中考点睛1-多边形的对角线---规律探究方法

合集下载

考点14 四边形-中考数学考点讲解

考点14 四边形-中考数学考点讲解

考点14 四边形一、多边形1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n-.2.多边形的内角和、外角和(1)内角和:n边形内角和公式为(n–2)·180°;(2)外角和:任意多边形的外角和为360°. 3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn-⋅,每一个外角为360n︒.(3)正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.二、平行四边形的性质1.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“”表示.2.平行四边形的性质(1)边:两组对边分别平行且相等.(2)角:对角相等,邻角互补.(3)对角线:互相平分.(4)对称性:中心对称但不是轴对称.3.注意:利用平行四边形的性质解题时一些常用到的结论和方法:(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.4.平行四边形中的几个解题模型(1)如图①,AE平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABE为等腰三角形,即AB=BE.(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE.(4)如图④,根据平行四边形的面积的求法,可得AE·BC=AF·CD.三、平行四边形的判定(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.(2)方法二:两组对边分别相等的四边形是平行四边形.(3)方法三:有一组对边平行且相等的四边形是平行四边形.(4)方法四:对角线互相平分的四边形是平行四边形.(5)方法五:两组对角分别相等的四边形是平行四边形.四、特殊平行四边形的性质与判定1.矩形的性质与判定(1)矩形的性质:①四个角都是直角;②对角线相等且互相平分;③面积=长×宽=2S△ABD=4S△AOB.(如图)(2)矩形的判定:①定义法:有一个角是直角的平行四边形;②有三个角是直角;③对角线相等的平行四边形.2.菱形的性质与判定(1)菱形的性质:①四边相等;②对角线互相垂直、平分,一条对角线平分一组对角;③面积=底×高=对角线乘积的一半.(2)菱形的判定:①定义法:有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等的四边形.3.正方形的性质与判定(1)正方形的性质:①四条边都相等,四个角都是直角;②对角线相等且互相垂直平分;③面积=边长×边长=2S△ABD=4S△AOB.(2)正方形的判定:①定义法:有一个角是直角,且有一组邻边相等的平行四边形;②一组邻边相等的矩形;③一个角是直角的菱形;④对角线相等且互相垂直、平分.4.联系①两组对边分别平行;②相邻两边相等;③有一个角是直角;④有一个角是直角;⑤相邻两边相等;⑥有一个角是直角,相邻两边相等;⑦四边相等;⑧有三个角都是直角.5.中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一多边形多边形内角和:n边形内角和公式为(n–2)·180°;多边形外角和:任意多边形的外角和为360°;正多边形是各边相等,各角也相等的多边形.典例1 一个多边形的内角和为900°,则这个多边形是A.六边形B.七边形C.八边形D.九边形【答案】B典例2 如果一个多边形的每一个外角都是60°,那么这个多边形是A.四边形B.五边形C.六边形D.八边形【答案】C【解析】多边形外角和为360°,此多边形外角个数为:360°÷60°=6,所以此多边形是六边形.故选C.【名师点睛】计算正多边形的边数,可以用外角和除以每个外角的度数得到.1.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是A.17 B.16 C.15 D.16或15或172.如果一个多边形的每一个内角都是108°,那么这个多边形是A.四边形B.五边形C.六边形D.七边形考向二平行四边形的性质与判定1.平行四边形的对边相等、对角相等、对角线互相平分.平行四边形的性质为我们证明线段平行或相等,角相等提供了新的理论依据.2.平行四边形的判定方法有五种,在选择判定方法时应根据具体条件而定.对于平行四边形的判定方法,应从边、角及对角线三个角度出发,而对于边又应考虑边的位置关系及数量关系两方面.典例3 在ABCD中,∠A∶∠B∶∠C∶∠D的值可能是A.3∶4∶3∶4 B.5∶2∶2∶5C.2∶3∶4∶5 D.3∶3∶4∶4【答案】A【解析】∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴在ABCD中,∠A∶∠B∶∠C∶∠D 的值可能是:3∶4∶3∶4.故选A.【名师点睛】本题考查了平行四边形的性质.熟记平行四边形的对角相等是解决问题的关键.典例4在下列条件中,不能判定四边形为平行四边形的是A.对角线互相平分B.一组对边平行且相等C.两组对边分别平行D.一组对边平行,另一组对边相等【答案】D3.平行四边形的周长为24,相邻两边的差为2,则平行四边形的各边长为.A.4,4,8,8 B.5,5,7,7C.5.5,5.5,6.5,6.5 D.3,3,9,94.小玲的爸爸在制作平行四边形框架时,采用了一种方法:如图所示,将两根木条AC,BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形考向三矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例5 如图,四边形ABCD的对角线AC、BD相交于点O,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是A.AB=CD,AC=BD B.OA=OC,OB=ODC.AC⊥BD,AC=BD D.AB∥CD,AD=BC【答案】B【名师点睛】本题考查矩形的判定方法、熟练掌握矩形的判定方法是解决问题的关键,记住对角线相等的平行四边形是矩形,有一个角是90度的平行四边形是矩形,有三个角是90度的四边形是矩形.此类题属于中考常考题型.典例6 如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是A.1 cm B.2 cmC.3 cm D.4 cm【答案】C【解析】∵四边形ABCD是矩形,∴OA=OC=OB=OD=3 cm,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3 cm,故选C.【名师点睛】本题考查了矩形的性质,等边三角形的判定和性质,熟记各性质并判断出△AOB是等边三角形是解题的关键.5.能判断四边形是矩形的条件是A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直6.如图,已知在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC的度数是A.18°B.36°C.45°D.72°考向四菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角.2.菱形的判定:四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形.典例7菱形具有而平行四边形不具有的性质是A.两组对边分别平行B.两组对边分别相等C.一组邻边相等D.对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例8如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).7.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°8.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向五正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例9如图,正方形ABCD中,E是BD上一点,BE=BC,则∠BEC的度数是A.45°B.60°C.67.5°D.82.5°【答案】C【解析】利用正方形的性质,可知∠CBE=45°,再根据等腰三角形的性质即可得出答案.∵四边形ABCD是正方形,∴∠CBD=45°,∵BC=BE,∴∠BEC=∠BCE=12×(180°−45°)=67.5°.故选C.典例10下列命题正确的是A.对角线互相垂直平分且相等的四边形是正方形B.对角线相等的四边形是矩形C.一组对边相等,另一组对边平行的四边形是平行四边形D.对角线互相垂直的四边形是菱形【答案】A【名师点睛】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的判定,此题难度不大.9.如图,已知正方形ABCD的边长为53,E为BC边上的一点,∠EBC=30°,则BE的长为A.5B.25C.5 D.1010.如图,要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明A.AB=AD且AC⊥BD B.AB=AD且AC=BDC.∠A=∠B且AC=BD D.AC和BD互相垂直平分考向六中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例11如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH为菱形,故D错误;故选D.11.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形12.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD 的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.下面四个图形中,是多边形的是2.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是A.7 B.10 C.35 D.703.n边形的边数增加一倍,它的内角和增加A.180°B.360°C.(n–2)·180°D.n180°4.七边形的外角和等于A.180ºB.360ºC.540ºD.720º5.在平行四边形ABCD中,∠A的平分线交DC于E,若∠DEA=30°,则∠B=A.100°B.120°C.135°D.150°6.如图所示,在ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有_____个平行四边形.7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=650,则∠AEB=____________.8.如图,正方形ABCD的面积为5,正方形BEFG面积为4,那么△GCE的面积是________.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.学科!网10.如图,E,F,G,H分别是边AB,BC,CD,DA的中点.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形.11.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线CA平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.1.(2017•铜仁市)一个多边形的每个内角都等于144°,则这个多边形的边数是A.8 B.9C.10 D.112.(2017•黑龙江)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是A.22 B.20C.22或20 D.183.(2017•聊城)如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是A.AB=AC B.AD=BDC.BE⊥AC D.BE平分∠ABC4.(2017•西宁)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为A.5 B.4 C.342D.345.(2017•扬州)在平行四边形ABCD中,∠B+∠D=200°,则∠A=__________.6.(2017•青海)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1–∠2=__________.7.(2017•邵阳)如图所示的正六边形ABCDEF,连接FD,则∠FDC的大小为__________.8.(2017•抚顺)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=3时,线段BC的长为__________.9.(2017•襄阳)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.10.(2017•安顺)如图,DB∥AC,且DB=12AC,E是AC的中点.(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则需给△ABC添加什么条件,为什么?3.【答案】B【解析】平行四边形的对边相等,所以两邻边的和为周长的一半.周长为24,则两邻边的和为12.又因为相邻的两边相差2,则可计算出较长的一边长为7,较短的一边长为5.故选B.变式拓展4.【答案】A【解析】对角线互相平分的四边形是平行四边形.故选A . 5.【答案】C【解析】A 、对角线互相平分的四边形是平行四边形,不一定是矩形,故错误; B 、等腰梯形的对角线也相等,故错误;C 、对角线互相平分且相等的四边形是矩形,故正确;D 、对角线互相垂直的四边形不一定是矩形,故错误, 故选C .7.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .8.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 9.【答案】D 【解析】设,CE x =30EBC ∠=︒,2,BE x ∴=根据勾股定理,22353,BC BE CE x =-==5,x ∴=210.BE x ∴==故选D .11.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 12.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,∴EBK ABM S S △△=14,S △AEN =S △EBK ,∴EKMN ABM S S 四边形△=12,同理可得KFPM BCM S S 四边形△=12, QGPM DCM S S 四边形△=12,HQMN DAM S S 四边形△=12,∴EFGH ABCD S S 四边形四边形=12,∵四边形ABCD 的面积记为S 1,中点四边形EFGH 的面积记为S 2,则S 1与S 2的数量关系是S 1=2S 2.故选C .1.【答案】D【解析】根据多边形的定义:平面内不在一条直线上的线段首尾顺次相接组成的图形叫多边形,得:D 是考点冲关多边形.故选D.2.【答案】C【解析】∵一个正n边形的每个内角为144°,∴144n=180×(n–2),解得:n=10,这个正n边形的所有对角线的条数是:(3)10722n n-⨯==35,故选C.6.【答案】4【解析】∵在ABCD中,E,F分别为AB,DC的中点,∴DF=CF=AE=EB,AB∥CD,∴四边形AEFD,CFEB,DFBE是平行四边形,再加上ABCD本身,共有4个平行四边形.故答案为4.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.852【解析】∵正方形ABCD的面积为5,正方形BEFG面积为4,∴正方形ABCD5BEFG的边长为2,∴CE52,△GCE的面积=12 CE•BG=12×(5–2)×2=5–2.故答案为:5–2.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形;(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)在△ABC中,E、F分别是边AB、BC中点,所以EF∥AC,且EF=12AC,同理有GH∥AC,且GH=12AC,∴EF∥GH且EF=GH,故四边形EFGH是平行四边形.11.【解析】(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠FAC=∠ECA,在△AOF和△COE中,FAC ECAOA OCAOF COE∠∠⎧⎪⎨⎪∠∠⎩===,∴△AOF≌△COE(ASA),∴OE=OF,∴四边形AECF是平行四边形,∵AF=CF,∴四边形AECF是菱形;(2)设CF=x,则AF=x,BF=8–x,∵四边形ABCD是矩形,∴∠B=90°,∴BF2+AB2=AF2,∴(8–x)2+42=x2,解得:x=5,即EC=5,∴S菱形AECF=FC•AB=5×4=20.1.【答案】C【解析】180°–144°=36°,360°÷36°=10,则这个多边形的边数是10.故选C.2.【答案】C【解析】如图,在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2×(3+3+4)=20.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2×(4+4+3)=22.故选C.4.【答案】D【解析】∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴DC=6,∵AD=BC=10,∴AC22AD CD34∴BO=12AC34D.5.【答案】80°【解析】∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°–∠B=180°–100°=80°,故答案为:80°.6.【答案】24°直通中考【解析】正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5–2)×180°÷5=108°,正六边形的每个内角是:(6–2)×180°÷6=120°,则∠3+∠1–∠2=(90°–60°)+(120°–108°)–(108°–90°)=24°.故答案为:24°.7.【答案】90°【解析】∵在正六边形ABCDEF中,∠E=∠EDC=120°,∵EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°.8.【答案】3【解析】由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=3.故答案为3.9.【解析】(1)∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=12BD=3,∵∠ADB=30°,∴cos∠ADB=3ODAD,∴AD=3=23.10.【解析】(1)∵E是AC中点,∴EC=12AC.∵DB=12AC,∴DB=E C.又∵DB∥AC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.理由:∵DB∥AE,DB=AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴ADBE是矩形.。

2020年黑龙江省龙东地区中考数学试卷(解析版)

2020年黑龙江省龙东地区中考数学试卷(解析版)

3
3
设 AG= y ,则 DG= a y , ∴EG=GH = a y 1 a 4 a y ,
33
11
在 Rt△AEG 中, AE2 AG2 EG2 ,

2 3
a
2
y2
4 3
a
y
2

解得: y 1 a , 2
∴当 BE 1 a 时, G 是线段 AD 的中点,故⑤正确; 3
B. 3.6 或 3.8
C. 3.8 或 4.2
D. 3.8 或 4.2
【答案】B
【解析】
【分析】
根据众数的定义得出正整数 a 的值,再根据平均数的定义求解可得.
【详解】∵数据:a,3,4,4,6(a 为正整数),唯一的众数是 4,
∴a=1 或 2,
13 4 46
当 a=1 时,平均数为
=3.6;
5
2
∴y 可以分别取 2,4,6,8,10,12 共 6 种情况,x 为正整数;
8
综上所述:共有 8+6=14 种购买方案.
故选:D
【点睛】本题考查了求方程组的正整数解,根据题意列出方程,并确定方程组的解为正整数是解题关键.
10.如图,正方形 ABCD 的边长为 a ,点 E 在边 ,点 F
则△CBE≌△CDH(SAS), ∴∠ECB=∠DCH,
10
∴∠ECH=∠BCD=90°, ∴∠ECG=∠GCH=45°, ∵CG=CG,CE=CH, ∴△GCE≌△GCH(SAS), ∴EG=GH, ∵GH=DG+DH,DH=BE, ∴EG=BE+DG,故③错误, ∴△AEG 的周长=AE+EG+AG=AE+AH= AE +AD+DH =AE +AD+EB =AB+AD=2a,故②错误,

2024年中考数学一轮复习考点17 多边形与平行四边形(精讲)

2024年中考数学一轮复习考点17 多边形与平行四边形(精讲)

考点17.多边形与平行四边形(精讲)【命题趋势】多边形与平行四边形是历年中考考查重点,年年都会考查,分值为10分左右,预计2024年各地中考还将出现,并且在选择、填空题中考查多边形的内角和、平行四边形性质和判定、与三角形中位线有关计算的可能性比较大。

中考数学中,对平行四边形的单独考察难度一般不大,一般和三角形全等(相似)、函数、解直角三角形等综合考查的可能性比较大,对于本考点内容,要注重基础,反复练习,灵活运用。

【知识清单】1:多边形的相关概念(☆☆)1)多边形的定义:在平面中,由一些线段首尾顺次相接组成的封闭图形叫做多边形。

2)多边形的对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

3)多边形对角线条数:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形,n边形的对角线条数为()32n n-。

4)多边形内角和定理:n边形的内角和为(n−2)∙180°(n≥3)。

5)多边形外角和定理:任意多边形的外角和等于360°,与多边形的形状和边数无关。

6)正多边形的定义:各角相等,各边相等的多边形叫做正多边形。

7)平面镶嵌(密铺)的条件:在同一顶点内的几个角的和等于360°;所有正多边形中,单独使用其中一种能够进行密铺(镶嵌)的只有正三角形、正方形、正六边形。

如果选用多种,则需要满足:(1)边长相等;(2)选用正多边形若干个内角的和恰好等于360°。

2:平行四边形的性质与判定(☆☆☆)1)平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

2)平行四边形的表示:用符号“▱”表示,平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”.3)平行四边形的性质:(1)两组对边平行且相等;(2)对角相等、邻角互补;(3)对角线互相平分;(4)平行四边形是中心对称图形,但不是轴对称图形,平行四边形的对角线的交点是平行四边形的对称中心。

规律探索--图形规律(解析版)-中考数学重难点题型专题汇总

规律探索--图形规律(解析版)-中考数学重难点题型专题汇总

规律探索-中考数学重难点题型专题汇总图形规律1.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是A.B.C.D.【答案】D【解析】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有,故选D.【名师点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.2.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.3.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C 【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,∴则第⑥个图案中菱形的个数为:()126111+⨯-=,故C 正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.4.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【分析】观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.【解析】根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.5.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.21n个图案中黑色三角形的个数为1+2+3+4+……+n,据此可得第⑤个图案中黑色三角形的个数.【解析】∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.Y Y-=()6.观察下列树枝分杈的规律图,若第n个图树枝数用n Y表示,则94A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.8.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11AOB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为()A.()202020202,2-B.()202120212,2C.()202020202,2⨯D.()201120212,2-【答案】C【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.解:由题意,点A 每6次绕原点循环一周,20216371......5÷= ,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=3222-⨯-,()2020202020212,2A ∴,故选:C.【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.9.如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n 个正方形多个小正方形.【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可.【解析】∵第1个正方形需要4个小正方形,4=22,第2个正方形需要9个小正方形,9=32,第3个正方形需要16个小正方形,16=42,…,∴第n+1个正方形有(n+1+1)2个小正方形,第n 个正方形有(n+1)2个小正方形,故拼成的第n+1个正方形比第n 个正方形多(n+2)2﹣(n+1)2=2n+3个小正方形.故答案为:2n+3.10.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有__________个〇.【答案】6058【解析】由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,…∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.11.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=__________.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2-1=3个.第3幅图中有2×3-1=5个.第4幅图中有2×4-1=7个.…可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n-1)个.当图中有2019个菱形时,2n-1=2019,n=1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.12.观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是32=n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:1255,22n n +-==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.13.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为()12n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,第n个图形中的黑色圆点的个数为()1 2n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,,其中每3个数中,都有2个能被3整除,33÷2=161,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.14.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:1(1) 2n n-.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有12019190 2⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交最多有1(1) 2n n-.15.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.【答案】2n+1【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,拼成第n 个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.16.如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3+ +n=()12n n +,列一元二次方程求解可得.【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∴第n 个图形中黑色三角形的个数为1+2+3+4+5+ +n=()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去),∴第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n.17.如图,由两个长为2,宽为1的长方形组成“7”字图形ABCDEF,其中顶点A 位于x 轴上,顶点B,D 位于y 轴上,O 为坐标原点,则OB OA的值为__________.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n-1,…,则顶点F 2019的坐标为__________.【答案】(1)12;(2)606255(,【解析】(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴OB DC OA BC =,∵DC=1,BC=2,∴OB OA =12,故答案为:12.(2过C 作CM⊥y 轴于M,过M 1作M 1N⊥x 轴,过F 作FN 1⊥x 轴.根据勾股定理易证得BD ==CM=OA=5,DM=OB=AN=5,∴C(5),∵AF=3,M 1F=BC=2,∴AM 1=AF-M 1F=3-2=1,∴△BOA≌ANM 1(AAS),∴NM 1=OA=255,∵NM 1∥FN 1,∴1111251553M N AM FN AF FN ==,,∴FN 1=655,∴AN 1=355,∴ON 1=OA+AN 1=253555555+=,∴F(555,655),同理,F 1(857555,F 2(55,),F 3(1459555,),F 4(17510555,),…F 2019),即(【名师点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键18.如图,正方形1ABCB 中,AB =,AB 与直线l 所夹锐角为60︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ,…,依此规律,则线段20202021A A =________.【答案】20203【分析】利用tan30°计算出30°角所对直角边,乘以2得到斜边,计算3次,找出其中的规律即可.【详解】∵AB 与直线l 所夹锐角为60︒,正方形1ABCB 中,AB =,∴∠11B AA =30°,∴11B A =1B A∴111=2=2(3AA -;∵11B A =1,∠122B A A =30°,∴22B A =11B A tan30°=33133⨯=,∴2112=23A A -⨯;∴线段20202021A A =202112020332(33-⨯=,故答案为:2020)3.【点睛】本题考查了正方形的性质,特殊角三角函数值,含30°角的直角三角形的性质,规律思考,熟练进行计算,抓住指数的变化这个突破口求解是解题的关键.19.如图,菱形ABCD 中,120ABC ∠=︒,1AB =,延长CD 至1A ,使1DA CD =,以1AC 为一边,在BC 的延长线上作菱形111ACC D ,连接1AA ,得到1ADA ∆;再延长11C D 至2A ,使1211D A C D =,以21A C 为一边,在1CC 的延长线上作菱形2122A C C D ,连接12A A ,得到112A D A ∆……按此规律,得到202020202021A D A ∆,记1ADA ∆的面积为1S ,112A D A ∆的面积为2S ……202020202021A D A ∆的面积为2021S ,则2021S =_____.【答案】40382【分析】由题意易得60,1BCD AB AD CD ∠=︒===,则有1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,进而根据等边三角形的面积公式可得134S =,2S =242n n S -=,然后问题可求解.【详解】解:∵四边形ABCD 是菱形,∴1AB AD CD ===,//,//AD BC AB CD ,∵120ABC ∠=︒,∴60BCD ∠=︒,∴160ADA BCD ∠=∠=︒,∵1DA CD =,∴1DA AD =,∴1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,过点B 作BE⊥CD 于点E,如图所示:∴3sin 2BE BC BCD =⋅∠=,∴1121133244A D BE A S D =⋅==,同理可得:2222133244S A D ==⨯=,2233233444S A D ==⨯=∴由此规律可得:242n n S -=,∴2202144038202122S ⨯-==⋅;故答案为40382【点睛】本题主要考查菱形的性质、等边三角形的性质与判定及三角函数,熟练掌握菱形的性质、等边三角形的性质与判定及三角函数是解题的关键.20.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.【答案】875【分析】设第n 个“龟图”中有a n 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“a n =n 2−n+5(n 为正整数)”,再代入n=30即可得出结论.【详解】解:设第n 个“龟图”中有a n 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,∴a n =1+(n+1)+(n −1)2+2=n 2−n+5(n 为正整数),∴a 30=302−30+5=875.故答案是:875.【点睛】n =n 2−n+5(n 为正整数)”是解题的关键.21.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究22.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示.【解析】第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n 个图案有(3n+1)个三角形.故答案为:(3n+1).23.如图,四边形ABCD 是矩形,延长DA 到点E,使AE=DA,连接EB,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)【分析】先求得△EF 1D 的面积为1,再根据等高的三角形面积比等于底边的比可得EF 1F 2的面积,EF 2F 3的面积,…,EF n﹣1F n 的面积,以及△BCF n 的面积,再根据面积的和差关系即可求解.【解析】∵AE=DA,点F 1是CD 的中点,矩形ABCD 的面积等于2,∴△EF 1D 和△EAB 的面积都等于1,∵点F 2是CF 1的中点,∴△EF 1F 2的面积等于12,同理可得△EF n﹣1F n 的面积为12n−1,∵△BCF n 的面积为2×12n ÷2=12n ,∴△EF n B 的面积为2+1﹣1−12−⋯−12n−1−12n =2﹣(1−12n )=2n +12n .故答案为:2n +12n .。

专题18 多边形-中考数学一轮复习精讲+热考题型(解析版)

专题18 多边形-中考数学一轮复习精讲+热考题型(解析版)

专题18 多边形【知识要点】多边形的相关知识:➢在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。

多边形的边与它邻边的延长线组成的角叫做外角。

➢连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

➢一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为2)3(nn凸多边形:画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。

正多边形:各角相等,各边相等的多边形叫做正多边形。

(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)⏹多边形的内角和➢n边形的内角和定理:n边形的内角和为(n−2)∙180°➢n边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。

【考查题型】考查题型一多边形截角后的边数问题【解题思路】多边形减去一个角的方法可能有三种:经过两个相邻点:则少了一条边:经过一个顶点和一边:边数不变:经过两条邻边:边数增加一条.典例1.(云南昭通市模拟)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16B.17C.18D.19【答案】A【详解】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.变式1-1.(宁波市一模)把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选A.考查题型二计算多边形的周长【解题思路】考查多边形的周长,解题在于掌握计算公式典例2.(隆化县模拟)下列图形中,周长不是32 m的图形是( )A.B.C.D.【答案】B【提示】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.变式2-1.(海南中考模拟)如图:□ABCD纸片,:A=120°:AB=4:BC=5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF=1:HG=2:则这个六边形的周长为( )A.12B.15C.16D.18【答案】B【解析】如图,分别作直线AB:BC:HG的延长线和反向延长线使它们交于点B:Q:P.∵六边形ABCDEF的六个角都是120°:∴六边形ABCDEF的每一个外角的度数都是60°.∴△APH:△BEF:△DHG:△CQG都是等边三角形.∴EF=BE=BF=1:DG=HG=HD=2.∴FC=5-1=4:AH=5-2= 3:CG=CD-DG=4−2=2.∴六边形的周长为1+3+3+2+2+4=15.故选B.考查题型三计算网格中的多边形面积【解题思路】利用分割法即可解决问题典例3.(辽宁葫芦岛市模拟)如图是边长为1的正方形网格,A、B、C、D均为格点,则四边形的面积为()A .7B .10C .152D .8【答案】A【提示】利用分割法即可解决问题. 【详解】解:S 四边形ABCD =3×4﹣12×2×1×2﹣12×1×3×2=12﹣5=7,故选:A . 变式3-1.(山东烟台市模拟)如图,在边长为1的小正方形网格中,△ABC 的三个顶点均在格点上,若向正方形网格中投针,落在△ABC 内部的概率是( )A .12B .14C .38D .516【答案】D【提示】用正方形的面积减去四个易求得三角形的面积,即可确定△ABC 面积,用△ABC 面积除以正方形的面积即可.【详解】解:正方形的面积=4×4=16,三角形ABC 的面积=11116434221222-⨯⨯-⨯⨯-⨯⨯ =5, 所以落在△ABC 内部的概率是516,故选D .变式3-2.(江西九年级零模)如图,在边长为1的小正方形网格中,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形图中①,②,③,④四个格点多边形的面积分别记为1234,,,,S S S S 下列说法正确的是( )A .12S SB .23S S =C .124S S S +=D .134S S S +=【答案】B【提示】根据题意判断格点多边形的面积,依次将1234S S S S 、、、计算出来,再找到等量关系. 【详解】观察图形可得12342.5,3,3,6,S S S S ==== ∴23234,6S S S S S =+==, 故选:B .考查题型四 计算多边形对角线条数【解题思路】熟记n 边形从一个顶点出发可引出(n-3)条对角线是解答此题的关键.典例4.(山东济南市·中考真题)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( ) A .12 B .13C .14D .15【答案】C【解析】解:根据题意,得::n:2:•180=360°×2+180°,解得:n=7: 则这个多边形的边数是7,七边形的对角线条数为7(73)2⨯-=14:故选C: 变式4-1.(山东济南市·中考模拟)若凸n 边形的每个外角都是36°,则从一个顶点出发引的对角线条数是( )A .6B .7C .8D .9 【答案】B【解析】360°÷36°=10,10−3=7.故从一个顶点出发引的对角线条数是7. 故选:B.变式4-2.(莆田市二模)从n 边形的一个顶点出发可以连接8条对角线,则n =( ) A .8 B .9 C .10 D .11【答案】D【提示】根据n 边形从一个顶点出发可引出(n-3)条对角线,可得n-3=8,求出n 的值即可. 【详解】解:由题意得:n-3=8,解得n=11,故选:D .变式4-3.(湖南长沙市模拟)已知一个正n 边形的每个内角为120°,则这个多边形的对角线有( ) A .5条 B .6条 C .8条 D .9条【答案】D【提示】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有12(6×3)=9条,故选:D.变式4-4.(广东茂名市·中考模拟)若一个多边形从同一个顶点出发可以作5条对角线,则这个多边形的边数为()A.6B.7C.8D.9【答案】C【提示】可根据n边形从一个顶点引出的对角线有n-3条,即可求解.【详解】解:设这个多边形的边数为n,则n-3=5,解得n=8,故这个多边形的边数为8,故选:C.变式4-5.(河北模拟)过某个多边形的一个顶点的所有对角线,将这个多边形分成7个三角形,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】D【提示】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.【详解】解:设这个多边形是n边形,由题意得,n-2=7,解得:n=9,即这个多边形是九边形,故选:D:考查题型五多边形内角和问题【解题思路】考查多边形的内角和公式,解题关键是牢记多边形的内角和公式.典例5.(山东济宁市·中考真题)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A .60°B .65°C .55°D .50°【答案】A【解析】根据五边形的内角和等于540°,由:A+:B+:E=300°,可求:BCD+:CDE 的度数,再根据角平分线的定义可得:PDC 与:PCD 的角度和,进一步求得:P 的度数. 解::五边形的内角和等于540°,:A+:B+:E=300°, ::BCD+:CDE=540°﹣300°=240°,::BCD 、:CDE 的平分线在五边形内相交于点O , ::PDC+:PCD=(:BCD+:CDE )=120°, ::P=180°﹣120°=60°. 故选A .变式5-1.(甘肃庆阳市·中考真题)如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°【答案】C【提示】根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选C .变式5-2.(湖南湘西土家族苗族自治州·中考真题)已知一个多边形的内角和是1080°,则这个多边形是( ) A .五边形 B .六边形 C .七边形 D .八边形【答案】D【提示】根据多边形的内角和=(n ﹣2)•180°,列方程可求解. 【详解】设所求多边形边数为n ,∴(n ﹣2)•180°=1080°,解得n=8.故选D.考查题型六正多边形内角和问题【解题思路】掌握并能运用多边形内角和公式是解题的关键典例6.(湖南怀化市·中考真题)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.9【答案】C【提示】设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案:n=8.故选C.变式6-1.(湖北宜昌市·中考真题)游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行.成功的招数不止一招,可助我们成功的一招是().A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长【答案】A【提示】根据题意可知封闭的图形是正五边形,求出正五边形内角的度数即可解决问题.【详解】根据题意可知,从起点走五段相等直路之后回到起点的封闭图形是正五边形,∵正五边形的每个内角的度数为:(52)1801085-⨯︒=︒∴它的邻补角的度数为:180°-108°=72°,因此,每走完一段直路后沿向右偏72°方向行走,故选:A.变式6-2.(河北中考真题)正六边形的一个内角是正n边形一个外角的4倍,则n=_________.【答案】12【提示】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n边形的外角为30°,再根据外角和定理即可求解.【详解】解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n 边形一个外角的4倍, :正n 边形的外角为30°,:正n 边形的边数为:360°÷30°=12. 故答案为:12.变式6-3.(福建中考真题)如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC ∠等于_______度.【答案】30【提示】先证出内部的图形是正六边形,求出内部小正六边形的内角,即可得到∠ACB 的度数,根据直角三角形的两个锐角互余即可求解.【详解】解:由题意六边形花环是用六个全等的直角三角形拼成, 可得BD=AC ,BC=AF , ∴CD=CF ,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,∴∠1=()1621801206-⨯︒=︒, ∴∠2=180°-120°=60°, ∴∠ABC=30°, 故答案为:30.考查题型七 截角后的内角和问题【解题思路】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个是解决本题的关键.典例7.(五莲县一模)一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是( ) A .360° B .540°C .180°或360°D .540°或360°或180°【答案】D【提示】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解. 【详解】n 边形的内角和是(n ﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°, 所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°, 因而所成的新多边形的内角和是540°或360°或180°, 故选D .变式7-1.(河北九年级其他模拟)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是( ) A .17 B .16 C .15 D .16或15或17【答案】D【详解】多边形的内角和可以表示成()2180n -⋅︒ (3n ≥且n 是整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条, 根据()21802520,n -⋅︒=解得:n=16, 则多边形的边数是15,16,17. 故选D .变式7-2.(贵州铜仁市·九年级零模)一个多边形切去一个角后得到的另一个多边形的内角和为900︒,那么原多边形的边数为( ) A .6或7或8 B .6或7 C .7或8 D .7【答案】A【提示】首先求得内角和为900°的多边形的边数,即可确定原多边形的边数. 【详解】解:设内角和为900°的多边形的边数是n ,则(n-2)•180°=900°,解得:n=7,如图,有如下几种切法,则原多边形的边数为6或7或8.故选:A.考查题型八正多边形的外角问题【解题思路】解决问题的关键是掌握多边形的外角和等于360度.典例8.(江苏无锡市·中考真题)正十边形的每一个外角的度数为()A.36︒B.30C.144︒D.150︒【答案】A【提示】利用多边形的外角性质计算即可求出值.【详解】解:360°÷10=36°,故选:A.变式8-1.(江苏扬州市·中考真题)如图,小明从点A出发沿直线前进10米到达点B,向左转45︒后又沿直线前进10米到达点C,再向左转45︒后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米【答案】B【提示】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以10米即可.【详解】解:∵小明每次都是沿直线前进10米后再向左转45︒,∴他走过的图形是正多边形,边数n=360°÷45°=8,∴小明第一次回到出发点A时所走的路程=8×10=80米.故选:B.变式8-2.(湖南娄底市·中考真题)正多边形的一个外角为60°,则这个多边形的边数为()A.5B.6C.7D.8【答案】B【提示】根据正多边形的外角和以及一个外角的度数,求得边数.【详解】解:正多边形的一个外角等于60°,且外角和为360°,则这个正多边形的边数是:360°÷60°=6,故选:B.考查题型九多边形外角和的实际应用【解题思路】典例9.(湖北黄冈市·中考真题)如果一个多边形的每一个外角都是36°,那么这个多边形的边数是()A.7B.8C.9D.10【答案】D【提示】根据多边形的外角的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10.故选D.变式9-1.(山东德州市·中考真题)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米【答案】C【提示】根据多边形的外角和即可求出答案.【详解】解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64米.故选:C考查题型十多边形内角和与外角和的综合应用【解题思路】熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.典例10.(西藏中考真题)一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A.8B.9C.10D.11【答案】C【提示】利用多边形的内角和公式及外角和定理列方程即可解决问题.【详解】设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=10.故选C.变式10-1.(陆丰市模拟)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于(:A.108°B.90°C.72°D.60°【答案】C【提示】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.变式10-2.(中江县模拟)已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8B.9C.10D.12【答案】A【解析】试题提示:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.变式10-3.(西宁市模拟)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.8【答案】C【解析】解:设这个多边形的边数是n:根据题意得::n-2:•180°=2×360°+180°: n=7:故选C:考查题型十一平面镶嵌【解题思路】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角:典例11.下列多边形中,不能够单独铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】由镶嵌的条件知:在一个顶点处各个内角和为360°:【详解】∵正三角形的内角=180°÷3=60°:360°÷60°=6:即6个正三角形可以铺满地面一个点:∴正三角形可以铺满地面:∵正方形的内角=360°÷4=90°:360°÷90°=4:即4个正方形可以铺满地面一个点:∴正方形可以铺满地面:∵正五边形的内角=180°:360°÷5=108°:360°÷108°≈3.3:∴正五边形不能铺满地面:∵正六边形的内角=180°:360°÷6=120°:360°÷120°=3:即3个正六边形可以铺满地面一个点:∴正六边形可以铺满地面:故选C:变式11-1 小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能...是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C变式11-2.能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形【答案】C【解析】A、正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;B、正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;C、正方形的每个内角为90°,正八边形的每个内角为135°,两个正八边形和一个正方形刚好能铺满地面;D、正三角形每个内角为60度,正十边形每个内角为144度,60m+144n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满.故选C.变式11-3 下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形B.3个正方形和2个正三角形C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形【答案】D【提示】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。

中考数学常见几何模型对角互补模型(从全等到相似)

中考数学常见几何模型对角互补模型(从全等到相似)

专题04 对角互补模型(从全等到相似)全等三角形与相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就对角互补模型进行梳理及对应试题分析,方便掌握。

模型1.对角互补模型(全等模型)【模型解读】四边形或多边形构成的几何图形中,相对的角互补。

常见含90°、120°(60°)及任意角度的三种对角互补类型。

该题型常用到的辅助线主要是顶定点向两边做垂线,从而证明两个三角形全等. 【常见模型及结论】1)全等型—60º和120º:如图1,已知∠AOB =2∠DCE =120º,OC 平分∠AOB . 则可得到如下几个结论:∠CD =CE ,∠OD +OE =OC ,∠234COD COESS+=. 2)全等型—90º:如图2,已知∠AOB =∠DCE =90º,OC 平分∠AOB . 则可以得到如下几个结论:∠CD =CE ,∠OD +OE =OC ,∠212ODCE OCD COES SSOC =+=. 3)全等型—2α和1802α︒-:如图3,已知∠AOB =2α,∠DCE =1802α︒-,OC 平分∠AOB .则可以得到以下结论:∠CD =CE ∠OD +OE =2OC ·cos ,∠2sin cos OCDCOESSOC αα+=⋅⋅.1.(2021·贵州黔东南·中考真题)在四边形ABCD 中,对角线AC 平分∠BAD .(探究发现)(1)如图①,若∠BAD =120︒,∠ABC =∠ADC =90︒.求证:AD +AB =AC ; (拓展迁移)(2)如图②,若∠BAD =120︒,∠ABC +∠ADC =180︒.①猜想AB 、AD 、AC 三条线段的数量关系,并说明理由;②若AC =10,求四边形ABCD 的面积.【答案】(1)见解析;(2)①AD +AB =AC ,见解析;②【分析】(1)根据角平分线的性质得到∠DAC =∠BAC =60o ,然后根据直角三角形中30o 是斜边的一半即可写出数量关系;(2)①根据第一问中的思路,过点C 分别作CE ∠AD 于E ,CF ∠AB 于F ,构造AAS 证明∠CFB ≅∠CED ,根据全等的性质得到FB =DE ,结合第一问结论即可写出数量关系;②根据题意应用60o 的正弦值求得CE 的长,然后根据()111222ABCD S AD CE AB CF AD AB CE ⨯⨯⨯四边形=+=+的数量关系即可求解四边形ABCD 的面积.【详解】(1)证明:∠AC 平分∠BAD ,∠BAD =120o ,∠∠DAC =∠BAC =60o , ∠∠ADC =∠ABC =90o ,,∠∠ACD =∠ACB =30o ,∠AD =1122AC AB AC ,=.∠AD +AB =AC , (2)①AD +AB =AC ,理由:过点C 分别作CE ∠AD 于E ,CF ∠AB 于F .∠AC 平分∠BAD ,∠CF =CE ,∠∠ABC +∠ADC =180o ,∠EDC +∠ADC =180o ,∠∠FBC =∠EDC ,又∠CFB =∠CED =90o ,∠∠CFB ≅∠CED()AAS ,∠FB =DE ,∠AD +AB =AD +FB +AF =AD +DE +AF =AE +AF ,在四边形AFCE 中,由∠题知:AE +AF =AC ,∠AD +AB =AC ; ②在Rt ∠ACE 中,∠AC 平分∠BAD ,∠BAD =120o ∠∠DAC =∠BAC =60o ,又∠AC =10,∠CE =A sin 10sin 60o DAC ∠==∠CF =CE ,AD +AB =AC ,∠()111222ABCD S AD CE AB CF AD AB CE ⨯⨯⨯四边形=+=+=111022AC CE ⨯⨯⨯=. 【点睛】本题考查了全等三角形的判定和性质,角平分线的性质和应用,解直角三角形,关键是辨认出本题属于角平分线类题型,作垂直类辅助线.2.(2022·广东深圳·一模)【问题提出】如图1,在四边形ABCD 中,AD CD =,120ABC ∠=︒,60ADC ∠=︒,2AB =,1BC =,求四边形ABCD 的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD ,由于AD CD =,所以可将DCB 绕点D 顺时针方向旋转60︒,得到'DAB △,则'BDB △的形状是.(2)在(1)的基础上,求四边形ABCD 的面积.(3)如图3,等边ABC 的边长为2,BDC 是顶角为120BDC ∠=︒的等腰三角形,以D 为顶点作一个60︒的角,角的两边分别交AB 于点M ,交AC 于点N ,连接MN ,求AMN 的周长.'BDB )将BDM 绕点,得到DCP ,则PD ,MBD ∠=,证明NMD ≅△,证得AMN 的周长4AC =.将DCB绕点∠DCB∠△='BD B DBDB△是等边三角形;'故答案为:等边三角形;(2)过B由(1)知,(3)解:将BDM绕点D顺时针方向旋转120︒,得到DCP,△,CDP=,PDC,=CP BMMD PD∠BDC是等腰三角形,且∠=∠BD CD=DBC又∠ABC等边三角形,∠=∠ABC ACB∠=∠MBD ACB∠同理可得NCD=∠PCD NCD+∠DCN NCP∠60MDN ∠=︒,∠=1206060PDC NDC MDB NDC BDC MDN ∠+∠=∠+∠=∠-∠︒-︒=︒, 即60MDN PDN ∠=∠=︒, 在NMD △和NPD 中,MD PD MDN PDN DN DN =⎧⎪∠=⎨⎪=⎩∠()NMD NPDSAS ≅△△,∠MN PN NC CP NC BM ==+=+,∠AMN 的周长224AM AN MN AM AN NC BM AB AC =++=+++=+=+=. 故AMN 的周长为4.【点睛】本题考查三角形全等变换,等边三角形判定,四边形面积转化为三角形面积,图形旋转,直角三角形判定,三点共线,三角形的周长转化为两边之和,特殊角锐角三角函数,掌握三角形全等变换,等边三角形判定,四边形面积转化为三角形面积,图形旋转,直角三角形判定,三点共线,三角形的周长转化为两边之和,特别是利用图形旋转进行图形的转化特殊角锐角三角函数,是解题关键. 3.(2022·河南安阳·二模)【阅读】通过构造恰当的图形,可以对线段长度大小进行比较,直观地得到线段之间的数量关系,这是“数形结合”思想的典型应用.【理解】(1)如图1,120MAN ∠=︒,AC 平分,,MAN CD AM CB AN ∠⊥⊥,求证:AB AD AC +=.【拓展】(2)如图2,其他条件不变,将图1中的DCB ∠绕点C 逆时针旋转,CD 交MA 的延长线于点D ,CB 交射线AN 于点B ,写出线段AD ,AB ,AC 之间的数量关系,并就图2的情形说明理由.【应用】(3)如图3,ABC 为等边三角形,4AB =,P 为BC 边的中点,120MPN ∠=︒,将MPN ∠绕点P 转动使射线PM 交直线AC 于点M ,射线PN 交直线AB 于点N ,当8AM =时,请直接写出AN 的长.的结论可得PEM PFN ≌,)由(1)可得AE AF AC +=,CE CF =,∠MAN ∠=BAD ∠+∠CDA ∴∠=CED ∠=CED CFB ∴≌,ED ∴,AE ED AD AF =-=AE AF ED AD ∴+=-又AE AF AC +=,∴(3)①如图,当M 在AB P是BC 的中点,ABC 是等边三角形,AP ∴平分,∠B =∠C =60°∴)可得PEM PFN ≌,EM ∴AB 1122CP BC AB ∴===FPB =90°-60°=30°,1,3AE AF ∴==,AM AN AF FN AF ∴=+=在AB 上方时,过点同理可得EM FN =8332AN FN AF EM AF =-=-=--=.综上所述,AN 的长为14或2.【点睛】本题考查了旋转的性质,角平分线的性质,等边三角形的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,作两垂线证明三角形全等是解题的关键.模型2.对角互补模型(相似模型)【模型解读】四边形或多边形构成的几何图形中,相对的角互补。

专题21 勾股定理-2023年中考数学一轮复习热点题型与方法精准突破(解析版)

专题21 勾股定理-2023年中考数学一轮复习热点题型与方法精准突破(解析版)

专题21 勾股定理【考查题型】【知识要点】知识点一勾股定理勾股定理的概念:如果直角三角形的两直角边分别为,,斜边为,那么。

变式:,,,,.适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。

用拼图的方法验证勾股定理的思路是:1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理勾股定理的证明方法:方法一(图一):,,化简可证.方法二(图二):四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为,所以方法三(图三):,,化简得证图一图二图三知识点二勾股数勾股数概念:能够构成直角三角形的三边长的三个正整数称为勾股数,即中,,,为正整数时,称,,为一组勾股数常见的勾股数:如;;;等扩展:用含字母的代数式表示组勾股数:1)(为正整数);2)(为正整数)3)(,为正整数)注意:每组勾股数的相同整数倍,也是勾股数。

知识点三勾股定理的逆定理勾股定理的逆定理内容:如果三角形三边长,,满足,那么这个三角形是直角三角形,其中为斜边【注意】1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,,为三边的三角形是直角三角形;若,时,以,,为三边的三角形是钝角三角形;若,时,以,,为三边的三角形是锐角三角形;2)定理中,,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,,满足,那么以,,为三边的三角形是直角三角形,但是为斜边3)勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形知识点四直角三角形的性质与判定性质:1)直角三角形的两个锐角互余。

2023年中考数学复习----多边形基础知识与例题讲解

2023年中考数学复习----多边形基础知识与例题讲解

2023年中考数学复习----多边形基础知识与例题讲解一、多边形1、多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n−.2、多边形的内角和、外角和(1)内角和:n边形内角和公式为(n–2)·180°;(2)外角和:任意多边形的外角和为360°. 3、正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn−⋅,每一个外角为360n︒.(3)正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.典型例题讲解1、(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意; 故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2、021·四川自贡市·中考真题)如图,AC 是正五边形ABCDE 的对角线,ACD ∠的度数是( )A .72°B .36°C .74°D .88°【答案】A【分析】 根据正五边形的性质可得108B BCD ∠=∠=︒,AB BC =,根据等腰三角形的性质可得36BCA BAC ∠=∠=︒,利用角的和差即可求解.【详解】解:∵ABCDE 是正五边形,∴108B BCD ∠=∠=︒,AB BC =,∴36BCA BAC ∠=∠=︒,∴1083672ACD ∠=︒−︒=︒,故选:A .本题考查正五边形的性质,求出正五边形内角的度数是解题的关键.3、021·四川资阳市·中考真题)下列命题正确的是()A.每个内角都相等的多边形是正多边形B.对角线互相平分的四边形是平行四边形C.过线段中点的直线是线段的垂直平分线D.三角形的中位线将三角形的面积分成1∶2两部分【答案】B【分析】分别根据正多边形的判定、平行四边形的判定、线段垂直平分线的判定以及三角形中线的性质逐项进行判断即可得到结论.【详解】解:A.每个内角都相等,各边都相等的多边形是正多边形,故选项A的说法错误,不符合题意;B. 对角线互相平分的四边形是平行四边形,说法正确,故选项B符合题意;C. 过线段中点且垂直这条线段的直线是线段的垂直平分线,故选项C的说法错误,不符合题意;D. 三角形的中位线将三角形的面积分成1∶3两部分,故选项D的说法错误,不符合题意.故选:B.【点睛】此题主要考查了对正多边形、平行四边形、线段垂直平分线的判断以及三角形中线性质的认识,熟练掌握正多边形、平行四边形、线段垂直平分线的判断是解答此题的关键.4、21·浙江丽水市·中考真题)一个多边形过顶点剪去一个角后,所得多边形的内角和为720 ,则原多边形的边数是__________.【答案】6或7【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.【点睛】本题考查多边形的内角和;熟练掌握多边形的内角和与多边形的边数之间的关系是解题的关键.5、021·湖北黄冈市·中考真题)正五边形的一个内角是_____度.【答案】108【分析】根据正多边形的定义、多边形的内角和公式即可得.【详解】解:正五边形的一个内角度数为180(52)1085︒⨯−=︒,故答案为:108.【点睛】本题考查了正多边形的内角,熟练掌握多边形的内角和公式是解题关键.6、021·陕西中考真题)正九边形一个内角的度数为______.【答案】140°【分析】正多边形的每个内角相等,每个外角也相等,而每个内角等于180︒减去一个外角,求出外角即可求解.【详解】正多边形的每个外角360=n︒(n为边数),所以正九边形的一个外角360==409︒︒∴正九边形一个内角的度数为18040140︒−︒=︒故答案为:140°.【点睛】本题考查的是多边形的内角和,多边形的外角和为360︒,正多边形的每个内角相等,通过计算1个外角的度数来求得1个内角度数是解题关键.7、021·湖南中考真题)一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.【答案】720°【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2) ×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n-2) ×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n边形内角和等于(n-2) ×180°”是解题的关键.。

多边形对角线公式的推导过程

多边形对角线公式的推导过程

多边形对角线公式的推导过程全文共四篇示例,供读者参考第一篇示例:多边形对角线公式是指在一个多边形中,任意两个不相邻顶点之间的连线称为对角线。

这个对角线切分了多边形成为两个三角形。

而多边形对角线公式则是指在一个n边形中,对角线的数量可以用以下公式表示:D = \frac{n(n-3)}{2}。

接下来我们将推导多边形对角线公式的过程,在推导之前,我们先来看一个简单的例子。

假设我们有一个正五边形,也就是五边形的每条边都相等且每个角度相等的多边形。

我们可以根据这个五边形来验证我们的对角线公式。

在正五边形中,每个顶点可以和其他三个顶点相连,形成三条对角线。

所以在正五边形中,对角线的数量为\frac{5(5-3)}{2} = 5。

现在让我们来推导多边形对角线公式的过程。

假设我们有一个n 边形,我们现在要计算这个n边形中对角线的数量。

首先我们可以通过其中一个顶点出发,连接这个顶点到剩下的n-3个顶点,这样就形成了n-3条对角线。

然后我们移动到下一个顶点,再次连接这个顶点到剩下的n-3个顶点,这样又形成了n-3条对角线。

依此类推,直到我们连接到倒数第三个顶点。

此时,我们已经将每个顶点与其他n-3个顶点相连,形成了n-3条对角线。

但是需要注意的是,我们重复计算了每条对角线两次,因为在n边形中,每条对角线都和两个顶点相连。

所以我们需要将计算结果除以2,得到正确的对角线数量。

我们得出多边形对角线公式为D = \frac{n(n-3)}{2}。

这个公式的推导过程并不复杂,但是对于理解多边形结构和对角线数量有着重要的意义。

通过这个公式,我们可以轻松计算任意n边形中对角线的数量,而不需要一个一个去连线计算。

在实际应用中,多边形对角线公式也有着广泛的用途。

比如在计算几何问题中,我们可以根据多边形对角线公式来计算多边形内部的对角线数量,从而更好地理解多边形的结构和性质。

综合以上所述,多边形对角线公式的推导过程虽然简单,但是具有一定的意义和价值。

正六边形中的对角线性质与应用

正六边形中的对角线性质与应用

正六边形中的对角线性质与应用正六边形是一种特殊的六边形,其六个边长度相等,六个内角均为120°。

在正六边形中,对角线是指连接不相邻顶点的线段。

正六边形的对角线具有一些特殊的性质和应用。

本文将探讨正六边形中对角线的性质以及其在几何学和实际问题中的应用。

一、对角线的性质1. 对角线的数量在正六边形中,任意两个顶点之间都存在一条对角线。

由于正六边形有6个顶点,因此共有15条对角线,每个顶点可以与5个其他顶点相连。

2. 对角线的长度在正六边形中,相邻两个顶点连线的长度为正三角形的边长,记作a。

由于正六边形的六个内角均为120°,因此正三角形的边长与正六边形的边长相等。

3. 对角线的性质正六边形的对角线有以下性质:(1)对角线的长度相等:由于正六边形的边长相等,因此相互连接的对角线的长度也相等。

(2)对角线的交点:在正六边形中,所有的对角线都会在中心点O处相交。

中心点O是正六边形的重心,对角线的交点O使得正六边形具有对称性。

二、对角线的应用正六边形的对角线不仅仅只是几何学中的一个形状构成,它在实际问题中也有着广泛的应用。

1. 利用对角线计算正六边形的面积正六边形可以划分为6个全等的等边三角形,而正三角形的面积公式为A = (sqrt(3) / 4) * a^2,其中a为边长。

通过计算正三角形的面积,可以得到正六边形的面积公式为A = 6 * (sqrt(3) / 4) * a^2。

而正六边形的边长a可以通过对角线的长度进行计算。

2. 构建六边形结构正六边形的对角线在建筑和工程中有广泛的应用。

由于正六边形的对角线长度相等且具有对称性,因此可以用于构建稳定的六边形结构。

例如,六边形的网格结构可以在某些建筑或机械设计中起到增强结构牢固性的作用。

3. 数学推导与证明正六边形的对角线还常常用于数学的推导和证明。

在数学中,通过对正六边形的对角线进行分析和计算,可以推导出一些与角度、边长和面积相关的数学公式和定理,进一步拓展数学的应用领域。

多边形对角线公式的推导过程

多边形对角线公式的推导过程

多边形对角线公式的推导过程对于四边形ABCD,我们可以通过连接顶点来形成两个相交的对角线AC和BD。

我们可以利用三角形的余弦定理来推导对角线公式。

根据余弦定理,我们有:AC² = AB² + BC² 2 AB BC cos(∠ABC)。

BD² = AD² + BC² 2 AD BC cos(∠CBD)。

将这两个方程相加,得到:AC² + BD² = AB² + 2BC² + AD² 2ABBCcos(∠ABC)2ADBCcos(∠CBD)。

接下来,我们需要利用四边形的性质来简化这个方程。

根据四边形的性质,对角线互相平分,即AC=BD,同时对角线互相垂直,即∠ABC+∠CBD=180°。

因此,cos(∠ABC) = -cos(∠CBD)。

将这些性质代入方程中,得到:AC² + BD² = AB² + BC² + AD² + CD²。

这就是四边形对角线公式的推导过程。

我们可以看到,对角线的平方和等于四边形的各边长的平方和。

现在,我们来推广到更多边的情况。

对于n边形,我们可以利用向量和点的坐标来推导对角线公式,但这涉及到更多的数学知识。

简单来说,我们可以利用多边形的顶点坐标来计算各对角线的长度,然后利用这些长度的平方和来得到对角线公式。

综上所述,多边形对角线公式的推导过程涉及到几何学和三角学的知识,通过利用三角形的余弦定理和多边形的性质,我们可以推导出对角线公式,并且可以推广到更多边的情况。

希望这个回答能够满足你的要求。

多边形对角线

多边形对角线

多边形对角线
多边形的对角线公式:k=n(n-3)/2。

组成多边形的线段至少有3条,三角形是最简单的多边形。

组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点;多边形相邻两边所组成的角叫做多边形的内角;连接多边形的两个不相邻顶点的线段叫做多边形的对角线。

任意凸形多边形的外角和都等于360°;多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3);在平面内,各边相等,各内角也都相等的多边形叫做正多边形。

【两个条件必须同时满足】在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。

但是空间多边形不适用。

可逆用:n边形的边=(内角和÷180°)+2;过n边形一个顶点有(n-3)条对角线;n边形共有n×(n-3)÷2=对角线。

初中多边形对角线教案

初中多边形对角线教案

初中多边形对角线教案教学目标:1. 让学生理解多边形的对角线的概念,掌握多边形对角线的性质。

2. 培养学生通过观察、思考、推理的能力,提高学生的几何思维能力。

3. 培养学生的合作交流能力,提高学生的数学素养。

教学重点:1. 多边形对角线的概念及性质。

2. 学生能够运用对角线的性质解决实际问题。

教学难点:1. 对角线性质的证明。

2. 运用对角线性质解决实际问题。

教学准备:1. 教师准备多媒体课件,包括多边形的对角线图片、动画等。

2. 学生准备笔记本、尺子、圆规等学习工具。

教学过程:一、导入(5分钟)1. 教师通过多媒体展示多边形的图片,引导学生观察多边形的对角线。

2. 学生分享观察到的对角线特点。

3. 教师总结多边形的对角线定义,并板书。

二、新课讲解(15分钟)1. 教师通过动画展示多边形对角线的性质,引导学生发现对角线的长度相等。

2. 学生观察动画,总结对角线的长度相等性质。

3. 教师引导学生思考对角线与多边形边的关系,学生通过画图、讨论,发现对角线互相平分。

4. 教师板书对角线互相平性质,并进行证明。

5. 教师引导学生探索对角线与多边形内角的关系,学生通过画图、讨论,发现对角线与内角的关系。

6. 教师板书对角线与内角的关系,并进行证明。

三、课堂练习(15分钟)1. 教师给出多边形的对角线练习题,学生独立完成。

2. 学生分享解题过程,教师进行点评。

四、拓展与应用(15分钟)1. 教师给出实际问题,引导学生运用对角线的性质解决。

2. 学生分组讨论,合作解决问题。

3. 学生分享解题结果,教师进行点评。

五、小结(5分钟)1. 教师引导学生总结本节课所学内容,学生分享学习收获。

2. 教师对学生的学习进行评价,鼓励学生继续努力。

六、作业布置(5分钟)1. 教师布置多边形对角线的练习题,要求学生巩固所学知识。

教学反思:本节课通过多媒体展示、学生观察、画图、讨论等方式,引导学生掌握多边形的对角线性质。

在教学过程中,注意调动学生的积极性,让学生通过观察、思考、推理等方式主动学习。

多边形对角线的规律是什么?

多边形对角线的规律是什么?
因为每个顶点和它自己及相邻的两个顶点都不能做对角线所以n边形的每个顶点只能和n3个其他的顶点之间做对角线又因为每一条对角线都要连结两个顶点所以要除以2
多边形对角线的规律是什么?
n边形的对角线的条数是n(n-3)/2。
因为每个顶点和它自己及相邻的两个顶点都不能做对角线,所以n边形的每个顶点只能和n-3个其他的顶点之间做对角线,又因为每一条对角线都要连结两个顶点,所以要除以2。
扩展资料
设X,Y是任意两个集合,按定义一切序对(x,y)所构成的集合:
X×Y := {(x,y)|(xX叫做X^2。
集合中的.对角线:
△ = {(a,b)∈X^2| a = b }
是X^2的一个子集,它给出集X中元素的相等关系,事实上,a△b表示(a,b)∈△。即a=b。

对角线规则

对角线规则

4)B 和Si 的最高氧化物的水化物都是弱酸.
对角线规则
5).硼和硅的卤化物的熔沸点比较低,易挥发,易 水解;
硼的卤化物的物理性质 BF3 温室时的状态 熔点/K 沸点/K 气 146 172 BCl3 液(加压) 166 285 BBr3 液 227 364 BI3 固 316 483
硅的卤化物的物理性质 SiF3 温室时的状态 熔点/K 沸点/K 气 182.8 177.4 SiCl3 液 202.7 330.6 SiBr3 液 278.5 427.6 SiI3 固 393.6 563
对角线规则
8).氯化锂和氯化镁均能溶于有机溶剂中,表现出共价性;
9)在碱金属的氟化物、碳酸盐和磷酸盐中,只有锂盐是难溶的, 相应的镁盐也难溶于水:
溶解度/[g/(100gH2O)] 氟化物 碳酸盐 锂盐 0.3 1.33 镁盐 0.009 0.0049 钠盐 4.0 21.5
磷酸盐
0.039
0.661
对角线规则
对角线规则可以用离子极化的观点粗略地进行分析. 离子极化力, 是指离子使其他离子极化而发生变形的能力, 处 于对角线的元素在性质上的相似性, 是由于它们的离子极化力相 近的缘故. 一般而言, 离子的极化力与它的半径大小、电荷多少、电子 层结构等因素有关. 阳离子的半径越小, 所带正电荷越多, 则离 子的极化力越大; 且具有2 电子结构的离子比具有8 电子结构的 离子极化力要大. Li、N a 虽然在同一主族, 且Li+ 、Na+ 所带电 荷量相同, 但Li+ 的半径比Na+ 的小,且Li+ 具有2 电子结构, 而 Na+ 却是8 电子结构, 所以Li+ 的极化力比Na+ 大得多, 则Li 和 Na 的化合物在性质上差别较大.

多边形的对角和对角线[整理版]

多边形的对角和对角线[整理版]

ABCDA2A4B1A1A3A5EA DBC多边形的对角和对角线知识讲解:多边形:在平面内,由不在一直线上的一些线段首尾顺次连结而成的图形叫多边形。

这里所说的多边形都是凸多边形,即该多边形完全处在其任何一边所在直线的同侧。

反之就称为凹多边形。

各边相等,各角也相等的多边形叫做正多边形。

基本结论(1)任意n 边形的内角和等于(n-2)•180º,外角和等于360º。

(2)n 边形从一个顶点出发有(n-3)条对角线,把n 边形分成(n-2)个三角形,n 边形一共有n (n-3)/2条对角线(n=4,5,6,…)(3)n 边形的n 个内角中,最多有3个重要方法:分割法、补形法精品讲练:1、有一个边长为4m 的正六边形客厅,用边长为50cm 的正三角形瓷砖铺满,则需要这种瓷砖( ) A 、216块 B 、288块 C 、384块 D 、512块2、一个八边形ABCDEFGH 的每个内角都相等,边AB ,BC ,CD ,DE ,EF ,FG 的长分别为7,4,2,5,6,2。

求这个八边形的周长。

3、已知△ABC 是边长为2的等边三角形,△ACD 是一个含有30º角的直角三角形,现将△ABC 和△ACD 拼成一个凸四边形ABCD 。

(1)画出四边形ABCD ;(2)求出四边形ABCD 的对角线BD 的长。

4、如图,四边形ABCD 中,AB=BC=CD ,∠ABC=90º,∠BCD=150º,求∠BAD 的度数。

5、如图,在五边形A 1A 2A 3A 4A 5中,B 1是A 1的对边A 3A 4的中点,连结A 1B 1,我们称A 1B 1是这个五边形的一条中对线,如果五边形的每条中对线都将五边形的面积分成相等的两部分,求证:五边形的每条边都有一条对角线和它平行。

6、如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB ,垂足为E ,AD+AB=2AE ,求∠ADC+CEBA BCA DFE∠B 的度数。

多边形对角线的规律

多边形对角线的规律

多边形对角线的规律多边形对角线的规律1. 引言多边形作为几何学中广泛研究的对象之一,其内外角和、边长、面积等属性都有各自的规律和特点。

然而,在这些属性之外,多边形的对角线也是一个非常重要的性质,其规律和特征也值得我们深入研究和探讨。

本文将以多边形对角线作为主题,从简单的两个几何形状开始,逐步深入研究多边形对角线的规律。

2. 三角形我们从最简单的几何形状开始,即三角形。

三角形是一个具有三条边和三个内角的多边形,其对角线有什么规律呢?对角线的定义是连接多边形的两个非相邻顶点的线段。

对于三角形来说,它只有三条边,因此也只有三个对角线。

其中,一条是从一个顶点到对边的另一个顶点,另外两条则是连接两个相邻顶点之间的对角线。

3. 四边形接下来,我们研究四边形。

四边形是一个具有四条边和四个内角的多边形,其对角线又有着怎样的规律呢?对于四边形来说,它有四条边,因此也有四个对角线。

其中,两条对角线是连接相对顶点的线段,另外两条对角线是连接相邻顶点的线段。

需要注意的是,四边形对角线的特点是其中任意两条对角线不会相交于一点,即没有交点。

这是四边形与三角形在对角线规律上的一个重要区别。

我们可以通过计算四边形对角线长度的规律来更深入地研究这个主题。

我们可以发现,对于同一个四边形,其两组相对对角线的长度之和相等。

这可以通过利用相似三角形的性质进行证明。

4. 五边形及以上的多边形在研究了三角形和四边形后,我们可以进一步深入研究五边形及以上的多边形。

对于五边形来说,它有五条边,因此拥有10条对角线。

对于六边形来说,它有六条边,因此拥有15条对角线。

随着边数的增加,多边形的对角线数量呈现出一个规律。

我们可以通过规律的发现和总结,进一步预测七边形、八边形等多边形的对角线数量。

5. 个人观点和理解对于多边形对角线的规律,我的个人观点是它揭示了多边形内部结构的一种规律性和对称性。

通过研究对角线的长度、数量以及相互之间的关系,我们可以更深入地了解不同多边形的特点和性质。

多边形对角线公式的推导过程

多边形对角线公式的推导过程

多边形对角线公式的推导过程全文共四篇示例,供读者参考第一篇示例:多边形是几何中常见的几何图形,常见的多边形包括三角形、四边形、五边形等等。

在多边形中,对角线是连接多边形的两个不相邻顶点的直线段。

对角线是多边形中比较复杂的概念,但是它在几何的研究中却有着非常重要的作用。

在这篇文章中,我们将探讨关于多边形对角线的公式的推导过程。

我们来看一个简单的例子:正方形。

正方形是一个四边形,它的所有边都相等,所有角也都相等。

正方形的对角线可以将它分为两个相等的直角三角形,并且对角线的长度等于正方形的边长的平方根乘以根号2。

这个结论可以通过勾股定理来得到,即对于一个直角三角形来说,斜边的平方等于直角边的平方的和。

接下来,我们来推导更一般的多边形对角线公式。

先来看一个任意多边形的简单情况:三角形。

三角形的对角线是从某一顶点到与其不相邻的另外一个顶点的线段,也就是斜对角线。

我们设这条对角线的长度为d,三角形的三个顶点分别为A、B、C,对应的边分别为a、b、c。

根据余弦定理,我们可以得到:d² = a² + b² - 2abcos(∠ACB)其中∠ACB是三角形ABC的角C的度数。

接下来,我们来看一个更为一般的情况:四边形。

然后我们再来看对角线的另一种表达方式:对角线长度的平方等于四边形的两条对角线长度的平方之和减去两倍对角线夹角的余弦值乘以对角线之积。

也就是说,我们可以得到:这个结论也可以通过余弦定理推导得到。

通过对多边形对角线公式的推导过程,我们可以发现,对角线公式的推导过程本质上是通过余弦定理来推导的。

余弦定理是几何学中的一个重要的定理,它描述了三角形中的任意一条边的长度与角度之间的关系。

在实际应用中,多边形对角线的公式可以帮助我们计算任意多边形的对角线长度,这在工程学、建筑学以及其他领域中都有着广泛的应用。

通过对多边形对角线公式的推导过程的深入理解,我们可以更好地掌握几何学的知识,从而更好地解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题的解决
1、递推归纳法: 边数 三角形
对角线条数 0
四边形
2
五边形
5
六边形
9
我们设对角线条数为 y,多边形边数为 n,(n≥3)
关系式为 y=an2+bn+c。
利用待定系数法,则:
2=16a+4b+c 5=25a+5b+c 9=36a+6b+c
解得,
a=
1 2
b=-
3 2
c=0
∴ y= 12n2- 32n
1、n 个顶点,应有n (n-3)条对角线。 思考: 2、线段AB与线段BA是同一条线段。
总结:
n边形对角线的条数为
1 2
n(n-3)。
方法应用:
3 22013

1 2
n(n-3)
顶点,n 条边。
过平面内 n 个点可连接的线段
包含边和对角线。
n
个点可连接的线段有
1 2
n(n-1)条。
∴对角线有[
1 2
n(n-1)-n]
条。


1 2
n(n-3)。
问题的解决
3、综合分析法:
观察:
发现:
从 n 边形的每个顶点处引出的对角线 有( n -3) 条。
数学思考
初中数学规律探究类问题的
思考方法
以多边形对角线条数的确定为例
问题的背景
对角线的定义: 在多边形中,连接不相邻的两个顶点
的线段叫做多边形的对角线。
实例探究:
0
2
5
9
问题的提出
如图示8边形有几条对角线呢? 再或者问12边形? 这样问一定有规律可寻! 因此,找出求对角线的规律
就很重要了。
那我们就设多边形的边数是n吧,n边形有几条对角线?
相关文档
最新文档