大地测量学基础:第1章 绪论
大地测量学基础(第1章 绪论New)
发现活跃、综合性强:
范围:全球、深空 学科:地球物理、地质学、空间科学、天文学、大气科学、 海洋学; 手段:测绘仪器、计算机
测绘科学技术的基础 :是测绘科学技术进步的标志
3
第一章 绪 论
§1大地测量学的定义和基本内容 1.1大地测量学的定义
大地测量学 是指在一定的时间与空间参考系中,测量和描绘地球形状及 其重力场并监测其变化,为人类活动提供关于地球的空间信息的 一门学科。 经典大地测量:地球刚体不变、均匀旋转的球体或椭球体; 范围小。 现代大地测量:空间测绘技术(人造地球卫星、空间探测器), 空间大地测量为特征,范围大。
3) 重力测量有了进展:1673年荷兰的惠更斯
(C.Huygens)提出用摆进行重力测量的原理;设计和生 产了用于绝对重力测量以及用于相对重力测量的便携 式摆仪。极大地推动了重力测量的发展。
15
第三阶段:大地水准面阶段
从19世纪下半叶至20世纪40年代,人们将对椭球的认 识发展到是大地水准面包围的大地体。 几何大地测量学进展: 天文大地网的布设有了重大发展。全球三大天文大地 网的建立(1800-1900印度,一等三角网2万公里,平 均边长45公里;1911-1935美国一等7万公里;19241950苏联,7万多公里) 因瓦基线尺出现,平行玻璃板测微器的水准仪及因瓦 水准尺使用。
13
•
物理大地测量标志性成就:
1) 克莱罗定理的提出:法国学者克莱罗(A.C.Clairaut) 假设地球是由许多密度不同的均匀物质层圈组成的椭 球体,这些椭球面都是重力等位面(即水准面)。该椭 球面上纬度φ 的一点的重力加速度按下式计算:
e (1 sin )
2
大地测量学基础
3、现代在地测量的特征 、 1)、测量范围大,范围从地区、全球乃至宇宙空间; 、测量范围大,范围从地区、全球乃至宇宙空间; 2)、研究对象和范围不断深入、全面和精细,从静态测量 、研究对象和范围不断深入、全面和精细, 发展到动态测量, 发展到动态测量,从地球表面测绘发展到地球内部构造 及动力过程的研究; 及动力过程的研究; 3)、观测精度高; 、观测精度高; 4)、观测周期短。 、观测周期短。
2)、物理大地测量学(理论大地测量学) 、物理大地测量学(理论大地测量学) 基本任务:用物理方法(重力测量) 基本任务:用物理方法(重力测量)确定地球形状及其 外部重力场。 外部重力场。 主要内容:位理论,地球重和场,重力测量及其归算, 主要内容:位理论,地球重和场,重力测量及其归算, 推球地球形状及外部重力场的理论与方法。 推球地球形状及外部重力场的理论与方法。 3)、空间大地测量学 、 以人造地球卫星及其它空间探测器为代表的空间大地测量的理论、 以人造地球卫星及其它空间探测器为代表的空间大地测量的理论、 技术与方法。 技术与方法。
三、大地测量学的基本体系
1、 测量学的两个分支 、 普通测量学:研究小范围的地球表面, 普通测量学:研究小范围的地球表面,认为该范围的地 球表面是平面,且铅垂线彼此平行。 球表面是平面,且铅垂线彼此平行。 大地测量学:研究全球或大范围的地球,认为铅垂线彼 大地测量学:研究全球或大范围的地球, 此不平行,研究地球的形状、大小及重力场。 此不平行,研究地球的形状、大小及重力场。
大地测量学还可进一步 应用大地测量学: 应用大地测量学:以建立国家大地测量控制网为中心内容 椭球大地测量学:坐标系建立、地球椭球性质、 椭球大地测量学:坐标系建立、地球椭球性质、投影数学变换 大地天文测量学:测量天文经度、 大地天文测量学:测量天文经度、纬度及天文方位角 大地重力测量学:重力场、 大地重力测量学:重力场、重力测量方法 海洋大地测量学: 海洋大地测量学 地球动力学: 地球动力学 卫星大地测量学: 卫星大地测量学 大地测量数据处理学: 大地测量数据处理学
第一章绪论 第二节导航定位卫星及其星座
GPS测量定位技术
一、GPS卫星及星座
GPS系统主要是为美国海陆空三军服务的,它具有广 泛的军事用途,例如,为地面部队迅速行动指明方位, 为核潜艇导航,为弹道导弹导航,检测全球核爆炸,摄 取全球性的军事情报,反潜艇,反导弹等等。因此, GPS卫星的内部设备复杂而繁多,例如,为了战略部队 的应急通讯,美国在GPS卫星上安装战略通信机,其重 量达16.03㎏,体积为0.0124m3,采用240-272MHZ、 318-400MHZ和7900-8000MHZ的微波信号,辐射功率 为20W。
GPS测量定位技术
二、前苏联GLONASS全球卫星导航系统
1.卫星星座 GLONASS卫星星座的轨道为三个等间隔椭圆轨道,轨 道面间的夹角为120°,轨道倾角64.8°,轨道的偏心率为 0.01,每个轨道上等间隔地分布8颗卫星。卫星离地面高 度 为 19100km , 运 行 周 期 为 11 小 时 15 分 。 由 于 GLONASS卫星的轨道倾角大于GPS卫星的轨道倾角,所 以在高纬度(50°以上)地区的可视性较好。 每颗GLONASS卫星上装有铯原子钟,以产生高稳定的 时标,并向所有星载设备提供同步信号。星载计算机将从 地面控制站接收到的信息进行处理,生成导航电文向地面 的用户广播。
GPS测量定位技术
第一章 绪论
•学习目标 •第一节 卫星大地测量及其发展 •第二节 导航定位卫星及其星座 •第三节 GPS在国民经济建设中的应用 •本章小结 •思考题与习题
GPS测量定位技术
第一章 绪论
学习目标
•了解GPS系统的构成,卫星的个数及寿命,卫星的 运行周期及发射功率,原子钟的精度,定位信号频 率。GPS的地面控制系统和截止2003年10月,目前GPS在轨工作卫星为28颗,其中 17号星在2003年6月6日至7月23日期间列为不健康状况,7 月9日其星钟从Cs4转为Rb2,卫星移到D6星位上又开始正 常运行。现在工作的卫星编号从1号至31号之间,只有12号、 19号、22号为空缺。28颗卫星中有3颗为BLOCKII卫星,17 颗为BLOCKIIA卫星,8颗为BLOCKIIR卫星,正在用铯钟(Cs) 运行的有11颗卫星,其余均用铷钟(Rb),在1993年11月22 日启用的卫星达15颗,即工作差不多十年以上的卫星数目 过半数,最早的一颗卫星还是1989年6月发射的。原先21号 星是1990年8月2日发射的,去年9月25日出现异常情况, 于2003年1月27日宜布退出服务,现已为2003年3月31日 发射的卫星所接替,后者在4月12日投入正式服务。
中国矿业大学大地测量学基础课件
§1.1 大地测量学的定义
大地测量学与普通测量学的区别: (1)精度等级高。
(2)测量范围广。
(3)普通测量学更侧重于如何测绘地形图以及 进行一般工程的施工测量。大地测量学侧重于 如何建立大地坐标系、建立大地控制网并精确 测定控制网点的坐标。
1、实用大地测量学:研究建立大地控制网的
理论与方法,介绍角度测量、边长测量和高 程测量的原理与观测方法、作业程序、以及 测量成果的质量检核,提供一系列地面点的 平面和高程成果
2、椭球大地测量学:研究参考椭球的建立以
及椭球面上处理大地测量观测成果的各种理 论与方法,提供大地控制点的大地坐标和平 面坐标;
——作为地学基础学科: ——作为应用地学学科:
§1.1 大地测量学的定义
主要理论、技术与方法: ——天文测量 ——三角测量 ——导线测量 ——卫星大地测量 ——水准测量 ——重力测量 ——椭球大地测量 ——地球形状理论 ——测量平差 。。。。。。。。
§1.1 大地测量学的定义
普通测量学(或称测量学)是研究地 球表面较小区域内测绘工作的基本理论、 技术、方法和应用的学科。
4、大地控制网的建立(包括国家大地控制网、 工程控制网。形式有三角网、导线网、高 程网、GPS网等);
5、大地测量数据处理(概算与平差计算)。
本章纲要
一、大地测量学的定义 二、大地测量学的基本任务和作用(重点) 三、大地测量学的主要研究内容(重点) 四、大地测量的发展历程 五、现代大地测量技术简介
GJ01 GJ02
GJ03
1
JZ05
GJ59
GJ04
大地测量学基础
该书全面地讨论了测绘基准与大地控制网、大地水准面与高程系统、参考椭球面与大地坐标系、高斯投影与高斯平面坐标系、大地坐标系的建立等测绘学的基本问题,介绍了与之相关的各类大地测量数据采集技术。
《大地测量学基础》是测绘学科的专业核心课程,在测绘工程专业的课程体系中占有重要地位,本课程以现代大地测量学的新成就和发展为着眼点,着重阐述大地测量学的基础理论、主要技术与方法,这是测绘工程专业学生必须掌握的基本知识与技能,通过该课程的学习,使学生掌握扎实的大地测量理论基础和基本技能,培养学生创新思维和灵活运用能力,具备大地坐标系、大地参考框架、高程基准、大地网建立等方面的系统知识。
该课程重点要求学生掌握以下知识:1、熟悉现代大地测量学科现状和发展趋势、大地测量学的科学内涵及其在地学研究和工程建设中的作用,了解深空大地测量基本概念。
2、掌握大地测量基本技术与方法:大地控制网的布设方案,利用卫星定位接收机、电子全站仪、数字水准仪等观测技术建立大地控制网的观测与数据处理技术。
3、重点掌握大地测量基本概念与基础理论:包括大地测量坐标系统、时间系统、高程系统,地球重力场的基本概念,地球椭球的基本参数、椭球面上的常用坐标系及其相互关系、椭球面上的大地测量计算、将地面观测值归算至椭球面、地图数学投影变换的基本概念、高斯平面直角坐标系。
4、了解大地控制网的相关规范:全球定位系统测量规范GB/T 18314-2009,国家一、二等水准测量规范GB12897-2006。
5、具备初步的大地测量工程实践能力:通过课间实习掌握精密水准测量工作流程;通过编程实现各种坐标转换、高斯投影正反算、椭球面上大地线长度和大地方位角及曲面面积计算、大地网概算与平差等大地测量计算项目,掌握大地网数据处理的工作过程。
目录第一章绪论1.1 大地测量学的定义和作用1.2 大地测量学的基本体系和内容1.3 大地测量学的发展简史及展望第二章坐标系统与时间系统2.1 地球的运转2.2 时间系统2.3 坐标系统第三章地球重力场及地球形状的基本理论3.1 地球形状3.2 地球重力场的基本原理3.3 高程系统3.4 关于测定垂线偏差和大地水准面差距的概念3.5关于确定地球形状的基本概念第四章地球椭球及其数学投影变换的基本理论4.1 地球椭球的基本几何参数及其相互关系4.2 椭球面上的常用坐标系及其相互关系4.3 椭球面上的几种曲率半径4.4 椭球面上的弧长计算4.5 大地线4.6 将地面观测值归算至椭球面4.7 大地测量主题解算概述4.8 地图数学投影变换的基本概念4.9 高斯平面直角坐标系4.10通用横轴墨卡托投影和高斯投影簇的概念4.11 兰勃脱投影概述第五章大地测量基本技术与方法5.1 国家平面大地控制网建立的基本原理5.2 国家高程控制网建立的基本原理5.3 工程测量控制网建立的基本原理5.4 大地测量仪器5.5电磁波在大气中的传播5.6 精密角度测量方法5.7 精密电磁波测距方法5.8 精密水准测量方法。
长大大地测量学基础第一章_绪论
绪论 >大地测量学研究的基本内容 大地测量学研究的基本内容
大地测量学研究的基本内容
• 几何大地测量学 • 物理大地测量学 • 卫星大地测量学
辽宁工程技术大学 测绘学院
§1.4大地测量学发展与展望 大地测量学发展与展望
辽宁工程技术大学 测绘学院
绪论 >大地测量学发展与展望 大地测量学发展与展望
大地测量学的发展简史
大地测量学基础
隋心 辽宁工程技术大学 测绘学院
问题? 问题?
•测量外业的基准面与基准线是什么?测量内 测量外业的基准面与基准线是什么? 测量外业的基准面与基准线是什么 业计算的基准面与基准线是什么? 业计算的基准面与基准线是什么? •我们通常以什么样的形式来表示空间点的位 我们通常以什么样的形式来表示空间点的位 测量的坐标系有哪些? 置?测量的坐标系有哪些?我国目前所采用的 坐标系统有哪些?各坐标系统如何进行转换? 坐标系统有哪些?各坐标系统如何进行转换? •我们所测的高程属于哪一高程系统?高程系 我们所测的高程属于哪一高程系统? 我们所测的高程属于哪一高程系统 统有哪些? 统有哪些?
辽宁工程技术大学 测绘学院
辽宁工程技术大学 测绘学院
绪论 >大地测量学发展与展望 大地测量学发展与展望
大地测量学的发展简史( 大地测量学的发展简史(续)
第三阶段: 第三阶段:大地水准面阶段
世纪下半叶至20世纪 年代, 从19世纪下半叶至 世纪 年代,人们将对椭球的认识发 世纪下半叶至 世纪40年代 展到是大地水准面包围的大地体。 展到是大地水准面包围的大地体。
辽宁工程技术大学 测绘学院
课程主要内容
•掌握大地测量的任务和内容,地球形状和坐标系等 掌握大地测量的任务和内容, 掌握大地测量的任务和内容 •掌握平面控制网的测量方法、布设原则 掌握平面控制网的测量方法、 掌握平面控制网的测量方法 •了解我国天文大地网的布设概况 了解我国天文大地网的布设概况 •了解国家水准网的布设 了解国家水准网的布设 •了解 •了解GPS在测绘工作中的应用 了解GPS在测绘工作中的应用 •掌握精密水准测量及外业计算、三角高程测量 掌握精密水准测量及外业计算、 掌握精密水准测量及外业计算 •了解高程系统概念 了解高程系统概念 •了解地球椭球的基本元素,坐标及相互关系 了解地球椭球的基本元素, 了解地球椭球的基本元素 •掌握椭球面上的各种曲率半径及弧长计算 掌握椭球面上的各种曲率半径及弧长计算 •了解相对法截线和大地线的概念 了解相对法截线和大地线的概念
大地测量学
© 2000 McGraw-Hill
Introduction to Object-Oriented Programming with Java--Wu
Chapter 0 - 7
§1.1 大地测量学的定义和作用
2)要有一个精确的全球重力场模型,用来描述对飞行器 的约束。 重力场模型中位展开系数是卫星轨道动力方程中的 决定性参数。 在国防中的这种保障作用体现在: 从古代战争到现代战争,以及未来战争,都需要军事测 绘做保障,1)超前储备保障; 2)动态实时保障。 例如,战争区域中的电子地图,数字地图,军事目标的 三维坐标是现代战争中不可缺少的测绘文件,而这 些军事测绘资料都离不开大地测量手段取得。 4、在当代地球科学研究中的地位越来越重要。
© 2000 McGraw-Hill
Introduction to Object-Oriented Programming with Java--Wu
Chapter 0 - 8
§1.1 大地测量学的定义和作用
和重力测 块边界 用卫星测高技术SLR和重力测量数据测定海底板块边界 高技术 和重力 量数据测定海底板块边 分布情况,监测海水面变 分布情况,监测海水面变化,以高分辨率测定海底地形。 海水面 以高分辨率测定海底地形。 利用VLBI及SLR能以 及 能以1mm/秒的分辨率精确地测定板块 秒的分辨率精确地测 利用 能以 秒的分辨率精确地 定板块 相对运动,监测地壳运动,为解释板块运动、断裂、地震 监测地壳运动 地壳运 断裂、 活动提供科学依据。 提供科学依据。 总之,大地测量学是测绘科学的各个分支学科(包括工 大地测量学是测绘科学的各个分支学科( 测绘科学的各个分支学科 程测量、海洋测绘、矿山测量、航测、地图制图及GPS等) 海洋测绘、 测绘 等 的基础学科。 的基础学科。因为大地测量学的基础理论、手段和方法 大地测量学的基础 为这些测绘学科提供了先决条件。 为这些测绘学科提供了先决条件。 学科提供研究全球或相当大范围内的地球, 各个测 不相互平行, 各个测站铅垂线不相互平行,同时 及地球重力场及形状, 顾及地球重力场及形状,因为地球 重力场对研究地球形状, 场对研究地球形状 重力场对研究地球形状,对高精度 量及数据处理有着不可忽视 测量及数据处理有着不可忽视的作 用和影响。 用和影响。
第一章 绪论
测绘 测设
5
1.2 地球形状和大小
一、地球的自然形体 不规则的曲面。 不规则的曲面。 最高点: 8844.43米 最高点:珠峰 8844.43米, 最低点: 11022米 最低点:马氏海沟 -11022米。 相差约20km 20km。 相差约20km。 在不规则的曲面上无法进行 计算和绘图。 计算和绘图。 人们找寻一个理想几何体 来代表地球形状和大小, 来代表地球形状和大小, 需满足二个条件: 需满足二个条件: 1、与地球自然形体十分接近 2、可以用数学公式来表达
6 0
24
°
°
°
6、高斯平面坐标系的建立 中央子午线的投影为X 中央子午线的投影为X‘轴,赤道投影为Y’轴, 赤道投影为Y 原点为O 原点为O‘轴,X’,Y‘称为坐标自然值。 称为坐标自然值。
25
为了使横坐标不出现负值, 西移500千米, 500千米 为了使横坐标不出现负值,将X‘西移500千米, 并且在横坐标前冠以带号形成高斯通用坐标系。 并且在横坐标前冠以带号形成高斯通用坐标系。 X,Y称为坐标通用值。 称为坐标通用值。 X=X‘ X=X‘ 带号N 500000米 带号N Y'+500000米 Y=
18
2、高斯投影的原理
高斯投影采用分带投影。 高斯投影采用分带投影。将椭球面按 采用分带投影 高斯投影平面 一定经差分带,分别进行投影。 一定经差分带,分别进行投影。
N 中 央 子 午 线
c
赤道
S
பைடு நூலகம்
19
3、高斯投影特点 投影后角度保持不变 中央子午线长度不变 经线和纬线长度有所变形
中 央 子 午 线
问题的提出: 问题的提出: 为什么在小范围内可以用 水平面来代替水准面进行计算。 水平面来代替水准面进行计算。 一、地球曲率对水平距的影响 地面上AB两点 地面上AB两点 AB 投影在水平面上的长度为D 投影在水平面上的长度为D, 投影在水准面上的弧长为S 投影在水准面上的弧长为S,
大地测量学第一章绪论
六、大地测量学的发展简史
第一阶段:地球圆球阶段,从远古至17世纪,人们 用天文方法得到地面上同一子午线上两点的纬度 差,用大地法得到对应的子午圈弧长,从而推得 地球半径(弧度测量 )。
公元前3世纪,亚历山大学者埃拉托色尼进行了弧度测量, 估算出地球半径(与现代值大约差100km)
用这种方法解决地球大小问题分为两种测量:
物理大地测量标志性成就:
2) 重力位函数的提出:为了确定重力与地球形状的关系, 法国的勒让德提出了位函数的概念。所谓位函数,即是 有这种性质的函数:在一个参考坐标系中,引力位对被 吸引点三个坐标方向的一阶导数,等于引力在该方向上 的分力。研究地球形状可借助于研究等位面。因此,位 函数把地球形状和重力场紧密地联系在一起。
5q
q 2a 1
2
当 90时 ,可 得 重 力 扁 率 :p ee
e
288
q为赤道上的离心力与赤道上重力加速度之比,α为椭球扁率
①同一水准面上的重力值随纬度变化而变化; ②同一水准面上赤道上重力值有最小值,两极处有最大值; ③通过重力测量可以推求地球的大小。
• 几何大地测量学
• 物理大地测量学 • 空间大地测量学 (一)几何大地测量学(即天文大地测量学)
• 基本任务:是确定地球的形状和大小及确定地面 点的几何位置。
• 主要内容:国家大地测量控制网(包括平面控制网 和高程控制网)建立的基本原理和方法,精密角度 测量,距离测量,水准测量;地球椭球数学性质, 椭球面上测量计算,椭球数学投影变换以及地球 椭球几何参数的数学模型等。
从19世纪下半叶至20世纪40年代,人们将对椭球 的认识发展到是大地水准面包围的大地体。
几何大地测量学在这阶段的进展主要体现在以下几 方面:
测量学-第一章 绪论
– 定位
• 大地水准面与椭球体最接近 • 单点定位:大地原点参考椭球面和大地水准面相切,
法线和垂线重合。
北纬34°32′27.00″东经108°55′25.00″。
地球
大地体
大地水准面
大地水准面和铅垂线 是测量工作的基准面 和基准线
参考椭球
参考椭球面
参考椭球面和法线测量 内业计算的基准面和基 准线
• 施工阶段:把线路和各种建筑物正确的测设到 地面上。
• 竣工测量:对建筑物进行竣工测量。(是否符 合设计的要求)
• 运营阶段:为改建、扩建而进行的各种测量。 • 变形观测:为安全运营,防止灾害进行变形测
量。
§1.2 测量学的发展概况
世界最早的地图
公元前3200年古埃及绘在苇草上的金矿图
陶片上的古巴比伦
§1.3.2 空间位置表示方法
地面点的空间位置表示方法
1.二维坐标系和一维坐标系组合表示
地理坐标和高程 平面直角坐标和高程
2.三维的空间直角坐标
天文地理坐标系
大地水准面和铅垂线是天文地理坐 标系的基准面和基准线
地面点的坐标是它沿铅垂线在大地 水准面上投影点的经度和纬度(
) ,
正高是地面点沿铅垂线到大地水准 面的距离
N
P
首
子 午
O
线
赤道
大地水准面 S
图5-1 天文地理坐标系
大地地理坐标系
– 基准面:参考椭球面 – 基准线:法线
表示地面点在地球椭球面上 的位置,用地面点沿投影到 椭球面上的投影点的大地经 度L和大地纬度B,表示。
我国目前采用的国家大地坐标系是1954年北京坐标 系和1980年国家大地坐标系 。
大地测量学基础
大地测量学基础:《大地测量学基础》是2010年5月1日武汉大学出版社出版的图书,作者是孔祥元。
图书简介:该书是“十一五”国家级规划教材,也是国家精品课程教材。
本教材严格按照教育部批准的“十一五”国家级规划教材立项要求和全国高等学校测绘学科教学指导委员会以及武汉大学的具体要求进行编写,是全国高等学校测绘工程专业本科教学用教材,也可供从事测绘工程专业及相关专业的科技人员、管理人员及研究生等参考。
图书目录:序第二版前言前言第1章绪论1.1 大地测量学的定义和作用1.1.1 大地测量学的定义1.1.2 大地测量学的地位和作用1.2 大地测量学的基本体系和内容1.2.1 大地测量学的基本体系1.2.2 大地测量学的基本内容1.2.3 大地测量学同其他学科的关系1.3 大地测量学的发展简史及展望1.3.1 大地测量学的发展简史1.3.2 大地测量的展望第2章坐标系统与时间系统2.1 地球的运转2.1.1 地球绕太阳公转2.1.2 地球的自转2.2 时间系统2.2.1 恒星时(ST)2.2.2 世界时(UT)2.2.3 历书时(ET)与力学时(DT)2.2.4 原子时(AT)2.2.5 协调世界时(UTC)2.2.6 卫星定位系统时间2.3 坐标系统2.3.1 基本概念2.3.2 惯性坐标系(ClS)与协议天球坐标系2.3.3 地固坐标系2.3.4 坐标系换算第3章地球重力场及地球形状的基本理论3.1 地球及其运动的基本概念3.1.1 地球概说3.1.2 地球运动概说3.1.3 地球基本参数:3.2 地球重力场的基本原理3.2.1 引力与离心力3.2.2 引力位和离心力位3.2.3 重力位3.2.4 地球的正常重力位和正常重力3.2.5 正常椭球和水准椭球,总的地球椭球和参考椭球3.3 高程系统3.3.1 一般说明3.3.2 正高系统3.3.3 正常高系统3.3.4 力高和地区力高高程系统3.3.5 国家高程基准3.4 关于测定垂线偏差和大地水准面差距的基本概念3.4.1 关于测定垂线偏差的基本概念3.4.2 关于测定大地水准面差距的基本概念3.5 关于确定地球形状的基本概念3.5.1 天文大地测量方法3.5.2 重力测量方法3.5.3 空间大地测量方法第4章地球椭球及其数学投影变换的基本理论4.1 地球椭球的基本几何参数及其相互关系4.1.1 地球椭球的基本几何参数4.1.2 地球椭球参数间的相互关系4.2 椭球面上的常用坐标系及其相互关系4.2.1 各种坐标系的建立4.2.2 各坐标系间的关系4.2.3 站心地平坐标系4.3 椭球面上的几种曲率半径4.3.1 子午圈曲率半径4.3.2 卯酉圈曲率半径4.3.3 主曲率半径的计算4.3.4 任意法截弧的曲率半径4.3.5 平均曲率半径4.3.6 M,N,R的关系4.4 椭球面上的弧长计算4.4.1 子午线弧长计算公式4.4.2 由子午线弧长求大地纬度4.4.3 平行圈弧长公式4.4.4 子午线弧长和平行圈弧长变化的比较4.4.5 椭球面梯形图幅面积的计算4.5 大地线4.5.1 相对法截线4.5.2 大地线的定义和性质4.5.3 大地线的微分方程和克莱劳方程4.6 将地面观测值归算至椭球面4.6.1 将地面观测的水平方向归算至椭球面4.6.2 将地面观测的长度归算至椭球面4.7 大地测量主题解算概述4.7.1 大地主题解算的一般说明4.7.2 勒让德级数式4.7.3 高斯平均引数正算公式4.7.4 高斯平均引数反算公式4.7.5 白塞尔大地主题解算方法4.8 地图数学投影变换的基本概念4.8.1 地图数学投影变换的意义和投影方程4.8.2 地图投影的变形4.8.3 地图投影的分类4.8.4 高斯投影简要说明4.9 高斯平面直角坐标系4.9.1 高斯投影概述4.9.2 正形投影的一般条件4.9.3 高斯投影坐标正反算公式4.9.4 高斯投影坐标计算的实用公式及算例4.9.5 平面子午线收敛角公式4.9.6 方向改化公式4.9.7 距离改化公式4.9.8 高斯投影的邻带坐标换算4.10通用横轴墨卡托投影和高斯投影族的概念4.10.1 通用横轴墨卡托投影概念4.10.2 高斯投影族的概念4.11兰勃脱投影概述4.11.1 兰勃脱投影基本概念4.11.2 兰勃脱投影坐标正、反算公式4.11.3 兰勃脱投影长度比、投影带划分及应用第5章大地测量基本技术与方法5.1 国家平面大地控制网建立的基本原理5.1.1 建立国家平面大地控制网的方法5.1.2 建立国家平面大地控制网的基本原则5.1.3 国家平面大地控制网的布设方案5.1.4 大地控制网优化设计简介5.2 国家高程控制网建立的基本原理5.2.1 国家高程控制网的布设原则5.2.2 国家水准网的布设方案及精度要求5.2.3 水准路线的设计、选点和埋石5.2.4 水准路线上的重力测量5.2.5 我国国家水准网的布设概况5.3 工程测量控制网建立的基本原理5.3.1 工程泓量控制网的分类5.3.2 工程平面控制网的布设原则5.3.3 工程平面控制网的布设方案5.3.4 工程高程控制网的布设5.4 大地测量仪器5.4.1 精密测角仪器——经纬仪5.4.2 电磁波测距仪5.4.3 全站仪5.4.4 GPS接收机5.4.5 TPS和GPS的集成——徕卡系统1200-超站仪(system1200-SmartStation5.4.6 精密水准测量的仪器——水准仪5.5 电磁波在大气中的传播5.5.1 一般概念5.5.2 电磁波在大气中的衰减5.5.3 电磁波的传播速度5.5.4 电磁波的波道弯曲5.6 精密角度测量方法5.6.1 精密测角的误差来源及影响5.6.2 精密测角的一般原则5.6.3 方向观测法5.6.4 分组方向观测法5.6.5 归心改正5.7 精密的电磁波测距方法5.7.1 电磁波测距基本原理5.7.2 N值解算的一般原理5.7.3 距离观测值的改正……第6章深空在地测量简介主要参考文献。
测量学 第一章 测量学绪论
后为凸向赤道的曲线,并以 赤道为对称轴。
平行圈
(5)经线与纬线投影后仍然保持
正交。
赤道
O
y
(6)离中央子午线愈远,长度变 子午线
形愈大。
中央子午线
4、投影带的划分
我国规定按经差6º和3º进 行投影分带。
6º带自首子午线开始,按6º的 经差自西向东分成60个带。
3º带自1.5 º开始,按3º的经差 自西向东分成120个带。
几何形体,作为地球的参考形状和大小。
二、测量工作的基准线和基准面
测量工作的基准线—铅垂线。 测量工作的基准面—大地水准面。 测量内业计算的基准面—参考椭球面。
O 铅垂线
G
大地水 准面
三、地面点位的确定(X Y H)
地面点位的确定
高程 地理坐标
天文坐标
大地坐标
坐标
高斯平面直角坐标
平面直角坐标
独立平面直角坐标
例: 有一国家控制点的坐标: x=3102467.280m ,y=19367622.380m, (1)该点位于6˚ 带的第几带? (第19带) (2)该带中央子午线经度是多少? (L。=6º×19-3º=111˚) (3)该点在中央子午线的哪一侧?
(先去掉带号,原来横坐标y=367622.380—500000=-132377.620m,在西侧)
(距中央子午线132377.620m,距赤道310状相关概念
1、地球自然形体:是一个不规则的几何体,海洋面积约占地
球表面的71%。
2、水准面:静止的水面。
3、大地水准面:设想处于完全静止的平均海水面向陆地和岛
屿延伸所形成的闭合曲面。 4、大地体:大地水准面所包围的代表地球形状和大小的形
大地测量学基础-习题
大地测量学基础作业题与复习思考题第一章绪论1、什么叫大地测量学?它与普通测量学有什么不同?2、大地测量学的任务和研究的内容有哪些?第二章大地测量基础知识作业题1、天球坐标系中,已知某卫星的r=26600000m,α=45°,δ=45°。
求该卫星的天球直角坐标X,Y,Z。
2、测站P对某卫星测得其r=21000000m, A= 45°, h=45°。
求该卫星的站心地平直角坐标x,y,z。
3、垂直角测量中,地面点P对目标点Q观测的垂直角为0°,如图所示。
水平距离PQ=1000m。
设地球半径OP=OC=R=6378000m,计算Q点对P点的高差h=QC=?球面距离PC=?(提示:P点、C点在球面上为等高,弧长PC=Rθ)4、已知A点正常高和各测段水准高差,计算B点的正常高。
A◎----------1○----------○2------------◎BA点正常高HA=1000m,各测段高差分别为:h1=21.123m、h2=20.014m、h3=19.762m,各测段路线长分别为:3km、2km、3km,各点纬度分别为:φa=33°50′、φ1=33°48′、φ2=33°47′、φb=33°45′。
(提示:先计算各测段高差的水准面不行改正及重力异常改正,再计算B点高程。
由平均纬度计算得系数A=0.00000142335,无重力异常资料)5、GPS卫星绕地球一周的时间为11小时58分(平太阳时), 计算相应的恒星时=?6、北京时间7时30分对应的世界时=?7、地的经度L=117°, 求该点平太阳时与北京时之差=?8、两地经度之差为30°, 求两地平太阳时之差、两地恒星时之差各为多少?第二章大地测量基础知识复习思考题1、名词定义:水准面、大地水准面、参考椭球面、总地球椭球、垂线偏差、大地水准面差距?4、常用大地测量坐标系统有哪些?5、名词定义:恒星时、平太阳时、世界时、区时、原子时、GPS时间系统?6、水准面不平行性对水准测量成果产生什么影响?7、什么是正高、正常高、大地高?绘图说明它们之间的关系。
第一章 大地测量学基础1绪论
17世纪初,荷兰人斯涅耳(W.Snell)首创三角测量法。 此后,望远镜,游标尺,十字丝,测微器等相继出现。
天文学和物理学在地球形状、重力场及其空间位 置等方面也都提出了崭新的观念。
荷兰的哥白尼1543年创立了日心说,确定了地球 在太阳系中的空间位置;
19世纪下半叶至20世纪40年代,对椭球的认识发 展到是大地水准面包围的大地体。
★几何大地测量学的进展:
(1)天文大地网的布设有了重大发展; (2)因瓦基线尺出现,带平行玻璃板测微
器的水准仪及因瓦水准尺使用,将天文大 地测量同重力测量相结合,代替天文水准 等方面有较大进步。
(1) 大地测量边值问题理论的提出
dation of Geodesy Foundation of Geodesy Foundation of Geodesy Foundation of Geodesy Foundation of Geodesy
大地测量学基础
Foundation of Geodesy
大地测量学基础 dation of Geodesy Foundation of Geodesy Foundation of Geodesy Foundation of Geodesy Foundation of Geodesy
等于赤道处离心力与引力之比的一半。
人类进入了认识地球为旋转椭球的新阶段,几何大地测量学 得到形成和发展,物理大地测量学开始奠定基础。
第二阶段取得的成绩
dation of Geodesy Foundation of Geodesy Foundation of Geodesy Foundation of Geodesy Foundation of Geodesy
大地测量学基础:第1章 绪论
• 因瓦基线尺、带平行玻璃板测微器的水准仪及因瓦水准尺问世。
“大地水准面阶段”物理大地测量学进展——
1、大地测量边值问题理论的提出
• 英国学者斯托克司(G.G.Stokes)把真实的地球重力位分为正常重 力位和扰动位两部分,实际的重力分为正常重力和重力异常两部 分,在某些假定条件下进行简化,通过重力异常的积分,提出了 以大地水准面为边界面的扰动位计算公式和大地水准面起伏公式。 后来,荷兰学者维宁·曼尼兹(F.A.Vening Meinesz)根据斯托克司 公式推出了以大地水准面为参考面的垂线偏差公式。
2、提出了新的椭球参数
• 利用重力测量资料推求更加精准的椭球参数(长半径和扁率)。
• 最著名的有赫尔默特椭球、海福特椭球、克拉索夫斯基椭球等。
• 我国在上世纪八十年代之前一直使用克拉索夫斯基椭球,其参数
为:
a=6378245m, α=1:298.3
第四阶段:现代大地测量新时期
• 20世纪下半叶,以电磁波测距、人造地球卫星定位系统及甚长基 线干涉测量等为代表的新的测量技术的出现,给传统的大地测量 带来了革命性的变革,大地测量学进入了以空间测量技术为代表 的现代大地测量发展的新时期。
二、大地测量学的作用
• 大地测量学是一切测绘科学技术的基础,在国民经济建设和社会 发展中发挥着决定性的基础保证作用。
例如:交通运输、工程建设、土地管理、城市建设等,无一不依 赖大地测量成果。
【测量工作的基本原则——布局上“从整体到局部”,程序上“先控制后碎 部”,精度上“由高级到低级”】
大地测量学基础[1].(1)(控制)ppt
南京工业大学土木学院
12
南京工业大学土木学院 6
大地体是一个不规则的形体 : (1)F离 :F引=1:300 而地球自转的离心力 和地心的引力的合力称为重力,所以地心的引 力决定重力; (2)由于大地水准面是静止的海水面,所以 必须和重力线(铅垂线)正交; (3)地球内部物质密度分布不均匀必导致重 力线(铅垂线)分布不均匀,那么与铅垂线正 交的大地水准面就是一个不规则的形体,所以 说大地体是一个不规则的形体 。
1.垂线偏差:从地面上的某点向大地水准面 引一垂线和过该点向椭球作一法线之间的 夹角。(分相对和绝对) 2.大地水准面差距:大地水准面超出或低与 椭球面的高度。(也分相对和绝对)
南京工业大学土木学院
10
§1.3 控制网的布设形式 1.3.1 水平控制网的布设形式 1.三角网; 2.三边网;3.边角网; 4.导 线网;5.GPS网。 1.3.2 高程控制网的布设形式 §1.4 控制测量新技术的发展概况 1.4.1 精密测角仪器的发展概况 Kern公司的E2电子经纬仪,方向观测的标 称精度为: 0.3 ~ 0.6
南京工业大学土木学院 7
1.2.2 参考椭球与总地球椭球 总地球椭球:与大地体最接近的地球椭球 称为总地球椭球,简称总椭 球,它具有以下几个几 何条件: (1)中心与地球的质心重合; (2)旋转轴与地轴重合; (3)体积应与大地体的体积相等(大地水准 面与总 椭球面之间的高差平方和为最 小);
南京工业大学土木学院
8
(4)总质量应与地球的总质量相等; (5)旋转角速度应与地球的旋转角速度相 等。 参考椭球:与本国家或本地区大地水准 面密切配合的椭球面成为参考椭球 苏.克拉索夫斯基椭球: a=6378245m;b=6356863m α=1/298.3
大地测量学完整课件
4)、研究为获得高精度测量成果的仪器和方法
5)、研究地球表面向椭球面或平面的投影数学变换及有关 的大地测量计算
6)、研究大规模、高精度和多类别的地面网、空间网及其 联合网的数学处理理论方法,测量数据库的建立及应用。
现代大地测量 (三个基本分支)
几何大地测量
物理理论大地测量
空间大地测量GPS
1)、几何大地测量学:即天文大地测量学 基本任务 确定地球形状、大小,地面点的几何位置 主要内容 国家大地测量控制网建立的理论、方法,精 密测角、测距、测水准;地球椭球数学性质,椭球面上 的测量计算,椭球数学投影,地球椭球几何参数的数学 模型等
公元827年,阿拉伯人阿尔曼孟通过弧长 测量,推算出纬度35°处的1°子午线弧 长等于111.8Km,比正确值110.95Km 只大1%
2、第二阶段:地球椭球阶段:最先由牛顿提出 在此阶段,理论方面 英国的牛顿:万有引力定律,地球椭球学说. 荷兰的斯涅耳:三角测量法 德国的开普勒:行星运动三大定律 荷兰的惠更斯:摆测重力原理 法国的勒让德:最小二乘法,重力位函数 法国的克莱罗:克莱罗定律 英国的普拉特和艾黎:地壳均衡学说
四、大地测量学的发展简史
1、第一阶段:地球圆球阶段: 将地球看成是圆球进行测量其大小(半径) 公元前六世纪,毕达哥拉斯最先提出地球圆球说。 首次地球半径测量:公元前三世纪,亚历山大学者埃拉托
色尼用子午圈弧长测量法来估算地球半径,与现代数据相比, 误差约 100Km.
亚历山大城
φ
赛尼城
S φ
R
最早一次对地球大小的实测: 我国唐代张遂指导进行。得出子午线上 纬度差一度,地面相距约132Km,与现 代值110.95Km相比,误差约21Km。
大地测量学基础作业与参考答案
7.水准面的不平行性是由于什么原因引起的?这种现象对水准测量会产生什么影响? 答:由于水准面是一重力等位面,正常重力的大小与纬度有关,当位 W 一定时,两水准面 之间的距离与重力成反比, 从而导致两水准面之间的不平行。 这种现象会引起经过不同路线 测定某点的高程不同,使某点高程产生多值性。 8.1956 年黄海高程系统与 1985 国家高程基准有何差别? 答:1956 年黄海高程系统的高程基准面是采用 1950 年至 1956 年 7 年间青岛验潮站的潮汐 资料推求得到的。1985 国家高程基准的高程基准面是采用青岛验潮站 1952~1979 年中取 19 年的验潮资料计算确定的。两者相差 0.029m。 9.1956 年黄海高程系统与 1985 国家高程基准的水准原点高程各是多少? 答:1956 年黄海高程系统水准原点高程是 72.289m,1985 国家高程基准的水准原点高程是 72.260m。 第四章 地球椭球及其数学投影变换的基本理论 1.椭球面上的常用坐标系有哪些? 答:有大地坐标系、空间直角坐标系、天文坐标系、子午面直角坐标系、地心纬度坐标系及 归化纬度坐标系、站心地平坐标系。 2. 地球椭球基本参数有哪些?它们的互相关系是什么? 答:椭圆的长半轴 a 、短半轴b、扁率 、第一偏心率 e 、第二偏心率 e 、辅助 量
6.正高、正常高和大地高如何定义的?三者有何关系: 答:正高:地面点沿垂线方向至大地水准面的距离,用 H 正 表示;地面点沿垂线方向至似大 地水准面的距离,用 H 常 表示;地面点沿法线方向至椭球面的距离,用 H 大 表示。三者的关 系为:
H 大 H 正常 。其中 为高程异常, N 为大地水准面差距。 H大 H正 N
X 0 , Y0 , Z 0
为平移参数; X , Y , Biblioteka 为旋转参数, m 为尺度变化参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刚体不变、均匀旋转的球体或椭球体的前提下,完成大地测量学 的基本任务。 • 现代大地测量以空间大地测量为特征,利用空间测绘技术(人造 地球卫星、空间探测器等)对动态变化着的实际地球及其它星体 进行测量和描绘。
四、大地测量学在工程建设中的具体应用——控制测量学
• 控制测量学是大地测量学的基本理论在各种工程建设中的应用学 科,主要研究精确测定和描绘地面控制点空间位置及其变化。
• 控制测量的服务对象——各种类型的工程建设,如城镇、矿山、 水电、交通建设等。
• 控制测量的目的——精确确定控制点在地球表面上的位置(平面 坐标和高程)。
一、大地测量学的定义
• 大地测量学是指在一定的时间与空间参考系中,测量和描绘地球 及其它行星体的一门学科。
【经典定义 :“测地学” ——研究地球的形状、大小、重力场,地球的整体与 局部运动,以及研究测定地面点的几何位置及其变化的理论和技术 】
• 基本任务——测量和描绘地球形状及其重力场并监测其变化,为 人类活动提供关于地球的空间信息。
• 控制测量学的主要研究内容——
1)研究建立控制网(含水平和高程)的原理、方法,包括方案设 计与优化等;
2)研究控制测量观测结果的数据处理方法,包括粗差剔除、投影 转换、平差计算以及成果数据库的建立与应用等;
3)研制相应的控制测量仪器;
4)研究外部环境对测量结果的影响,主要有大地水准面(精化)、 大气折射和垂线偏差等。
一、大地测量学的基本体系
• 最近几十年来,随着科学技术的进步以及研究任务和目标的不断 拓展,大地测量学得到了极大的发展和完善,已经从传统的常规 大地测量学发展成为涵盖面广、融合性强的现代大地测量学。
• 现代大地测量学的研究领域包括: • 应用大地测量 • 椭球大地测量 • 天文大地测量 • 大地重力测量 • 测量平差 • 海洋大地测量 • 行星大地测量 • 卫星大地测量 • 地球动力学 • 惯性大地测量
例如:地震、山体滑坡、特种大型交通事故等的监测与救援。
• 大地测量是发展空间技术和国防建设的重要保障。
例如:卫星、导弹、航天飞机、宇宙探测器等发射、制导、跟踪、 返回工作,都需要大地测量技术作保证。
• 大地测量学是测绘学其它分支学科(工测、海测、摄影测量与遥感、 制图及GIS等)的基础科学。
§1-2 大地测量学的基本体系和内容
物理大地测量学
• 基本任务:用物理方法(重力测量)确定地球形状及其外部重力场。 • 主要内容:位理论,地球重力场,重力测量及其归算,推求地球
形状及外部重力场的理论与方法。
空间大地测量学
• 主要研究以人造地球卫星及其它空间探测器为代表的空间大地测 量的理论、技术与方法。内容包括——
• • • • 卫星海洋雷达测高
作业 每章若干道作业题,须按时交,补交不批改
考试
平时:30%(作业与考勤。考勤由班干部负责,课后报给我) 考试:70%(闭卷;考前不另指重点;未讲过的内容不考)
第一章 绪论
§1-1 大地测量学的定义和作用 §1-2 大地测量学的基本体系和内容 §1-3 大地测量学的发展简史和趋势
§1-1 大地测量学的定义和作用
现代大地测量学的基本体系
1、几何大地测量学(即天文大地测量学) 2、物理大地测量学(即理论大地测量学) 3、空间大地测量学
几何大地测量学
• 基本任务:确定地球的形状和大小,确定地面点的几何位置。
• 主要内容:建立国家大地测量控制网(包括平面控制网和高程控 制网) 的基本原理和方法;精密角度测量,距离测量,水准测量; 地球椭球数学性质,椭球面上的测量计算,椭球数学投影变换以 及地球椭球几何参数的数学模型等。
在工程建设的不同阶段,控制测量的任务和作用——
1)在设计阶段建立测图控制网; (精度:dm-cm级) 2)在施工阶段建立施工控制网; (精度:cm-mm级) 3)在运营阶段建立监测控制网。 (精度:mm级) • 施工控制网和监测控制网统称为专用控制网。
二、大地测量学的作用
• 大地测量学是一切测绘科学技术的基础,在国民经济建设和社会 发展中发挥着决定性的基础保证作用。
例如:交通运输、工程建设、土地管理、城市建设等,无一不依 赖大地测量成果。
【测量工作的基本原பைடு நூலகம்——布局上“从整体到局部”,程序上“先控制后碎 部”,精度上“由高级到低级”】
• 大地测量学在防灾、减灾、救灾及环境监测、评价与保护中发挥 着特殊作用。
二、大地测量学的基本内容
1、确定地球形状和外部重力场及其随时间的变化,建立统一的大 地测量坐标系,研究地壳形变(包括垂直升降及水平位移),测定 极移、海洋水面与海底地形及其变化等。
2、研究月球及太阳系行星的形状及重力场。 3、建立和维持国家和全球的天文大地水平控制网、工程控制网和
精密水准网以及海洋大地控制网,以满足国民经济和国防建设的
2、高精度——0.1ppm
3、实时、快速——数据处理由“后处理”发展到实时处理
4、“时间维”——第四维,连续的时间序列;工作对象从静态发 展到动态
5、地心坐标系——全球统一坐标系;信息获取由地面测绘系统发 展到空间测绘系统
6、多学科的融合——由单一学科发展到与其它学科的综合、集成; 研究内容融合了大气科学、动力学、海洋学、地质学、地震 学等
大地测量学基础
内容
大地测量学的基本概念,坐标系统与时间系统,地球重力场及地球 形状,地球椭球及其数学投影变换,大地测量基本技术与方法等
(理论、公式、仪器、方法)
特点
1、内容多、公式多、学时少(只能介绍部分章节,且为选讲) 2、理论性强(有些内容不易理解),实践性强
实践
1、实验16学时(地点:建筑实验楼 210 ) 2、课程设计1周 3、实习3周
4、研究用以获得高精度测量成果的仪器和方法等。 5、研究地球表面向椭球面或平面的投影数学变换及有关大地测量
计算。 6、研究大规模、高精度和多类别的地面网、空间网及其联合网的
数据处理的理论和方法,测量数据库的建立及应用等。
三、现代大地测量的特点
1、长距离,大范围——工作距离由数十公里发展到几千公里;工 作范围由陆地扩展到海洋,由地表扩展到太空