《二次根式》培优专题一

合集下载

(完整word版)培优专题:二次根式

(完整word版)培优专题:二次根式

二次根式培优一、 知识的拓广延伸 1、挖掘二次根式中的隐含条件一般地,我们把形如 ・.a(a _0)的式子叫做二次根式,其中a -0「. a _ 0。

根据二次根式的定义,我们知道:被开方数 a 的取值范围是a — 0,由此我们判断下列式子有意义的条件:J ------- J --------------- 1/ _ x~— 1⑴「X - 1 • 「1 - X ——;⑵訂 2;2V x (3)「1 - x - J3 x - 2; (4) —-; (5) 73 - x (X 竺X + 1Jx - 22、也2的化简 教科书中给出:一般地,根据算术平方根的意义可知:'a 二a(a - °),在此我们可将其拓展为:(1) 、根据二次根式的这个性质进行化简: ① 数轴上表示数a 的点在原点的左边,化简丄5€3_________ | ____________③已知,2 w ,化简 2m -J4m 2 + m+1 -Jm 2 -6m + 9④ i (3 - x)2 二 _______ ;⑤ 若为a,b,c 三角形的三边,则■(a b 审一上“-才二 ------------------- ⑥ 计算:&4 -肩秆十丁(茁7 _5「= ______________. (2) 、根据二次根式的定义和性质求字母的值或取值范围 ①若B 2 求m 的取值范围1其中a=5②若J(2_x)2+J(6_2x)2=4_x,贝y x的取值范围是________________________③若 a = J2b -14 +J7 —b ,求J a2— 2ab +b2的值;④已知:y=、、2x-5 、、5 -2x -3,求2xy的值。

二.二次根式,a的双重非负性质:①被开方数a是非负数,即a_0②二次根式• a是非负数,即...a 一0 例1.要使J3_x+厂1有意义,则x应满足( ).J2x-1A. 1< x< 3 B . x< 3 且X M丄 C . 1v x v 3 D .丄v x< 32 2 2 2例 2 (1)化简J x _1 + J i -x = ____________ .(2)若.E—.E=(x+ y)2,贝U x —y 的值为()(A) —1. (B)1 . (C)2 . (D)3 .例3(1)若a、b为实数,且满足丨a — 2 | +「b2=0,则b —a的值为()A. 2B. 0C.—2D.以上都不是⑵已知x, y是实数,且(x y -1)2与•. 2x - y • 4互为相反数,求实数y x的倒数三,如何把根号外的式子移入根号内我们在化简某些二次根式时,有时会用到将根号外的式子移入根号内的知识,这样式子的化简更为简单。

二次根式培优提高训练

二次根式培优提高训练

《二次根式》培优一、知识讲解1.根式中的相关概念⑴二次根式:形如)0a ≥的代数式叫做二次根式。

⑵ nn 次根式.其中若n 为偶数,则必须满足0a ≥。

⑶最简二次根式:满足以下两个条件的二次根式叫做最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含有能开方的因数或因式。

⑷同类二次根式:几个二次根式化成最简二次根式之后,如果被开方数相同,则这几个根式叫做同类二次根式。

⑸设a 、b 、c 、d 、m 是有理数,且m 不是完全平方数 ,则当且仅当a c =、b d =时,时,a c +=+2. 二次根式的性质 (1)()20a a =≥. (200 0 0a a a a a a >⎧⎪===⎨⎪-<⎩当时,当时,当时. 3.二次根式的运算法则:对于二次更是的加减,先把二次根式化为最简二次根式,然后再合并同类二次根式即可. (1)(a b =+ (2)0,0a b =≥≥(3))0,0a b =≥> (4))0ma =≥(5)若0a b >>>4. 分母有理化(1)把分母中的根号化去叫做分母有理化.(2)互为有理数因式:两个含有根式的代数式相乘,如果它们的积不含有根式,则这两个代数式互为有理化因式.互为有理数因式。

分母有理化时,一定要保证有理化因式的值不为0.二、习题讲解基础巩固1.化简:(1) (2(3(4)(5(6) 解:(1)(2. (3)(4. (5)232-(6). 2. 设y =,求使y 有意义的x 的取值范围.解:由题知2102010x x x -≥⎧⎪-≥⎨⎪->⎩,解得1221x x x ⎧≥⎪⎪≤⎨⎪>⎪⎩,所以x 的取值范围为122x ≤≤.3.(1)已知最简二次根式ba = ,b = . (2)已知0=,则2mn n +-的倒数的算术平方根为 .解:(1)由题知:2322b a b b a -=⎧⎨=-+⎩,解得02a b =⎧⎨=⎩.(2)因为0≥,2160m -≥0=所以221016040n m m m -+=⎧⎪-=⎨⎪->⎩,解得49m n =-⎧⎨=-⎩.所以15===.所以2mn n +-的倒数的算术平方根为15.4. (1)若m=试确定m 的值.(2)已知x 、y为实数,13y x =-,求56x y +.解:(1)因为19901990x y x y -+≥⎧⎨--≥⎩,即199199x y x y +≥⎧⎨+≤⎩,所以199x y+=①.所以0=.又因为0≥0≥,所以3520 230 x y m x y m +--=⎧⎨+-=⎩②③.由①,②,③可得:2001m =.5.在、1999是同类二次根式的共有多少个?解:由题知:==19个. 6.计算:(1)((1617解:(1)原式((16=⎡⎤⎣⎦()(16=1211-(2)(5+解:原式(()=5555256+--(3)22-解:原式22=⎤⎤-⎦⎦=⎤⎤⎦⎦===(4)计算:(1111x x ++++解:原式((1111x x ⎡⎤⎡⎤=++⎣⎦⎣⎦()()()()222311111x x x x x x ⎡⎤=-+-=-++=-⎢⎥⎣⎦(5)(解:原式{}{}⎤⎤⎡⎡=⎦⎦⎣⎣()()523235⎡⎤⎡⎤=--+-⎣⎦⎣⎦=24=.7.化简:=..A. BCD解:()()⎣⎦=⎡⎡-+⎣⎣=-=212+==12=+8.计算:. 解:原式()()4172x x --=())())417247x x x x --=---)12=-3=-.9.设x =,y =,n 为自然数,如果22219721993x xy y ++=成立,求n的值.解:由题知:()2222197221931993x xy y x y xy ++=++=x y +=+22+==42n =+.1xy ==.当x y +==-1xy =时,()224219311993n ++⨯=,即()242900n +=. 因为n 为自然数,所以4230n +=,解得7n =.10. 若正整数a 、m 、n=a 、m 、n 的值依次是 . 解:因为0≥,即m n ≥.由题知:22=,即2a m n -=+-.所以2a m n =+=.故有8mn=.因为a 、m 、n 为正整数,所以8m =,1n =,3a =. 11.(1))))201220112010121412010--+= .解:原式)))20102112142010⎡⎤=--+⎢⎥⎣⎦)2010151242010⎡⎤=+--+⎣⎦2010=.(2)化简:解:原式==3=3=3==3===.二、拓展提高1.已知x=,y=,求22y xx y+的值.解:由题知:原式()()()()()()()2 22332223x y xy xyx y x xy yy xxyxy xy⎡⎤++-+-++⎣⎦===x y+=22+=10=,1xy==. 当10x y+=,1xy=时,原式()22101031⨯-=970=.2.(1)). 5A-1B. 5C. 1D(2)代数式.解:(1)=)21=2=,==3=-所以231=+-=,故答案选D.(2)222=+82818=+=因为0≥==3.若1x =,则54322171816x x x x x +--+-的值为 .解:因为1x =,所以()221x -=,化简的22160xx --=.原式543322216216216x x x x x x x x =+---+++-()()222161x x x x =+--+()201x x =⨯-+0=4. 已知非零实数a 、b 满足等式542b a a b ab b a ++=+. 解:由542b a a b ab b a++=+可得:22542b a a b ++=+,即()()22120b a -+-=,解得2a =,1b =.所以原式1===.5.22006= 解:令2006x =,由题知: 原式2x =2x =2x =2x =221x x x =+--1200612005x =-=-=.6. 已知2=的值为 .解:令m =n =22210m n m n -=⎧⎨-=⎩. 所以()()()22210x y x y x y x y -=+-=+=5m n =+=.7.化简:.解:原式===2=51-=-5=.8.计算:⋅⋅⋅+.解:原式=+⋅⋅⋅+=+⋅⋅⋅4512025=-1145=-4445=.9.⋅⋅⋅+解:原式=37132612=++⋅⋅⋅1111111112233420102011⎛⎫⎛⎫⎛⎫⎛⎫=++++++⋅⋅++⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭1112010122320102011=+++⋅⋅+⨯⨯⨯111112010122320102011=+-+-+⋅⋅+-1201012011=+-201020102011=。

二次根式拓展专题培优

二次根式拓展专题培优

二次根式的专题提高一、二次根式的双重非负性例题:1、使式子xx 2-有意义的x 的取值范围是 2、无论x 取任何实数,m x x +-62都有意义,则m 的取值范围是3、已知22284x x y -+-=,求x+y 的值4、已知实数a,b,c 满足0432=-++b a ,012442=--+c b c ,求a+b+c 的值.练习: 1、使式子11--x x 有意义的x 的取值范围是 2、若4342-=-+-b a a ,则b a 22-= 3、若a a a =-+-20152014,则22014-a = 二、简单的二次根式的化简例题:1、如果式子322)1(2-=-+-x x x ,则x 的取值范围是 2、把a b b a --1)(根号外的因式移到根号内的结果为练习:1、化简(1)a a 1- (2)22x xx --2、已知a ,b ,c 为∆ABC 的三边,化简2222)()()()(a b c c a b c b a c b a -----+--+++的结果为是3、若x x +=-11,则2)1(-x =三、二次根式的运算与规律探究例题:1、观察下列各式:1131432112+⨯+=⨯⨯⨯+,1232543212+⨯+=⨯⨯⨯+,1333654312+⨯+=⨯⨯⨯+,猜测=⨯⨯⨯+201720162015201412、计算2201612018201720162015-+⨯⨯⨯的结果为练习:1、设n,k 为正整数,,,,已知,则2、小明做数学题时,发现,,,,按上述规律,第n 个等式是3、设S=++…+,求不超过S 的最大整数四、分母有理化例题:黑白双雄、纵横江湖;双剑合璧,天下无敌.这是武侠小说中常见的描述,其意是指两人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”如:,与的积不含有根号,我们就说这两个式子互为有理化因式,其中一个是另一个的有理化因式.于是二次根式可以这样解:,像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:①的有理化因式是 ,121分母有理化得 ②计算:③计算:.④已知,,则⑤已知:,,,试比较a 、b 、c 的大小。

二次根式培优专题(一)

二次根式培优专题(一)

二次根式(g ēnsh ì)培优专题 (一)一、基础知识回顾(hu íg ù)1.二次根式(g ēnsh ì):式子(sh ì zi)(≥0)叫做(ji àozu ò)二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质: (1)(a ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.二、精典考题类型一:考查二次根式的概念(求自变量取值范围)a (a >(a <1、下列(xiàliè)各式中,不是二次根式的是()A .B .C .D .2、二次根式(gēnshì)有意义(yìyì)时的的取值范围(fànwéi)是。

3、已知:,则= 。

类型二:考查二次根式(g ēnshì)的性质(非负性、化简)4、代数式的最大值是。

5、实数在数轴上的位置如图1所示,化简。

(图6、把的根号外的因式移到根号内得;的平方根是。

7、化简:;。

类型三:考查同类二次根式与最简二次根式(化简)8、把,,,按由大到小的顺序排列为:类型四:考查二次根式的运算(加减乘除混合运算、分母有理化)9、若,,则a与b的关系是()A.互为相反数;B.互为倒数;C.互为负倒数;D.以上均不对。

《二次根式》培优专题之(一)难点指导与典型例题(含答案及解析)

《二次根式》培优专题之(一)难点指导与典型例题(含答案及解析)

《二次根式》培优专题之(一)难点指导与典型例题(含答案及解析) -CAL-FENGHAI.-(YICAI)-Company One1《二次根式》培优专题之一——难点指导及典型例题【难点指导】1、如果a 是二次根式,则一定有a ≥0;当a ≥0时,必有a ≥0;2、当a ≥0时,a 表示a 的算术平方根,因此有()a a =2;反过来,也可以将一个非负数写成()2a 的形式; 3、()2a 表示a 2的算术平方根,因此有a a =2,a 可以是任意实数; 4、区别()a a =2和a a =2的不同: 2a 中的可以取任意实数,()2a 中的a 只能是一个非负数,否则a 无意义. 5、简化二次根式的被开方数,主要有两个途径:(1)因式的内移:因式内移时,若m <0,则将负号留在根号外.即: x m x m 2-=(m <0).(2)因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即:6、二次根式的比较:(1)若,则有;(2)若,则有. 说明:一般情况下,可将根号外的因式都移到根号里面去以后再比较大小.【典型例题】1、概念与性质2、二次根式的化简与计算例1. 化简a a 1-的结果是( ) A .a - B .a C .-a - D .-a分析:本题是同学们在做题时常感困惑,容易糊涂的问题.很多同学觉得选项B形式最简单,所以选B;还有的同学觉得应有一个负号和原式对应,所以选A 或D;这些都是错误的.本题对概念的要求是较高的,题中隐含着0a <这个条件,因此原式的结果应该是负值,并且被开方数必须为非负值.解:C. 理由如下:∵二次根式有意义的条件是10a -≥,即0a <, ∴原式=211()()()a a a a a---=--⋅-=--.故选C. 例2. 把(a -b )-1a -b 化成最简二次根式解:例3、先化简,再求值:11()b a b b a a b ++++,其中a=512+,b=512-.3、在实数范围内分解因式例. 在实数范围内分解因式。

二次根式培优试卷

二次根式培优试卷

第一章二次根式好题精选一.选择题1.下列各式中计算正确的是()A.=×=(﹣2)×(﹣4)=8 B.=4a(a>0)C.=3+4=7 D.=2.化简(x≠y,且x、y都大于0),甲的解法;==﹣;乙的解法:==﹣,下列判断正确的是()A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确3.设a,b≠0,式子有意义,则该式等于()A.B.C.D.4.在△ABC中,a、b、c为三角形的三边,化简﹣2|c﹣a﹣b|的结果为()A.3a+b﹣c B.﹣a﹣3b+3c C.a+3b﹣c D.2a5.若=3﹣a,则a与3的大小关系是()A.a<3 B.a≤3 C.a>3 D.a≥36.已知,则的值为()A.1 B.C.D.7.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x8.估计代数式+的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间9.若=﹣,则()A.a<0,b>0 B.a>0,b<0 C.ab≤0 D.ab≤0且b≠010.设S 1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n﹣1),S=++••+,其中n为正整数,用含n的代数式表示S为()A.n B.C.n2D.二.填空题(共10小题) 11.已知:x =,计算x 2﹣x +1的值是 .12.化简:()()23352325-+-+的结果为____________________13.在正方形ABCD 中,E 是边BC 上一点,如果这个正方形的面积为m ,△ABE 的面积等于正方形面积的四分之一,那么BE 的长用含m 的代数式表示为 . 14.化简:2<x <4时,﹣= .15.已知a ,b 均为正整数,如果0<﹣b <1,我们称b 是的“主要值”,那么的主要值是 .三.解答题(共15小题) 16.计算(1)﹣+(2)()()﹣(﹣)217..18.先化简,再求值 (1)(﹣),其中a =17﹣12,b =3+2(2)(a +)(a ﹣)﹣(﹣a )2,其中a =2﹣1.(3)+,其中x=19.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1请你根据上面三个等式提供的信息,猜想:(1)=(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:;(3)利用上述规律计算:(仿照上式写出过程)20.阅读材料:把根式进行化简,若能找到两个数m、n,是m2+n2=x且mn=,则把x±2变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简解:∵3+2=1+2+2=12+()2+2×1×=(1+)2∴==1+;请你仿照上面的方法,化简下列各式:(1);(2).21.阅读材料:像(+)(﹣)=3、•=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,+1与﹣1,2+3与2﹣3等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;=.解答下列问题:(1)3﹣与互为有理化因式,将分母有理化得;(2)计算:;(3)已知有理数a、b满足,求a、b的值.22.已知a=,b=,求a2+3ab+b2﹣a+b的值23.(利用解决本题)已知△ABC的三边分别为a、b、c,化简:++.参考答案与试题解析一.选择题(共15小题)1.下列计算正确的是()A.=±4 B.2×32=62=36C.(﹣5)÷(﹣2)×(﹣)=﹣5 D.﹣2×+2×(3+)+4=10【分析】根据实数与二次根式的混合运算顺序和运算法则逐一计算可得.【解答】解:A.=4,此选项错误;B.2×32=2×9=18,此选项错误;C.(﹣5)÷(﹣2)×(﹣)=×(﹣)=﹣,此选项错误;D.﹣2×+2×(3+)+4=﹣2+6+2+4=10,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.2.化简(x≠y,且x、y都大于0),甲的解法;==﹣;乙的解法:==﹣,下列判断正确的是()A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确【分析】分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式,或者运用因式分解和约分.【解答】解:甲的解法:==﹣,利用平方差公式进行分母有理化,正确;乙的解法:==﹣,利用因式分解进行分母有理化,正确;故选:C.【点评】本题主要考查了分母有理化以及二次根式的混合运算,分母有理化是指把分母中的根号化去.3.下列计算正确的是()A.=±15 B.=﹣3 C.=D.=【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:A、=15,故此选项错误;B、=3,故此选项错误;C、=,故此选项错误;D、=,正确.故选:D.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.设a,b≠0,式子有意义,则该式等于()A.B.C.D.【分析】先根据二次根式的被开方数是非负数列出不等式﹣a3≥0,再根据公式=|a|及有理数的乘法法则得出a、b的取值范围,然后化简即可.【解答】解:由题意,得﹣a3≥0,又∵=b2≥0,b为任意数,∴﹣a3≥0,∴a≤0,∴==•=.故选:D.【点评】本题主要考查了二次根式的性质及二次根式的化简.用到的知识点有:①二次根式的被开方数是非负数;②两个公式:=(a≥0,b≥0),=|a|.5.下列各式中计算正确的是()A.=×=(﹣2)×(﹣4)=8B.=4a(a>0)C.=3+4=7D.=【分析】根据二次根式的意义、性质逐一判断即可得.【解答】解:A.、没有意义,此选项错误;B.=2a(a>0),此选项错误;C.==5,此选项错误;D.=,此选项正确;故选:D.【点评】本题主要考查二次根式的性质与化简,解题的关键是二次根式的定义和性质.6.在△ABC中,a、b、c为三角形的三边,化简﹣2|c﹣a﹣b|的结果为()A.3a+b﹣c B.﹣a﹣3b+3c C.a+3b﹣c D.2a【分析】首先根据三角形的三边关系得到根号内或绝对值内的式子的符号,再根据二次根式或绝对值的性质化简.【解答】解:∵a、b、c为三角形的三边,∴a+c>b,a+b>c,即a﹣b+c>0,c﹣a﹣b<0;∴﹣2|c﹣a﹣b|=(a﹣b+c)+2(c﹣a﹣b)=﹣a﹣3b+3c.故选:B.【点评】本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a=0时,=0.绝对值的性质:负数的绝对值等于它的相反数;正数的绝对值等于它本身;0的绝对值是0.7.如果f(x)=并且f()表示当x=时的值,即f()==,表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+【分析】认真观察题中式子的特点,找出其中的规律,代入计算即可.【解答】解:代入计算可得,f()+f()=1,f()+f()=1…f()+f()=1,所以,原式=+(n﹣1)=n﹣.故选:A.【点评】解答此类题目的关键是认真观察题中式子的特点,找出其中的规律.8.若=3﹣a,则a与3的大小关系是()A.a<3 B.a≤3 C.a>3 D.a≥3【分析】等式左边为算术平方根,其结果3﹣a应该为非负数.【解答】解:∵=3﹣a∴3﹣a≥0∴a≤3故选:B.【点评】注意:算术平方根是非负数,这是解答此题的关键.9.已知,则的值为()A.1 B.C.D.【分析】根据,可以求得a、b的值,从而可以求得所求式子的值,本题得以解决.【解答】解:∵,∴a﹣3=0,2﹣b=0,解得,a=3,b=2,∴===,故选:D.【点评】本题考查二次根式的化简求值、非负数的性质,解答本题的关键是明确题意,求出a、b的值.10.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x【分析】先进行因式分解,x2﹣2x+1=(x﹣1)2,再根据二次根式的性质来解题即可.【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选:D.【点评】根据完全平方公式、绝对值的运算解答此题.11.的整数部分是()A.3 B.4 C.5 D.6【分析】由于=﹣1,=﹣,…,=﹣+,于是可得原式=﹣1+﹣+…﹣+,计算即可.【解答】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=9.【点评】本题考查了二次根式的加减法.解题的关键是对每一个分式分母有理化.12.估计代数式+的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【分析】先化成最简二次根式,再合并,最后求出的范围即可.【解答】解:+=+=2=,∵2<<3,∴代数式+的运算结果在2到3之间,故选:B.【点评】本题考查了二次根式的加减法,估算无理数大小的应用,主要考查学生的计算能力.13.已知方程+3=,则此方程的正整数解的组数是()A.1 B.2 C.3 D.4【分析】先把化为最简二次根式,由+3=可知,化为最简根式应与为同类根式,即可得到此方程的正整数解的组数有三组.【解答】解:∵=10,x,y为正整数,∴,化为最简根式应与为同类根式,只能有以下三种情况:+3=+9=4+6=7+3=10.∴,,,共有三组解.故选:C.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.14.若=﹣,则()A.a<0,b>0 B.a>0,b<0 C.ab≤0 D.ab≤0且b≠0【分析】先判断结果的情况,再判断ab积的情况.【解答】解:∵=≥0又∵=﹣,∴﹣≥0∴ab≤0且b≠0故选:D.【点评】本题考查了二次根式的性质,解决本题需着眼于整体.本题易忽略b≠0而出错.15.设S 1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n﹣1),S=++••+,其中n为正整数,用含n的代数式表示S为()A.n B.C.n2D.【分析】求出S1,S2,S3,…的值,代入后根据二次根式的性质求出每一部分的值,再求出最后结果即可.【解答】解:∵S1=1,S2=1+3=4,S3=1+3+5=9,…,S n=1+3+5+…+(2n﹣1),∴S=++••+,=+++…+=1+2+3+…+n=,故选:D.【点评】本题考查了二次根式的性质的应用,注意:1+2+3+…n=.二.填空题(共10小题)16.计算()=.【分析】先计算括号内的加法,再计算除法即可得.【解答】解:原式=÷(+)=÷=×=,故答案为:【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.17.如果(a,b为有理数),则a=6,b=4.【分析】先计算出(2+)2,再根据可得答案.【解答】解:∵(2+)2=4+4+2=6+4,∴a=6、b=4.故答案为:6、4.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及完全平方公式.18.计算:(3+1)(3﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.【点评】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.19.已知:x=,计算x2﹣x+1的值是+4.【分析】先将x的值分母有理化得出x=+1,再代入原式,根据二次根式的混合运算顺序和运算法则计算可得.【解答】解:∵x====+1,∴x2﹣x+1=(+1)2﹣(+1)+1=4+2﹣﹣1+1=+4.故答案为:+4.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及分母有理化.20.当x=1﹣时,x2﹣2x+2028=2030.【分析】将x的值代入x2﹣2x+2028=(x﹣1)2+2027,根据二次根式的运算法则计算可得.【解答】解:当x=1﹣时,x2﹣2x+2028=(x﹣1)2+2027=(1﹣﹣1)2+2027=(﹣)2+2027,=3+2027=2030,故答案为:2030.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和运算法则及完全平方公式.21.若x=﹣1,则=2.【分析】将x的值代入原式=,计算可得.【解答】解:当x=﹣1时,原式====2,故答案为:2.【点评】本题主要考查二次根式的性质与化简,解题的关键是熟练掌握完全平方公式和二次根式的性质.22.已知:m+n=10,mn=9,则=±.【分析】先求所求的代数式的完全平方形式,然后直接开平方即可求得的值.【解答】解:∵m+n=10,mn=9,∴()2====,∴=±.故答案是:.【点评】考查了二次根式的化简求值,需要掌握完全平方公式,属于基础计算题.23.在正方形ABCD中,E是边BC上一点,如果这个正方形的面积为m,△ABE的面积等于正方形面积的四分之一,那么BE的长用含m的代数式表示为.【分析】首先根据正方形的面积,表示出△ABE的面积,然后利用三角形的面积的公式表示出线段BE的长即可.【解答】解:∵正方形的面积为m,△ABE的面积等于正方形面积的四分之一,∴正方形的边长AB=,△ABE的面积为,∵S△ABE=AB•BE=BE=,∴BE=,故答案为:.【点评】本题考查了二次根式的应用,解题的关键是表示出正方形的边长及直角三角形的面积.24.化简:2<x<4时,﹣=2x﹣6.【分析】首先根据x的范围确定x﹣2与x﹣4的符号,然后利用算术平方根的定义,以及绝对值的性质即可化简.【解答】解:∵2<x<4,∴x﹣2>0,x﹣4<0,∴原式=﹣=|x﹣2|﹣|x﹣4|=x﹣2﹣(4﹣x)=x﹣2﹣4+x=2x﹣6.故答案为:2x﹣6.【点评】本题考查了二次根式的化简,正确理解算术平方根的性质是关键.25.已知a,b均为正整数,如果0<﹣b<1,我们称b是的“主要值”,那么的主要值是4.【分析】根据a,b均为正整数,如果0<﹣b<1,我们称b是的“主要值”,可以求得的主要值.【解答】解:∵0<﹣4<1,∴的主要值是4,故答案为:4.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,可以估算出处于哪两个整数之间.三.解答题(共15小题)26.计算(1)﹣+(2)()()﹣(﹣)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=﹣2+10=;(2)原式=2﹣6﹣(2﹣2+)=﹣4﹣=﹣4.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.27.当t=2时,求二次根式的值.【分析】将t的值代入==|3﹣t|计算可得.【解答】解:当t=2时,==|3﹣t|=|3﹣2|=3﹣2.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的基本性质.28.已知a,b,c为△ABC三边,化简+|b﹣a﹣c|.【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定a﹣b﹣c以及绝对值里的式子的正负值,然后去绝对值进行计算即可.【解答】解∵a,b,c为△ABC三边,∴原式=|a﹣b﹣c|+|b﹣a﹣c|=b+c﹣a+a+c﹣b=2c.【点评】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理.29..【分析】根据二次根式的定义得出x﹣8≥0,8﹣x≥0,求出x,代入求出y,把所求代数式化简后代入求出即可.【解答】解:要使y=++9有意义,必须x﹣8≥0,且8﹣x≥0,解得:x=8,把x=8代入得:y=0+0+9=9,∴=,=+,=+,=.【点评】本题考查了对二次根式有意义的条件,二次根式的化简,分母有理化等知识点的应用,解此题的关键是求出x、y的值,通过做此题培养了学生灵活运用性质进行求值的能力,题目比较典型.30.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.31.化简求值:已知:x=,y=,求(x+3)(y+3)的值.【分析】将x和y的值分母有理化,再代入到原式xy+3x+3y+9=xy+3(x+y)+9计算可得.【解答】解:当x===,y===时,原式=xy+3x+3y+9=xy+3(x+y)+9=×+3×(+)+9=+3×+9=+3+9=+3.【点评】此题考查了二次根式的化简求值与分母有理化,正确选择两个二次根式,使它们的积符合平方差公式及二次根式的混合运算顺序与运算法则是解答问题的关键.32.先化简,再求值:(﹣),其中a=17﹣12,b=3+2【分析】将原式利用二次根式的性质和运算法则化简为,由a=17﹣12=(3﹣2)2、b=3+2=(+1)2,代入计算可得.【解答】解:原式=(﹣)•=[﹣]•=•=,∵a=17﹣12=32﹣2××(2)2=(3﹣2)2,b=3+2=()2+2+1=(+1)2,∴原式====.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质和运算法则.33.先化简,再求值:(a+)(a﹣)﹣(﹣a)2,其中a=2﹣1.【分析】先利用平方差公式和完全平方公式展开,再合并同类项即可化简二次根式,最后将a的值代入计算可得.【解答】解:原式=a2﹣5﹣3﹣a2+2a=2a﹣8.∵a=2﹣1,∴原式=2×(2﹣1)﹣8=4﹣2.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和二次根式的性质.34.先化简,再求值:已知x=,求+的值.【分析】先将x的值分母有理化,再根据二次根式的性质和运算法则化简原式,从而得出答案.【解答】解:∵x==3﹣2,∴x﹣2=1﹣2<0,则原式=x﹣1+=x﹣1﹣1=x﹣2=1﹣2.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握分母有理化与分式的混合运算顺序与运算法则、二次根式的性质.35.观察下列各式:=1+﹣=1=1+﹣=1=1+﹣=1请你根据上面三个等式提供的信息,猜想:(1)=1(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:=1+;(3)利用上述规律计算:(仿照上式写出过程)【分析】(1)根据提供的信息,即可解答;(2)根据规律,写出等式;(3)根据(2)的规律,即可解答.【解答】解:(1)=1=1;故答案为:1;(2)=1+=1+;故答案为:=1+;(3).【点评】本题考查了二次根式的性质与化简,解决本题的关键是关键信息,找到规律.36.阅读材料:把根式进行化简,若能找到两个数m、n,是m2+n2=x且mn=,则把x±2变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简解:∵3+2=1+2+2=12+()2+2×1×=(1+)2∴==1+;请你仿照上面的方法,化简下列各式:(1);(2).【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【解答】解:(1)∵5+2=3+2+2=()2+()2+2××=(+)2,∴==+;(2)∵7﹣4=4+3﹣4=22+()2﹣2×2×=(2﹣)2,∴==2﹣.【点评】此题主要考查了二次根式的性质与化简,正确应用完全平方公式是解题关键.37.阅读材料:像(+)(﹣)=3、•=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,+1与﹣1,2+3与2﹣3等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;=.解答下列问题:(1)3﹣与3+互为有理化因式,将分母有理化得;(2)计算:;(3)已知有理数a、b满足,求a、b的值.【分析】(1)根据题意可以得到所求式子的分母有理化因式,并将题目中的二次根式化简;(2)根据分母有理化的方法可以化简题目中的式子;(3)根据题意,对所求式子变形即可求得a、b的值.【解答】解:(1)3﹣与3+互为有理化因式,=,故答案为:3,;(2)=﹣2=2﹣;(3)∵,∴a(﹣1)+b=﹣1+2,∴﹣a+(a+)=﹣1+2,∴﹣a=﹣1,a+=2,解得,a=1,b=2.【点评】本题考查二次根式的混合运算,分母有理化,解答本题的关键是明确二次根式的混合运算的计算方法.38.已知a=,b=,求a2+3ab+b2﹣a+b的值【分析】先由a、b的值计算出a+b、a﹣b、ab的值,再代入到原式=a2+3ab+b2﹣a+b=(a+b)2﹣(a﹣b)+ab.【解答】解:∵a=,b=,∴a+b=2,a﹣b=﹣2,ab=1,∴原式=a2+3ab+b2﹣a+b=a2+2ab+b2﹣a+b+ab,=(a+b)2﹣(a﹣b)+ab=(2)2﹣(﹣2)+1=13+2.【点评】本题考查的是二次根式的化简求值,在解答此题类目时要根据各题的特点灵活解答.39.(利用解决本题)已知△ABC的三边分别为a、b、c,化简:++.【分析】根据两边之和大于第三边可将各二次根式求出,从而可得出化简后的答案.【解答】解:由三边关系得:a+b+c>0,a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,∴原式=a+b+c+b+c﹣a+a+c﹣b﹣a﹣b+c=4c.【点评】本题考查二次根式的化简及三角形的三边关系,掌握三角形两边之和大于第三边是关键.40.现有一组有规律的数:1,﹣1,,﹣,,﹣,1,﹣1,,﹣,,﹣…其中1,﹣1,,﹣,,﹣这六个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2017个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加起来,如果和为520,那么一共是多少个数的平方相加?【分析】(1)首先根据这列数的排列规律,可得每6个数一个循环:1,﹣1,,﹣,,﹣,然后用50除以6,根据余数的情况判断出第50个数是什么数即可;(2)首先用2017除以6,求出一共有多少个循环,以及剩下的数是多少;然后用循环的个数乘以1+(﹣1)++(﹣)++(﹣)=0,再加上剩下的数,求出把从第1个数开始的前2015个数相加,结果是多少即可;(3)首先求出1,﹣1,,﹣,,﹣六个数的平方和是多少;然后用520除以六个数的平方和,根据商和余数的情况,判断出一共有多少个数的平方相加即可.【解答】解:(1)这列数每6个数一个循环:1,﹣1,,﹣,,﹣,∴50÷6=8…2,∴第50个数是﹣1.(2)∵2017÷6=336…1,且1+(﹣1)++(﹣)++(﹣)=0,∴从第1个数开始的前2017个数的和是:336×0+1=1.(3)∵12+(﹣1)2+()2+(﹣)2+()2+(﹣)2=12,520÷12=43…4,而且12+(﹣1)2+()2=4,∴43×6+3=261,即共有261个数的平方相加.【点评】此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数每6个数一个循环:1,﹣1,,﹣,,﹣,而且每个循环的6个数的和是0.。

《二次根式》培优试题及答案精编版

《二次根式》培优试题及答案精编版

《二次根式》提高测试(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………()【提示】2)2(-=|-2|=2.【答案】×.2.3-2的倒数是3+2.()【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…()【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、ba x 2-是同类二次根式.…( )【提示】31b a 3、ba x 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2aa .【点评】注意除法法则和积的算术平方根性质的运用. 8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小.13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40. 【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴_______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D . 【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………()(A )x 2 (B )-x 2(C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………()(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2.(五)计算题:(每小题6分,共24分)23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -m ab mn +m n nm)÷a 2b 2m n ;【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2mn-m ab mn +m n n m )·221ba n m=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy yx +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x22a x +=22a x +(22a x +-x ),x 2-x22a x +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值.【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x - =|xy yx +|-|x y y x -|∵ x =41,y =21,∴yx<xy .∴ 原式=x y y x +-y x xy+=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

2023年上学期人教版八年级下册《二次根式》培优资料

2023年上学期人教版八年级下册《二次根式》培优资料

2023年上学期人教版八年级下册二次根式培优资料一、单选题1.当a 为实数时,下列各式10a +、a 、2a 、21a -、21a +、()21a -是二次根式的有多少个( )A .3个B .4个C .5个D .6个2.已知52a =-,25b =-,则a 与b 的大小关系是( ) A .a b <B .a b >C .a b =D .无法确定3.下列各式的计算正确的是( ) A .44229339---===--- B .2142293= C .3234= D .323113311311311÷=÷= 4.已知a ,b ,c 分别是ABC 的三边,则22()()a b c a b c ---+-的值为( ) A .2bB .2- bC .a +2cD .22c a -5.已知0ab >,化简二次根式2ba a -的正确结果为( ) A .bB .b -C .b -D .b --6.已知226a b ab +=,且0a b >>,则a ba b+-的值为( ) A .2 B .±2C .2D .2±7.已知15(1)x x x +=>,则1x x+的值为( ) A .5B .3C .5D .78.已知a 、b 、c 在数轴上的位置如图所示,则2||()a c b c a ++--的化简结果是( )A .2b c -B .2b a -C .2a b --D .2c b -9.如图,在矩形ABCD 中无重叠放入面积分别为16cm 2和12 cm 2的两张正方形纸片,则图中空白部分的面积为( ) A .2(843)cm - B .2(423)cm -C .2(1683)cm -D .2(8312)cm -10.已知120212020x =-,则65432220202202122021x x x x x x --+-+-的值为( )A .0B .1C .2020D .2021二、填空题 1123x-x 的取值范围是___________. 1223_____________.(不与原数相等) 13.如图实数a ,b ,c ()2323b a c c b c --+=_______.14.已知x 322-y 322+4x yy x +-= _____.15.已知a ,b ,c 2()a b c ---|b -a +c |的结果是_____. 162(1)2x x --化简的结果为23x -,则x 的取值范围是___________.17.满足等式2022202220222022x y xy x y xy 的正整数对(),x y 的个数有_____个. 三、解答题18.阅读下列材料,并回答问题: 91116<3114<<,113113. (1)40(2)5a ,小数部分为b ,求()()a b a b +-的值.19.计算: 353; (2)559525 (3)2322+(4)62|21||36+-; (5)1(26)18332748(23)(23)3+; (7)()20120229253π-⎛⎫+- ⎪⎝⎭.11241124823 148312242(10)4246543223⨯;20.计算: (1)332(49)a ba b ab b a a; (y x y xy xy x y x y +-21.阅读材料:像()()65651+-=,a a a ⨯=(0a ≥),这种两个含二次根式的代数式相乘,积不含二次根式,我们称这两个代数式互为有理化因式.在进行二次根式运算时,利用有理化因式可以化去分母中的根号.解答下列问题:(1)7的有理化因式是___________;72+的有理化因式是___________; (2)观察下面的变形规律,请你猜想:12121=-+,13232=-+,14343=-+,……,11n n=++___________.(3)利用上面的方法,请化简:111121324310099++++=++++___________.22.小明家装修,电视背景墙长BC 为27m ,宽AB 为8m ,中间要镶一个长为23m ,宽为2m 的大理石图案(图中阴影部分).(1)长方形ABCD 的周长是多少?(结果化为最简二次根式) (2)除去大理石图案部分,其他部分贴壁布,若壁布造价为6元2/m ,大理石的造价为200元2/m ,则整个电视墙需要花费多少元?(结果化为最简二次根式)23.(1)先化简;再求值:2(23)(2)(2)2x y x y x y y ⎡⎤--+-÷⎣⎦,其中,16x =,15y =. (2)先化简,再求值:21(1)x x x x -⎛⎫-÷- ⎪⎝⎭,其中21x =-+.24.材料:2(0a b a ±>,0b >,0)a b ±>化简呢?如能找到两个数m ,(0,0)n m n >>,使得22(()m n a +=,即m n a +=m n b m n b ⋅=,那么222()()()a b m n m n m n ±=+±=2a b m n ±=,双重二次根式得以化简.322± 因为312=+且212=⨯,22322(1)(2)212322|12∴±+±±,2a b ±且能找到m ,(0,0)n m n >>使得m n a +=,且m n b ⋅=,那么这个双重二次根式一定可以化简为一个二次根式. 请同学们通过阅读上述材料,完成下列问题:(1)526±12235±; (2)962± (3)35-23±25.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如(232212+,善于思考的小明进行了以下探索:若设(22222222a m m n mn ++=++(其中a 、b 、m 、n 均为整数),则有222a m n =+,2b mn =.这样小明就找到了一种把类似2a b + (1)若(277a m +=+,当a 、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:=a ______,b =______;(2)若(233a m +=+,且a 、m 、n 均为正整数,求a 的值; (3)化简下列格式: 526+7210-4102541025-+++。

专题01 二次根式的混合运算(专项培优训练)(教师版)

专题01 二次根式的混合运算(专项培优训练)(教师版)

专题01 二次根式的混合运算(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.53一.填空题(共12小题,满分24分,每小题2分)1.(2分)(2023•原平市模拟)计算的结果为 7 .解:===7,故答案为:7.2.(2分)(2023春•嘉定区期末)计算:= .解:原式=2﹣+3=.故答案为:.3.(2分)(2023春•莱州市期中)计算:×= 3﹣2 .解:原式=[(3+2)(3﹣2)]2012•(3﹣2)=(9﹣8)2012•(3﹣2)=3﹣2.故答案为:3﹣2.4.(2分)(2023春•西塞山区期中)已知实数a在数轴上的位置如图所示,则化简的结果为 a+1 .解:由实数a在数轴上的位置可得0<a<1,所以=a+1.故答案为:a+1.5.(2分)(2022•市南区三模)(温州)计算:+﹣(2+)0= 3 解:+﹣(2+)0=2+2+﹣1=3+1.6.(2分)(2022春•钦北区校级期中)已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于 ﹣9 .解:由m=1+,得(m﹣1)2=2,即m2﹣2m=1,故7m2﹣14m=7,同理,得3n2﹣6n=3,代入已知等式,得(7+a)(3﹣7)=8,解得a=﹣9.7.(2分)(2023•封丘县校级开学)计算:= .解:原式=3﹣=3﹣=2.故答案为:2.8.(2分)(2023春•威县校级期末)嘉淇想通过“由特殊到一般”的方法探究下面二次根式的运算规律,下面是他的探究过程,请补充完整.(1)具体运算,发现规律.式子1:;式子2:;式子3:;式子4: =4(写===4也可) ;(2)观察、归纳,得出猜想.若n为正整数,则式子n为: =n .解:(1)根据规律可得,=4.故答案为:=4(写===4也可);(2)运算规律为:=n.故答案为:=n.9.(2分)(2023春•邗江区期中)“黑白双雄,纵横江湖;双剑合壁,天下无敌”.其意指两个人合在一起,取长补短,威力无比.在二次根式中有这样相辅相成的例子:,它们的积是有理数,我们说这两个二次根式互为有理化因式,在进行二次根式计算时利用有理化因式可以去掉根号,令(n为非负数),则;.则= 2023﹣ .解:=2023×(+++•••+)=2023×(+++•••+)=2023×(1﹣+﹣+﹣+﹣)=2023×(1﹣)=2023﹣.故答案为:2023﹣.10.(2分)(2023春•铁岭县期中)计算:(+1)2022(﹣1)2023= ﹣1 .解:原式=[(+1)(﹣1)]2022×(﹣1)=(2﹣1)2022×(﹣1)=﹣1.故答案为:﹣1.11.(2分)(2023春•高邮市期末)若,则bc的值为 ﹣3 .解:∵a﹣6=(b+c)2=b2+2bc+2c2=b2+2c2+2bc,∴2bc=﹣6,∴bc=﹣3.故答案为:﹣3.12.(2分)(2023春•东丽区期末)计算:(+2)(﹣2)= 3 .解:原式=()2﹣22=7﹣4=3,故答案为:3.二.选择题(共6小题,满分12分,每小题2分)13.(2分)(2023春•通河县期末)下列计算中,结果错误的是( )A.B.C.D.解:A、与不属于同类二次根式,不能运算,故A符合题意;B、5﹣2=3,故B不符合题意;C、÷=,故C不符合题意;D、(﹣)2=2,故D不符合题意;故选:A.14.(2分)(2022秋•昌图县期末)下列运算中,正确的是( )A.=B.=4C.2=2D.=解:A、与不属于同类二次根式,不能运算,故A不符合题意;B、==2,错误,故B不符合题意;C、2﹣=,错误,故C不符合题意;D、,故C符合题意.故选:D.15.(2分)(2022秋•安化县期末)下列各式不成立的是( )A.B.=C.D.解:A、﹣=3﹣=,A选项成立,不符合题意;B、=÷,B选项成立,不符合题意;C、==,C选项不成立,符合题意;D、==﹣,D选项成立,不符合题意;故选:C.16.(2分)(2022秋•绥中县校级期末)下列运算正确的是( )①,②=3,③,④=2,⑤=﹣3,⑥=3.A.1个B.2个C.3个D.4个解:①不是同类二次根式,不能加减,故①运算错误;②==3,故②运算正确;③=,故③运算正确;④÷===2,故④运算正确;⑤=|﹣3|=3,故⑤运算错误;⑥=3,故⑥运算错误.故选:C.17.(2分)(2022秋•方城县期中)下列计算正确的是( )A.2+3=5B.2×3=6C.=﹣6D.÷(+)=+解:A.2和3不能合并同类二次根式,故本选项不符合题意;B.2×3=(2×3)=6,故本选项符合题意;C.=6,故本选项不符合题意;D.÷(+)====,故本选项不符合题意;故选:B.18.(2分)(2022秋•长安区期中)下列计算正确的是( )A.2+3=5B.2×3=6C.5﹣2=3D.÷(+)=+解:A.2和3不能合并同类二次根式,故本选项不符合题意;B.2=(2×3)=6,故本选项符合题意;C.5和﹣2不能合并同类二次根式,故本选项不符合题意;D.÷(+)==,故本选项不符合题意;故选:B.三.简答题(共6小题,满分24分)19.(4分)(2023•江北区开学)计算下列各式:(1);(2).解:(1)原式=3++3﹣=3+;(2)原式=3﹣4+4+2﹣+=7﹣2﹣+.20.(4分)(2022秋•宝山区期末)计算:.解:原式=(4)2﹣72++=48﹣49++=﹣1++.21.(4分)(2023春•永顺县期末)计算:(1);(2).解:(1)原式=4﹣2+=4﹣2+=4﹣2+4=2+4;(2)原式=2+5﹣=6.22.(4分)(2023春•龙华区校级月考)(1)计算:.(2)解不等式组:.解:(1),=,=3+1﹣2,=2;(2)解不等式2+x<6﹣3x,得x<1,解不等式,得x≤4,∴不等式组的解集为:x<1.23.(4分)(2023•和平区校级开学)计算:(1);(2).解:(1)=(3﹣2)×=×=3;(2)=3+﹣5=﹣.24.(4分)(2023春•新宾县期末)计算:(1);(2).解:(1)原式=﹣1+3﹣1+=﹣1+3﹣1+2=3;(2)原式=3﹣(2﹣)+3﹣1=3﹣2++3﹣1=4.四.解答题(共6小题,满分40分)25.(6分)(2023春•雄县期中)嘉琪同学计算:,部分解题步骤如下.解:.(1)在以上解题步骤中用到了 BD (从下面选项中选出两个).A.等式的基本性质B.二次根式的化简C.二次根式的乘法法则D.通分(2)算到这里,他发现算式好像变得更复杂了,请用一种简便的方法解答此题.解:(1)观察可知把变为用到了二次根式的化简,然后把变为用到了通分,故答案为:BD;(2)===.26.(6分)(2023春•禹州市期中)阅读下列材料,然后解决问题.在进行二次根式的化简时,我们有时会遇到形如,,的式子,其实我们可以将其进一步化简:,=,如上这种化简的步骤叫做“分母有理化”.(1)化简= ,= ,= ﹣ .(2)化简:.解:(1)==,==,===﹣,故答案为:;;﹣;(2)=+++=+++=(﹣1+﹣+﹣+﹣)=.27.(6分)(2023春•铁西区期中)在进行二次根式的化简时,我们有时会碰到形如,,这样的式子,其实我们还可以将其进一步化简:==;==;===.像这样,把代数中分母化为有理数过程叫做分母有理化.化简:(1)(2)(n为正整数);(3)求的值.解:(1)==﹣.(2)==﹣;(3)=+++...+=﹣1+﹣+﹣+...+﹣=﹣1.=2﹣1.28.(6分)(2023春•绥棱县期末)在进行二次根式的化简与运算时,如遇到,,这样的式子,还需做进一步的化简,这种方法叫分母有理化.,①,②,③参照③式方法化简:.解:====.29.(8分)(2023春•清江浦区期末)像、、…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,例如,和、与、与等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)计算:①= ,②= ;(2)计算:.解:(1)①,故答案为:;②,故答案为:;(2)===2+﹣﹣1=1.30.(8分)(2022春•开州区期中)我们知道平方运算和开方运算是互逆运算,如:a2±2ab+b2=(a±b)2,那么=|a±b|,那么如何将双重二次根式(a>0,b>0,a±2>0)化简呢?如能找到两个数m,n(m>0,n>0),使得()2+()2=a即m+n=a,且使=即m•n=b,那么=|±|,双重二次根式得以化简;例如化简:;∵3=1+2且2=1×2,∴3+2=()2+()2+2×∴=1+由此对于任意一个二次根式只要可以将其化成的形式,且能找到m,n(m>0,n>0)使得m+n =a,且m•n=b,那么这个双重二次根式一定可以化简为一个二次根式.请同学们通过阅读上述材料,完成下列问题:(1)填空:= ﹣ ;= + ;(2)化简:①②(3)计算:+.解:(1)填空:=﹣;=+;(2)①==+;②==﹣;(3)+=+=+=+=.故答案为﹣;+。

八年级数学二次根式培优专题

八年级数学二次根式培优专题

《二次根式》培优习题训练 【知识要点】1.二次根式的定义:形如的式子叫二次根式,其中 叫被开方数,只有当是一个非负数时,才有意义.2. ()()a aa 20=≥.3. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系.(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数.(2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数.(3)a 2和()a 2的运算结果都是非负的.4、性质:(1)非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.(2).()()a aa 20=≥性质既可正用,也可反用, 反用的意义在于,可以把任意一个非负数或非负代数式写成完 全平方的形式:a a a =≥()()20(3) a a a a a a 200==≥-<⎧⎨⎩||()()注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.5、(1)最简二次根式:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.(2)同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。

6、(1)分母有理化:把分母中的根号化去,叫做分母有理化。

(2)有理化因式:两个含有二次根式的代数式相乘,如果它们 的积不含有二次根式,就说这两个代数式互为有理化因式。

有 理化因式确定方法如下:①单项二次根式:a =来确定,如:,b a -与b a -等分别互为有理化因式。

②两项二次根式:利用平方差公式来确定。

如a +与a -,,分别互为有理化因式。

(3)分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式 7、二次根式的运算:(1)二次根式的乘法法则:两个因式的算术平方根的积, 等于这两个因式积的算术平方根。

(完整版)二次根式培优

(完整版)二次根式培优

二次根式专题一 二次根式(0)a a ≥非负性的综合应用1。

已知实数,a b 满足120a b -+-=,则a b +=_______。

2。

若3245423y x x =-+-+,求(5)x y 的值。

3。

已知220xy y x +--=,求x 与y 的值。

专题二 利用二次根式的性质将代数式化简4。

把()1a b a b---化成最简二次根式正确的结果是( ) A 。

a b - B.b a - C.b a --D 。

a b --5.已知实数a 在数轴上的位置如图所示,则22(3)(5)a a -+-化简后为( )A 。

2B 。

-8 C.82a - D.22a --6.化简:222(2)(1)(2)x x x +--+-.7.已知2()1a <,化简:22(1)a a -。

二次根式的乘除运算专题一 二次根式的分母有理化1. 阅读下列运算过程:2323333⨯==⨯2525555⨯==⨯. 数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么化简6的结果是( ) A .2 B .6 C 66 2.化简65+,甲、乙两位同学的解法如下:6565(65)(65)-=++-=6—5;乙:5-6565-656565-6561=++=+=+))((.下列说法正确的是( )A .甲、乙的解法都正确B .甲正确,乙不正确C .甲、乙的解法都不正确D .乙正确、甲不正确 3.观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121+=1(21)2121(21)(21)⨯--=-+-=2—1, 132+=1(32)3232(32)(32)⨯--=-+-=3—2, 同理可得:143+=4-3,… .从计算结果中找出规律,并利用这一规律计算(121++132++143++…+120132012+)(20131+)的值.专题二 二次根式乘除中的规律与方法4. 计算:(1)(21)(21)+-=______;(2)(32)(32)+-=______; (3)(23)(23)+-=______;(4)552)=______;根据以上规律,请写出用n (n 为正整数)表示上述规律的式子:___________。

专题一(数形结合-在二次根式的运用)

专题一(数形结合-在二次根式的运用)

初三培优(专题一)二次根式的运算1.热身运动(1(22.二次根式的定义(1)已知222,_______x y +=则(2) 1a <当_______. 3.双重二次根式的化简(1 (24.同类二次根式(1)已知整数x,y =那么整数对(x,y )的个数( )(2)已知x,y a b =+=求( ) 5.综合运用已知15,2a b c +-=-求a+b+c 的值数形结合-在二次根式的运用一.最值问题1.已知a,b均为正数,且a+b=2,求。

2.已知整数x,y。

C为线段BD上的一动点,分别过B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2的最小值二、面积问题背景引入:在△ABC 中,AB 、BC 、AC 51013道题时,先建立一个正方形网格(每个正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示。

这样不需求△ABC 的高,而借用网格就能计算出它的面积。

(1) 请你将△ABC 的面积直接填写在横线上。

____________思维拓展(2) 我们把上述求△ABC 面积的方法叫做构图法,若△ABC 5a 、22a 、17a (a >0),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积。

探索创新(3)若△ABC 2216m n +2294m n +222m n +(m >0,n >0,且m n ≠),试运用构图法求出这个三角形的面积。

2.已知a,b 222222,4,4a b a b a b +++是三角形的三条边的长,求这个三角形的面积。

3.设a,b,c,d 为正实数,a<b,c<d,bc>ad,222222,,()()a c b d b a d c ++-+-,求此三角形的面积。

人教版八年级数学下二次根式专题培优

人教版八年级数学下二次根式专题培优

二次根式(一)基础训练题1.下列各式中:)A.1个B.2个C. 3个D.4个2.下列式子中一定是二次根式的是()A. B. C. D.3.在实数0,,-1中,最小的数是()A.-1B.C.0D.4.(2014 x的取值范围是()A.x>0B.x≤1C.x>1D.x≥15.(2014 在实数范围内有意义,则x的取值范围是()A.x>0B.x>3C.x≥3D.x≤36.在下列二次根式中,x的取值范围为x≥2的是()D.12 x-7.(2014 绵阳)有意义,则x的取值范围是()A.x<13B.x≤13C.x>13D.x≥138.(2013 x的取值范围是.9.a= .10.当x为何值时,下列各式在实数范围内有意义?(1(2;(3(4中档题训练11. (20l4 ·巴中)要使式子11--m m 有意义,则 m 的取值范围是( ) A. m>-1 B. m≥一1 C.m>-1且m≠1 D.m ≧-1且m≠1 12.如果 a 是任意实数,下列式子一定成立的是( ) A.a B.21aC.2aD.2a - 13.一个正方形的面积为 7,估计其边长的范围为( )A.大于1小于2B.大于2小于3C.大于3小于4D.大于4小于5 14.如果 m=7-1,那么 m 的取值范围是( )A.0<:m<1B. 1<m<2C. 2<m<3D. 3<m<4 15.如果代数式xxy 21-+有意义,那么点 A(x ,y )的位置可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 16.若x x -+-75有意义,则 .r 的取值范围是 . . 17. (20l3 ·攀枝花)已知实数 x ,y ,m, 满足032=++++m y x x ,且 y 为负数,求 m 的取值范围.18. 已知 a ,b 为一等腰三角形的两边之长,且满足等式423632-=-+-b a a ,求此等腰三角形的周长.综合题训练19.已知 543++=x y ,当 x 取何值时,.y 有最小值?并求出最小值.2.二次根式(二)基础题训练1.4的算术平方根是( ).a .2 B.-2 C.±2 D.16 2.二次根式2)3(-的值是( ).A. -3B.3或一3C.9D.3 3.16的算术平方根是( ).A.士4B.4C.士2D.24.︒)2(的值为( ).A.2B.1C.22D.-1 5.二次根式2)2(±的值是( ).A. -2B.2或一2C.4D.2 6.若2a =a ,则 a 的取值范围是( ).A. ,a >0B. a ≠0C.a <0D.a ≧0 7.下列各式中不正确的是( ). A.2)2(-=2 B. 2)2(-=--2 C.-2)2(-=-2 D.±2)2(-=±28.点 A(-2,2-1)在平面直角坐标系中的( )A.第一象限B.第二象限C.第三象限 C.第四象限 9. (20l4 ·黔南州)实数 a 在数轴上的位置如图,化简a a +-2)1(=10.计算:(1)2)7(; (2)2)7(- (3)2)7((-(4) 2)7((±-; (5)4)2((2-- (6)2)23((-(7)2)3(π- (8))1(122≥+-x x x (9)1224++a a中档题训练11.如果2)12(-a = 1-2a ,则( ).A.a <21 B.a ≤21 C.a >21 D. a ≧2112.当 a ≤21时,化简124412-++-a a a ( )A.2-4aB.2C.4aD. 013. ( 20l4 ·泉州)已知 m,n 为两个连续的整数,且 m<11 <n,则 m 十n= . . 14.若0421=++++-b a b a ,则2015b)-(a = .15.已知n 12是整数,则满足条件的正整数 n 最小为 .16.已知 a ,b ,c 在数轴上的位置如图所示,化简b a c a c b a +--+++222)()(=17.在实数范围内分解因式(1)32-x ; (2)2222++x x .综合题训练18.已知三角形的两边长分别为2和4,第三边长为x ,化简:93414422+--+-x x x x3.二次根式的乘除(一)基础题训练1.使等式b a ab •=成立的条件是( ).A .a >0,b >0B .a <0,b <0C .a ≥0,b ≥0D .ab ≥0 2.(2014·上海)计算32•的结果是( ).A .5B .6C .32D .23 3.下列各式成立的是( ).A .585254=⨯B .5202435=⨯C .572334=⨯D . 6202435=⨯ 4.化简二次根式()622⨯-的结果是( ). A .62 B .62- C .6 D .12 5.化简545⨯的结果是( ). A .52B .2C .2D .526.下列各式计算正确的是( ).A .525±=B .12733=-C .9218=⨯D .62324=⨯7.在下列各数中,与3的积为有理数的是( ) A .2 B .13+ C .3- D .68.(2014·河北)计算:218+= . 9.化简:1832⨯= ;()()2715-⨯-= .10.计算下列各式:(1)82⨯; (2)123⨯; (3)2162⨯; (4)12149⨯; (5)y 4; (6)3216c ab ;(7)10253⨯; (8)15106⨯⨯; (9)54332⨯⨯.中档题训练11.若等式()()3333-•+=-+x x x x 成立,则x 的取值范围是 .12.计算()()322323-⨯+的结果是( ). A .-1 B .1 C .23- D .23+13.将aa1根号外的部分移到根号内,正确的是( ). A . a B .a - C .a - D .a --14.设矩形的长和宽分别为a ,b ,根据下列条件求面积S . (1)12=a ,8=b ; (2)243=a ,4821=b .15.比较下列各组中两个数的大小.(1)72和24; (2)32-和23-.16.计算: (1)3122y x xy •; (2)nm m n m223233•.17.先化简,再求值:121132--÷⎪⎭⎫ ⎝⎛--+x x x x x x,其中23=x .综合题训练18.已知101=+a a ,求aa 1-的值.4.二次根式的乘除(二)基础题训练1.下列二次根式中:2,21,12,2-x ,12+x ,最简二次根式的个数为( ). A .1个 B .2个 C .3个 D .4个 2.(2014·威海)下列式子中,属于最简二次根式的是( ). A .9 B .7 C .20 D .313.下列根式中属于最简二次根式的是( ). A .a 4 B .4aC .4aD .4a4.(2014·徐州)下列运算中错误的是( ).A .2222=⨯B .632=⨯C .228=÷D .()332=-5.下列计算错误的是( ). A .6319632== B .xxx x x ==21 C .a ab aab ab 339332== D .x x xx x6396322==6.327的相反数是 ; 5的倒数是 .7.计算:=⨯÷3333 ; =÷xx 1. 8.计算:(1)818÷; (2)8121÷; (3)32241÷; (4)648; (5)2723-; (6)xyy x 322;(7)x y xy ÷; (8)1003; (9)2775;(10)65027÷⨯; (11)531322311⨯÷; (12)43215021122⨯÷.中档题训练9.使等式725725--=--x x x x成立的条件是( ).A .527≤<x B .527≤≤x C .27>x D .5≤x 10.若2381=⨯a ,则a 的值为( ). A .12 B .32 C .163D .4311.化简:(1)x y xy 32÷; (2)227818÷÷; (3)22b a ab a b ⨯÷.12.(2014·苏州)先化简,再求值:⎪⎭⎫⎝⎛--+÷--13112x x x x ,其中23-=x .13.某建筑施工图纸上有一直角三角形的面积为1410cm 2,一条直角边长为74cm ,求另一直角边的长.综合题训练14.已知a +b =-3,ab =2,求代数式baa b +的值.专题 二次根式的性质一、二次根式有意义的条件1.要使1213-+-x x 有意义,则x 应满足( ).A .321≤≤x B .3≤x 且21≠x C .321<<x D .321≤<x 2.(2013·广西)下列四个式子中,x 的取值范围是2≥x 的是( ).A .22--x x B .21-x C .2-x D .x -2 3.化简:=-+-11x x .4.当x 为何值时,下列各式在实数范围内有意义? (1)13-x ; (2)12+x ; (3)21+x ; (4)xx 3+; (5)x x -+1; (6)122-+-x x .二、利用a 的双重非负性解题5.当a 取何值时,式子112++a 的值最小?并求出这个最小值.6.已知32552--+-=x x y ,求2xy 的值.三、2a 的化简7.若()12212-=-a a ,则a 的取值范围是( ). A . 21<a B .21≤a C .21>a D .21≥a 8.化简下列各式:(1)16 (2)()23-; (3)221⎪⎭⎫⎝⎛-- ; (4)23-;(5)2x ; (6)()23-π; (7)()221--; (8)1224++x x .专题 二次根式的乘除运算一、二次根式乘除运算1.计算:(1)33× 3 (2)0.5×24(3)45×3223 (4)-12xy ×(-4y )(5)-4318÷28×1354 (6)-2xy ÷(-32x x 2y ×3x )2.先化简:2x •x y •(y x ÷1y ),其中实数x 、y 满足y =x -3+6-2x +2.3.先化简,再求值:a 2-2ab +b 2a 2-b 2÷(1a -1b ),其中a =2+1,b =2-1.二、二次根式乘除公式的逆运用4.已知1-a a 2=1-a a ,则a 的取值范围是( )A .a ≤0B .a <0C .0<a ≤1D .a >0 5.将(a -1)11-a根号外的部分移到根号内,正确的是( ) A .-1 B .1-a C .-1-a D .-a -15. 二次根式的加减(一)基础题训练1.(2014·孝感)下列二次根式中,不能与2合并的是( )A .21B .8C .12D .18 2.下列各组根式中,两式可以合并的是( )A .2和12B .2和0.5C .4ab 和ab 2D .a -1和a -1 3.计算12+3的结果为( )A .2 3B .3 3C .15D .3 2 4.下列四个二次根式:①y x 2;②22xy ;③2xy;④23xy,化为最简二次根式后,被开方数相同的是( )A .①和②B .②和③C .①和③D .②和④ 5.下列各式计算正确的是( )A .2-22=-2B .28a =4a (a >0)C .6÷3=3D .(-4)×(-9)=-4×-9 6.(2014·聊城)下列各式计算正确的是( )A .23×33=63B .2+3=5C .55―22=33D .2÷3=36 7.(2014·云南)计算:8-2的结果是___________.7.矩形的长和宽分别为125和20,则其周长为__________.9.若最简二次根式x +1与2x 能合并为一个二次根式,则x =___________. 10.计算:(1)12+27 (2)18+72-32(3)4x -9x (4)27-12+43(5)212-613+348 (6)8-32+29中档题训练11.计算212-613+8的结果是( )A .32-23B .5-2C .5- 3D .2 2 12.一个等腰三角形的两边长分别为23,32,则这个三角形的周长为( ) A .32+4 3 B .62+2 3C .62+4 3D .32+43或62+2 313.已知a ,b 分别是6-13的整数部分和小数部分,那么2a -b 的值是( )A .3-13B .4-13C .13D .2+13 14.若最简二次根式5a 2+1与57a 2-1能进行合并,则结果是__________.15.(2014·凉山州)已知x 1=3+2,x 2=3-2,则x 12+x 22=____________. 16.计算下列各式: (1)5-6-20+23+95 (2)12-0.5-213-18+18(3)27a -a 3a +3a 3+12a 75a 3 (4)23x 9x +6x yx +yx y -x21x17.已知x =1+2,求代数式x 2+2x +1x 2-1-xx -1的值.综合训练18.已知2525x +9x 9-2x 2•1x 3=18,求x 的值.6.二次根式的加减(二)基础题训练1.下列运算错误的是()A.2+3= 5 B.2 •3=6C.6÷2= 3 D.(-2)2=22.估计24×12+3的运算结果应在()A.2 3 B.3 3 C.15 D.63.12 (75+313-48)结果是()A.12 B.4 3 C.23+6 D.6 4.若x=m-n,y=m+n,则xy的值是()A.2m B.2n C.m+n D.m-n 5.下列式子运算正确的是()A.3-2=1B.8=42C.13=3D.12+3+12-3=46.(2013·哈尔滨)计算:27-32=_____________.7.若矩形的长为(12+3)cm,宽为3cm,则此矩形的面积为__________.8.若(548+12-627)÷a=4,则a的值是_________.9.计算:(1)3×6-2×6(2)2(2+3)-3(2-27)(3)(12+58) 3 (4)(3+1)(3-2)(5)(23+32)(23-32) (6)(a+b)(a-b)(7)(3+5)2(8)(25-2)2中档题训练10.(2014·安徽)设n为正整数,且n<65<n+1,则n的值为()A.5 B.6C.7 D.811.若(3+2)2=a +b 6,且a 、b 为整数,则a +b 的值为( )A .3B .5C .6D .712.已知x +1x=a ,则x +1x 的值为( )A .a 2-2B .a 2C .a 2-4D .不确定 13.(2014·青岛)计算:5540 =_________.14.二次根式5-(16-3m )2有最大值,则m =___________. 15.计算:(1)2 3 (12―375+13108) (2)(2+1)÷2×(2―1)―(12―1)0(3)(3―22)2014(3+22)2015 (4)(1+2+3)(1+2―3)16.(2014·襄阳)已知x =1-2,y =1+2,求x 2+y 2-xy -2x +2y 的值.17.先化简,再求值:239x +6x 4-2x1x ,代入一个合适的x 的值求值.综合题训练17.已知a =2-12+1,b =2+12-1,求b a +ab 的值.专题 与根式相关的规律问题1.观察下列各数:2、 …,则第8个数是 .2 …,请你将发现的规律用含n (n ≥1,且为整数)的等式表示出来: .3.观察下列各式:,=…,请你根据以上式子中的规律写出第6个式子为: .4.…,根据以上式子中的规律计算:+++…+= .5. 555555=5555, (2)333344n n 个…+…= .6. 10199=100,9991000,…,9999999999999199999n n n ⨯⨯个个个………= .7.23,27+=4,45,…,根据以上 式子中的规律写出第10个式子为: .8.观察下列式子:①=1+112⨯ ,②=1+123⨯,③=1+134⨯,…,根据上面三个等式提供的信息,请写出第n 个式子: .9按下面规律排列,若规定(m,n)表示第m排从左至右的第n个数,则表示(10,9)的数是;表示(6,5)和(8,7)的数的积为第一排第二排第三排第四排… …专题根式及其运算一、使二次根式有意义的条件1.下列函数中自变量的取值范围是x≥2的是().A.y2B.y=22x-C.yD.y=x-22.若x为任意实数,下列函数一定有意义的是().A.yB.y=211x-C.yD.y=21x3.在函数yx的取值范围是().A.x≤13B.x≥13C.x<13D.y=x-2二、二次根式的化简、计算4.下列各式计算正确的是().ABCD-35.下列各式计算正确的是().A±2BC5=10D6.设a>0,b>0,则下列运算错误的是().Aa b BC.2=a D=7计算:(1)+(2))21-112⎛⎫⎪⎝⎭-+(01(3; (48.先化简,再求值.(12x =4;(2,其中x =6.9.一个三角形的三边长分别为,54 (1)求它的周长(要求结果化简);(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.。

华东师大版九年级上册第21章二次根式培优专题(综合版)

华东师大版九年级上册第21章二次根式培优专题(综合版)

华师版九上第21章《二次根式》培优专题1:二次根式考点1:二次根数的意义的条件 例1、要使式子aa 2+有意义,则a 的取值范围是( ) A 、0≠a B 、2- a 且0≠a C 、2- a 或0≠aD 、2-≥a 且0≠a【同步练习】1、式子112-+x x 有意义的x 的取值范围是( ) A 、21-≥x 且1≠x B 、1≠x C 、21-≥x D 、21- x 且1≠x2、要使1213-+-x x 有意义,则x 的取值范围为( )A 、321≤≤x B 、321≤x C 、321x ≤ D 、321x 3、函数312-+-=x x y 有意义,则x 的取值范围是 ; 4、若二次根式22232++-x x x 在实数范围内有意义,则x 的取值范围是 。

例2、已知a 满足a a a =-+-20192018,则22018-a 的值是( )A 、2018B 、2019C 、2020D 、2021【同步练习】1、已知实数a 满足a a a =-+-20092008,那么22008-a 值是( ) A 、2009 B 、2008 C 、2007D 、20062、已知x 是实数,且()()0132=---x x x ,则12++x x 的值为( ) A 、13B 、7C 、3D 、13或7或33、若实数a 满足方程aa a a 111-+-=,则=][a ( ),其中][a 表示不超过a 的最大整数。

A 、0B 、1C 、2D 、34、已知a 是非负数,且关于x 的方程2311212+-=-+-x x axx x 仅有一个实数根,求实数a 的取值范围。

考点2:二次根式的性质与化简题型1:利用()00≥≥a a 双重非负性化简例3、已知:2188+-+-=x x y ,求22-+-++xyy x x yy x 的值。

【同步练习】1、已知x ,y 满足关系式122--+-=x x y ,则yx 的值为( ) A 、﹣1 B 、1 C 、﹣2D 、22、若x 、y 都是实数,且42112=+-+-y x x ,则xy 的算术平方根为( ) A 、2B 、2±C 、2D 、不能确定3、若a ,b 都是实数,且833+-+-=a a b ,则1+ab 的平方根为( ) A 、5± B 、5-C 、5D 、1±4、已知a ,b ,c 为实数且()521332-++---+-=b a a c ,求代数式ab c -2的值。

二次根式提高培优(完整资料).doc

二次根式提高培优(完整资料).doc

【最新整理,下载后即可编辑】二次根式典型习题训练一、概念(一)二次根式1x、x>0)1x y+(x≥0,y•≥0).(二)最简二次根式1y>0)化为最简二次根式结果是().A(y>0)By>0)C(y>0)D2.(x≥0)3._________.4. 已知〉xy0,化简二次根式_________.(三)同类二次根式1是同类二次根式的是().A.①和②B.②和③C.①和④D.③和④2、是同类二次根式的有______3.若最简根式3a是同类二次根式,求a、b的值.【最新整理,下载后即可编辑】4.n是同类二次根式,求m、n的值.(四)“分母有理化”与“有理化因式”1.+的有理化因式是________;x-的有理化因式是_________.-的有理化因式是_______.2.把下列各式的分母有理化(1;(2;(3(4.二、二次根式有意义的条件:1.(1)当x在实数范围内有意义?(2)当x是多少时,+11x+在实数范围内有意义?(3)当x2在实数范围内有意义?(4)当__________2.x有()个.A.0 B.1 C.2 D.无数3.已知,求xy的值.4.5.若11m +有意义,则m 的取值范围是 。

6.要是下列式子有意义求字母的取值范围(1(2) (3)三、二次根式的非负数性1=0,求a 2004+b 2004的值.2,求x y 的3.2440y y -+=,求xy 的值。

四、⎪⎩⎪⎨⎧==a a a 2 的应用 1. a ≥0,比较它们的结果,下面四个选项中正确的是( ).A B C D .2.先化简再求值:当a=9时,求a ≥0x解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.3.若│1995-a│,求a-19952的值.4. 若-3≤x≤2时,试化简│x-2│5.化简).B C.D.A6.把(a-1a-1)移入根号内得().AB C.D.五、求值问题:求x2-xy+y2的值1.当x=2.已知a=3+23.已知4.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x 的值.52.236-()的值.(结果精确到0.01)6.先化简,再求值.(-(,其中x=32,y=27.7.当(结果用最简二次根式表示)8. 已知2310-+=x x六、大小的比较的大小。

完整版二次根式培优练习题

完整版二次根式培优练习题

第1页(共4页)二次根式培优练习题一•选择题(共14小题)1 •使代数式有意义的自变量x 的取值范围是()x-4A . x > 3 B. x >3 且 X M 4 C. x > 3 且 X M 4 D . x >32•若.■ .... .=3-a ,则a 与3的大小关系是( )A . a v 3 B. a W 3C . a >3D . a 》33.如果等式(x+1) °=1和寸⑶€=2- 3x 同时成立,那么需要的条件是()A . X M - 1 B. x v 二且 X M - 1 C. x W 二或 X M 1D . x <3 3 4.若ab v 0,则代数式 仁呪可化简为( )A . a . • B. a* C .- a. 1 ‘ D .- a 1 ‘5.已知xy v 0,则—•化简后为()A .丁 B .6 .如果实数a 、b 满足需%3=-曲麻,那么点(a , b ) A .第一象限B .第二象限C.第二象限或坐标轴上7.化简二次根式;一,结果正确的是( )A . ■8.若 a+ 「=0 成立,贝U a 的取值范围是( )A . a >0 B . a >0 C. a w 0 D . a v 09.如果ab >0,a+b v 0,那么下面各式:①命书,②濡=1,③*‘丸十濡=-b ,其 中正确的是()A .①② B •②③C .①③D .①②③10.下列各式中正确的是( )A .寸(_¥)2二但 的=± 3 C .(-占)2=4 D . 迈-五=2 11.在二次根式 '中与小是同类二次根式的有()X M - 1-一 丁 C .D .在( )D .第四象限或坐标轴上 B. - :. C. 、D .■'A. 2个B. 3个C. 4个D. 5个12. 若.,「「是一个实数,则满足这个条件的a的值有()A . 0个B. 1个C. 3个D.无数个13 .当a v0 时,化简一,一的结果是()A . —■. B . 一•、 C.亍 .D .—.14 .下列计算正确的是()A . : 二7(3)7(3)(1) 观察上面的解题过程,请直接写出式子 (2) 观察上面的解题过程,请直接写出式子利用上面所提供的解法,请求血十1十忑+忑+五“用十忑换+••+ —I — 7100 W99 的值.B•也丿以二如'b C + 5生田"5=13D4/252 -24Mt25+24) (25-24)-V49-7二•填空题(共13小题)15.二次根式讥十与.二-:••的和是一个二次根式,贝U 正整数 a 的最小值为 _________ ;其和 为^16 •已知 a 、b 满足7(2-a ) 2=&+3?且{二巧+1 =a - b+1,则 ab 的值为 ______ . 17.已知 | a-2007|+ . .- __________ i :-=a ,则 a - 20072 的值是 .18. ________________________________________________________________________ 如果・」泊勺值是一个整数,且是大于1的数,那么满足条件的最小的整数 a= _____________ . 19•已知 mn=5, m :+n J= ________ . 20.已知 av0,那么 | .: - 2a| 可化简为 _____ .21 .计算::_的结果为 _________________ .V322 .若最简二次根式2血尹1与-莎药是同类二次根式,则x ______________ .23 .若厂-f.,则 x= ________ ;若 x 2= (- 3) 2,则 x= _____ ;若(x - 1) 2=16,x= ______ . 24 .化简a的最后结果为 _______ .25 .观察分析,探求出规律,然后填空: 二,2, ■■,2. ■:, I , _____ ,…, _______ (第 n 个数).26 .把根号外的因式移到根号内:• I - J =-“*:'[-;p 27 .若a 是.丨的小数部分,则a (a+6) = ______ . 三.解答题(共7小题) 28 .阅读下列解题过程:鮎爲=〔暑誥黑巳=勝爲 ?砸卫卫-2低十界_ (晶+妬〕(讥i )2-(亦)2请回答下列问题:29•—个三角形的三边长分别为 厝、知莎、*桧(1) 求它的周长(要求结果化简);(2) 请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.30.如图,实数a、b在数轴上的位置,化简:31 •先阅读下列的解答过程,然后作答: 形如.厂丄■,的化简,只要我们找到两个数a、b使a+b=m,ab=n,这样(.J 2+ ( b) 2=m,,那么便有Vb) + Vb (a> b)例如:化简占+4翻解:首先把.I I :;化为J • : . I :,这里m=7,n=12;由于4+3=7, 4X 3=12,即(.)2+ (■;)2=7, ? = ■:,••• .II:-2+.:';由上述例题的方法化简:(1) 1 ;• 一「;(2) .. H;(3 )『'-.;.32. 已知x=2-二,求代数式(7+4. ;) x2+ (2+ :;) x+ -;的值.33. 实数a、b在数轴上的位置如图所示,请化简:| a| -:-::.请你猜想:(3) 请你将猜想到的规律用含有自然数n (n》1)的代数式表达出来第4页(共4页)参考答案一•选择题(共14小题)1. C;2. B;3. D;4. C;5. B;6. C;7. D;8. C;9. B; 10. A; 11. B; 12. B; 13. A;14. D;二.填空题(共13小题)15. 6;^^E;16.±j-; 17. 2008; 18. 1; 19.土述;20.- 3a; 21.丄;22. 0; 23.±5;± 3; 5 或-3; 24.- 2^23; 25. 2^5;炼;26. 27. 2;三.解答题(共7小题)28. 一二_二-1 ; 29.; 30. ; 31. ; 32.; 33. ; 34.77第3页(共4页)。

二次根式培优专题讲座

二次根式培优专题讲座

第16章二次根式培优专题一、二次根式的非负性1 •若|2004a Ja 2005 a,则a 2004J _______________________2 •代数式2x3 ・4x 13的最小值是( )(A) 0 ( B) 3 ( C) 3.5 ( D) 13 •若m适合尖系式.3x 5y 2 m 2x 3y m 、x 199 y . 199 x y ‘ 求m 的值.4 •已知x、y为实数,且yx9 . 9y4,求xy的值.8x18,求代数式一x—y— 2xy ________ 的Vx v y x、y y . x 值.6.E贡〒扌,求弟;2已知:y 2的值.二、二次根式的化简技巧(一)构造完全平方1(拓展)计 算111 I u 22 32 I 1 32 425.化简:23 610 43226.化简:\ 132 52 72351 •化简所得的结果为2•化简;612-24 .3 •化简:.23 66 4 23 <24•化简:2T 23 .2 .2 320042(二)分母有理 "化 1 -计算J”5、3 3.57.5 5.72 •分母有理化:厂厂:3•计算::$31 13(三)因式分解(约分)2 •化简:,6显 ,6 .3 2 13 •化简:6 4332;6 、3 .321 •化简:V2 V5 v 32 > 30 6 2 4.3L L 的值. 49.47 47\ 494 •化简:,35 .5 .. 7 3 2 5,7 05.化简:3 .3、6 2=2 r6 .6 •化简:.10 . 14 .15 .21 17.化简:、6 4332 18 .12 2 .68 •化简:三、二次根式的应用(一)无理数的分割1•设a,为3 5 3 5的小数部分,b为633 ・633的小数部分,则一一的值为( )b a(A) 621 (B) - (C) —1 (D) 2、3 —4 2 82•设亠F勺整数部分为x,小数部分为y,试求x23± xy护的值.45 1 23 •设・19 8 3的整数部分为a ,小数部分为b,试求a b ■的值b为__________ ・(-)最值问题1. 设a、b、c均为不小于3的实数,贝a2 ..b1 |2・c1|的最小值是______ •2 .代数式vx2 4v(12x)29的最小值是______________ .3 •若x,y为正实数,且xy4那么x21 y24的最小值是4•实数a,b满足a2 2a 1m 28 x y,贝U x y m222、则()19 x2的值2,贝U 15 x22. 设x 2 2 2 ,y(A) xy (B) xy (C)3 •已知-15 x2、19 x24 •若x.21 x『2x—1 .2成立,贝U(1 1 3(A) x - (B)・ x 1 (C) x 1 (D) x・2 2 25. 已知3 1.732 , . 30 5.477,求2.7 的值..36 12a a2 10 |b 3| |b 2|,则a b的最大值为_______________ .(三)性质的应用1 •设m、x、y均为正整数,且6.已知x,y都为正整数,且x・y 1998,求xy的值.7・是否存在正整数x、y(x y),使其满足x ... y 1476 ?若存在,请求出x、y的值;若不存在,请说明理由.(四)因式分解(五)有二次根式的代数式化简已知 —-的值.(1) x 44 (2) 4x 2 52 (3) 16X 491.求一奖2u)yy (6Jx 5t£)2x 5 xy 3y。

【中考冲刺】初三数学培优专题 01 二次根式的化简与求值(含答案)(难)

【中考冲刺】初三数学培优专题 01 二次根式的化简与求值(含答案)(难)

二次根式的化简与求值阅读与思考二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧.有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是:1、直接代入直接将已知条件代入待化简求值的式子. 2、变形代入适当地变条件、适当地变结论,同时变条件与结论,再代入求值.数学思想:数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展.=x , y , n 都是正整数)例题与求解【例1】 当x =时,代数式32003(420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、20032-(绍兴市竞赛试题)【例2】 化简(1(ba b ab b -÷-- (黄冈市中考试题)(2(五城市联赛试题)(3(北京市竞赛试题)(4(陕西省竞赛试题)解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解.思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度.【例3】比6大的最小整数是多少?(西安交大少年班入学试题)解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y==想一想:设x=求432326218237515x x x xx x x--++-++的值. (“祖冲之杯”邀请赛试题)的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.【例4】 设实数x ,y 满足(1x y =,求x +y 的值.(“宗泸杯”竞赛试题)解题思路:从化简条件等式入手,而化简的基本方法是有理化.【例5】 (1的最小值.(2的最小值.(“希望杯”邀请赛试题)解题思路:对于(1)为a ,b 的直角三角形的斜边长,从构造几何图形入手,对于(2),设y =A (x ,0),B (4,5),C (2,3)相当于求AB +AC 的最小值,以下可用对称分析法解决.方法精髓:解决根式问题的基本思路是有理化,有理化的主要途径是乘方、配方、换元和乘有理化因式.【例6】 设2)m a =≤≤,求1098747m m m m m +++++-的值.解题思路:配方法是化简复合二次根式的常用方法,配方后再考虑用换元法求对应式子的值.能力训练A级1.化简:7()3“希望杯”邀请赛试题)2.若x y x y+=-=,则xy=_____(北京市竞赛试题)3.+(“希望杯”邀请赛试题)4. 若满足0<x<y=x,y)是_______(上海市竞赛试题)5.2x-3,则x的取值范围是()A. x≤1B. x≥2C. 1≤x≤2D. x>06)A.1B C. D. 5(全国初中数学联赛试题)7.a,b,c为有理数,且等式a+=成立,则2a+999b+1001c的值是()A.1999 B. 2000 C. 2001D. 不能确定(全国初中数学联赛试题)8、有下列三个命题甲:若α,β是不相等的无理数,则αβαβ+-是无理数;乙:若α,β是不相等的无理数,则αβαβ-+是无理数;丙:若α,β其中正确命题的个数是()A. 0个B. 1个C. 2个D. 3个(全国初中数学联赛试题)9、化简:(1(2(3(4(天津市竞赛试题)(5(“希望杯”邀请赛试题)10、设52x=,求代数式(1)(2)(3)(4)x x x x++++的值.(“希望杯”邀请赛试题)117x=,求x的值.12、设x x ==(n 为自然数),当n 为何值,代数式221912319x xy y ++的 值为1985?B 级1. 已知3312________________x y x xy y ==++=则. (四川省竞赛试题)2. 已知实数x ,y 满足(2008x y =,则2232332007x y x y -+--=____(全国初中数学联赛试题)3. 已知42______1x x x ==++2x 那么. (重庆市竞赛试题)4. a =那么23331a a a ++=_____. (全国初中数学联赛试题)5. a ,b 为有理数,且满足等式14a +=++则a +b =( )A . 2B . 4C . 6D . 8(全国初中数学联赛试题)6. 已知1,2a b c ===,那么a ,b ,c 的大小关系是( ).Aa b c << B . b <a <c C . c <b <c D . c <a <b(全国初中数学联赛试题)7.=) A . 1a a -B .1a a - C . 1a a+ D . 不能确定 8. 若[a ]表示实数a 的整数部分,则等于( )A . 1B . 2C . 3D . 4(陕西省竞赛试题)9. 把(1)a - )A .B C. D . (武汉市调考题)10、化简:(1 (“希望杯”邀请赛试题)(210099++(新加坡中学生竞赛试题)(3(山东省竞赛试题)(4 (太原市竞赛试题)11、设01,x << 1≤<.(“五羊杯”竞赛试题)12的最大值.13、已知a , b , c为有理数,证明:222a b c a b c ++++为整数.二次根式的化简与求值例1 A 提示:由条件得4x 2-4x -2 001=0. 例2 (1)原式=()aba b a b++()1ba b b a b⎡⎤⎢⎥-⎢⎥+-⎣⎦·a b b -=2ab (2)原式=()()()()257357257357+-++++=26-5.(3)原式=()()()()633326332+-+++=316332+++=62-;(4)原式=()()()5332233323325231-+-+-++=332-.例3 x +y =26,xy =1,于是x 2+y 2=(x +y )2-2xy =22,x 3+y 3=(x +y )(x 2-xy +y 2)=426,x 6+y 6=(x 3+y 3)2-2x 3y 3=10582.∵0<65-<1,从而0<()665-<1,故10 581<()665+<10582. 例4 x +21x +=211y y ++=21y +-y …①;同理,y +21y +=211x x ++=21x +-x …②.由①+②得2x =-2y ,x +y =0. 例5 (1)构造如图所示图形,PA =24x +,PB =()2129x -+.作A 关于l 的对称点A ',连A 'B 交l 于P ,则A 'B =22125+=13为所求代数式的最小值. (2)设y =()2245x -++()2223x -+,设A (x ,0),B (4,5),C (2,3).作C 关于x 轴对称点C 1,连结BC 1交x 轴于A 点.A 即为所求,过B 作BD ⊥CC 1于D 点,∴AC +AB =C 1B =2228+=217. 例 6 m =()2212111a a -+-•++()2212111a a ---•+=()211a -++()211a --.∵1≤a ≤2,∴0≤1a -≤1,∴-1≤1a --1≤0,∴m =2.设S =m 10+m 9+m 8+…+m -47=210+29+28+…+2-47 ①,2S =211+210+29+…+22-94 ②,由②-①,得S =211-2-94+47=1 999.A 级 1.1 2.52- 3.0 提示:令1997=a ,1999=b ,2001=c . 4. (17,833),(68,612),( 153,420) 5.B 6.C 7.B 8.A 9.(1)()2x y + (2)原式=32625++-=()()22325+-=325++.(3)116- (4)532--(5)32+ 10.48提示:由已知得x 2 +5x =2,原式=(x 2+ 5x +4)(x 2+5x +6). 11.由题设知x >0,(27913x x +++27513x x -+)(27913x x ++-27513x x -+)=14x .∴27913x x ++-27513x x -+=2,∴227913x x ++=7x +2,∴21x 2-8x-48=0.其正根为x =127. 12.n =2 提示:xy =1,x +y =4n +2. B 级 1. 64 2.1 提示:仿例4,由条件得x =y ,∴(x -22008x -)2=2 008,∴x 2-2008-x 22008x -=0,∴22008x -(22008x --x )=0,解得x 2=2 008.∴原式=x 2-2 007=1. 3.9554.1 提示:∵(32-1)a =2-1,即1a=32-1. 5.B 提示:由条件得a +b 3=3+3,∴a =3,b =1,∴a +b =4. 6.B 提示:a -b =6-1-2>322+-1-2=0.同理c -a >0 7.B 8.B 9.D 提示:注意隐含条件a -1<0. 10.(1)1 998 999. 5 提示:设k =2 000,原式=212k k --. (2)910 提示:考虑一般情形()111n n n n +++=1n -11n + (3)原式=()()8215253532+-++-=()()253253532+-++-=53+.(4)2-53- 11.构造如图所示边长为1的正方形ANMD ,BCMN .设MP =x ,则CP =21x +,AP =()211x +-,AC =5,AM =2,∴AC ≤PC +PA <AM +MC ,,则5≤21x ++()211x +-<1+2 12.设y =2841x x -+-2413x x -+=()2245x -+-()2223x -+,设A (4,5),B (2,3),C (x ,0),易求AB 的解析式为y =x +1,易证当C 在直线AB 上时,y 有最大值,即当y =0,x =-1,∴C (-1,0),∴y =22. 13.33a bb c ++=()()()()3333a bb cb c b c +-+-=()222333ab bc bac b c -+--为有理数,则b 2 -ac =0.又a 2+b 2+c 2=(a +b +c )2-2(ab +bc +ac )=(a +b +c )2-2(ab +bc +b 2)=()2c b a ++-2b (a +b +c )=(a +b+c )(a -b +c ),∴原式=a -b +c 为整数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次根式》培优专题一二次根式培优专题一、【基础知识精讲】1.二次根式:形如a(其中a)的式子叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开得尽的;⑵被开方数中不含;⑶分母中不含。

3.同类二次根式:二次根式化成后,若相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)(a)2= (其中a)(2) 2a (其中a)5.二次根式的运算:(1)因式的外移和内移:一定要注意根号内隐含的含字母的代数式的符号或根号外含字母的代数式的符号;如果被开方数是代数和的形式,则先分解因式,变形为积的形式,再移因式到根号外面。

(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数。

=(其中a ,b);ba=(其中a ,b).(4)分母有理化:把分母中的根号化去,就叫分母有理化,方法是分子分母都乘以分母的有理化因式,两个根式相乘后不再含有根式,这样的两个根式就叫互为有理化因式,如3的有理化因式就是3,8的有理化因式可以是8也可以是2,ba+的有理化因式就是ba-.(5)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.(6)二次根式的加减乘除运算,最后的结果都要化为最简二次根式.6.双重二次根式的化简:二次根号里又含有二次根式,称之为双重二次根式。

双重二次根式化简的方法是:设0,0,0,0>>>>yayx,且bxyayx==+,,则222)(2)()(2)(2yxyxyxxyyxba+=⋅++=++=+yxba+=+∴2如:要化简625—,∵632532=⨯=+,∴23326252—)—(—==但要注意最后的结果是正数,所以不能是32—二、【例题精讲】类型一:考查二次根式的概念(求自变量取值范围)1、下列各式中,不是二次根式的是( )A 45B 3π-14122、二次根式4122--x x 有意义时的x的取值范围是 。

3、已知: 122+--++=x x y ,则2001)(y x += 。

类型二:考查二次根式的性质(非负性、化简) 1、实数在数轴上的位置如图1所示,化简|a -1|+2)2(-a = 。

2、把34-的根号外的因式移到根号内得 ;3、化简:=--x x 1 ;4、化简=-+-+-222)72()57(2)73( 。

5、化简627-= 。

6、代数式243x --的最大值是 。

类型三:考查同类二次根式与最简二次根式(化简)把313,32,2721,7521按由大到小的顺序排列为:类型四:考查二次根式的运算(加减乘除混合运算、(图1)分母有理化)1、若32+=a ,32-=b ,则a 与b 的关系是( ) A .互为相反数;B .互为倒数;C .互为负倒数;D .以上均不对。

2、计算:100991431321211++++++++ΛΛ【同步练习】一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A .若a a -=2,则a<0 B .0,2>=a a a 则若 C .4284b a b a = D . 5的平方根是52.二次根式13)3(2++mm 的值是( )A .23B .32C .22D .0 3.化简)0(||2<<--y x x y x 的结果是( )A .x y 2-B .yC .y x -2D .y -4.若b a是二次根式,则a ,b 应满足的条件是( )A .a ,b 均为非负数B .a ,b 同号C .a ≥0,b>0 D .0≥ba5.(2005·湖北武汉)已知a<b ,化简二次根式b a 3-的正确结果是( )A .ab a -- B .ab a - C .ab a D .ab a - 6.把m m 1-根号外的因式移到根号内,得( )A .mB .m-C .m--D .m-7.下列各式中,一定能成立的是( )A .22)5.2()5.2(=- B .22)(a a = C .1-x 122=+-x x D .3392+⋅-=-x x x8.若x+y=0,则下列各式不成立的是( )A .022=-y x B .033=+y x C .022=-y x D .0=+y x9.当3-=x 时,二次根7522++x x m 式的值为5,则m 等于( )A .2B .22C .55D .510.已知1018222=++x x x x,则x 等于( )A .4B .±2C .2D .±4二、填空题(每小题3分,共30分) 11.若5-x 不是二次根式,则x 的取值范围是12.(2005·江西)已知a<2,=-2)2(a13.当x= 时,二次根式1+x 取最小值,其最小值为 14.计算:=⨯÷182712 ;=÷-)32274483(15.若一个正方体的长为cm62,宽为cm3,高为cm2,则它的体积为 3cm16.若433+-+-=x x y ,则=+y x17.若3的整数部分是a ,小数部分是b ,则=-b a 318.若3)3(-⋅=-m m m m ,则m 的取值范围是19.若=-⎪⎪⎭⎫ ⎝⎛-=-=y x y x 则,432311,13220.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+=三、化简(前5题每小题6分,后两题每题7分,共44分)21.21418122-+- 22.3)154276485(÷+-23.x xx x 3)1246(÷-24.21)2()12(18---+++25.已知:132-=x ,求12+-x x的值。

26.已知:的值。

求代数式22,211881-+-+++-+-=xyy x x yy x x x y27、阅读下面问题:12)12)(12()12(1211-=-+-⨯=+; ;23)23)(23(23231-=-+-=+25)25)(25(25251-=-+-=+试求:⑴671+的值; ⑵17231+的值; ⑶nn ++11(n为正整数)的值。

【培优练习】一、二次根式的非负性 1.若2004a a-=,则22004a -=_____________.2.代数式13432---x x 的最小值是_____________.3.已知1888+-+-=x x y ,求代数式xy y x xyy x y x ---+2的值.4.若m =,求m 的值.二、二次根式的化简技巧 (一)构造完全平方 1、22222222222222])1(1[)1(121)1(11)(1)2n(n 1)1(1221)1()1(1)1(111+++⋅+=+++++=++++=++++=+++n n n n n n n n n n n n n n n n n n 由化简得_________________)1(11122=+++n n(拓展)计算2222222220041200311413113121121111++++++++++++Λ.2.化简:5225232-+---++y y y y .3.化简241286+++.4.化简:23246623+--.(二)分母有理化 1.计算:4947474917557153351331++++++++ΛΛ的值.2.分母有理化:53262++.3.计算:321232+++-.三、二次根式的应用 (一)无理数的分割1.设a 为5353--+的小数部分,b 为336336--+的小数部分,则ab 12-的值为( )(A )126+- (B )41 (C )12-π (D )832π--2的整数部分为x ,小数部分为y ,试求2212xxy y ++的值. 3.a ,小数部分为b ,试求1a b b ++的值(二)性质的应用1.设m 、x 、y 均为正整数,且yx m -=-28,则m y x ++=_________.2.设Λ+++=222x ,Λ222=y ,则( )(A ) y x > (B ) y x < (C ) y x = (D ) 不能确定(三)有二次根式的代数式化简 1.已知)56()2(y x y y x x +=+,求yxy x y xy x 32++-+的值.2=3.已知:7878+-=x ,7878-+=y ,求:yx xyy x +++2的值.4.已知321+=a ,求aa a a a a a -+---+-22212121的值.5.已知:a ,b 为实数,且22222+-+-=a a a b .求()222ab a b ---+-的值.。

相关文档
最新文档