算下列函数辐角的增量:(iii) 124(23);z z +- (iv) 1211z z -⎛⎫⎪+⎝⎭. 解:(iii) 124(23)z z +-14[(3)(1)]z z =+⋅- 3-在圆周||2z =外,1在圆周||z =内所以当z 按逆时针方向沿圆周旋转一圈后, 辐角的增量为2π(iv) 11122221(1)(1)1(1)(1)1|1||1|z z z z z z z z ⎡⎤⎡⎤--+⎛⎫==-+⎢⎥⎢⎥ ⎪+++⎝⎭⎣⎦⎣⎦1z =±均在圆周||2z =内,所以辐角的增量为0.22.设1(),0 1.(1)p p z f z p z -=<<-证明:f 能在域[]\0,1D = 上选出单值的全纯分支.证明: 11()(1)1pp i p i z z f z e z e z z ππ-⎛⎫== ⎪+-⎝⎭只需考虑()1pz g z z ⎛⎫= ⎪-⎝⎭设γ是D 中的简单闭曲线,则当z 沿γ逆时针绕行一周时, 若γ内部不含[0,1],则辐角增量为0, 若[0,1]位于γ内部,则辐角增量为22()0p p ππ+-=. 故g 从而f 能在域[]\0,1D = 上选出单值的全纯分支.23.证明: 21()z f z Log z ⎛⎫-= ⎪⎝⎭能在域(][]()\,10,1D =-∞-⋃ 上选出单值的全纯分支.证明: 21z z-将(][]()\,10,1-∞-⋃ 映入(]\,0-∞ ,而对数函数在(]\,0-∞ 上能选出全纯分支.24.设单叶全纯映射f 将域D 一一地映为G,证明:G 的面积为2'().f z dxdy ⎰⎰证明:令iy x z +=,),(),()(y x iv y x u z f +=变换行列式(,)(,)uu v xvx y x∂∂∂=∂∂∂ u y v y∂∂∂∂= u v v u x y x y ∂∂∂∂⋅-⋅∂∂∂∂ = 22()()u v x x∂∂+∂∂= 2u v i x x ∂∂+∂∂ = 2'()f z∴ 2'(,)||()(,)G D Du v S dxdy f z dxdy x y ∂==∂⎰⎰⎰⎰.25.设f 是域D 上的单叶全纯映射,)(),(βαγ≤≤=t t z 是D 中的光滑曲线, 证明:(())f t ωγ=的长度为''(())()f t t dt βαγγ⎰证明:''(())()d f t t dtωγγ= 故(())w f t γ=的长度为''(())()f t t dt βαγγ⎰26.设D 是z 平面上去掉线段[][]1,,1,i i -和射线z it = ()1t ≤<∞后得到的域,证明函数2(1)Log z -能在D 上分出单值的全纯分支.设f 是满足0)0(=f 的那个分支,试计算)2(f 的值.解: 取D 中任一简单闭曲线γ,则1±都不在γ内部,从而z 沿γ逆时针绕行一周时,21(1)(1)z z z -=-+辐角的增量为0,故能选出全纯分支.设22()log |1|(1)2f z z iarg z k π=-+-+. 由(0)00f k =⇒=, 故(2)log3(3)log3f iarg i π=+-=+.§2.5习题1. 试求把上半平面映为上半平面的分式线性变换,使得∞,0,1分别映为0,1,∞.解: 1()1T z z ω-==-2. 证明: 分式线性变换az b cz dω+=+把上半平面映为上半平面的充要条件是d c b a ,,,都是 实数,而且0>-bc ad .证明: 必要性:因为线性变换把实轴映为实轴, 故az b cz dω+=+中d c b a ,,,都是实数; 因为2()()ac bd ad bc i i cω++-=属于上半平面,故0>-bc ad . 充分性:对0,1,,z =∞都有()z ω∈R ,从而ω将实轴映为实轴,又Im ()0i ad bc ω=->,故将上半平面映为上半平面.4.试求把单位圆盘的外部{}1:>z z 映为右半平面{}:Re 0ωω>的分式线性变换,使得 (i)1,-i,-1分别变为i,0,-i;(ii)-i,i,1分别变为i,0,-i.解:(i)()z i T z z i ω+==- (ii)()(2)21z i T z i z i ω-==-+- 10.设()az b T z cz d +=+是一个分式线性变换,如果记a c ⎛ ⎝ 1b d -⎫⎪⎭=αγ⎛ ⎝ βδ⎫⎪⎭,那么1()z T z z αβγδ-+=+. 证明:a c ⎛ ⎝ 1b d -⎫⎪⎭=dc ⎛ -⎝ b a -⎫⎪⎭=αλ⎛ ⎝ βδ⎫⎪⎭ ()az b T z cz d+=+()()czT z dT z az b ⇒+=+ 1()b dz z T z cz a z αβγδ--+⇒==-+ 从而证得1()z T z z αβγδ-+=+.11.设11111)(d c b a z T ++=,=)(2z T 2222d c b a ++是两个分式线性变换,如果记11a c ⎛ ⎝ 11b d ⎫⎪⎭22a c ⎛ ⎝ 22b d ⎫⎪⎭=a c ⎛ ⎝ b d ⎫⎪⎭那么12()()az b T T z cz d +=+ . 证明: 12()()T T z =1212121212121212a a z ab bc z bd c a z c b d c z d d ++++++ 又 11a c ⎛ ⎝ 11b d ⎫⎪⎭22a c ⎛ ⎝ 22b d ⎫⎪⎭=a c ⎛ ⎝ b d ⎫⎪⎭∴121212121212a a b c a a b b d c c b d d d +=⎧⎪+=⎨⎪+=⎩⇒1212121212121212a a z a b b c z b d az b c a z c b d c z d d cz d ++++=++++ 从而12()()az b T T z cz d +=+ .12.设Γ是过-1和1的圆周,z 和w 都不在圆周上.如果,1=zw 那么z 和w 必分别于Γ的内部或外部.证明:由圆的对称性知Γ的圆心必然在虚轴上,设圆周与虚轴交个交点为12z z ,. 又由平面几何知识知12||||1z z ⋅=,从而211z z =. 设z 在Γ内部,则z 位于走向1,1z ,-1的左边,因此分式线性变换1(x)T x =,将1()z T z =映为走向1(1)()(1)T T z T -,,,即1,2z ,-1的左边.注意()T Γ=Γ,走向1,2z ,-1的左边即Γ的外部,故1z 在Γ外部.15.求一单叶全纯映射,把除去线段[]i +1,0的第一象限映为上半平面.提示: 先作变换41z z =,再作412+=z z ,最后作变换23z z =可得.16. 求一单叶全纯映射,把半条形域:Re ,Im 022z z z ππ⎧⎫-<<>⎨⎬⎩⎭映为上半平面,且把2π,0,2π-分别映为1,-1,0. 提示: 先作变换1z iz = ,再作12z e z =,)1(21,33423z z z iz z +=-=.即11()2iz iz w ie ie=-+- 17.求一单叶全纯映射,把除去线段[]hi a a +,的条形域{}:0Im1z z <<映为条形域{}:0Im 1w w <<,其中,a 是实数, 01h <<提示:先作变换1z z e π=,再作变换ππa a e z e z z +-=112便可得结论.19.求一单叶全纯映射,把除去线段[]2,1的单位圆盘的外部映为上半平面.提示:先作变换111z z z -=+,再作变换221324351,,,9z iz z z z z z ===+=即w =.。
《复变函数》第四版习题解答第2章
即
∂u 1 ∂v = 。又 ∂r r ∂θ ∂u ∂u = (− r sin θ ) + ∂u r cosθ ∂θ ∂x ∂y ∂v ∂v ∂v ∂u ∂u = cosθ + sin θ = − cosθ + sin θ ∂r ∂x ∂y ∂y ∂x ⎞ 1 ⎛ ∂u 1 ∂u ∂u =− ⎜ r cosθ − r sin θ ⎟ =− ⎜ ⎟ r ⎝ ∂y r ∂θ ∂x ⎠
习题二解答
1.利用导数定义推出:
1)( z n ) ' = nz n −1 , (n是正整数);
证 1) ( z ) ' = lim
n
1 ⎛1⎞ 2) ⎜ ⎟' = − 2 。 z ⎝z⎠
( z + ∆z ) n − z n 2 n−2 = lim (nz n −1 + Cn z ∆z + " ∆z n −1 ) = nz n −1 z ∆z → 0 ∆ → 0 ∆z 1 1 − 1 1 ⎛1⎞ 2) ⎜ ⎟ ' = lim z + ∆z z = − lim =− 2 ∆z → 0 z ( z + ∆z ) z ∆z ⎝ z ⎠ ∆z →0
∂u ∂ (− v ) ∂v , = =− ∂x ∂y ∂y ∂u ∂ (− v ) ∂u =− = ∂y ∂x ∂x
(1)
又 f ( z ) = u + iv 在区域 D 内解析,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =⋅ 解:22222222()||()()()(),f z z z z z z z zx y x iy x x y iy x y =⋅=⋅⋅=⋅=++=+++这里2222(,)(),(,)().u x y x x y v x y y x y =+=+2222222,2,2,2.x y y x u x y x v x y y u xy v xy =++=++==要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =⋅仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+-解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=-226,6,33,y x y u xy v xy v x y =-==-四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c =-为奇点,222()()()()()()()()().()()az b f z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 4.若函数()f z 在区域D 内解析,并满足下列条件之一,试证()f z 必为常数. (1) ()f z 在区域D 内解析; (2) 2;v u =(3) arg ()f z 在D 内为常数;(4) (,,).au bv c a b c +=为不全为零的实常数 证 (1) 因为()f z 在D 中解析,所以满足C R -条件,,u v u vx y y x∂∂∂∂==-∂∂∂∂ 又()f z u iv =-也在D 中解析,也满足C R -条件()(),.u v u v x y y x∂∂-∂∂-==-∂∂∂∂ 从而应有0u u v v x y x y∂∂∂∂====∂∂∂∂恒成立,故在D 中,u v 为常数, ()f z 为常数. (2) 因()f z 在D 中解析且有2()f z u iu =+,由C R -条件,有2,2.u u u x y u u u yx ∂∂⎧=⎪∂∂⎪⎨∂∂⎪=-⎪∂∂⎩则可推出0u u x y∂∂==∂∂,即u C =(常数).故()f z 必为D 中常数. (3) 设()f z u iv =+,由条件知arctan v C u=,从而22(/)(/)0,0,1(/)1(/)v u v u y x v u v u ∂∂∂∂==++ 计算得2222()/0v u u u v ux x u v∂∂-∂∂=+,2222()/0,v u u u v u y y u v ∂∂-∂∂=+ 化简,利用C R -条件得0,0.uu u v y x u u u v xy ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪-=⎪∂∂⎩ 所以0,u u x y ∂∂==∂∂同理0,v vx y∂∂==∂∂即在D 中,u v 为常数,故()f z 在D 中为常数.(4) 法一:设0,a ≠则()/,u c bv a =-求导得,,u b vu b vx a xy a y∂∂∂∂=-=-∂∂∂∂ 由C R -条件,,u b uv b v x a yx a y∂∂∂∂==∂∂∂∂ 故,u v 必为常数,即()f z 在D 中为常数.设0,0,0a b c =≠≠则bv c =,知v 为常数,又由C R -条件知u 也必为常数,所以()f z 在D 中为常数.法二:等式两边对,x y 求偏导得:00x x yy au bv au bv +=⎧⎨+=⎩,由C R -条件,我们有0,00x y x x y y au bu u a b bu au u b a -=-⎧⎛⎫⎛⎫=⎨ ⎪ ⎪+=⎝⎭⎩⎝⎭即, 而220a b +≠,故0x y u u ==,从而u 为常数,即有()f z 在D 中为常数.5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y∂∂'+=∂∂证: 设 222(),|()|,f z u iv f z u v =+=+222(),|()|()().u u u u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x yu u v v u u v v u v u v xx x x y y y y ∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u uv vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 6.由下列条件求解解析函数().f z u iv =+ (1)22()(4);u x y x xy y =-++ 解: 因22363,u v x xy y x y∂∂==+-∂∂所以 22(363)v x xy y dy =+-⎰22333(),x y xy y x ϕ=+-+又222263(),363,()3,v uxy y x x xy y x x x xϕϕ∂∂''=++=--=-∂∂而所以 则 3()x x C ϕ=-+.故222233222222223()()(4)(33)(1)()(1)()2(1)2(1)(1)()2(1)(1)(2)(1)f z u ivx y x xy y i x y xy y x C i x x iy y i x iy x y i xy i Ci z i x y xyi iz i Ci i z x y xyi Ci i z Ci=+=-++++--+=-+--+-+--+=---⋅-+=---+=-+(2) 23;v xy x =+ 解: 因23,2,v vy x x y∂∂=+=∂∂由()f z 解析,有 22,2().u v x u xdx x y x yφ∂∂====+∂∂⎰又23,u v y y x ∂∂=-=--∂∂而(),u y yφ∂'=∂所以()23,y y φ'=--则2()3.y y y C φ=--+ 故 22()3(23).f z x y y C i xy x =--+++ (3) 2(1),(2);u x y f i =-=- 解: 因2,2(1),u u y x x y ∂∂==-∂∂由()f z 的解析性,有2(1),v ux x y∂∂=-=--∂∂22(1)(1)(),v x dx x y φ=--=--+⎰又2,v u y y x ∂∂==∂∂而(),v y yφ∂'=∂所以2()2,(),y y y y C φφ'==+则22(1),v x y C =--++故22()2(1)((1)),f z x y i x y C =-+--++由(2)f i =-得(2)(1),f i C i =-+=-推出0.C =即2222()2(1)(21)(21)(1).f z x y i y x x i z z i z =-+-+-=-+-=--7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩8.试解方程:(1) 1z e =+解: (2)312(cos sin )233i k ze i eππππ+=+=+=ln 2(2)3,0,1, 2.i k e k ππ++==±±故ln 2(2),0,1, 2.3z i k k ππ=++=±±(2) ln ;2iz π=解: 2cossin.22iz e i i πππ==+=9.求下列各式的值。
(1) cos ;i解 ()()11cos .22i i i i e e e e i --++== (2) (34);Ln i -+解: (34)ln5(34) -+=+-+ Ln i iArg i4ln 5(2arctan ).3i k ππ=++-(3) 1(1);i i +-解: 1(1)(1)(1)i i Ln i i e ++--=(1)(2)4224424)sin(ln ).44i i k k i k k eeei ππππππππππ⎡⎤+-+⎢⎥⎣⎦⎡⎤+-+-⎢⎥⎣⎦+-==⎡⎤=+⎢⎥⎣⎦(4) 33;i -解: 3(3)ln3(3)(ln32)3i i i k i e e π---+==(3)ln323ln32ln3227(cosln 3sin ln 3).i k k i i k e e e e ei πππ-+-=⋅=⋅=-(注:文档可能无法思考全面,请浏览后下载,供参考。