探索勾股定理PPT课件
合集下载
《勾股定理》PPT课件 图文
∴ a2 b2 c2
D
N
E
“新娘的轿椅”或“修士的头巾”
一、鲁迅是一个非常勤奋的人 鲁迅的勤奋,我想不用我细说大家都是 很明白 的。在 鲁迅的 散文《 百草园 和三味 书屋》 中,鲁 迅讲过 关于上 学迟到 的故事 ,后来 他在桌 子上刻 了个“ 早”字 ,当作 了他一 生的座 右铭。
鲁迅写作的勤奋也是出了名的。为了工 作他常 常工作 到深夜 ,点燃 一支烟 便又来 了工作 激情。 二、鲁迅是一个性格非常刚强的人
总而言之,鲁迅的优点是多于缺点的, 而且, 最让笔 者敬佩 鲁迅的 是他有 一颗永 远和劳 苦大众 在一起 的赤子 之心。 他的一 生付出 的多, 索取的 少,这 就是他 的可贵 之处, 也是他 不朽崇 高的地 方。
然后是鲁迅先生长什么样: 浓黑的一字须,根根向上的头发,吸着 烟斗、 面目严 肃冷峻 ,这是 鲁迅通 常留给 我们的 印象, 他似乎 “对一 切人都 怀有忧 虑和敌 意”, 但实际 上,伟 人也和 普通人 一样, 拥有喜 怒哀乐 。他活 着的时 候,周 围有许 多文学 青年愿 意“亲 近”他 ,鲁迅 先生的 笑声是 明朗的 ,是从 心里的 欢喜。 若有人 说了什 么可笑 的话, 鲁迅先 生笑得 连烟卷 都拿不 住了, 常常是 笑得咳 嗽起来 。然后 是长相 。黄里 带白的 脸:瘦 得让人 担心: 头上竖 着寸把 长的头 发;牙 黄羽纱 的长杉 ;隶体 “一” 字似的 胡须; 手里捏 着一枝 黄色烟 嘴。 知道你的漫画将出版,正中下怀, 满心欢 喜。
你总该记得,有一个黄昏,白马湖上的 黄昏, 在你那 间天花 板要压 到头上 来的, 一颗骰 子似的 客厅里 ,你和 我读着 竹久梦 二的漫 画集。 你告诉 我那篇 序做得 有趣, 并将其 大意译 给我听 。我对 于画, 你最明 白,彻 头彻尾 是一条 门外汉 。但对 于漫画 ,却常 常要像 煞有介 事地点 头或摇 头;而 点头的 时候总 比摇头 的时候 多—— 虽没有 统计, 我肚里 有数。 那一天 我自然 也乱点 了一回 头。 点头之余,我想起初看到一本漫画,也 是日本 人画的 。里面 有一幅 ,题目 似乎是 《aa子 爵b泪》 (上两 字已忘 记), 画着一 个微侧 的半身 像:他 严肃的 脸上戴 着眼镜 ,有三 五颗双 钩的泪 珠儿, 滴滴答 答历历 落落地 从眼睛 里掉下 来。我 同时感 到伟大 的压迫 和轻松 的愉悦 ,一个 奇怪 的矛盾 !梦二 的画有 一幅— —大约 就是那 画集里 的第一 幅—— 也使我 有类似 的感觉 。那幅 的题目 和内容 ,我的 记性真 不争气 ,已经 模糊得 很。只 记得画 幅下方 的左角 或右角 里,并 排地画 着极粗 极肥又 极短的 一个“ !”和 一个“ ?”。 可惜我 不记得 他们哥 儿俩谁 站在上 风,谁 站在下 风。我 明白( 自己要 脸)他 们俩就 是整个 儿的人 生的谜 ;同时 又觉着 像是那 儿常常 见着的 两个胖 孩子。 我心眼 里又是 糖浆, 又是姜 汁,说 不上是 什么味 儿。无 论如何 ,我总 得惊异 ;涂呀 抹的几 笔,便 造起个 小世界 ,使你 又要叹 气又要 笑。叹 气虽是 轻轻的 ,笑虽 是微微 的,似 一把锋 利的裁 纸刀, 戳到喉 咙里去 ,便可 要你的 命。而 且同时 要笑又 要叹气 ,真是 不当人 子,闹 着玩儿 !
探索勾股定理 优质课件
8
如果直角三角形两直角边分别为a,b,斜边为c,
那么 a2 b2 c2 即直角三角形两直角边的平方和等于斜边的平方。
几何语言:
∵△ABC为直角三角形 AC2 BC2 AB2
股
弦
勾
1.RtABC的两条直角边a=3, b=4,则斜边c
.
2.若直角三角形两直角边分别为12,16,则此直角三角形的周长为
2ab b2 2ab a2 c2 a2 b2 c2
面积法
A a C
c
b a
B
bc
7
命题的证明
S 梯形
1(a 2
b)(a
b)
S
梯形
2
1 2
ab
1 2
c
2
1 (a b)(a b) 2 1 ab 1 c2
2
22
1 a2 ab 1 b2 ab 1 c2
2
2
2
a2 b2 c2
活动要求:
每
个
1、先独立思考解决
小
2、后小组内交流
正 方
3、每个小组派一名同学上台展示
形
代
表
一
你的发现是:
个
单
位
面
积
直角三角形两直角边的平 方和等于斜边的平方。
命题的证明
S正方形 c2 S正方形 4SACB S小正方形
4 1 ab (b a)2 2
4 1 ab (b a)2 c2 2
正方形A的面积是________, 正方形B的面积是________, 正方形C的面积是________.
A、B、C有什么关系?依据是什么?
(每个小正方形代表一个单位面积)
你还什么发现?
探索勾股定理课件ppt
八年级数学
探索勾股定理
活动一:温故而知新
y=0
关于直角三角形,你知道哪些方面的知识?
A
1.直角三角形叫Rt△ 2.两锐角互余∠A+∠B=90° 3.三角形的面积s=1/2ab=1/2hc
b
h
c
a
B
4. 30°所对的直角边等于斜边的一半
5.证明两个直角三角形全等有“HL”
C
本节课我们再来探索直角三角形新的知识
2 2
2
结论:
a b c
2 2
2
思考:大正方形面积怎么求?
a c b a c b
a
c b a b a b c c
a
c b b
(a+b)2= 2 c
ab 2 4 C 2
2 b
c c
a b
=
2 a+
a
证明结论得到定理 y=0 经过证明被确认正确的命题叫做定理.
勾股定理:
如果直角三角形两直角边分别 为a、b,斜边为c,那么 a
S7
1
1
美丽的勾股树
活动六:活学活用
1、已知, Rt△ABC 中,a,b为的两条 直角边,c为斜边,求: ⑴已知: a=3, b=4,求c ⑵已知: c =10,a=6,求b
2、已知: c =13,a=5,
c
求阴影部分的面积。
a
b
活动六:活学活用
探究 一个门框尺寸如图所示,一 块长3m,宽2.2m的薄木板 能否从门框内通过?为什么?
图1-2
图1-1
毕达哥拉斯发现了
探索勾股定理
正方形A中含 有 9 个小方 格,即A的面积 是 9 单位面 积. B的面积是 9 单位面积. C的面积是 18 单位面 积.
探索勾股定理
活动一:温故而知新
y=0
关于直角三角形,你知道哪些方面的知识?
A
1.直角三角形叫Rt△ 2.两锐角互余∠A+∠B=90° 3.三角形的面积s=1/2ab=1/2hc
b
h
c
a
B
4. 30°所对的直角边等于斜边的一半
5.证明两个直角三角形全等有“HL”
C
本节课我们再来探索直角三角形新的知识
2 2
2
结论:
a b c
2 2
2
思考:大正方形面积怎么求?
a c b a c b
a
c b a b a b c c
a
c b b
(a+b)2= 2 c
ab 2 4 C 2
2 b
c c
a b
=
2 a+
a
证明结论得到定理 y=0 经过证明被确认正确的命题叫做定理.
勾股定理:
如果直角三角形两直角边分别 为a、b,斜边为c,那么 a
S7
1
1
美丽的勾股树
活动六:活学活用
1、已知, Rt△ABC 中,a,b为的两条 直角边,c为斜边,求: ⑴已知: a=3, b=4,求c ⑵已知: c =10,a=6,求b
2、已知: c =13,a=5,
c
求阴影部分的面积。
a
b
活动六:活学活用
探究 一个门框尺寸如图所示,一 块长3m,宽2.2m的薄木板 能否从门框内通过?为什么?
图1-2
图1-1
毕达哥拉斯发现了
探索勾股定理
正方形A中含 有 9 个小方 格,即A的面积 是 9 单位面 积. B的面积是 9 单位面积. C的面积是 18 单位面 积.
《勾股定理》PPT课件图文
ca b
S正
?(a
?
b)2
?
4?
1 2
ab
?
c2 ,
化简得: a 2 ? b 2 ? c 2
方法三:
c
b b-a c
a c
c
S正
?
c2?
4?
1 2
ab
?
(b
?
a)2,
化简得: a 2 ? b2 ? c 2
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
角的BC方向上的点C测得CA=130米,CB=120米,
则AB为 ( )
A
A.50米 B.120米 C.100米 D.130米
A
130
?
C
120 B
某楼房在 20米高处的楼层失火
,消防员取来 25米长的云梯救
火,已知梯子的底部离墙的距
ቤተ መጻሕፍቲ ባይዱ
离是15米。问消A防队员能否进
入该楼层灭火?
已知两直角 边求斜边
则 a2 ? b2 ? c2
议一议:判断下列说法是否正确,并说明理由: (1)在△ABC中,若a=3,b=4,则c=5 (2)在Rt△ABC中,如果a=3,b=4,则c=5. (3)在Rt△ABC中,∠C=90° , 如果a=3,b=4,则c=5.
勾 股
在中国古代,人们把弯曲成直角的手臂的上 半部分称为 勾 ,下半部分称为 股 。我国古代 学者把直角三角形较短的直角边称为“勾”,较 长的直角边称为“股”,斜边称为“弦”.
B
系吗?
图2
(图中每个小方格代表一个单位面积) SA+SB=SC
《勾股定理》PPT优质课件(第1课时)
A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
浙教版八级数学上册27 探索勾股定理 课件(共23张PPT)
x 2
1
17
15
b
初中数学
应用知y识=回0 归生活
2、直角三角形中两条直角边之比为3:4,且 斜边为10cm,求(1)两直角边的长;(2)斜 边上的高线长.
5 3、利用作直角三角形,在数轴上表示点
初中数学
应用知y识=回0 归生活
4、如图:是一个长方形零件图,根据所给的尺寸 求两孔中心A、B之间的距离
数学思想,并体会数形结合和特殊到一般的思想方法,培养学生的观 察力、抽象概括能力、创造想象能力以及科学探究问题的能力
情感目标:
(1)通过实践、猜想、拼图、证明等操作使学生深刻感受 数学知识的发生发展过程。 (2)介绍我国古代在勾股定理研究方面取得的成就,激发学生的爱 国情感
初中数学
教学重y=点0 和难点
证明结y论=得0 到定理
a bc
b ca
ac b
cb a
动动手 初中数学
证明结y论=得0 到定理
a
bc
面积c
a
a
面积 ( ab2)
c
面积4•1a 2
b
S大正 S 方 4个形 三 S 角 小形 正方形
( ab2)-4•1ab c2 即a2+b2=c2
2
初中数学
证明结y论=得0 到定理 勾股定理
如果直角三角形两直角边分别为a、b, 斜边为c,那么
定理在生产、生活中也有很大的用途。
初中数学
教学y目=标0
知识目标:
教 (1)知道勾股定理的由来,初步理解割补拼接的面积证法。 材 (2)掌握勾股定理,通过动手实践理解勾股定理的证明过程
(3) 能利用勾股定理进行简单的几何计算
分 能力目标: 析 在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验 证”的
《勾股定理》数学教学PPT课件(10篇)
= (DE+CE)·( DE- BE)
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
探索勾股定理ppt课件
度的一般步
边还是斜边或两种均有可能;
骤
(3)利用勾股定理进行计算
续表
1.1 探索勾股定理
返回目录
归纳总结
考
点
利用勾股定理解决实际问题的关键是利用数形结合思想
清
单 将实际问题转化成数学问题,建立直角三角形模型,再利用
解
读 勾股定理来解决.
1.1 探索勾股定理
返回目录
对点典例剖析
考
点
典例3 如图是一个长方形的大门,小强拿着一根竹竿要
方
法
)
技 100 和 36,则以 AD 为直径的半圆的面积是 (
巧
A. 4π
B. 8π
点
拨
C. 12π
D. 16π
1.1 探索勾股定理
返回目录
方
[解析] 因为在 Rt△ABD 中,∠ADB=90°,AB2=100,
法
技 BD2=36,所以 AD2=100-36=64,所以 AD=8,
巧
点
所以以 AD 为直径的半圆的面积是 π×( AD)2=8π.
行分类讨论.
1.1 探索勾股定理
返回目录
方 ■方法:利用勾股定理解决面积问题
法
如图,由直角三角形的三边向外作正方形、半圆或等边
技
巧 三角形,则有 S =S +S (S ,S ,S 分别代表三个图形的
1
2
3
1
2
3
点
拨 面积,其中 S1 代表以斜边为一边的图形的面积).
1.1 探索勾股定理
返回目录
例 如图,正方形 ABGF 和正方形 CDBE 的面积分别是
1.1 探索勾股定理
● 考点清单解读
边还是斜边或两种均有可能;
骤
(3)利用勾股定理进行计算
续表
1.1 探索勾股定理
返回目录
归纳总结
考
点
利用勾股定理解决实际问题的关键是利用数形结合思想
清
单 将实际问题转化成数学问题,建立直角三角形模型,再利用
解
读 勾股定理来解决.
1.1 探索勾股定理
返回目录
对点典例剖析
考
点
典例3 如图是一个长方形的大门,小强拿着一根竹竿要
方
法
)
技 100 和 36,则以 AD 为直径的半圆的面积是 (
巧
A. 4π
B. 8π
点
拨
C. 12π
D. 16π
1.1 探索勾股定理
返回目录
方
[解析] 因为在 Rt△ABD 中,∠ADB=90°,AB2=100,
法
技 BD2=36,所以 AD2=100-36=64,所以 AD=8,
巧
点
所以以 AD 为直径的半圆的面积是 π×( AD)2=8π.
行分类讨论.
1.1 探索勾股定理
返回目录
方 ■方法:利用勾股定理解决面积问题
法
如图,由直角三角形的三边向外作正方形、半圆或等边
技
巧 三角形,则有 S =S +S (S ,S ,S 分别代表三个图形的
1
2
3
1
2
3
点
拨 面积,其中 S1 代表以斜边为一边的图形的面积).
1.1 探索勾股定理
返回目录
例 如图,正方形 ABGF 和正方形 CDBE 的面积分别是
1.1 探索勾股定理
● 考点清单解读
浙教版数学八上2.7探索勾股定理(1) 课件(共23张PPT)
C
A
A
a
图1
a
C
B
图2
合作学习
大正方形的面积:c²
小正方形面积:(b-a)²
阴影部分面积:4× ab
1
2
它们之间的关系是: c 4 ab (b a )
2
2
化简得: a2+b2=c2
直角三角形三边有下面的关系:
直角三角形两条直角边的平方和等于斜边的平方
讲解新知
勾股定理: 直角形三角形两条直角边的平方和等于斜边的平方.
2.勾股定理
3.勾股定理的应用
等,则E站应建在距A站______km处.
10
即时演练
解:∵C、D两村到E站距离相等,∴CE=DE,
在Rt△DAE和Rt△CBE中,DE2=AD2+AE2,CE2=BE2+BC2,
∴AD2+AE2=BE2+BC2.
设AE为x,则BE=25-x,
将BC=10,DA=15代入关系式为x2+152=(25-x)2+102,
A
∴AB=130(mm)
答:两孔中心A,B之间的距离
90
B
C
40
为130mm
160
即时演练
m
铁路上A、B两站(视为直线上两点)相距25km,C、D为
两村庄(视为两个点),DA⊥AB于A,CB⊥AB于B(如
图),已知DA=15km,CB=10km,现在要在铁路AB上建
设一个土特产品收购站E,使得C、D两村到E站的距离相
∴S△ABC= ×BC×AC=6,
∴AC=4(cm).
∵BC2+AC2=AB2,
北师大版八年级数学上册课件1.1 探索勾股定理(第2课时) 勾股定理的验证及应用课件(26张PPT)
= 25 km .现要在铁路旁建一个农副产品收购站 ,使 站到 ,
两村的距离相等.你知道应该把 站建在距点 多远的地方吗?
【点拨】设 = km ,由垂直关系可以想到用勾股定理,根据 = 建立方程,
即可使问题得解.
【解】因为 = ,
所以 2 + 2 = 2 + 2 .
当它听到巢中幼鸟的叫声时,立即赶过去.如果它飞行的速度
为 5 m/s ,那么它至少需要多少时间才能赶回巢中?
解:如图,
由题意知 = 3 , = 14 − 1 = 13 , = 24 .
过点 作 ⊥ 于点 ,则 = 13 − 3 = 10 , = 24 .
答:教学楼走廊的宽度是 2.2 m .
作业布置
完成学生书对应课时练习
算,从理论上验证了勾股定理.
做一做
在纸上画一个直角三角形,分别以这个直角三角形的三边为边长向
外作正方形。
c
b
a
图1-4
为了方便计算图中大正方形的面积,
C
D
对其进行适当割补:
b
S正方形ABCD= c2+2ab=(a+b)2
c
A
B
a
c2=a2+b2
图1-5
D
b
c
a
图1-6
A
C
B
S正方形ABCD= c2-2ab=(b-a)2
第一章 勾股定理
1.1 探索勾股定理
第2课时 勾股定理的验证及应用
1.探索勾股定理
2.掌握勾股定理的内容,会用面积法验证勾股定理.
3.能运用勾股定理解决一些简单的实际问题.
探究新知
两村的距离相等.你知道应该把 站建在距点 多远的地方吗?
【点拨】设 = km ,由垂直关系可以想到用勾股定理,根据 = 建立方程,
即可使问题得解.
【解】因为 = ,
所以 2 + 2 = 2 + 2 .
当它听到巢中幼鸟的叫声时,立即赶过去.如果它飞行的速度
为 5 m/s ,那么它至少需要多少时间才能赶回巢中?
解:如图,
由题意知 = 3 , = 14 − 1 = 13 , = 24 .
过点 作 ⊥ 于点 ,则 = 13 − 3 = 10 , = 24 .
答:教学楼走廊的宽度是 2.2 m .
作业布置
完成学生书对应课时练习
算,从理论上验证了勾股定理.
做一做
在纸上画一个直角三角形,分别以这个直角三角形的三边为边长向
外作正方形。
c
b
a
图1-4
为了方便计算图中大正方形的面积,
C
D
对其进行适当割补:
b
S正方形ABCD= c2+2ab=(a+b)2
c
A
B
a
c2=a2+b2
图1-5
D
b
c
a
图1-6
A
C
B
S正方形ABCD= c2-2ab=(b-a)2
第一章 勾股定理
1.1 探索勾股定理
第2课时 勾股定理的验证及应用
1.探索勾股定理
2.掌握勾股定理的内容,会用面积法验证勾股定理.
3.能运用勾股定理解决一些简单的实际问题.
探究新知
北师大版八年级数学上册课件1.1探索勾股定理(第2课时)(19张PPT)
于是推得 AB2 AC 2 BC 2
课堂小结
勾股定理的验证
探索勾股 定理
勾股定理的简单运用
1. 勾股定理:直角三角形两直角边的 平方和 等于斜边的 平方 .如果用a,b 和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 .
2. 我国历史上将弦上的正方形称为弦图(如图).
1. 已知一个等边三角形的边长为6 cm,则以它的高为边长的正方形的面 积为( B )
2
22
a 化简,得
b
B
a2 b2 c2.
欧几里得证明勾股定理
如图,过 A 点画一直线 AL 使其垂直于 DE, 并交 DE 于 L,交 BC 于 M.通过证 明△BCF≌△BDA,利用三 角形面积与长方形面积的关 系,得到正方形ABFG与矩形 BDLM等积,同理正方形 ACKH与 矩形MLEC也等积,
A. 36 cm2 B. 27 cm2 C. 18 cm2 D. 12 cm2
2. 一个直角三角形的两条边的长分别是9和40,则第三条边的长的平方是
(C)
A. 1 681
B. 1 781 C. 1 519或1 681 D. 1 519
3. 一个直角三角形三条边的长为三个连续的自然数,则这三条边的长分
【基础训练】
1. 如图,在△ABC中,CE平分∠ACB,
CF平分△ABC的外角∠ACD,且EF∥BC交AC于M,
若CM=4,则CE2+CF2的值为( D )
A.8 B.16 C.32 D.64
2. 已知Rt△ABC的两直角边分别是6 cm,8 cm,则Rt△ABC斜边上
的高是( A )
A. 4.8cm
B.2.4cm
C.48cm
课堂小结
勾股定理的验证
探索勾股 定理
勾股定理的简单运用
1. 勾股定理:直角三角形两直角边的 平方和 等于斜边的 平方 .如果用a,b 和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 .
2. 我国历史上将弦上的正方形称为弦图(如图).
1. 已知一个等边三角形的边长为6 cm,则以它的高为边长的正方形的面 积为( B )
2
22
a 化简,得
b
B
a2 b2 c2.
欧几里得证明勾股定理
如图,过 A 点画一直线 AL 使其垂直于 DE, 并交 DE 于 L,交 BC 于 M.通过证 明△BCF≌△BDA,利用三 角形面积与长方形面积的关 系,得到正方形ABFG与矩形 BDLM等积,同理正方形 ACKH与 矩形MLEC也等积,
A. 36 cm2 B. 27 cm2 C. 18 cm2 D. 12 cm2
2. 一个直角三角形的两条边的长分别是9和40,则第三条边的长的平方是
(C)
A. 1 681
B. 1 781 C. 1 519或1 681 D. 1 519
3. 一个直角三角形三条边的长为三个连续的自然数,则这三条边的长分
【基础训练】
1. 如图,在△ABC中,CE平分∠ACB,
CF平分△ABC的外角∠ACD,且EF∥BC交AC于M,
若CM=4,则CE2+CF2的值为( D )
A.8 B.16 C.32 D.64
2. 已知Rt△ABC的两直角边分别是6 cm,8 cm,则Rt△ABC斜边上
的高是( A )
A. 4.8cm
B.2.4cm
C.48cm
《勾股定理》PPT课件
AC 2 6
1.在△ABC中,∠C=90°.
练 习
(1)若a=6,c=10,则b=
;
(2)若a=12,b=9,则c= (3)若c=25,b=15,则a=
; ;
2.等边三角形边长为10,求它的高及面积。 C 3.如图,在△ABC中,C=90°,
CD为斜边AB上的高,你可以得 b 出哪些与边有关的结论? A m h
c2
;
a c
c a
b a
∵ c2= 4•ab/2 +(b-a)2 =2ab+b2-2ab+a2 =a2+b2 ∴a2+b2=c2
a
b
b c
b c
2 (a+b) 大正方形的面积可以表示为 ;
也可以表示为 c2 +4•ab/2
a b
a
b
c
c
a
b
c
∵ (a+b)2 = c2 + 4•ab/2 a2+2ab+b2 = c2 +2ab ∴a2+b2=c2
a
B D n
如图,在△ABC中,AB=AC,D点在CB延长线上, A 求证:AD2-AB2=BD· CD
证明:过A作AE⊥BC于E ∵AB=AC,∴BE=CE D 在Rt △ADE中, AD2=AE2+DE2 在Rt △ABE中, AB2=AE2+BE2 ∴ AD2-AB2=(AE2+DE2)-(AE2+BE2) B E C
a b
c
勾股定理的证明
证明方法3:赵爽弦图,动手拼图
勾股定理的证明
证明方法4:美国总统加菲尔德的证明方法
a b
探索勾股定理ppt课件
星人联系的信号.
欣赏下面一幅美丽的图案,仔细观察,你能发现这 幅图中的奥秘吗?带着疑问我们来一步认识
做一做 观察正方形瓷砖铺成的地面. (1)正方形P的面积是 1 平方厘米; (2)正方形Q的面积是 1 平方厘米;
AR P
CQ B
(3)正方形R的面积是 2 平方厘米.
左图 4
9
13
右图 16
9
25
分析表中数据,你发现了什么?
A的面积
左图
4
右图 16
B的面积 9 9
C的面积 13 25
结论 以直角三角形两直角边为边长的小 正方形的面积的和,等于以斜边为边长 的正方形的面积.
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的 平方.
几何语言 ∵在Rt△ABC中 ,∠C=90°, ∴.AC2+BC2=AB2 (勾股定理)
五、分层作业 课后思考
基础训练:1、小明的妈妈买了一部29in的电 视机。小明量了电视机的屏幕后,发现屏幕只 有58cm长和46cm宽,他觉得一定是销售员搞错 了。你同意他的想法吗?你能解释这是为什么 吗?
2、求下列图中未知数x,y的值
提高训练:1.今有池方一丈,葭生其中央,出水一 尺.引葭赴岸,适与岸齐.问水深、葭长各几何?译: 有一个一丈大小的池子,中央长有芦苇,高出水面 一尺长.把芦苇拽向岸边,刚好与到岸.请问水有多 深,芦苇有多高?
小男孩又问道:“如果两条直角边分别为5和7,那么这个直角 三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“ 那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道 :“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无 法解释了,心理很不是滋味。于是伽菲尔德不再散步,立即回 家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演 算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了 他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十 任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、 明了的证明,就把这一证法称为“总统。”证法。
欣赏下面一幅美丽的图案,仔细观察,你能发现这 幅图中的奥秘吗?带着疑问我们来一步认识
做一做 观察正方形瓷砖铺成的地面. (1)正方形P的面积是 1 平方厘米; (2)正方形Q的面积是 1 平方厘米;
AR P
CQ B
(3)正方形R的面积是 2 平方厘米.
左图 4
9
13
右图 16
9
25
分析表中数据,你发现了什么?
A的面积
左图
4
右图 16
B的面积 9 9
C的面积 13 25
结论 以直角三角形两直角边为边长的小 正方形的面积的和,等于以斜边为边长 的正方形的面积.
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的 平方.
几何语言 ∵在Rt△ABC中 ,∠C=90°, ∴.AC2+BC2=AB2 (勾股定理)
五、分层作业 课后思考
基础训练:1、小明的妈妈买了一部29in的电 视机。小明量了电视机的屏幕后,发现屏幕只 有58cm长和46cm宽,他觉得一定是销售员搞错 了。你同意他的想法吗?你能解释这是为什么 吗?
2、求下列图中未知数x,y的值
提高训练:1.今有池方一丈,葭生其中央,出水一 尺.引葭赴岸,适与岸齐.问水深、葭长各几何?译: 有一个一丈大小的池子,中央长有芦苇,高出水面 一尺长.把芦苇拽向岸边,刚好与到岸.请问水有多 深,芦苇有多高?
小男孩又问道:“如果两条直角边分别为5和7,那么这个直角 三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“ 那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道 :“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无 法解释了,心理很不是滋味。于是伽菲尔德不再散步,立即回 家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演 算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了 他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十 任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、 明了的证明,就把这一证法称为“总统。”证法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“补”
补成大正方形, 用大正方形的面 积减去四个直角 三角形的面积
“拼”
将几个小块拼成 一个正方形,如 图中两块红色 (或绿色)可拼 成一个小正方形
上一页
下一页
C A
B
对于图1-2中的 直角三角形, 是否还满足这 样的关系?你 又是如何计算 C 的呢?
A B
图1-2
如果直角三角形的两直 角边分别是1.6个单位长 度和2.4个单位长度,上 面所猜想的数量关系还 成立吗?说明你的理由。
上一页
下一页
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b, 斜边为c,那么
ac
b
即 直角三角形两直角边的平方和等
于斜边的平方。
在西方又称毕达
勾
弦
哥拉斯定理耶!
股
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b, 斜边为c,那么
ac
b
即 直角三角形两直角边的平方和等
于斜边的平方。
想一想
勾
弦
电线杆问题中,需要多长的钢索?
股
勾股定理变形: c
a
可变为: b
随堂练习: 1、求下列图形中未知正方形的面积或未
知边的长度:
已知直角三角形两边,求第三边.
2 直角三角形的两直角边为5、12,则三角形的周长为 30 . 3 在△ABC中,∠C=90°,如果AB=17, AC=15,那么△ABC的
同学们,在我们美丽的地球王国 上,原始森林,参天古树带给我们神 秘的遐想;绿树成荫,微风习习,给 我们以美的享受。你知道吗?在古老 的数学王国,有一种树木它很奇妙, 生长速度大的惊人,它是什么呢?下 面让我们带着这个疑问一同到数学王 国去欣赏吧!
勾股定理树
电线杆问题
勾股定理树
下一页
上一页
如图,从电线杆离地面8m处向地 面拉一条钢索,若这条钢索在地 面的固定点距离电线杆底部6m, 那么需要多长的钢索?
下一页
上一页
在直角三角形中,任意 两条边确定了,另外一条边也 就随之确定吗,三边之间存在 着一个特定的数量关系。事实 上,古人发现,直角三角形的 三条边长度的平方存在着一个 特殊的关系。让我们一起去探 索吧!
做一做
(1)在纸上作出若干个直角三角形,分别测量它们的 三条边,看看三边长的平方之间有什么样的关系? 与同伴交流
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
面积为 _6_0__.
想一想
小明的妈妈买了一部29英寸(74厘 米)的电视机。小明量了电视机的屏 幕后,发现屏幕只有58厘米长和46厘 米宽,他觉得一定是售货员搞错了。 你能解释这是为什么吗?
我们通常所说的29 英寸或74厘米的电视 机,是指其荧屏对角 线的长度
∵ 582 462 5480 742 5476
假如我们一旦和外星人见面,该使用 什么语言呢?使用“符号语言”与外星人 联系是最经济和最有效的,外星人也最可 能使用这种语言,并且最可能是数学语言。 中国数学家华罗庚认为,我们可以用两个 图形作为与外星人交谈的媒介,一个是 “数”,另一个是“数形关系”(勾股定 理)。因为这种自然图形所具备的“数形 关系”在整个宇宙中是普遍的。
荧屏对角线大约为74厘米 ∴售货员没搞错
判断正误 :
若直角三角形的两条边长为6cm、
8cm,则第三边长一定为10cm.( × )
6 8
68
4 31
5 6
2
如图,所有的四 边形都是正方形,所有 的三角形都是直角三角 形,请在图中找出若干 个图形,使得它们的面 积之和恰好等于最大的 正方形的面积,尝试给 出两种以上的方案。
方案1:1+2
方案2:3+4+5+6
解:过C作CD⊥AB于D点
求等腰△ABC的面积
1
2
D
你是否还有其他的方法
谈谈你这节课的收获!
必做:如图所示,Rt△ABC中的AB边有多BC长为3cm,AB 长为4cm,AF长为12cm, 求正方形CDEF的面积。
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
5
3
直角三角形两直角边的平方和
4
等于斜边的平方。
C A
(2)观察图1-1,
这条直角边的平方是多少?
这条直角边的平方是多少?
B C
A
斜边的平方又是多少?
B 图1-1
(图中每个小方格代表一个单位面积)
你是怎样得到上面的结 果的?与同伴交流交流。
123
上一页
下一页
方法一:
方法二:
方法三:
“割”
分割为四个直 角三角形和一 个小正方形