数控机床的加工工艺及编程步骤
数控机床程序编制的一般步骤和手工编程

数控机床程序编制的一般步骤和手工编程数控机床程序编制〔又称数控编程〕是指编程者〔程序员或数控机床操作者〕根据零件图样和工艺文件的要求,编制出可在数控机床上运行以完成规定加工任务的一系列指令的过程。
具体来说,数控编程是由分析零件图样和工艺要求开始到程序检验合格为止的全部过程。
一般数控编程步骤如下〔见图19-22〕。
图19-22 一般数控编程顺序图1.分析零件图样和工艺要求分析零件图样和工艺要求的目的,是为了确定加工方法、制定加工方案,以及确认与生产组织有关的问题,此步骤的内容包括:1〕确定该零件应安排在哪类或哪台机床上进行加工。
2〕采用何种装夹具或何种装卡位方法。
3〕确定采用何种刀具或采用多少把刀进行加工。
4〕确定加工路线,即选择对刀点、程序起点〔又称加工起点,加工起点常与对刀点重合〕、走刀路线、程序终点〔程序终点常与程序起点重合〕。
5〕确定切削深度和宽度、进给速度、主轴转速等切削参数。
6〕确定加工过程中是否需要提供冷却液、是否需要换刀、何时换刀等。
2.数值计算根据零件图样几何尺寸,计算零件轮廓数据,或根据零件图样和走刀路线,计算刀具中心〔或刀尖〕运行轨迹数据。
数值计算的最终目的是为了获得编程所需要的所有相关位置坐标数据。
3.编写加工程序单在完成上述两个步骤之后,即可根据已确定的加工方案〔或方案〕及数值计算获得的数据,按照数控系统要求的程序格式和代码格式编写加工程序等。
编程者除应了解所用数控机床及系统的功能、熟悉程序指令外,还应具备与机械加工有关的工艺知识,才能编制出正确、实用的加工程序。
4.制作控制介质,输入程序信息程序单完成后,编程者或机床操作者可以通过CNC机床的操作面板,在EDIT方式下直接将程序信息键入CNC系统程序存储器中;也可以根据CNC系统输入、输出装置的不同,先将程序单的程序制作成或转移至某种控制介质上。
控制介质大多采用穿孔带,也可以是磁带、磁盘等信息载体,利用穿孔带阅读机或磁带机、磁盘驱动器等输入〔输出〕装置,可将控制介质上的程序信息输入到CNC系统程序存储器中。
数控机床编程操作步骤

数控机床编程操作步骤概述数控机床编程是一种通过指令集控制数控机床完成加工任务的技术。
本文将介绍数控机床编程的基本操作步骤,帮助读者了解如何进行有效的编程。
步骤一:设计零件加工工艺在进行数控机床编程之前,首先需要对待加工的零件进行工艺设计。
确定零件的加工形式、工艺路线和加工顺序,为后续的编程提供基础。
步骤二:选择合适的编程软件根据数控机床的类型和加工要求,选择适合的编程软件。
常用的数控编程软件有XXXX、YYYY等,选择适合的软件能够提高编程效率。
步骤三:建立工件坐标系在编程软件中建立工件的坐标系,确定工件在数控机床上的位置和方向。
正确的坐标系建立是保证加工精度的重要步骤。
步骤四:编写加工程序根据零件的几何特征和加工要求,编写加工程序。
程序包括刀具路径、加工速度、加工深度等信息,确保数控机床按照程序要求进行加工。
步骤五:检验程序正确性在编写完加工程序后,需要对程序进行检验,确保程序没有错误。
可以通过模拟运行、虚拟仿真等方式检验程序的正确性。
步骤六:上传程序到数控机床将编写完成的加工程序上传到数控机床的控制系统中。
在上传过程中,需注意程序的格式和命名规范,确保程序能够被数控机床正确识别。
步骤七:调试程序在上传程序后,需要对程序进行调试。
通过手动操作数控机床,观察加工路径是否正确、刀具是否碰撞等情况,确保程序可以正常运行。
步骤八:进行加工生产完成程序调试后,即可开始正式的加工生产。
数控机床将按照程序要求进行自动化加工,提高生产效率和加工质量。
结论数控机床编程是现代制造业中的重要技术之一。
通过本文介绍的操作步骤,读者可以了解数控机床编程的基本流程和注意事项,提高编程效率和加工精度。
当然,数控机床编程是一个复杂的过程,需要不断学习和实践,才能掌握更高级的编程技本。
数控机床的加工工艺及编程步骤

外圆车刀 螺纹车刀
内孔车刀Βιβλιοθήκη 2.2.5 切削用量及刀具的选择
铣削刀具:
方肩 铣刀
整体硬质 合金铣刀
仿形 铣刀
三面刃和 螺纹铣刀
2.2.6 数值计算
1.基点、节点的含义 编程时的数值计算主要是计算零件加工轨迹的尺寸,即计算零件轮廓 基点和节点的坐标,或刀具中心轨迹基点和节点的坐标。 l 数控机床一般只有直线和圆弧插补功能,因此,对于由直线和圆弧组 成的平面轮廓,编程时主要是求各基点的坐标。 基点:就是构成零件轮廓不同几何素线元素的交点或切点。如直 线与直线的交点,直线段和圆弧段的交点、切点及圆弧与圆弧的 交点、切点等。根据基点坐标就可以编写出直线和圆弧的加工程 序。基点的计算比较简单,选定坐标原点以后,应用三角、几何 关系就可以算出各基点的坐标,因此采用手工编程即可。
2.2.5 切削用量及刀具的选择
切削用量包括主轴转速、进给速度和切削深度等。各种机床切削用量的 选择根据数控机床使用说明书、手册,并结合实践经验加以确定。 2.进给速度 进给速度根据零件的加工精度、表面粗糙度和刀具、工件的材 料选择,最大进给速度受机床刚度和进给系统的性能限制,并与脉冲 当量有关。在精度要求较高时,进给量应选小一些,一般在 20mm/min一50mm/min范围内选取。 3.切削深度 主要根据机床、刀具、夹具和工件的刚性确定。在机床刚度允许 的情况下,尽量选择较大的切削深度,以提高加工效率。有时为了改 善表面粗糙度和加工精度,要留一点余量,以便最后精加工一次。
在数控加工中,加工路线除了要保 证工件的加工精度、表面粗糙度外, 还要尽量缩短空行程时间,并能简 化程序。
例如在铣削外轮廓时,为防止刀具 在切入,切出时产生刀痕,一般采 用切线切入、切出方式以保证工件 轮廓的光滑过渡,如图2.2.2所示。
数控机床编程步骤有哪些

数控机床编程步骤有哪些
当今工业制造中,数控机床是一种关键的生产设备,广泛应用于各种领域。
数
控机床的编程是其操作的重要环节,本文将介绍数控机床编程的一般步骤,帮助读者更好地了解数控机床的工作原理。
步骤一:准备工作
在开始数控机床编程之前,首先需要对工件和加工要求进行详细的分析和确定。
了解工件尺寸、形状、材质以及加工精度要求是非常重要的。
步骤二:确定加工工艺
根据工件加工要求,确定合适的加工工艺,包括切削速度、进给速度、刀具选
择等。
这些参数将直接影响加工效果和加工成本。
步骤三:选择编程方式
数控机床编程有手动编程和自动编程两种方式。
手动编程需要操作员逐步输入
加工指令,而自动编程则通过专门的软件生成加工程序。
根据实际情况选择合适的编程方式。
步骤四:编写加工程序
根据加工工艺和工件要求,编写数控机床加工程序。
程序中包括刀具路径、加
工深度、速度等加工参数。
编程人员需要非常熟悉数控机床的工作原理和加工规范。
步骤五:调试程序
编写完加工程序后,需要对程序进行调试,确保程序运行无误。
对于复杂的加
工过程,可能需要进行多次调试和修改。
步骤六:开始加工
完成程序调试后,可以将加工程序加载到数控机床中,开始加工工件。
在加工
过程中,需要及时监控加工状态,确保加工质量。
结语
数控机床编程是一项复杂而又重要的工作,只有经过认真的准备、编写和调试,才能保证加工过程的顺利进行。
希望本文对读者有所帮助,更好地理解数控机床编程的步骤和流程。
数控加工工艺流程

数控加工工艺流程数控加工是一种通过计算机控制机床进行加工的工艺,它可以实现高精度、高效率的加工,广泛应用于航空航天、汽车制造、电子设备等领域。
数控加工工艺流程是指在数控加工过程中所涉及到的各项工艺步骤和操作流程,下面将详细介绍数控加工的工艺流程。
1. 零件设计与编程。
数控加工的第一步是进行零件设计与编程。
在进行数控加工之前,首先需要对待加工的零件进行设计,确定其尺寸、形状和加工要求。
然后利用专业的CAD/CAM软件进行编程,将设计好的零件转化为数控加工程序,包括刀具路径、加工顺序、切削参数等内容。
2. 材料准备与上机。
在进行数控加工之前,需要准备好待加工零件所需的材料,并进行相应的检验和清洗工作。
然后将材料固定在机床工作台上,并进行工件和刀具的装夹,调整好各个工件的位置和夹紧力,确保加工过程中不会出现移位或松动的情况。
3. 加工工艺参数设置。
在上机之后,需要根据零件的材料、形状和加工要求,设置相应的加工工艺参数。
包括切削速度、进给速度、切削深度、切削宽度等参数,这些参数的设置将直接影响到加工质量和加工效率。
4. 数控加工操作。
经过以上准备工作之后,就可以进行数控加工操作了。
操作人员通过数控系统输入预先编好的加工程序,机床将按照程序中设定的路径和参数进行自动加工,实现对工件的精密加工。
在加工过程中,操作人员需要随时监控加工状态,及时调整加工参数,确保加工质量和安全。
5. 加工质量检验。
在数控加工完成之后,需要对加工零件进行质量检验。
通过测量工件的尺寸、形状和表面粗糙度等指标,判断加工质量是否符合要求。
如果发现有缺陷或不合格的地方,需要及时调整加工参数,重新加工或修复工件。
6. 零件清洗与包装。
经过质量检验合格的零件,需要进行清洗和包装工作。
清洗可以去除加工过程中产生的切屑和油污,保持零件的表面清洁。
然后根据客户要求进行包装,以防止零件在运输和储存过程中受到损坏。
7. 加工记录与数据归档。
在数控加工过程中,需要对加工过程进行记录和数据归档。
数控机床的工艺加工及操作编程

数控机床的工艺加工及操作编程数控机床是一种通过数字控制系统来实现自动化工艺加工的机床。
它可以根据预定的程序来进行精密的切削加工,具有高精度、高效率、灵活性强的特点。
在数控机床的工艺加工和操作编程中,需要考虑以下几个方面。
一、工艺加工:1.材料准备:首先需要准备加工所需的原材料,包括金属材料、塑料材料等。
2.工艺规划:根据零件的形状、尺寸和加工要求,制定出合理的工艺路线和加工工艺,包括切削刀具的选择、工件夹紧方式、切削刀具进给和转速等。
3.加工参数设定:根据工艺规划,设置数控机床的加工参数,包括切削速度、进给速度、主轴转速、切削深度和进给深度等。
4.工装夹具设计:设计和选择合适的工装夹具,用于固定工件和切削刀具。
5.数控编程:根据工艺路线和加工参数,编写数控程序,包括刀具路径、切削轨迹、切削方向和切削顺序等。
6.加工过程监控:在加工过程中,及时监控加工状态和加工精度,根据需要进行调整和修正。
7.加工后处理:对加工后的工件进行清洁、检查和检验,并进行必要的后续处理,如调整尺寸、修整表面等。
二、操作编程:1.数控机床的基本操作:包括开机、关机、启动和停止等基本操作。
2.数控系统操作:熟悉数控系统的功能和操作界面,学会使用数控系统的各种功能键和指令。
3.数控编程语言:掌握数控编程语言,如G代码和M代码,了解其语法规则和常用指令。
4.数控程序的编写:根据工艺路线和加工参数,编写数控程序,并进行模拟和调试。
5.数控程序的调整和修改:根据实际加工情况,对数控程序进行调整和修正,以保证加工质量和效率。
6.数控机床的故障排除:熟悉常见故障的排除方法,能够及时发现和解决数控机床的故障问题。
7.加工记录和统计:对每次加工进行记录和统计,包括加工时间、加工数量和加工效率等,以便于评估和改进加工工艺。
通过对数控机床的工艺加工和操作编程的详细了解与掌握,可以充分发挥数控机床的优势,提高加工效率和产品质量,实现机械制造的自动化和数字化。
数控机床的加工工艺及编程步骤

数控机床的加工工艺及编程步骤数控机床是一种通过数字化编程来实现自动化加工的机床。
它具有高精度、高效率、高稳定性等优点,适用于各种复杂形状的工件加工。
下面将介绍数控机床的加工工艺及编程步骤。
一、数控机床的加工工艺1.工件准备:首先需要根据加工需求选择合适的工件,并进行表面清理和定位,以便于后续加工操作。
2.零部件设计:根据产品图纸和加工要求,设计并制作数控机床所需的各个零部件,包括夹具、刀具等。
3.加工参数设置:根据工件的材料、形状和要求,确定加工过程中的各项参数,包括切削速度、切削深度、进给速度等。
4.数控机床的设定:根据工件的形状和要求,设置数控机床的加工程序,包括选择刀具、设定加工路径等。
5.加工过程:将工件加固在数控机床上,并根据设定的加工程序进行加工操作,包括切割、铣削、镗削等。
6.检测与修正:在加工过程中,需要进行质量检测,如测量工件的尺寸精度、表面光洁度等,并根据检测结果进行必要的修正。
7.完成工件:经过上述步骤的加工后,即可得到符合要求的工件,并进行清洁和包装,准备出厂或进行下一步加工。
二、数控机床的编程步骤1.确定坐标系:根据工件的不同形状和加工要求,确定适合的坐标系,包括原点、X、Y、Z轴方向等。
2.编写程序:使用数控机床的操作界面或专业的编程软件,根据工件的形状和要求,编写相应的加工程序。
3.路径设置:根据工件的轮廓和特点,设置刀具的加工路径,包括进给速度、切削深度、进给方向等。
4.刀具选择:根据加工要求和材料特性,选择合适的刀具,并确定刀具的类型、规格和安装位置。
5.加工参数设定:根据工件的材料特性和加工要求,设置切削速度、进给速度、切削深度等加工参数。
6.试切检验:在正式加工之前,进行试切检验,验证程序的正确性和工件的准确性,以确保加工质量。
7.程序调试:将编写好的程序输入数控机床,并进行程序调试,包括路径调整、参数设定等,直至程序运行正常。
8.正式加工:经过上述步骤的准备后,即可进行正式的加工操作,按照编写好的程序,控制数控机床进行加工。
数控编程的内容及步骤

(6)程序检验 常用的校验方法有人工法、加工仿
真法、空运行法等。
(7)首件试切 首件试切主要用于发现加工误差,并分
析加工误差产生的原因,加以修正。
数控实训
精度及毛胚形状和热处理的分析,确定 工件在数控机床上进行加工的可行性。
(2)确定工艺过程 工艺过程的内容包括确定工件的定
位基准、选用夹具、确定对刀方式和选 择对刀点、制定进给路线并确定加工余 量、切削参数等。
(3)数学处理 工艺方案确定后,就要根据零件的
几何尺寸和加工路线,计算数控加工所 需的编程数据,如计算零件轮廓中的关 键交点、切点等的坐标。
分析零件图纸,确定工艺方案,进 行数学处理,编写程序单,制备控制介 质及程序校验等。其具体步骤如图3.1所 示:
图3.1 数控机床程序编制的步骤
2)程序编制的步骤 :
分析工件图样 确定工艺过程
数学处理 编写零件加工程序单
首件试切 程序检验 制备控制介质
(1) 分析工件图样 通过对工件的材料、形状、尺寸、
数控实训
数控编程的内Байду номын сангаас及步骤
数控编制:是指在数控机床上加工零件 时,根据零件图样的要求,将加工零件 的全部工艺过程及工艺参数、位移数据、 辅助运动,以规定的指令代码及程序格 式编写成加工程序,经过调试后记录在 控制介质上,并用控制介质的信息控制 机床的动作,以实现零件的全部加工过 程。
1)零件加工程序编制的内容:
(4)编写零件加工程序单 准备好编程数据后,下一步需编写
零件加工程序单。
编写程序单之前必须了解数控机床 的性能、编程指令以及数控加工过程, 才能编写出正确、合理的加工程序。
(5)制备控制介质 通常将编写好的程序单记录在控制
数控车床的程序编制步骤

数控车床的程序编制步骤数控车床程序编制是将零件加工的工艺要求和加工参数转换为机床能够执行的指令序列并载入数控系统,使机床按照程序要求自动完成加工过程。
下面是数控车床程序编制的典型步骤:1.了解零件图纸和工艺要求:仔细研究零件图纸,了解零件的尺寸要求、形状要求以及表面质量要求等,还要确定零件的加工顺序和工艺路线。
2.选择工具和刀具:根据零件的要求和加工工艺,选择合适的车刀、镗刀、钻刀及其加工参数。
3.制定加工工艺:根据零件的尺寸要求和形状要求,制定适当的车削切削参数和轮廓刀补偿值,并确定刀具路径。
4.确定坐标系和参考点:选择适当的坐标系和参考点,并确定零点的坐标位置。
5.数控系统参数设置:根据机床和数控系统的特点,设置数控系统的参数,如坐标系、移动速度、进给量等。
6.编写数控程序:使用数控编程语言,按照零件加工工艺要求,逐步编写数控程序。
7.先练习:在计算机仿真软件中,根据编写的数控程序进行仿真操作,以验证程序正确性。
修正程序错误。
8.载入数控系统:将编写好的数控程序,通过U盘、本地网络等方式,载入数控系统中。
9.导入刀具和工件坐标:确定刀具的初始位置、起刀点和工作零点,导入数控系统中。
10.设置工件坐标系:根据图纸和实际加工需求,设置工件坐标系和坐标偏移。
11.调试程序:使用手动操作或自动操作,对数控系统进行调试,确保程序的安全性和准确性。
12.加工实践:进行实际加工操作,监控加工过程中各项参数的变化,并及时调整。
13.检验零件:完成加工后,根据图纸要求进行零件的测量和检验,确保零件质量满足要求。
14.优化程序:根据实际加工情况,调整和优化数控程序,提高加工效率和质量。
15.存档和备份:将编写好的数控程序进行保存和备份,以备后续使用。
总结起来,数控车床程序编制是一项精细的工作,需要熟悉机床、工具和数控系统的基本原理,同时要具备良好的图纸分析和数控编程能力。
通过以上步骤的严格执行,可以确保数控车床加工过程的准确性和安全性。
简述数控编程的主要内容和步骤

简述数控编程的主要内容和步骤
数控编程是一种通过计算机程序来控制机床进行加工的技术。
它的主要内容包括数控编程语言、数控编程规范、数控编程软件等。
下面将从步骤和内容两个方面来详细介绍数控编程。
一、数控编程的步骤
1.确定加工零件的工艺要求和加工工艺流程,包括加工工序、刀具选择、切削参数等。
2.根据工艺要求和工艺流程,确定数控编程的基本参数,包括坐标系、刀具半径补偿、切削速度、进给速度等。
3.根据加工零件的图纸,编写数控程序,包括加工轮廓、孔加工、螺纹加工等。
4.对编写好的数控程序进行检查和修改,确保程序的正确性和可靠性。
5.将编写好的数控程序输入数控机床,进行加工。
二、数控编程的内容
1.数控编程语言
数控编程语言是数控编程的基础,它是一种特殊的计算机语言,用于描述加工零件的几何形状和加工工艺。
常用的数控编程语言有G
代码、M代码、T代码等。
2.数控编程规范
数控编程规范是指在编写数控程序时需要遵循的一些规定和标准,它包括程序格式、程序注释、程序命名、程序结构等。
遵循数控编程规范可以提高程序的可读性和可维护性。
3.数控编程软件
数控编程软件是一种用于编写数控程序的计算机软件,它可以提供图形化界面、自动化编程、程序检查等功能,大大提高了编程效率和程序质量。
数控编程是一项非常重要的技术,它可以提高加工效率、降低成本、提高产品质量。
掌握数控编程的基本内容和步骤,对于从事机械加工行业的人员来说是非常必要的。
机床数控技术第3章数控加工程序的编制

6. 程序校验和首件试切
程序送入数控系统后,通常需要经过试运行和首 件试切两步检查后,才能进行正式加工。通过试运行, 校对检查程序,也可利用数控机床的空运行功能进行 程序检验,检查机床的动作和运动轨迹的正确性。对 带有刀具轨迹动态模拟显示功能的数控机床可进行数 控模拟加工,以检查刀具轨迹是否正确;通过首件试 切可以检查其加工工艺及有关切削参数设定得是否合 理,加工精度能否满足零件图要求,加工工效如何, 以便进一步改进,直到加工出满意的零件为止。
1—脚踏开关 2—主轴卡盘 3—主轴箱 4—机床防护门 5—数控装置 6—对刀仪 7—刀具8—编程与操作面板 9—回转刀架 10—尾座 11—床身
3.2 数控车削加工程序编制
数控车床主要用来加工轴类零件的内外圆柱面、 圆锥面、螺纹表面、成形回转体表面等。对于盘类零 件可进行钻、扩、铰、镗孔等加工。数控车床还可以 完成车端面、切槽等加工。
3. 程序名
FANUC数控系统要求每个程序有一个程序名,
程序名由字母O开头和4位数字组成。如O0001、 O1000、O9999等
3.2.3 基本编程指令
1. 快速定位指令G00
格式:G00 X(U)_ Z(W)_;
说明:
(1) G00指令使刀具在点位控制方式下从当前点以快移速度 向目标点移动,G00可以简写成G0。绝对坐标X、Z和其增 量坐标U、W可以混编。不运动的坐标可以省略。
3.2.1 数控车床的编程特点
(1)在一个程序段中,可以用绝对坐标编程,也可用 增量坐标编程或二者混合编程。
(2)由于被加工零件的径向尺寸在图样上和在测量时 都以直径值表示,所以直径方向用绝对坐标(X)编程时 以直径值表示,用增量坐标(U)编程时以径向实际位移 量的2倍值表示,并附上方向符号。
数控机床编程步骤

数控机床编程步骤数控机床编程步骤数控机床程序编制又称数控编程,是指编程者根据零件图样和工艺文件的要求。
以下是店铺精心准备的数控机床编程步骤,大家可以参考以下内容哦!1.分析零件图样和工艺要求分析零件图样和工艺要求的目的,是为了确定加工方法、制定加工计划,以及确认与生产组织有关的问题,此步骤的内容包括:1)确定该零件应安排在哪类或哪台机床上进行加工。
2)采用何种装夹具或何种装卡位方法。
3)确定采用何种刀具或采用多少把刀进行加工。
4)确定加工路线,即选择对刀点、程序起点(又称加工起点,加工起点常与对刀点重合)、走刀路线、程序终点(程序终点常与程序起点重合)。
5)确定切削深度和宽度、进给速度、主轴转速等切削参数。
6)确定加工过程中是否需要提供冷却液、是否需要换刀、何时换刀等。
2.数值计算根据零件图样几何尺寸,计算零件轮廓数据,或根据零件图样和走刀路线,计算刀具中心(或刀尖)运行轨迹数据。
数值计算的最终目的是为了获得编程所需要的所有相关位置坐标数据。
3.编写加工程序单在完成上述两个步骤之后,即可根据已确定的加工方案(或计划)及数值计算获得的数据,按照数控系统要求的程序格式和代码格式编写加工程序等。
编程者除应了解所用数控机床及系统的功能、熟悉程序指令外,还应具备与机械加工有关的工艺知识,才能编制出正确、实用的加工程序。
4.制作控制介质,输入程序信息程序单完成后,编程者或机床操作者可以通过CNC机床的操作面板,在EDIT方式下直接将程序信息键入CNC系统程序存储器中;也可以根据CNC系统输入、输出装置的不同,先将程序单的程序制作成或转移至某种控制介质上。
控制介质大多采用穿孔带,也可以是磁带、磁盘等信息载体,利用穿孔带阅读机或磁带机、磁盘驱动器等输入(输出)装置,可将控制介质上的程序信息输入到CNC系统程序存储器中。
5.程序检验编制好的程序,在正式用于生产加工前,必须进行程序运行检查。
在某些情况下,还需做零件试加工检查。
数控手工编程的方法及步骤

数控手工编程的方法及步骤数控编程的要紧内容有:分析零件图样确定工艺过程、数值计算、编写加工程序、校对程序及首件试切。
编程的具体步骤讲明如下:1.分析图样、确定工艺过程在数控机床上加工零件,工艺人员拿到的原始资料是零件图。
依据零件图,能够对零件的外形、尺寸精度、表层粗糙度、工件材料、毛坯种类和热处理状况等进行分析,然后选择机床、刀具,确定定位夹紧装置、加工方法、加工顺序及切削用量的大小。
在确定工艺过程中,应充分考虑所用数控机床的指令功能,充分发扬机床的效能,做到加工路线合理、走刀次数少和加工工时短等。
此外,还应填写有关的工艺技术文件,如数控加工工序卡片、数控刀具卡片、走刀路线图等。
2.计算刀具轨迹的坐标值依据零件图的几何尺寸及设定的编程坐标系,计算出刀具中心的运动轨迹,得到全部刀位数据。
一般数控系统具有直线插补和圆弧插补的功能,关于外形对比简单的平面形零件〔如直线和圆弧组成的零件〕的轮廓加工,只需要计算出几何元素的起点、终点、圆弧的圆心〔或圆弧的半径〕、两几何元素的交点或切点的坐标值。
要是数控系统无刀具补偿功能,因此要计算刀具中心的运动轨迹坐标值。
关于外形复杂的零件〔如由非圆曲曲折折曲曲折折折折线、曲曲折折曲曲折折折折面组成的零件〕,需要用直线段〔或圆弧段〕逼近实际的曲曲折折曲曲折折折折线或曲曲折折曲曲折折折折面,依据所要求的加工精度计算出其节点的坐标值。
3.编写零件加工程序依据加工路线计算出刀具运动轨迹数据和已确定的工艺参数及辅助动作,编程人员能够按照所用数控系统的功能指令及程序段格式,逐段编写出零件的加工程序。
编写时应注重:第一,程序书写的典型性,应便于表达和交流;第二,在对所用数控机床的性能与指令充分熟悉的本原上,各指令使用的技巧、程序段编写的技巧。
4.将程序输进数控机床将加工程序输进数控机床的方式有:光电阅读机、键盘、磁盘、磁带、存储卡、连接上级计算机的DNC接口及网络等。
目前常用的方法是通过键盘直截了当将加工程序输进〔MDI方式〕到数控机床程序存储器中或通过计算机与数控系统的通讯接口将加工程序传送到数控机床的程序存储器中,由机床操作者依据零件加工需要进行调用。
简述数控编程的步骤

简述数控编程的步骤
数控编程是为数控机床制定加工程序的过程,主要包括以下步骤:
1. 确定加工工件:确定要加工的工件的尺寸、形状和材料等。
2. 确定加工方法:根据工件特点和加工要求,选择合适的加工
方法,如铣削、钻削、车削等。
3. 制定工艺路线:根据工件的几何形状和加工要求,确定加工
工艺路线和刀具的使用顺序。
4. 设计切削刀具路径:确定刀具在工件上的运动轨迹,即刀具
路径。
根据工件的形状和尺寸,考虑切削刀具的进给量、切削速度和切削深度等。
5. 编写数控程序:根据刀具路径和加工要求,使用数控编程语言,编写数控程序。
数控程序包括刀具路径、加工参数、切削速度、进给量等信息。
6. 仿真验证:使用数控编程软件进行仿真验证,检查编写的数
控程序是否正确,是否能够实现预期的加工效果。
7. 上传数控程序:将编写好的数控程序上传至数控机床的数控
系统中。
8. 调试和优化:进行数控机床的调试,根据实际加工情况,对
加工参数进行调整和优化,以获得更好的加工效果。
9. 开始加工:数控机床根据上传的数控程序进行自动加工,完
成工件的加工过程。
10. 检验和修正:对加工后的工件进行检验,与设计要求进行比
对,如果有偏差,则根据实际情况进行修正,优化加工程序。
11. 记录和存档:将优化后的数控程序进行记录和存档,以备将来使用或参考。